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Abstract The emergence of cooperation is a central question in evolutionary biology. 
Microorganisms often cooperate by producing a chemical resource (a public good) that benefits 
other cells. The sharing of public goods depends on their diffusion through space. Previous theory 
suggests that spatial structure can promote evolution of cooperation, but the diffusion of public 
goods introduces new phenomena that must be modeled explicitly. We develop an approach where 
colony geometry and public good diffusion are described by graphs. We find that the success of 
cooperation depends on a simple relation between the benefits and costs of the public good, the 
amount retained by a producer, and the average amount retained by each of the producer’s 
neighbors. These quantities are derived as analytic functions of the graph topology and diffusion 
rate. In general, cooperation is favored for small diffusion rates, low colony dimensionality, and 
small rates of decay of the public good.
DOI: 10.7554/eLife.01169.001

Introduction
Public goods dilemmas are frequently observed in microbes. For example, the budding yeast 
Saccharomyces cerevisiae cooperates by producing the enzyme invertase, which hydrolyzes sucrose 
into monosaccharides, when yeast colonies are grown in glucose-limited media (Greig and Travisano, 
2004; Gore et al., 2009). Other examples include the production of chemical agents that scavenge 
iron (Griffin et al., 2004; Buckling et al., 2007; Cordero et al., 2012; Julou et al., 2013), enable 
biofilm formation (Rainey and Rainey, 2003), eliminate competition (Le Gac and Doebeli, 2010), 
induce antibiotic resistance (Chuang et al., 2009; Lee et al., 2010), or facilitate infection of a host 
(Raymond et al., 2012).

In many cases, the benefits of public goods go primarily to cells other than the producer. For example, 
in a S. cerevisiae population subject to continuous mixing, only ∼1% of monosaccharides are imported 
into the cell that hydrolyzes them, with the remainder diffusing away (Gore et al., 2009). Furthermore, 
production of public goods typically involves a metabolic cost, which may exceed the direct benefit to 
the producer. In this case, absent some mechanism to support cooperation (Nowak, 2006), public 
goods production is expected to disappear under competition from cheaters, resulting in the tragedy 
of the commons (Hardin, 1968).

There is growing evidence from experiments (Griffin et al., 2004; Kümmerli et al., 2009; Julou 
et al., 2013; Momeni et al., 2013) and simulations (Allison, 2005; Misevic et al., 2012) that spatial 
or group clustering can support cooperation in microbial public goods dilemmas, although this effect 
depends on the nature of competition for space and resources (Griffin et al., 2004; Buckling et al., 
2007). These findings agree with insights from mathematical models (Nowak and May, 1992; Durrett 
and Levin, 1994; Santos and Pacheco, 2005; Ohtsuki et al., 2006; Szabó and Fáth, 2007; Taylor et al., 
2007; Perc and Szolnoki, 2008; Fletcher and Doebeli, 2009; Korolev and Nelson, 2011) suggesting 
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that spatial structure can promote cooperation by facilitating clustering and benefit-sharing among 
cooperators. However, these mathematical results focus largely on pairwise interactions rather than 
diffusible public goods. On the other hand, previous theoretical works that specifically explore micro-
bial cooperation (West and Buckling, 2003; Ross-Gillespie et al., 2007; Driscoll and Pepper, 2010) 
use a relatedness parameter in place of an explicit spatial model, obscuring the important roles of 
colony geometry and spatial diffusion in determining the success of cooperation.

Results
Here we present a simple spatial model of a diffusible public goods dilemma. Our model is inspired by 
the quasi-regular arrangements of cells in many microbial colonies (Figure 1A,B). The geometry of 
these arrangements depends on the shapes of cells and the dimensionality of the environment. For 
example, approximately spherical organisms such as S. cerevisiae arrange themselves in a hexagonal 
lattice-like structure when the colony is constrained to a two-dimensional plane (Figure 1A). This differs 
from the arrangements of rod-shaped organisms such as the bacterium Escherichia coli (Figure 1B).

To allow for a maximum variety of possible arrangements, we represent space as a weighted graph 
G (Figure 1C,D; Lieberman et al., 2005). Edges join cells to their neighbors, with edge weights eij 
proportional to the frequency of diffusion between neighboring cells. The graph structure thereby 
captures all features of cell arrangement that are relevant to the diffusion of public goods. The edge 
weights are normalized to satisfy Σj eij = 1, so that they represent relative frequencies of diffusion to 
each neighbor. Since we are modeling intercellular diffusion, we set eii = 0 for each i. We also suppose 
that G has bi-transitive symmetry (Taylor et al., 2007), which implies that space is homogeneous 
(i.e., that the colony looks the same from each cell). Our model therefore applies primarily to the interiors 
of colonies rather than their boundaries. Bi-transitive symmetry also requires that pairwise relationships 
are symmetric—in particular eij = eji for every pair i and j. This captures the reasonable assumption that 
public goods diffuse as frequently from cell i to cell j as they do from j to i.

To characterize local structure, we introduce the Simpson degree ( ) 1
2

.ijj G
e

−

∈
= ∑κ  This quantity can 

be understood as the Simpson diversity (Simpson, 1949) of neighbors per cell, and coincides with the 
usual notion of degree on regular unweighted graphs. By symmetry, κ does not depend on which 
vertex i is used in the above sum.

We consider two cells types: cooperators, C, that produce the public good, and defectors, D, that 
do not. These traits are passed to offspring upon reproduction. Production of the public good inflicts 

eLife digest The natural world is often thought of as a cruel place, with most living things 
ruthlessly competing for space or resources as they struggle to survive. However, from two chimps 
picking the fleas off each other to thousands of worker ants toiling for the good of the colony, 
cooperation is fairly widespread in nature. Surprisingly, even single-celled microbes cooperate.

Individual bacterial and yeast cells often produce molecules that are used by others. Whilst many 
cells share the benefits of these ‘public goods’, at least some cells have to endure the costs 
involved in producing them. As such, selfish individuals can benefit from molecules made by others, 
without making their own. However, if everyone cheated in this way, the public good would be lost 
completely: this is called the ‘public goods dilemma’.

Allen et al. have developed a mathematical model of a public goods dilemma within a microbial 
colony, in which the public good travels from its producers to other cells by diffusion. The fate of 
cooperation in this ‘diffusible public goods dilemma’ depends on the spatial arrangement of cells, which 
in turn depends on their shape and the spacing between them. Other important factors include rates of 
diffusion and decay of the public good—both of which affect how widely the public good is shared.

The model predicts that cooperation is favored when the diffusion rate is small, when the 
colonies are flatter, and when the public goods decay slowly. These conditions maximize the benefit 
of the public goods enjoyed by the cell producing them and its close neighbors, which are also 
likely to be producers. Public goods dilemmas are common in nature and society, so there is much 
interest in identifying general principles that promote cooperation.
DOI: 10.7554/eLife.01169.002
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a cost c on its producer, and generates a total benefit b that is distributed among cells according to a 
diffusion process described below. Because our model is inspired by public goods that directly increase 
cell growth rate (such as hydrolyzed monosaccharides) it is less applicable to public goods with indirect 
benefits, such as quorum-sensing molecules (Waters and Bassler, 2005).

Cooperators produce one unit of public good per unit time. The public goods in the vicinity of a 
given cell either are utilized for the benefit of this cell or diffuse toward neighboring cells in proportion 
to edge weight. (The possibility of public goods decay is discussed below.) We quantify diffusion by the 
ratio λ of the diffusion rate to the utilization rate. The dynamics of the local public goods concentration 
ψi at each node i ∈ G are given by

.i i i i ji j

j G

s e
∈

= − − + ∑ɺψ ψ λψ λ ψ  (1)

Above, si = 0,1 indicates the current type, D or C respectively, of cell i. The term si in Equation 1 
represents public goods production, −ψi represents utilization, −λψi represents diffusion outward, and 
the remaining term represents diffusion inward.

Equation 1 is equivalent to supposing that each particle of public good performs a random walk 
among cells (with step probabilities equal to edge weights), and has probability 1/(1+λ) of being utilized 
at each cell it encounters, including its producer. In this interpretation, λ equals the expected number 
of steps a particle travels before being utilized.

For most empirical systems, diffusion and utilization occur much faster than cell division. We there-
fore suppose that the local public goods concentrations ψi reach stationary equilibrium levels between 
reproductive events (‘Materials and methods’).

Figure 1. Colony geometry and public goods sharing in microbes of different shapes. (A) A two-dimensional 
colony of S. cerevisiae self-organizes into approximate hexagonal geometry due to the spherical shape of yeast cells. 
(B) A two-dimensional colony of E. coli, expressing green fluorescent protein, exhibits transient regular-graph-like 
structure. Panels C and D show idealized graph representations of colony spatial structure, and the consequent 
sharing of public goods, for sphere-shaped and rod-shaped organisms, respectively. Background colors show the 
stationary distributions ψi of public goods resulting from a single cooperator (center). In each case, the diffusion 
parameter is set as λ = 3. (C) Two-dimensional colonies of spherical organisms can be represented by triangular 
lattices with uniform edge weights. (D) Two-dimensional colonies of rod-shaped organisms can be represented 
using a triangular lattice with unequal weights. In this case, the weights are chosen as 0.1, 0.15 and 0.25, roughly 
proportional to the shared surface area between E. coli cells when arranged as shown.
DOI: 10.7554/eLife.01169.003
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Two key quantities in our analysis are the fractions, ϕ0 and ϕ1, of public goods that are retained by 
its producer and the producer’s immediate neighbors, respectively (Figure 2). For a state in which only 
a single cell, i, is a cooperator, we have ϕ0 = ψi and ϕ1 = Σj∈G eij ψj.

Turning now to the dynamics of evolution, we suppose that the fecundity (reproductive rate) of cell 
i is given by Fi = 1 + bψi − csi. In words, each individual has baseline fitness 1, plus the benefit, bψi, of 
public goods utilization, minus the cost, csi of public goods production. We suppose b > 0 and 0 < c < 1, 
so that benefits, costs, and overall fecundity are always positive. Some of our results apply to all such 
b and c values, while others apply only in the weak selection regime, b, c ≪ 1/κ.

Reproductions and deaths follow the Death–Birth update rule (Ohtsuki et al., 2006). At each time 
step, a cell is selected randomly to die, with uniform probability. A neighbor of the now-vacant posi-
tion is randomly selected to reproduce, with probability proportional to fecundity times edge weight. 
The new offspring fills the vacancy. For the moment, we suppose that reproduction follows the same 
edge weights as diffusion (we will relax this assumption later). We also consider other update rules in 
Supplementary file 1.

We quantify the evolutionary success of cooperation in terms of the fixation probabilities ρC and 
ρD, defined as the probability that the cooperator or defector type, respectively, will fix, upon 
starting from a single mutant in a population initially of the opposite type. Cooperation is favored 
if ρC > ρD. This is equivalent to the condition that, for small mutation rates, cooperators have greater 
time-averaged frequency than would be expected from mutational equilibrium alone (Allen and 
Tarnita, 2012).

The assortment of cell types due to local reproduction can be studied using coalescing random 
walks (Wakeley, 2009; Allen et al., 2012), which represent the ancestral lineages of chosen individuals 
as the coalesce into the most recent common ancestor. By applying random walk theory to both diffu-
sion and assortment, we are able to obtain exact conditions for the success of cooperation (‘Materials 
and methods’; Supplementary file 1).

We find that public goods cooperation is favored, for any graph and diffusion rate, if and only if

0 1

1
.

b

c
>

+ φφ
 (2)

In words, cooperation is favored if, of the public 
goods a cooperator produces, the benefits received 
by the producer, bϕ0, plus the (edge-weighted) 
average benefits received by each neighbor, bϕ1, 
outweigh the cost c of production (Figure 2). This 
result is strikingly simple, given the complex 
patterns of public goods sharing that result from 
diffusion (Figure 1). Condition (2) holds for arbi-
trary selection strength on complete graphs and 
one-dimensional lattices, and for weak selection 
on other graphs. This condition also holds for a 
variety of other diffusion processes (Supplementary 
file 1)—including diffusion that follows a different 
graph structure from reproduction. (In this case, 
the neighbor average ϕ1 is computed using the 
weights for the reproduction graph.)

Condition (2) can alternatively be expressed as 
b/c > λ/[ϕ0 (1 + 2λ) − 1] (‘Materials and methods’), 
showing how the success of cooperation depends 
on the relationship between the retention fraction 
ϕ0 and the diffusion parameter λ. We have derived 
this relationship exactly for simple graph struc-
tures (Table 1), and present a general method for 
obtaining this relationship in the ‘Materials and 
methods’. Figure 3A,B illustrates how the critical 
b/c ratios vary with the diffusion parameter λ and 
the graph topology.

Figure 2. The success of cooperation depends on the 
amounts of public good retained by a cooperator and 
its neighbors. Of the public good that a cooperator 
produces, a fraction ϕ0 is retained by the producer, a 
fraction ϕ1 is absorbed by each of the cooperator’s 
nearest neighbors, and the remainder diffuses to cells 
further away. (For graphs with unequal edge weights, ϕ1 
is the edge-weighted average fraction received by each 
neighbor.) Cooperation is favored if b/c > 1/(ϕ0 + ϕ1), 
that is, if the benefit bϕ0 received by producer, plus the 
average benefit bϕ1 received by each neighbor, 
exceeds the cost c of production. This figure shows a 
triangular lattice with equal edge weights and diffusion 
parameter λ = 3.
DOI: 10.7554/eLife.01169.004
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Above, we have assumed that diffusion and replacement are both described by the same graph 
structure. However, this may not be the case for all microbes. In E. coli colonies, for example, it is rea-
sonable to conjecture that diffusion occurs more frequently among cells that have a long side in 
common, whereas replacement may occur more frequently among end-to-end neighbors (Figure 1A,C). 
Additionally, some systems may follow a public goods diffusion process other than that modeled by 
Equation 1. To account for these variations, we consider a more general model in which diffusion is 
described by the fractions ϕij of public goods which, if produced by cell i, would be utilized by cell j. 
Probabilities of replacement are described by a graph with edge weights eij as before. The diffusion 
fractions ϕij are normalized so that ∑j ϕij = 1 for each i, and they have the same symmetries as the 
replacement graph; within these restrictions, they may be specified arbitrarily. Remarkably, our main 
result, Equation 1, remains valid in this generalized setting, with the neighbor average ϕ1 defined as 
ϕ1 = ∑j eij ϕij.

Discussion
Our results suggest three qualitative regimes for diffusible public goods scenarios. For λ ≪ 1, the 
benefits are almost all retained by producer, and production is favored whenever b/c > 1. Conversely, 
for λ ≪ 1, public goods are shared indiscriminately, and production is favored only if public goods are 
essential for survival, in which case b is effectively infinite. Between these extremes, public goods are 
shared locally, and the spatial arrangement of cells plays a critical role in the success of cooperation 
(Figure 3A). At the smaller end of this critical regime, the expansion ( ) ( )2

/ 1 1 /b c > + − +λ κ κ λ  of 
condition (2), derived in Supplementary file 1, shows how the difficulty of cooperation increases 
with the diffusion parameter λ and the Simpson degree κ. For the hydrolysis of monosaccharides in 
S. cerevisiae, we estimate λ ∼ 3 (‘Materials and methods’); thus we expect the success of invertase 
production to be strongly affected by colony geometry. Interestingly, this diffusion length is of the 
same order of magnitude as those reported in other recent experiments with diffusible public goods 
(Julou et al., 2013; Momeni et al., 2013).

Our model predicts that the advantage of cooperation decreases with colony dimensionality; for 
example, less cooperation would be expected in three-dimensional structures than in flat (2D) colonies 
(Figure 3A). It also predicts that cooperation becomes more successful with increased viscosity of the 
environment and/or rate of public goods utilization, both of which would decrease λ.

A more subtle question is how cooperation is affected if the public good may decay (or equiva-
lently, escape the colony) instead of being utilized. Decay reduces the absolute amount of public 

Table 1. Fraction of public goods retained by producer for different graph structures and 
diffusion rates

Graph structure* Fraction ϕ0 of public goods retained

Complete (well-mixed) 1

1+ λ
1D lattice 1

1 2+ λ

2D square lattice†
( )

1

agm 1,1 2+ λ

n-dimensional lattice (general)‡

( ) ( )
1

12

n

n

dπ π

π π
π

− − + −∫ ∫⋯ λ λ χ
y

y

k-Bethe lattice§ ( ) ( ) ( )( ) ( )( )
( )

2 2

2 1 4 1 1 2 2 1

2 1 2

k k k− + + − + − − +
+

λ λ λ
λ

*These results are for large populations. Corrections for finite population size are given in Supplementary file 1.
†agm denotes the arithmetic-geometric mean.
‡This result applies to any mathematical lattice, including triangular and von Neumann lattices. χ(y) denotes the 
structure function of the lattice in question, defined in the ‘Materials and methods’.
§A Bethe lattice (a.k.a. infinite Cayley tree), is an infinite regular graph with no cycles. In the formula, k denotes the 
graph degree.
DOI: 10.7554/eLife.01169.005
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goods to be shared, but also restricts this sharing to a smaller circle of neighbors; thus the net effect 
on cooperation is at first glance ambiguous. We show in the ‘Materials and methods’ that incorpo-
rating decay effectively decreases λ by a factor 1/(1 + d), reflecting the smaller neighborhood of 
sharing, and also effectively decreases b by the same factor, reflecting the diminished absolute 
amount of public goods. Here d represents the ratio of the decay rate to the utilization rate. Since 
the critical benefit-to-cost ratio always increases sublinearly with λ, the net effect is to make cooper-
ation more difficult (see Figure 3C). Thus decay of the public good has a purely negative effect on 
cooperation.

Our results help elucidate recent emiprical results on microbial cooperation in viscous environ-
ments. For example, Kümmerli et al. (2009) found that increased viscosity promotes the evolution 
of siderophore production in Pseudomonas aeruginosa, while Le Gac and Doebeli (2010) found 
that viscosity had no effect on the evolution of colicin production in E. coli. In both cases, increased 
viscosity restricted cell movement, effectively leading to fewer neighbors per cell (lower graph 
degree). The crucial difference lies in the effect on public goods diffusion. In the study of Kümmerli 
et al. (2009), the diffusion rate decreased significantly as viscosity increased, while for Le Gac and 
Doebeli (2010), the diffusion rate remained large even with high viscosity. Thus the divergent out-
comes can be understood as a consequence of differences in the diffusion rate, captured in our 
model by λ.

Here we have considered homotypic cooperation—cooperation within a single population. Momeni 
et al. (2013), published previously in eLife, investigate heterotypic cooperation between distinct 
populations of S. cerevisiae, in the form of exchange of essential metabolites. Type R produces ade-
nine and requires lysine, type G produces lysine and requires adenine, and type C (a cheater) requires 
adenine but does not produce adenine. While such heterotypic cooperation is not incorporated in 
our model, the results are qualitatively similar, in that spatial structure promoted the cooperative 
strategies G and R over the cheater C. This similarity can be understood by noting that heterotypic 
cooperation also entails a form of second-order homotypic cooperation. For example, G-cells aid 
nearby R-cells, which in turn aid nearby G-cells, so the benefit produced by a G-cell indirectly aids 
other G-cells nearby. Thus the conclusion that spatial structure aids cooperative strategies can apply 
to heterotypic cooperation as well.

Finally, our model can also represent the spread of behaviors via imitation on social networks 
(Bala and Goyal, 1998; Bramoullé and Kranton, 2007; Christakis and Fowler, 2007). Suppose 
an action generates a benefit b0 for the actor, and additionally generates further benefits that radiate 
outward according to some multiplier m, so that first neighbors receive a combined benefit mb0, 
second neighbors receive m2b0, and so on. Education, for example, exhibits this kind of social multi-
plier in its effect on wages (Glaeser et al., 2003). This effect can be captured using the parameter 
change b = b0/(1 − m), λ = m/(1 − m). For non-well-mixed social networks, the action becomes 
more likely to spread as the multiplier increases, and can spread even if there is a net cost to the 
actor (Figure 4).

Materials and methods
Stationary public goods distribution
We obtain a recurrence relation for the stationary public goods distribution in a given state by setting 

0
i

=ɺψ  in Equation 1. This yields

( )1 .i i ji j

j G

s e
∈

+ = + ∑λ ψ λ ψ  (3)

In particular, for a state in which only cell i is a cooperator, we have (1 + λ)ϕ0 = 1 + λϕ1. Combining 
this identity with (2) yields the equivalent condition b/c > λ/[ϕ0 (1 + 2λ) − 1].

Generating function analysis of random walks
We analyze the distribution of public goods and the assortment of cell types using the generating 
function for random walks (Montroll and Weiss, 1965; Lawler and Limic, 2010). For a given graph G, 
this generating function is given by the power series

( ) ( )

0

.
n n

ij ij

n

z p z
∞

=

=∑
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Above, p(n)
ij  denotes the probability that a random walk of n steps starting at i will terminate at j.

We prove in Supplementary file 1 that the stationary concentration of public goods in a particular 
state are given by

1
.

1 1
i j ji

j G

s
∈

 =  + + 
∑ 

λψ
λ λ

In particular, the fraction ϕ0 that a cooperator retains of its own public good can be written

φ  =  + + 
0

1
.

1 1
ii


λ
λ λ  (4)

Spatial assortment of types can be quantified using identity-by-descent IBD probabilities (Rousset 
and Billiard, 2000; Taylor et al., 2007). For this, we introduce a small probability u that each new 
offspring is a mutant. Then, two given cells are IBD if no mutation separates them from their most recent 
common ancestor. Based on the theory of coalescing random walks (Allen et al., 2012), the probability 
that i and j are IBD can be written

( )
( )
1

.
1

ij

ij

jj

u
q

u

−
=

−



Figure 3. Cooperation becomes harder to achieve with increasing λ, graph degree and dimensionality, and 
public goods decay rate. (A) The critical b/c ratio for public goods production to be favored for various graph 
structures, plotted against the diffusion rate λ. These results are derived from Equation 2 and the expressions 
for ϕ0 in Table 1. For a well-mixed population (complete graph), cooperation is favored if and only if b/c > 1 + λ; 
for other graph structures, the critical b/c ratio is a increasing, convex function of λ. In general, the conditions for 
cooperation become increasingly stringent with both the degree and the dimensionality of the graph. (B) Our 
results are confirmed by simulations on a 15 × 15 periodic triangular lattice with uniform edge weights and cost c 
= 5%. The critical b/c threshold from Equation 2 is plotted in black. A plus (+) indicates that the frequency of 
cooperator fixation exceeded the frequency of defector fixation (ρC > ρD), while a minus (−) indicates the 
opposite. In all cases the results were statistically significant (two-proportion pooled z-test, p<0.05). (C) Adding 
decay of rate d effectively reduces both λ and b by the factor 1/(1 + d), reflecting greater locality in sharing but 
reduced overall concentration of public good. On a graph of b/c versus λ, this moves each point (b/c, λ) along a 
straight line toward the origin. Since the increase in the critical b/c ratio with λ is in all cases sublinear, this 
change always hinders cooperation. The critical b/c ratio for a planar triangular lattice is plotted in black. Adding 
a decay rate equal to the utilization rate (d = 1) changes favorable (b/c, λ) combinations (marked by circles) to 
unfavorable ones (arrowheads).
DOI: 10.7554/eLife.01169.006
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Considering the dynamics of Death–Birth 
updating, and applying established properties of 
generating functions, we derive (Supplementary 
file 1) the success condition (2).

To obtain the expressions in Table 1, we com-
bine (4) with previously established expressions 
for ij  on the graphs in question. A general ex-
pression is available for a lattice of any dimen-
sion. Such a lattice is defined by a finite collection 
of vectors v1,…,vk ∈ Rn with associated weights 
w1,…,wk. The nodes of the lattice are all points of 
the form 

1 1

n

k k
m v m v= +…+ ∈x R , where m1,…,mk 

are integers. The edges from a node x consist of 
the vectors v1, …,vk , positioned to start at the 
point x , with weights given by w1, …,wk, respec-
tively. The generating function of a random walk 
on such a lattice, starting from the lattice origin 
0, can be expressed as (Montroll and Weiss, 
1965)

( )
( ) ( )0

1
.

12

i

n

n

e
z d

z

π π

π π
π

− ⋅

− −
=

−∫ ∫⋯
χ

x y

x
y

y
 (5)

Above, χ(y) is the ‘structure function’ of the lattice, defined as

( )
1

.
j

k
i

k
j

w e
⋅

=

=∑χ v y

y
 (6)

The argument y = (y1,…,yn) of χ(y) is a vector in Rn. For example, for an n-dimensional square lattice, 
we have

( ) ( )
1

1
cos .

n

i

i

y
n =

= ∑χ y

For a two-dimensional triangular lattice,

( ) ( ) ( ) ( )1 2 1 2

1
cos cos cos .

3
y y y y= + + +  χ y

Similar expressions for other lattices, including the square lattice with von Neumann neighbors and 
lattices with unequal edge weights (e.g., Figure 1B), can be readily obtained from (6).

Estimation of diffusion parameter for S. cerevisiae
We suppose that glucose uptake follows Michaelis–Menten kinetics, so that the uptake rate is given 
by Vmaxψ/(ψ+K), where ψ is the concentration of glucose, Vmax is the maximal uptake rate, and K is the 
concentration at which the uptake rate reaches half of its maximum. We treat fructose as equivalent to 
glucose. Since we are interested in the case that glucose is limited, we assume ψ≪K , and the uptake 
rate therefore simplifies to Vmaxψ/K . Gore et al. (2009) estimated the uptake kinetics to be Vmax ∼ 2 × 107 
molecules per second and K ∼ 1mM.

We calculate the lifetime L of a glucose molecule prior to absorption as the reciprocal of the frac-
tion of glucose absorbed per unit time:

=
×

# glucose molecules per unit excluded volume
,

(Uptake rate per cell) (#cells per unit excluded volume)
L

where ‘excluded volume’ refers to the volume of water excluded by the yeast cells. Supposing that 
each yeast cell has volume v∼4π(2μm)3/3, and that yeast cells in a tightly-packed colony occupy 
approximately half of the available volume, we obtain

Figure 4. The spread of behaviors on social networks 
increases with their social multipliers. In an alternate 
interpretation of our model, an action has benefits that 
radiate outward from the actor according to some 
multiplier m. Individual receiving a large amount of benefit 
are more likely to be imitated by social contacts. The 
likelihood of the action to spread—and the benefits to the 
network as a whole—both increase with the multiplier m.
DOI: 10.7554/eLife.01169.007
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L= ψ
(Vmax  ψ/K)×(1/v)

= Kv

Vmax

∼1 sec.

The diffusion length before uptake is calculated as 
√
D/L, where D is the diffusion constant, 

which we estimate as 100 μm2/sec in the colony environment. Combining with the above calcula-
tion of L gives a diffusion length of ∼10 μm, which is ∼3 cell lengths. We therefore estimate λ = 3 
for this system.

Decay of the public good
Decay or escape of the public good can be incorporated into our model by adding a decay term to 
the right-hand side of Equation 1. This yields

.i i i i i ji j
j G

s d e
∈

= − − − + ∑ɺψ ψ ψ λψ λ ψ

Above, d represents the ratio of the decay rate to the utilization rate. Setting 0
i

=ɺψ  and rearranging, 
we obtain

( ) ( )1 1 1 .
1 1

i i ji j
j G

d s e d
d d ∈

 + + = + + + + 
∑λ λψ ψ

Defining the effective quantities ( )1
i i

d= +ɶψ ψ  and ( )/ 1 d= +ɶλ λ , we recover the recurrence relation 
(3). All of our results then carry forward using these effective quantities, except that b must also be 
reduced by the factor 1 + d to compensate for the rescaling of ψi by this same factor.
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