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Abstract We develop an accurate partial differential
equation based methodology that predicts the time-
optimal paths of autonomous vehicles navigating in any
continuous, strong and dynamic ocean currents, obvi-
ating the need for heuristics. The goal is to predict a
sequence of steering directions so that vehicles can best
utilize or avoid currents to minimize their travel time.
Inspired by the level set method, we derive and demon-
strate that a modified level set equation governs the
time-optimal path in any continuous flow. We show that
our algorithm is computationally efficient and apply it
to a number of experiments. First, we validate our ap-
proach through a simple benchmark application in a
Rankine vortex flow for which an analytical solution
is available. Next, we apply our methodology to more
complex, simulated flow-fields such as unsteady double-
gyre flows driven by wind stress and flows behind a cir-
cular island. These examples show that time-optimal
paths for multiple vehicles can be planned, even in the
presence of complex flows in domains with obstacles.
Finally, we present, and support through illustrations,
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several remarks that describe specific features of our
methodology.

Keywords path planning · level set · reachability ·
dynamic flows · ocean sampling · AUVs · gliders ·
time-optimal · energy-optimal · obstacles · generalized
gradients · viscosity solutions

1 Introduction 1

The problem of path planning has a long history in 2

several branches of science and engineering, especially 3

robotics. However, it does not have a universal solution, 4

primarily due to the broad usage of the term and the 5

wide spectrum of complexity associated with it. In most 6

recent cases, these paths are planned for autonomous 7

robots performing tasks with little human intervention. 8

In the most general sense, path planning refers to a 9

set of rules provided to the autonomous robot for navi- 10

gating from one configuration to another in an optimal 11

fashion, i.e., by optimizing an objective performance 12

criterion. Since a wide variety of tasks are assigned to 13

autonomous robots, varied path planning rules are uti- 14

lized. 15

Autonomous Underwater Vehicles (AUVs) are em- 16

ployed for ocean mapping, commercial exploration, naval 17

reconnaissance and harbor protection. By making mea- 18

surements of field quantities of interest in the ocean, 19

they enable ocean prediction and other types of scien- 20

tific research (Lermusiaux, 2007; Schofield et al, 2010). 21

Their path planning may involve minimization of travel 22

time or energy spent by the vehicle. This planning must 23

also take into account the possibly dynamic nature of 24

the environment and limited capabilities of the robot it- 25

self. The challenge therefore, is to develop rigorous theo- 26

ries and computationally efficient schemes that accom- 27
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modate both environmental forcing and robotic con-28

straints while at the same time provide an exact, op-29

timal path for the robot. Applications shown in this30

paper focus on time-optimal path planning for swarms31

of underwater robots such as gliders and propelled vehi-32

cles. Nevertheless, the methodology is valid for a much33

wider class of vehicles including small vessels, ships, air-34

crafts and ground vehicles (if under advection by the35

environment). These vehicles are employed in a wide36

range of industries and human activities. Thus, accu-37

rate path planning can lead to major savings on re-38

sources such as fuel and also limit environmental im-39

pacts.40

Underwater gliders are ideal for long range sam-41

pling missions due to their low power consumption and42

high levels of autonomy (Lermusiaux et al, 2014). Their43

endurance however comes at the expense of smaller44

travel speeds. In many cases, the glider speed becomes45

comparable to, or even less than that of ocean cur-46

rents in which it operates. Thus, the dynamic nature47

of the ocean currents and their effect on vehicle speed48

should not be neglected. In addition, as these vehicles49

have become more reliable and affordable, their simul-50

taneous use in sampling and exploratory missions has51

become viable (Bahr et al, 2009; Fiorelli et al, 2004;52

Ramp et al, 2009; Haley et al, 2009; Schofield et al,53

2010), possibly with coordination (Leonard et al, 2007;54

Zhang et al, 2007; Bhatta et al, 2005), enabling inter-55

vehicle information exchange (Bahr et al, 2009; Paley56

et al, 2008; Davis et al, 2009). This naturally raises the57

central question of how to optimally navigate swarms58

of vehicles through these possibly strong and dynamic59

ocean currents, which often have large variability in60

both space and time. Moreover, similar to our com-61

mon use of weather predictions, it is essential to utilize62

current predictions (up to the predictability limit) for63

this planning. As most gliders and AUVs receive posi-64

tion fixes or communicate only intermittently, we wish65

to predict their optimal controls ahead of time by using66

current forecasts.67

We present a rigorous (partial differential equation68

based) methodology inspired by the level set method,69

to compute continuous time-optimal paths of swarms70

of underwater vehicles, obviating the need for heuristic71

approaches. The methodology predicts the exact fastest72

path between any two points along with the sequence73

of vehicle steering directions that realize this fastest74

path. The methodology automatically generates vehicle75

trajectories that avoid obstacles, both stationary and76

mobile.77

Next, we first briefly review prior results on robotic78

and underwater path planning. In §2, we formally de-79

fine our problem and introduce the relevant notation. In80

§3, we briefly review level set methods and develop the 81

basis of our approach to path planning. The main theo- 82

retical results are presented in §4. Numerical and imple- 83

mentation details are discussed in §5. In §6, we present 84

some applications, ranging from simple benchmark test 85

cases to more complex and realistic flow-fields. A sum- 86

mary and conclusions are presented in §7. Applications 87

in realistic multiscale ocean flows and complex geome- 88

try are provided in the companion paper (Lolla et al, 89

2014b). 90

1.1 Prior work 91

Traditionally, robotic path planning has focused on gen- 92

erating safe trajectories, away from hazardous regions 93

and obstacles. The common difficulty here is in han- 94

dling the large number of degrees of freedom (DOF) of 95

the robot. Every extension to this basic problem adds in 96

computational complexity (Lolla, 2012; Latombe, 1991). 97

Motion planning for multi DOF systems such as robotic 98

arms (Canny, 1988; Latombe, 1991), including cooper- 99

ative control (Paley et al, 2008; Leonard and Fiorelli, 100

2001) and coordination (Bahr et al, 2009; Davis et al, 101

2009) have been extensively studied. Path planning through102

unsteady flow-fields has received far less attention in 103

comparison. The challenge here is that the currents di- 104

rectly affect the displacement of the vehicle, making 105

the cost of movement variable, and anisotropic at dif- 106

ferent points in space (Isern-Gonzalez et al, 2012). In 107

this case, even the seemingly simple task of generating 108

feasible tracks becomes challenging. Most robotic path 109

planning algorithms use dynamic programming based 110

approaches such as Dijkstra’s method and the A∗ algo- 111

rithm (Rhoads et al, 2010). When applied to dynamic 112

flow environments, they often lead to infeasible paths or 113

have a large computational cost when the environment 114

becomes complex. Algorithms that compute discrete ve- 115

hicle paths (i.e. on a grid) do not remain optimal when 116

extended to a continuous setting. Finally, it is not un- 117

common for these algorithms to remain stuck in local 118

minima. 119

Rapidly exploring Random Trees (RRTs) (Lavalle, 120

1998; Kuffner and LaValle, 2000) are a randomized ap- 121

proach to path planning for obstacle avoidance that 122

use random sampling to explore the robot workspace. 123

Their ability to quickly and uniformly explore a large 124

workspace has led to their widespread usage in several 125

path planning applications including robotics (Yang et al, 126

2010; Bruce and Veloso, 2002; Melchior and Simmons, 127

2007) and ocean cases (Rao and Williams, 2009). How- 128

ever, they don’t provide the global optimal and are not 129

suited to cases where the environment is highly dynamic 130

and has strong effects on the robots. 131
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Graph search techniques, such as A∗ have been used132

for underwater path planning (Rao and Williams, 2009;133

Carroll et al, 1992; Garau et al, 2009). A major diffi-134

culty here is defining a good heuristic function, as the135

performance of A∗ crucially depends on it (Lolla, 2012).136

A∗ uses a discretized representation of the domain and137

the predicted vehicle path may not always pass through138

the grid points. To correct this, adaptive grid restruc-139

turing must be performed. A∗ performs reasonably well140

for simple steady flow-fields, but may fail for more real-141

istic flows. A discussion of the computational complex-142

ity of A∗ is provided in §4.4.143

Fast marching methods (Sethian, 1999a) have also144

been applied to underwater path planning. These are145

similar to Dijkstra’s algorithm, but solved in a contin-146

uous domain. They solve an Eikonal equation (Sethian,147

1999b) to isotropically compute the arrival time func-148

tion at different points in space. In Petres et al (2007),149

the regular (isotropic) fast marching method is modified150

to create an anisotropic version where the cost function151

depends on the flow-fields. For related approaches us-152

ing wavefront expansions for underwater path planning,153

see (Soulignac et al, 2009; Thompson et al, 2010, 2009;154

Kruger et al, 2007).155

Potential field techniques (Warren, 1990; Barraquand156

et al, 1992) have been widely used for robotic colli-157

sion avoidance algorithms. The key idea is to introduce158

an artificial potential field on the obstacles that pre-159

vents vehicles from getting very close to them, thus,160

generating safe paths. Although this approach gener-161

ates only locally optimal solutions, it is inexpensive,162

allowing real-time computations. It has been used for163

underwater path planning (Witt and Dunbabin, 2008),164

using a cost function that depends on the total vehicle165

drag, travel time and obstacles in the field. Voronoi di-166

agrams have also been used to solve obstacle avoidance167

problems in static environments (Garrido et al, 2006)168

and in flow-fields (Bakolas and Tsiotras, 2010).169

Variational calculus based approaches have also been170

used in underwater path planning (Davis et al, 2009):171

governing equations for minimal time routes in steady172

flows are derived and related to Snell’s law in optics.173

Routing strategies to maximize the field mapping skill174

are also discussed. Such use of path planning for infor-175

mation maximization and adaptive sampling is devel-176

oped in (Binney et al, 2010; Smith et al, 2010; Choi177

and How, 2010; Heaney et al, 2007; Yilmaz et al, 2008;178

Wang et al, 2009).179

The solution to the minimum time navigation prob-180

lem in dynamic flows is governed by a Hamilton-Jacobi-181

Bellman (HJB) equation (Bryson and Ho, 1975). Rhoads182

et al (2010) derive a set of Euler-Lagrange equations 183

for the optimal trajectory, which are solved using an 184

extremal field approach. This approach requires track- 185

ing a potentially large family of 1-D curves backward 186

in time, for several choices of the arrival time at the 187

end point. Other underwater path planning approaches 188

include Lagrangian Coherent Structures (Zhang et al, 189

2008), case based reasoning (Vasudevan and Ganesan, 190

1996) and evolution (Alvarez et al, 2004). We refer to 191

(Lolla, 2012; Lolla et al, 2014c) for more extensive re- 192

views. 193

2 Problem Statement 194

Let Ω ⊆ Rn be an open set and F > 0. Consider a ve- 195

hicle (P ) moving in Ω under the influence of a dynamic 196

flow-field, V(x, t) : Ω × [0,∞) → Rn. We wish to pre- 197

dict a steering rule for P that minimizes its travel time 198

between given start and end points, denoted by ys and 199

yf respectively. In other words, the goal is to develop an 200

algorithm that predicts the sequence of headings that 201

would result in the fastest time path from ys to yf . 202

Let a general continuous trajectory from ys to yf be 203

denoted as XP (ys, t) (see Fig. 1). The vehicle motion, 204

being composed of both nominal motion due to steering 205

and advection due to the flow-field, is governed by the 206

kinematic relation 207

dXP

dt
= U(XP (ys, t), t) = FP (t) ĥ(t)+V(XP (ys, t), t) ,

(1)

where FP (t) is the speed of the vehicle relative to the 208

flow, with 0 ≤ FP (t) ≤ F , ĥ(t) is the vehicle heading 209

(steering) direction at time t and U(XP (ys, t), t) is the 210

total vehicle velocity. Let T̃ (y) : Ω → R denote the 211

‘first arrival time’ function, i.e. the first time the vehicle212

reaches any given y, starting from ys. Clearly, T̃ (ys) =213

0. The limiting conditions on XP (ys, t) are214

XP (ys, 0) = ys , XP (ys, T̃ (yf )) = yf . (2)

We aim to predict the optimal controls for ĥ(t)215

and FP (t) that minimize T̃ (yf ) subject to the equa-216

tion of motion (1) and limiting conditions (2). (1) and217

(2) can be interpreted as constraints for this minimiza-218

tion problem. Let the optimal travel time to reach yf219

be T ?(yf ) and the corresponding optimal trajectory be220

X?
P (ys, t).221

Here, we assume that V(x, t) is exactly known. In222

realistic ocean applications, forecast flow-fields are al-223

ways associated with some levels of uncertainty (Lermu-224

siaux, 2006; Lermusiaux et al, 2006). V(x, t) can cor-225

respond to, for example, the mode or the mean of the226

predicted flow-field. Planning paths in predicted prob-227

abilistic flows (Sapsis and Lermusiaux, 2009; Uecker-228

mann et al, 2013) are reported in (Lermusiaux et al,229
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Fig. 1: Motion of P in an unsteady flow-field, V(x, t). Its
trajectory XP (ys, t) connects the start (ys) and end (yf )
points and satisfies (1)–(2). The total velocity, U is the vector

sum of the steering velocity FP (t) ĥ(t) and flow-field V(x, t).

2014; Pereira et al, 2013). We consider cases where the230

distance travelled by the vehicle is much larger than its231

dimensions thereby assuming the interaction between232

the vehicle and the flow-field to be purely kinematic.233

The notation | • | in this paper will denote the L2 norm234

of •. We assume that FP (t) and ĥ(t) are Lipschitz con-235

tinuous in t and that V(x, t) is bounded and Lipschitz236

continuous in both x and t, i.e. ∃ C,CV > 0 such that237

max
x∈Ω,t≥0

{|V(x, t)|} ≤ C and (3)

238

|V(x1, t1)−V(x2, t2)| ≤ CV (|x1 − x2|+ |t1 − t2|) ,
x1,x2 ∈ Ω, t1, t2 ≥ 0 .

(4)

3 Approach239

3.1 Control and Reachability240

The computation of time-optimal paths in a dynamic241

flow-field is not trivial. The complexity arises in part,242

due to the number of control choices available to the243

vehicle. At every point in its trajectory, the vehicle has244

an infinite number of heading (steering) directions to245

choose from (see Fig. 2). For every such heading di-246

rection chosen at t, it has again an infinite number of247

heading choices at the next instant. Thus, it is not triv-248

ial to predict the instantaneous vehicle headings that249

will lead to the quickest path.250

Instead of aiming for the exact solution, approxi-251

mate solutions are often sought. A class of practical252

schemes is based on heuristic control decisions for the253

vehicle. For example, a heuristic steering rule can be to254

always steer in the direction of the end point (LaValle, 255

2006). However, such approaches are neither guaran- 256

teed to be optimal, nor guaranteed to find a feasible tra- 257

jectory. The problem becomes more complicated when 258

the flow-fields are dynamic; the heuristic control then 259

becomes a function of the velocity field, at least near 260

the vehicle. One solution could be to keep track of the 261

vehicle trajectories for every possible control decision 262

choice, and then choose the sequence of headings that 263

leads to the least travel time. However, this method 264

would be extremely expensive and require a lot of stor- 265

age. 266

Our approach to path planning is inspired by the 267

computation of the reachable set from a given starting 268

point. A reachable (or attainable) set is defined as the 269

set of points that can be visited by the vehicle at a given 270

time. The boundary of such a set is called the reachabil- 271

ity front. By tracking the evolution of the reachability 272

front, one can determine when it first reaches the end 273

point. The path traced by the point on the reachability 274

front that first reaches the end point will be the optimal 275

path we wish to compute. 276

The reachable set R(ys, t) (see Fig. 2) at time t ≥ 0 277

is the set of all points y ∈ Ω such that there exists a tra- 278

jectory X̃P (ys, τ) satisfying (1), with X̃P (ys, 0) = ys 279

and X̃P (ys, t) = y. Note that the subset of trajectories 280

X̃P (ys, t) that reach yf is denoted as XP (ys, t). 281

Fig. 2: Reachability front ∂R(ys, t) and infinite possi-
ble steering directions: ∂R denotes the boundary of the
reachable set R(ys, t) (set of points that can be visited
at time t).

From this definition of a reachable set (and front) one 282

can ask some key questions which include: if the reach- 283

ability front exists, can one prove that its evolution is 284

directly linked to that of the time-optimal path in any 285

dynamic flow? what are the equations governing the 286

dynamics of this front and path? and, how can they 287

be computed efficiently? Level set methods, briefly re- 288

viewed next, provide leads for the answers. After that, 289

we derive a new level set equation that governs the 290

reachability front (Fig. 2) and time-optimal paths from291

the origin ys.292
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3.2 Modified Level Set Equation and Time-Optimal293

Paths294

Consider a front ∂R, for example, the interface be-295

tween two immiscible fluids. Level set methods are con-296

venient tools to track the evolution of such a front.297

They can model the dynamics of the implicit front and298

capture the interaction between the evolution of the299

front and fluid forcing. They were originally introduced300

to solve problems related to fluid-interface motion and301

front evolution problems (Osher and Sethian, 1988).302

They can also handle problems in which the speed of303

the interface depends on various local, global or other304

independent properties of the system.305

Level set methods evolve an interface (a front) by306

embedding it as a hyper-surface in one higher dimen-307

sion. For example, an interface in 2D is represented as308

the zero contour of a 2D scalar field and the evolu-309

tion of this scalar field governs the movement of the310

front. This effectively transforms the problem to a 3D311

one, time being the third dimension. This higher dimen-312

sional embedding is what allows for automatic handling313

of merging and pinching of fronts and other topologi-314

cal changes. Level sets are an implicit representation315

of the front as opposed to an explicit one. They of-316

fer several advantages over an explicit representation317

(Sethian, 1999b; Osher and Fedkiw, 2003). For any C ∈318

R, the C−level set of a function φ : Rn → R is the set319

{x : φ(x) = C}.320

The choice of φ(x) is often somewhat arbitrary. The321

most common function used for this purpose is the322

signed distance function, denoted by φρ(x). As the name323

suggests, a distance function ρ(x) : Rn → R+ is the324

minimum distance of x from the front, i.e. ρ(x) :=325

minxi∈∂R |x − xi|. A signed distance function φρ(x),326

is defined as:327

φρ(x) :=

{
ρ(x), if x is outside the front ,
−ρ(x), if x is inside the front .

(5)

Clearly, φ(x) = 0 for all x ∈ ∂R, implying that the328

front is implicitly represented as the zero level set of329

φ(x). For all points outside the front, φ(x) > 0, and for330

all points inside the front, φ(x) < 0. Signed distance 331

is a preferred choice for φ(x) because it is smooth and 332

maintains fixed amplitude gradients in the field. 333

The level set equation governing the evolution of a 334

front moving in a direction normal to itself at a constant 335

speed F (> 0) and in a stationary environment (i.e. with 336

zero external flow-field) is (Osher and Fedkiw, 2003): 337

∂φ

∂t
+ F |∇φ| = 0 . (6)

In (6), the front’s motion can be thought of as being 338

driven by an internal velocity, F n̂ = F ∇φ
|∇φ| . Consider- 339

ing now the motion of field φ solely driven by an ex- 340

ternal flow V(x, t), the governing advection equation 341

is 342

∂φ

∂t
+ V(x, t) · ∇φ = 0 . (7)

If in addition to the external flow-field of (7), the front 343

is also internally driven by its own velocity as in (1), 344

the advection equation (7) becomes 345

∂φ

∂t
+
(
FP (t) ĥ(t) + V(x, t)

)
· ∇φ = 0 , (8)

where, as in (1), FP (t) ĥ(t) is the velocity of the vehicle 346

relative to the flow-field, of magnitude 0 ≤ FP (t) ≤ F 347

and heading direction ĥ(t). If the initial conditions to 348

(8) are given level set conditions, then (8) defines a 349

family of level set equations, each member of the family 350

corresponding to a specific choice of FP (t) and ĥ(t). 351

The comparison of (8) to (6) indicates that the head- 352

ing and magnitude of the relative velocity of the vehicle 353

are free time-dependent control variables of our prob- 354

lem. It also raises the following question: should time- 355

optimal paths be those of vehicles driven in a direction 356

normal to the time-dependent level set similar to (6), 357

even if that level set is externally advected as in (8)? 358

In §B, we state and prove a theorem that shows 359

that the time-optimal trajectory, if it exists, is indeed 360

obtained by a combination of (6) and (8). The relevant 361

background theory is discussed in §A. Specifically, we 362

show that the viscosity solution to the Hamilton-Jacobi 363

equation 364

∂φo

∂t
+ F |∇φo|+ V(x, t) · ∇φo = 0 in Ω × (0,∞) , (9)

with initial conditions 365

φo(x, 0) = |x− ys| (10)

governs the reachable set R(ys, t), viz., R(ys, t) = {x : 366

φo(x, t) ≤ 0}. In other words, the reachable set coin- 367

cides with the region(s) where φo is non-positive. As 368

a result, the minimum time to reach the end point yf 369

(i.e. T ?(yf )) corresponds to the first time the zero level- 370

set of φo arrives at yf (see (33)). Furthermore, we show371

that the optimal trajectory X?
P (ys, t) satisfies372

dX?
P

dt
= F

∇φo(X?
P , t)

|∇φo(X?
P , t)|

+ V(X?
P , t), t ∈ (0, T ?(yf ))

(11)

whenever φo is differentiable at (X?
P (ys, t), t). This im-373

plies that the vehicle’s optimal relative speed equals F ,374

and its optimal heading is normal to the level sets of375
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φo. Critically, we show that (9), which is solved to gen-376

erate all the results shown in this paper, is valid for377

all F and V cases, even when the flow V is stronger378

than F . We also show that in the special case when379

F is always larger than the flow speed (F > |V|), the380

minimum arrival time function is also governed by a381

modified boundary value Eikonal equation (34), which382

may be efficiently solved using a standard fast march-383

ing method (Sethian, 1999a). In the following section,384

we provide several remarks extending the theorem in385

§B. Examples corroborating some of the remarks are386

presented in §5.387

3.3 Remarks388

Reachability/Existence of Feasible Paths: For a given389

problem configuration (ys, yf , V(x, t), and F ), the so-390

lution to (9) can be used to predict whether or not the391

vehicle can reach yf (or any given point in space) within392

a specified time limit, Tmax. For the latter, either the393

optimal zero level set cannot reach yf in finite time, in-394

dicating that it is impossible for the vehicle to reach yf ,395

or may reach yf , but not within the allowed time limit,396

Tmax. In all other cases, the level set method can com-397

pute the time-optimal paths to yf . We refer to §5.2.1398

for an illustration.399

400

Applicability of modified Eikonal equation: When the401

maximum relative vehicle speed F is smaller than the402

flow-speed |V(x, t)| for some x ∈ Ω and t ≥ 0, the403

minimum arrival time field T o(y) may be discontinu-404

ous since some points may be visited more than once in405

the optimal trajectory. At these points, the gradients406

∇T o are not defined and multiple arrival times need to407

be stored in order to compute the correct optimal tra-408

jectory. The modified Eikonal eq. (34) does not admit409

continuous viscosity solutions in this case. We refer to410

§5.3.1 for an example.411

412

Optimal Start Time: The initial conditions (10) indicate413

that the vehicle starts moving at time ts = 0. However,414

in some cases, the vehicle may reach the end point yf415

faster, if it is deployed at a later start time, ts > 0.416

§5.3.2 discusses an example of such a scenario.417

418

Forbidden Regions: Time-optimal paths of vehicles mov-419

ing in dynamic flow-fields may be updated/corrected420

when ‘forbidden’ or unsafe regions are introduced in421

the domain. These regions do not affect the flow-field422

and are areas in space which the vehicle must avoid.423

Examples are discussed in (Lolla et al, 2012; Lermusi- 424

aux et al, 2014). 425

426

Relations to Optimal Control: (9) is a Hamilton-Jacobi 427

equation with Hamiltonian H(x, t,∇φo) = F |∇φo| + 428

V(x, t) · ∇φo. A problem closely related to ours is the 429

optimal ‘time-to-go’ problem (Rhoads et al, 2010). Its 430

closed-loop optimal control law can be derived from a 431

dynamic programming principle (Bryson and Ho, 1975; 432

Cannarsa and Sinestrari, 2004). This governing equa- 433

tion for the optimal time-to-go is a HJB equation, and 434

has a structure similar to (9). HJB equations also form 435

the basis of several approaches to compute the reach- 436

ability fronts in areas of game theory and differential 437

games (Mitchell et al, 2005; Bokanowski et al, 2010). 438

439

Optimal Trajectories and Costates: The time-optimal 440

control problem that we study here can also be viewed 441

as a calculus of variations problem. This formulation es- 442

tablishes the existence of a costate q?P (t) : [0, T ?(yf )]→ 443

Rn corresponding to the optimal trajectory X?
P (ys, t) 444

and its control (Athans and Falb, 2006). q?P (t) equals 445

∇φo(X?
P (ys, t), t), whenever it is defined. Furthermore, 446

the trajectories Xo
P (ys, t) correspond to characteristics 447

of (9) that emanate from ys. 448

449

Uniqueness (single vs. multiple optimal paths): In some 450

situations, there may exist multiple optimal paths to 451

yf . This happens when two or more characteristics of 452

(9) emanating from ys merge at yf , making φo non- 453

differentiable at yf . The viscosity solution to (9) au- 454

tomatically allows for the formation of such singular- 455

ities or ‘shocks’. For end points lying on these shock 456

lines, there exist multiple costates, each corresponding 457

to one of the optimal trajectories. Numerical procedures 458

to treat such cases are mentioned in §C. See §5.3.3 for 459

an example. 460

461

Regularity of φo: The regularity assumption on φo at 462

points (Xo
P (ys, t), t) for t > 0 in part 2 of Theorem 4 463

(§B) is not a strong one. The value functions arising 464

in several types of optimal control problems (e.g. fixed 465

time problems) are regular (Cannarsa and Sinestrari,466

2004). Locally Lipschitz functions that are either dif-467

ferentiable or locally convex or locally semi-convex at468

a point in their domain are regular there. More details469

and references may be found in §A.470

4 Numerical Implementation and Discussion471

4.1 Algorithm and Numerical scheme: Basics472

Our path planning algorithm consists of the following473

two steps:474

1. Forward Propagation: In this step, the reacha-475

bility front is evolved by solving the modified level476
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set eq. (9) forward in time, from the start (ys = 0).477

The front is evolved until it reaches the end point478

(yf ).479

2. Backward Vehicle Tracking: The optimal vehi-480

cle trajectory, X?
P (ys, t) and control are computed481

after the reachability front reaches the end point, by482

solving (12) backward in time, starting from yf at483

time T ?(yf ) = T o(yf ), i.e.,484

dX?
P (ys, t)
dt

= −V(X?
P , t)− F

∇φo(X?
P , t)

|∇φo(X?
P , t)|

with X?
P (ys, T

?(yf )) = yf . (12)

We note that (12) corresponds to (11), when it is485

solved backward in time. For any 0 < t ≤ T ?(yf ), if486

φo is not differentiable at (X?
P (ys, t), t) the optimal487

trajectories are obtained by integrating488

dX?
P (ys, t)
dt

= −V(X?
P , t)− F

q?P (t)
|q?P (t)|

backward in time, where, q?P (t) is the costate cor-489

responding to each trajectory X?
P (t).490

The numerical schemes used to solve (9)–(12) and their491

implementation over the full spatial domain are out-492

lined in §C and detailed in (Lolla, 2012; Lolla et al,493

2014c). §C also discusses the case when yf lies on a494

shock line (see Uniqueness remark in §3.3).495

4.2 Algorithm and Numerical scheme: Narrow Band496

Since we are interested only in the evolution of the497

reachability front and not the behavior of φo away from498

the front, we can use a narrow band approach (Adal-499

steinsson and Sethian, 1995) in the forward propaga-500

tion step above: (9) is then solved only within a band501

of points around the zero level set instead of the whole502

domain. Due to this, significant reduction in computa-503

tional effort is achieved.504

In this scheme, points within a band around the505

front are tagged as alive and points far away from the506

front are marked far. Points near the edge of the alive507

set are marked close. At each time step, (9) is solved for508

points in the alive set. Points from the close set that509

enter the alive set are assigned φo values using a fast510

marching method (Adalsteinsson and Sethian, 1995).511

When these points are brought into the alive set, the512

close set is updated. Similarly, points that leave the 513

alive set are added to the close set. Since (9) is solved 514

in a much smaller domain, the computational cost of 515

the narrow band scheme is significantly lower than that 516

of the regular level set method. Here, we implemented 517

the narrow band scheme of Adalsteinsson and Sethian 518

(1995). 519

4.3 Representation of φo 520

There are several possible representations of φo, whose 521

evolution is governed by (9). Their theoretical and nu- 522

merical properties are now outlined. The level set method 523

does not place any strict restrictions on the choice of 524

φo as long as it is Lipschitz continuous (Osher and 525

Sethian, 1988; Russo and Smereka, 2000). The viscos- 526

ity solution to the Cauchy problem (9) is unique and 527

locally Lipschitz (Bressan, 2011; Tonon, 2011). If the 528

forward evolution (9) is solved exactly (i.e. no numer- 529

ical errors), any Lipschitz continuous φo will yield the 530

correct evolution of the reachability front ∂R and the 531

correct optimal path Xo
P (ys, t). However, the numeri- 532

cal solution of (9) is dependent on the specific choice of 533

φo. Usually, φo is chosen to be the signed distance func- 534

tion (φρ(x)), due to its several favorable properties: it 535

is smooth, and maintains gradients of fixed magnitude 536

everywhere, especially close to the front. This leads to a 537

more stable and accurate front evolution. Detrimental 538

effects of the loss of this representation are well docu- 539

mented (Sussman et al, 1994; Chopp, 1993). Next, we 540

describe how φo deviates from a signed distance field 541

during the course of front evolution. 542

Classic level sets and signed distance functions. When 543

V(x, t) is identically zero, (9) reduces to the classic level 544

set eq. (6). If φo is initialized to be the signed distance 545

function, then |∇φo| = 1 initially, wherever φo is differ- 546

entiable. For the rate of change, we have 547

1
2
∂|∇φo|2

∂t
= ∇φo · ∇

(
∂φo

∂t

)
= −F∇φo · ∇|∇φo| ,

considering the cases where all derivatives are well-defined.548

Initially, since |∇φo| = 1, ∂|∇φ
o|2

∂t = 0. Hence, |∇φo| = 1 549

at all future times. This means that eq. (6) (i.e. (9) 550

with no external velocity field) theoretically preserves 551

the signed distance property of φo. However, due to 552

the numerical approximations, this property is gradu- 553

ally lost. This causes neighboring level sets to either 554

bunch up (large gradients) or spread out (small gradi-555

ents). This problem, in general, cannot be alleviated by556

using higher order schemes (Mulder et al, 1992).557

Path planning level sets and signed distance func-558

tions. For general velocity fields, V(x, t) is not identi-559

cally zero and the level set is governed by (9). In this560

case, we obtain561

1
2
∂|∇φo|2

∂t
= ∇φo · ∇

(
∂φo

∂t

)
= −F∇φo · ∇|∇φo| − ∇φo · ∇ (V · ∇φo) .
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Even if |∇φo| = 1 initially, the second term of the right-562

hand-side is non-zero in general. Thus, φo will not re-563

main a signed distance field under (9), even with ex-564

act computations. Numerically, in the absence of large565

enough grid resolution, this can result in sizable errors566

in the computation of quantities such as ∇φo etc. Thus,567

one needs to either sufficiently resolve the regions close568

to the front or maintain the gradients of φo within rea-569

sonable bounds. Methods for maintaining a signed dis-570

tance representation may be found in (Chopp, 2009;571

Adalsteinsson and Sethian, 1999; Russo and Smereka,572

2000). See Lolla et al (2014c) for further discussions and573

additional references.574

4.4 Computational Cost575

In this section, we quantify the asymptotic computa-576

tional complexity of our path planning algorithm and577

highlight challenges in obtaining similar estimates for578

other common algorithms.579

We solve (9) numerically using a finite-volume (FV)580

approach for both the full domain level set and the581

narrow band version. The asymptotic complexity of the582

algorithm is a function of the grid size. In this paper,583

we present results for 2D path planning and hence, (9)584

is solved on a 2D grid. Let us assume that there are585

roughly n grid points in each direction and a total of586

N grid points in the whole domain, i.e. N = O(n2).587

Cost of solving level set equation: We start first with588

the full domain level set. If (9) is solved in the full do-589

main, the computational cost per time step is O(n2)590

for any classic PDE solver. If a narrow band approach591

is used to solve (9), this cost reduces significantly to592

O(nd) per time step (Adalsteinsson and Sethian, 1995),593

assuming a bandwidth d. The number of time steps (K)594

needed is directly related to the optimal travel time:595

K ≈ T o(yf )/∆t. Since T o(yf ) is not known a priori, it596

is not possible to compute K without solving (9) in the597

first place. Furthermore, since we use an explicit time598

integration scheme, ∆t is chosen to satisfy the CFL con-599

dition (Osher and Fedkiw, 2003), making ∆t inversely600

proportional to n. As a result, K increases in direct601

proportion to n.602

Cost of re-initialization: Re-initialization of φo in-603

curs significant expense. Its contribution towards the604

overall computational cost depends on its frequency605

(number of time steps without re-initialization) and on606

the scheme used. The procedure of computing the dis-607

tance of every grid point to the level set front is an 608

O(n3) operation. This cost drops to O(n2 log n) if a 609

fast marching method is employed (Sethian, 1999a). For 610

the narrow band version, the cost of computing the dis- 611

tances of all points inside the narrow band to the front 612

is O(nd2). In each of these cases, the re-initialization 613

cost is more than the corresponding level set cost (per 614

time step). Due to this, it is essential to choose the re- 615

initialization scheme and frequency with caution so that 616

it does not dominate the overall computational cost. 617

Cost of other algorithms: It is more challenging to 618

estimate the computational costs of the approximate 619

algorithms discussed in §1, in part because they are 620

iterative schemes and, in continuous settings, they pro- 621

vide optimal solutions only in infinite time. Most of 622

these schemes do not have rigorous estimates of rates 623

of convergence or computational cost. For example, the 624

A∗ method computes approximate trajectories by re- 625

stricting the vehicle motion onto a grid. It maintains 626

an open list (points that can possibly lie on optimal 627

path) and a closed list (points that are no longer in con- 628

sideration) at every step. In addition, there is a sorted 629

priority queue of path segments and estimates of to- 630

tal cost to reach the end point. Due to the dynamic 631

flow-field, the cost of each arc becomes time-dependent. 632

Since the optimal path may visit some points more than 633

once, no grid point may be removed from the open list, 634

i.e., no branches of the graph may be pruned. Hence, 635

the worst case complexity of A∗ scales exponentially 636

with the length of the optimal path. As a result, for 637

realistic flows even in two or three dimensions and at 638

the grid sizes needed to resolve them, the size of the A∗ 639

search space becomes prohibitive. 640

Randomized methods like RRTs are quick in prac- 641

tice and their main utility lies in uniformly exploring 642

high dimensional control spaces. Owing to the proba- 643

bilistic nature of RRTs, it is challenging to obtain rigor- 644

ous estimates of their cost for path planning in dynamic 645

flows. See (Lolla, 2012) for a detailed discussion. We are 646

not aware of published rigorous estimates of the com- 647

putational costs of other approximate algorithms for648

time-optimal path planning in dynamic currents.649

5 Applications650

In this section, we illustrate our path planning algo-651

rithm by means of three sets of examples. The first set652

(§5.1) is based on a canonical vortex flow. This serves653

as a benchmark, allowing comparison to an analytical654

solution. In the second set (§5.2), we utilize more com-655

plex and realistic ocean flows to highlight the features656

of our algorithm. In the final set (§5.3), we consider657

specific test cases, which support the remarks given in658

§3.3.659
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5.1 Benchmark Application: Path planning in Rankine660

Vortex661

In this application, we consider a vortex flow, character-662

ized in polar coordinates as V(r, θ, t) = vθ(r) θ̂, where663

θ̂ is the unit vector in the circumferential direction and664

vθ(r) is the flow-field speed, depending on the type of665

vortex. We are interested in computing the fastest time666

trajectory from ys = 0 to yf : (r = R, θ = 0). As ear-667

lier, let a first arrival time of the vehicle be T̃ (yf ) and668

the optimal first arrival time be T o(yf ) = T ?(yf ).669

670

Analytical solution for general flow vθ(r):671

Let the to-be-optimized velocity of the vehicle rela-672

tive to the flow be FP (t) ĥ(t) = Fr(t) r̂ + Fθ(t) θ̂, with673

Fr(t)2 + Fθ(t)2 ≤ F 2. The total velocity is674

dXP

dt
= Fr(t) r̂ + [Fθ(t) + vθ(r)] θ̂ , (13)

with XP (ys, 0) = 0 and XP (ys, T̃ (yf )) = yf . Separat-675

ing the radial and angular components of dXP

dt gives676

ṙ = Fr(t) and rθ̇ = Fθ(t) + vθ(r). Upon integrating the677

radial component we obtain678

R =
∫ eT (yf )

0

Fr(t) dt ≤
∫ eT (yf )

0

F dt = F T̃ (yf ) ,

implying that T̃ (yf ) ≥ R
F . Hence, R/F is a lower bound679

for T̃ (yf ). We now generate a trajectory that satis-680

fies (13) and meets this bound thereby proving that681

T o(yf ) = R/F . Such a trajectory can be generated by682

setting Fr(t) = F and Fθ(t) = 0. For this choice of the683

vehicle speed, we obtain ṙ = F and θ̇ = vθ(r)
r . Integra-684

tion of these equations yields r(t) = Ft and685

θ(R) = θ0 +
∫ R

0

vθ(r)
Fr

dr . (14)

Here, θ0 is the initial heading angle and may be com-686

puted using (14) since θ(R) is known from the coordi-687

nates of yf . Hence, the optimal control is688

F oP (t) ĥo(t) = F r̂, with θ0 = θ(R)−
∫ R

0

vθ(r)
Fr

dr .

This optimal solution can also be obtained by using our689

level set algorithm. The only information needed from690

the forward evolution of the level set to solve (12) is691

the direction of the normals to the intermediate level 692

set contours. In this problem, we could have guessed 693

the shapes of the contours without solving (9). Since 694

the flow-field is symmetric and purely circumferential, 695

the zero level set contours are circles centered at the ori- 696

gin (see Fig. 3b) with their outward normals coinciding 697

with radial directions (n̂o = r̂). Using this observation, 698

we may directly solve (12), starting from the heading 699

ĥo = r̂ at yf to compute the initial heading angle θ0 700

(where the normal to the point level set is undefined). 701

This problem is almost identical to crossing a river/jet 702

in the fastest time. In order to do this, one needs to head 703

normal to the flow at all times, so that the maximum 704

component of the vehicle’s velocity is directed towards 705

the opposite bank (Lolla et al, 2012). Similarly, in our 706

case one needs to steer normal to the streamlines of the 707

flow (i.e. r̂) to obtain the fastest time path. 708

709

Rankine Vortex Solution 710

We exemplify our algorithm with a Rankine vortex flow, 711

vθ(r) = Γr
2πσ2 , which resembles a solid body rotation of 712

the fluid and is seen in many practical vortex flows. 713

Γ is the total circulation around the origin and σ is 714

the radius of the vortex. Here we use non-dimensional 715

values, Γ = 20, σ = 1.5 and F = 1. The coordinates of 716

yf are (R = 1, θ = 0). From (14), the initial heading 717

angle is θ0 = − ΓR
2πFσ2 ≈ −1.41 rad ≈ −81.1 ◦ and the 718

optimal trajectory is 719

r?(t) = Ft , θ?(t) =
Γ (Ft−R)

2πFσ2
. (15)

Shapes of the zero level set contours at different 720

times and the optimal trajectory obtained by solving 721

(12) are plotted in Fig. 3b. A 200×200 grid and a time 722

step of 10−3 are used to solve (9), with open boundary 723

conditions on φo (see §C for more on boundary con- 724

ditions). Fig. 3a compares the headings predicted by 725

the level set algorithm with their analytical values and 726

provides evidence that our algorithm works correctly. 727

Through this example, we emphasize that the only in- 728

formation needed from the solution of (9) is the time 729

evolution of the zero level set front. If the level set con- 730

tours can be determined a priori, only (12) needs to be731

solved.732

5.2 Path Planning in More Realistic Flows733

In this section, we apply our path planning methodol-734

ogy to more complex but numerically simulated flow-735

fields. These examples also illustrate certain unique fea-736

tures and capabilities of our approach.737

5.2.1 Double-Gyre Flow738

The wind-driven double-gyre flow is modeled using a739

barotropic single layer-model in a square basin of size740

L = 1 described in detail in (Dijkstra and Katsman,741

1997; Simmonet et al, 2009) (see also (Pedlosky, 1998),(Cushman-742

Roisin and Beckers, 2010)). The intent is to simulate743

the idealized near-surface double-gyre ocean circulation 744
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Fig. 3: (a) Optimal heading angles, (b) optimal path and circular intermediate reachability fronts of a vehicle
navigating in a Rankine vortex flow. Black: path predicted by level set algorithm, Red: analytical, i.e. governed
by (15).

at mid-latitudes. The mid-latitude easterlies and trade 745

winds in the northern hemisphere drive a cyclonic gyre 746

and an anticyclonic gyre, and the corresponding zonal 747

jet in between. This eastward jet would correspond to 748

the Gulf Stream in the Atlantic and to the Kuroshio 749

and its extension in the Pacific. This idealized flow is 750

modeled by the non-dimensional equations of motion 751

∂u

∂t
= −∂p

∂x
+

1
Re
∆u−

∂
(
u2
)

∂x
− ∂ (uv)

∂y
+ fv + aτx,

(16a)

∂v

∂t
= −∂p

∂y
+

1
Re
∆v − ∂ (vu)

∂x
−
∂
(
v2
)

∂y
− fu+ aτy,

(16b)

0 =
∂u

∂x
+
∂v

∂y
, (16c)

where Re is the flow Reynolds number taking values 752

from 10 to 104, f = f̃+βy the non-dimensional Coriolis 753

coefficient, and a = 103 the strength of the wind stress. 754

In non-dimensional terms, we use f̃ = 0, β = 103. The 755

flow in the basin is forced by an idealized steady zonal 756

wind stress, τx = − 1
2π cos 2πy and τy = 0. 757

Free slip boundary conditions are imposed on the758

northern and southern walls (y = 0, 1) and no-slip bound-759

ary conditions on the eastern and western walls (x = 0, 1).760

A 64×64 grid and a non-dimensional time step of 10−4
761

are used to solve both (16) (generation of flow-field)762

and (9) (forward level set evolution). Open boundary763

conditions (see §C) are implemented on all the walls for764

(9). In what follows, we present results for Re = 150.765

The governing flow-field equations (16) are solved 766

using a second order accurate Navier-Stokes solver, which 767

is a component of a modular finite volume framework 768

(Ueckermann and Lermusiaux, 2011). The framework 769

uses a uniform, two-dimensional staggered C-grid for 770

the spatial discretization. The diffusion operator in (16) 771

is discretized using a second order central difference 772

scheme. The advection operator is discretized using a 773

Total Variation Diminishing (TVD) scheme with the 774

monotonized central (MC) limiter (Van Leer, 1977). 775

The time discretization uses a first-order accurate, semi- 776

implicit projection method, where the diffusion and pres- 777

sure terms are treated implicitly, and the advection is 778

treated explicitly (Ueckermann et al, 2013). In Fig. (4), 779

we show a few snapshots of the computed flow-field 780

streamlines, overlaid on a color plot of vorticity, at 781

different non-dimensional times. The forward evolution 782

(9) is solved using the numerical scheme described in 783

§C. 784

In this example, we (i) examine the performance 785

of our methodology for path planning in a strong and 786

dynamic flow-field, and (ii) illustrate an example to 787

determine if a vehicle can reach a given end point within 788

a specified time limit. Here, we choose ys = (0.2, 0.2)789

and yf = (0.8, 0.8). The vehicle is allowed to move after790

an offset time ts = 1.10, i.e. the flow-field experienced791

by the vehicle at the start of its motion is the flow-field792

at time ts. Fig. (4a) depicts the points ys, yf and also793

the flow-field at the time ts.794

Fig. (5) shows the evolution of the zero level set795

front when F = 5. The optimal trajectory obtained by796

solving (12) is plotted in Fig. (6). Due to the strong797

flow-field, the vehicle has to perform two revolutions798



Time-optimal path-planning in dynamic flows. 11

(a) t = 1.10 (b) t = 1.18

Fig. 4: Snapshots of the double-gyre flow-field at different times: flow streamlines (white) overlaid on color plots of
vorticity (range: [-15,15]). The start (circle) and end (star) points are also depicted. All physical quantities shown
are non-dimensional.

(a) t = 1.105 (b) t = 1.1150 (c) t = 1.1250

(d) t = 1.1350 (e) t = 1.1600 (f) t = 1.1800

Fig. 5: Time evolution of the reachability front (black) in the double-gyre flow-field for a start time ts = 1.10 and
relative speed F = 5. The evolution of the flow-field, colored by vorticity, is also shown.

around the lower eddy before it finds a favorable current799

that drives it towards yf .800

Using this double-gyre flow-field, we study another801

important aspect of path planning which is to deter-802

mine whether a vehicle can reach a given end point803

within a specified time limit, Tmax. For this example,804

we use a starting time ts = 0.4. We examine the effect805

of varying F , setting all other parameters the same as806

before. If we set F = 8, the optimal travel time is com-807

puted to be 0.0343 (see Fig. 7b). Upon reducing F to808

6, the optimal travel time increases to 0.0856 - more809

than twice the earlier value. The optimal trajectory is810
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Fig. 6: Time-optimal trajectory (black) from ys =
(0.2, 0.2) to yf = (0.8, 0.8) in the double-gyre flow over-
laid on the final flow-field, colored by vorticity.

also significantly different. Our level set methodology811

can predict if a vehicle can reach yf within time Tmax.812

The reachability front at time t = 0.035 for F = 6 is813

shown in Fig. 7c. Since the front has not yet reached814

yf , we conclude that it is not possible for the vehicle to815

reach yf within Tmax = 0.035. In the general case, (9)816

needs to be solved until the front reaches yf , or until817

time Tmax, whichever is smaller. In the first case, the818

optimal trajectory can be computed, and in the second,819

the algorithm terminates, providing the reachability set820

at time Tmax.821

5.2.2 Flow Past Circular Island: all-to-all broadcast822

We now consider the case of open flow in a smooth823

ocean channel with a circular island obstacle (see Fig. 8).824

This is a highly unsteady flow-field that exhibits var-825

ied vortex shedding (a function of the Re) in the wake.826

Through this example, we: (i) illustrate performance827

for swarms of vehicles in a strong and dynamic flow-828

field, (ii) demonstrate how obstacles to the flow (and829

vehicle) are naturally handled by the algorithm and,830

(iii) illustrate that the algorithm can be parallelized831

when paths for multiple vehicles have to be planned.832

In this example, 11 swarms (black circles) of 11 vehi-833

cles each are initially located upstream of the obstacle.834

Each swarm has one designated leader who must receive835

information from representative vehicles of each of the836

other 10 swarms. The information exchange must take837

place in the fastest time, at specific locations down-838

stream (shown by colored markers in Fig. 9), where839

swarms are reformed. Each leader travels to the end840

point corresponding to its swarm and each follower trav-841

els to one of the other end points. This situation is an 842

all-to-all broadcast in distributed computing and com- 843

munication, where every node broadcasts its informa- 844

tion to all other nodes. Thus, the goal for these vehicles 845

is to reach their end points in the fastest time, by uti- 846

lizing (or avoiding) the multi-scale flow structures in 847

their path. In addition, none of the vehicles should col- 848

lide with the cylindrical obstacle, i.e. the paths of all 849

the vehicles should be both safe and optimal. 850

In the example shown, Re = 1000. The flow is driven 851

by a deterministic uniform-flow at the inlet (left of do- 852

main), with slip velocity boundary conditions at the 853

top and bottom, and open boundary conditions at the 854

outlet (see Fig. 8). The governing flow-field equations 855

are given by (16), without the Coriolis and wind stress 856

terms (i.e. f = 0, τx = τy = 0). The obstacle in the do- 857

main is handled by masking out the appropriate region 858

in the mesh. A 200×30 grid and a non-dimensional time 859

step of 5×10−4 are used in solving both (16) (flow-field) 860

and (9) (forward evolution). Snapshots of the resultant 861

flow-field at different times are shown in Fig. (9). 862

We choose F = 0.5 and evolve a level set (eq. (9)) 863

corresponding to each of the 11 start points. In solving 864

(9), we use mask the grid points that lie under the ob- 865

stacle (see §C). Open boundary conditions are imposed 866

on φo at all other domain edges. 867

Fig. (10) shows the time evolution of level set fronts 868

for three different start points overlaid on plots of flow- 869

fields, colored by vorticity. We see that the level set 870

fronts do not penetrate the obstacle, but ‘wrap’ around 871

it. This feature of level sets leads to collision-free (safe) 872

trajectories. The level set fronts from each start point 873

are evolved until every end point has been crossed. 874

The crossing times of each end point are recorded be- 875

cause backtracking (eq. (12)) is performed from the 876

time each end point is reached. The optimal vehicle 877

trajectories corresponding to each start point are plot-878

ted in Fig. (11). As expected, none of the paths pass879

through the obstacle. Fig. (11j) contains all of the ve-880

hicle paths, clearly illustrating the all-to-all broadcast,881

with connections from each start point to every end882

point.883

This example shows that our methodology generates884

collision-free vehicle trajectories in addition to time-885

optimal paths, at no additional computational expense.886

Also, the number of level sets that need to be evolved887

depends on the number of different start points, and not888

on the number of end points. Paths to every end point889

corresponding to a single start point can be planned by890

evolving just one level set field. In the case of multi-891

ple end point points, the level set needs to be evolved892

until all of the end points have been reached. Thus,893

this algorithm can be efficiently parallelized to inde-894

pendently compute optimal vehicle tracks from multi-895

ple start points. Other examples of path planning in896
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(a) F = 6 (b) F = 8 (c) F = 6

Fig. 7: Time-optimal trajectories for two vehicles in the double-gyre flow-field. (a) The first vehicle (F = 6) takes
0.0856 units of time to reach the end point whereas (b) the second vehicle (F = 8) takes only 0.0343 units of time.
(c) The reachability front at time t = 0.035 for the slower vehicle (F = 6).

Fig. 8: Schematic of flow past circular island test case. Flow enters the left edge of the domain at a non-dimensional
speed of 2 and encounters a circular island, leading to the formation of vortices downstream of the island.

other flows can be found in (Lolla, 2012; Lolla et al,897

2012; Lermusiaux et al, 2014).898

5.3 Path Planning Examples Complementing §3.3899

5.3.1 Applicability of modified Eikonal equation900

We consider a 1-D problem with ys = 0, yf = 4 and901

F = 1. Let V(x, t) = −2 sin(πt) î (see Fig. 12). This is 902

an oscillating flow-field in one dimension. 903

Fig. 12: 1D flow-field and domain

Since its motion is restricted to the x-axis, the ve- 904

hicle has only two heading choices at any time: it can 905

either be steered to the right or to the left. From Theo- 906

rem 4, only vehicles that are steered at maximum (rel- 907

ative) speed F can remain on the reachability front. 908

In this case, the reachability front consists of only two 909

points, corresponding to positions of two vehicles, one 910

steered to the left and the other to the right at relative 911

speed F . Since yf > ys and the flow is spatially uni- 912

form, the optimal trajectory X?
P (ys, t) is realized when 913

the vehicle always moves to the right at relative speed 914

F and satisfies 915

dX?
P

dt
= F + V(X?

P , t) · î = 1− 2 sin(πt) . (17)

Integrating (17) with initial condition X?
P (ys, 0) = 0 916

yields 917

X?
P (ys, t) = t+

2
π

(cos(πt)− 1) . (18)

This continuous trajectory is plotted in blue in Fig. 13a. 918

Using X?
P , T o(y) can be computed as T o(y) = mint{t : 919

X?
P (ys, t) = y}. Note that the argument y should not 920

be confused with the ordinate; here it represents a gen- 921

eral point in the 1-D domain. T o(y) is plotted in red in 922

the same figure. We can clearly see the discontinuity in 923

T o near points 0.08 and 2.08. This happens because at 924

certain times, the vehicle experiences a strong flow ad-925

verse to its rightward motion due to which, it is forced926

to reverse its trajectory until a favorable current ad-927

vects it towards yf . As a result, the vehicle visits some928
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(a) t = 0 (Initial Time) (b) t = 3.00

(c) t = 4.800 (d) t = 6.900 (Final Time)

Fig. 9: Snapshots of flow-field behind the circular island at different times. Streamlines are overlaid on the flow-field
colored by vorticity (range: [-15,15]).

points (such as y = 0.08) in its optimal path more than929

once. At such points where T o(y) is not continuous, the930

gradient ∇T o(y) is undefined and (34) does not admit931

a continuous viscosity solution. This makes it necessary932

to keep track of subsequent arrival times (in addition933

to the first one) to compute the optimal path. Solving934

(9) gives the optimal solution, even with strong adverse935

flow-fields since the level set front always corresponds936

to the reachability front. By predicting and tracking937

this front, our algorithm records multiple arrival times,938

providing the solution for both weak and strong flows.939

Let us consider the same 1D example but now with940

a flow-field, V(x, t) = −0.95 sin(πt) î. This flow is not941

strong since its magnitude is at most 0.95, which is942

smaller than F . The optimal trajectory in this case is943

plotted in blue in Fig. 13b. The optimal first arrival944

time field T o(y) is superposed in red. Here, these curves945

are identical since the vehicle does not experience cur-946

rents of speeds larger than F along its path. In this947

case, T o(y) is the continuous viscosity solution of (34).948

5.3.2 Determination of Starting Time949

In addition to the optimal control, the level set method-950

ology can also be used to determine when vehicles must951

be deployed to reach their end points in the quickest 952

time. In most of the previous examples, the vehicle 953

starts its motion at time ts = 0. In some cases, if the 954

vehicle is allowed to start at a later time (unknown a 955

priori) it may be able to arrive at the end point sooner 956

than if it starts at ts = 0. This can happen if the ve- 957

hicle experiences strong adverse currents at the start 958

which advect it away from the end point. In such cases, 959

the vehicle may reach the end point sooner if deployed 960

(from a ship, for example) after the adverse current has 961

passed. 962

We now present an example where this situation 963

occurs, and how our approach can be used to determine 964

ts. We use the same 1-D example as in §5.3.1. The flow- 965

field is given by V(x, t) = −2 sin(πt) î. Here, we set 966

F = 1, ys = 0, and yf = 2. As seen earlier, the optimal 967

trajectory satisfies (17). Let us assume that the vehicle 968

is deployed at a variable start time ts ≥ 0, so that 969

X?
P (ys, ts) = 0. Our goal now, is to minimize the arrival 970

time at yf = 2 by a suitable choice of ts. Integrating 971

(17) and setting the limits yields 972

X?
P (ys, t) = (t− ts) +

2
π

(cos(πt)− cos(πts)) , t ≥ ts .

(19)

This family of optimal trajectories and corresponding 973

optimal arrival times at yf can be computed for differ- 974

ent values of ts ≥ 0. Sample trajectories correspond- 975

ing to starting times ts = 0, 0.5, 5
6 , 1.5, 2 are plotted in 976

Fig. 14a. 977

We observe that the trajectory corresponding to 978

ts = 0 reaches yf later than the one corresponding to 979

ts = 0.5. This is because a strong flow in the −î di- 980

rection for 1
6 ≤ t ≤ 5

6 forces the vehicle to reverse its981

path. The optimal ts here is when the flow speed re-982

duces to F , which occurs at ts = 1− 1
π sin−1(0.5) = 5

6 .983

In Fig. 14b, the arrival times at yf = 2 are plotted as a984
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t = 0 (Initial Time)

t = 1.5

t = 3.0

t = 4.5

t = 6.0

Fig. 10: Flow past circular island : time evolution of level set front corresponding to three different start points
(marked in black). In all cases, the level sets ‘wrap’ around the island and never pass through it.

function of ts. This curve clearly shows that the fastest985

arrival time is for ts = 5
6 .986

Our methodology can compute the optimal ts by987

keeping track of reachability fronts corresponding to988

several starting times. Instead of one reachability front,989

we will now track an ensemble of fronts, each for one990

choice of ts. The starting time corresponding to the level991

set front that reaches the end point fastest, is the opti-992

mal starting time. Once this is known, the optimal path993

can be calculated by solving the backtracking equation.994

Although this approach requires solving an ensemble of 995

independent forward level set eqs. (9), it is inexpen- 996

sive due to the low computational cost. The algorithm 997

also lends itself to easy implementation of heuristics to 998

decide when to evolve new level set fronts in order to 999

reduce the computational cost for this problem. For ex- 1000

ample, one admissible heuristic could be to evolve level 1001

sets when the flow at the start point is favorable (di- 1002

rected towards the end point). 1003

5.3.3 Multiple Optimal Paths 1004

In some situations, for a given problem configuration 1005

(ys,yf , F,V(x, t)), there may exist multiple optimal 1006

trajectories with the same travel time. We now present 1007

such a scenario, showing that even though two end1008

points are nearby each other in space, the optimal path1009

to these points can be very different. The end point at1010
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(a) Start Point 1 (b) Start Point 2 (c) Start Point 3

(d) Start Point 4 (e) Start Point 5 (f) Start Point 6

(g) Start Point 7 (h) Start Point 8 (i) Start Point 9

(j) All Start Points 1-11 and time-optimal paths

Fig. 11: Flow past circular island: all-to-all broadcast. Safe and time-optimal trajectories corresponding to different
start points. Vehicle paths (black) are overlaid on the flow-field, colored by vorticity (shown in range: [-15,15]).

the limit between the above two points admits two pos-1011

sible optimal paths. Theoretically, these are points at1012

which characteristics of (9) merge, and are quite gen-1013

eral (e.g. lines in 2D, surfaces in 3D etc.). We consider1014

the example of a jet flow in a 2D domain (Lolla et al,1015

2012).1016

In this problem, two vehicles (F = 1) start at the1017

same position ys = (1, 1) and same time, ts = 0. Their1018

end points are y1
f = (2, 0.8) and y2

f = (1.95, 0.75). The1019

time-optimal trajectories are plotted in Fig. 15. We ob- 1020

serve that even though y1
f and y2

f are nearby each other, 1021

the optimal paths are very different: one of the trajec- 1022

tories is a straight line from start to end and is not 1023

affected by the jet while the second one makes use of 1024

the jet to minimize travel time. 1025

The viscosity solution to (9) allows the formation of 1026

singularities (e.g. corners) in the level set front (Lolla, 1027

2012; Sethian, 1999b). This behavior occurs in this ex- 1028

ample: there exists a ‘shock’ line formed by the level 1029

sets to the end point on which, multiple optimal paths 1030

exist. This line is marked in Fig. 15. The evidence for 1031

existence of such lines can be obtained by solving (9)1032

alone, without the backtracking (12). Several other sim-1033
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(b) V(x, t) = −0.95 sin(πt) î

Fig. 13: Optimal vehicle trajectory (blue) and optimal first arrival time field, T o(y) (red) for the 1-D flow in §5.3.1.
In (a), the adverse flow-field leads to discontinuities in T o(y). In (b), the flow is never adverse to vehicle motion
and T o(y) is continuous.
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Fig. 14: (a) Optimal trajectories for different starting times ts (denoted by filled circles). The first arrival time at
yf = 2 for each trajectory is marked by filled stars. A smaller ts does not necessarily lead to a smaller arrival time
at yf . (b) Plot of first arrival times at yf = 2 versus different ts. The minimum arrival time is obtained for ts = 5

6

- corresponding arrival time marked in black.

ilar examples can be constructed in which there exist1034

multiple optimal paths to some end points.1035

6 Conclusions1036

In this paper, we have developed a novel methodology1037

to predict the time-optimal trajectories of multiple ve-1038

hicles navigating in strong and dynamic flow-fields, such1039

as ocean currents. To do so, we derived a modified level1040

set equation that governs the evolution of a reachabil-1041

ity front. The reachability front is then evolved from1042

the vehicle start point until it reaches the end point,1043

combining nominal vehicle motion due to steering and1044

advection due to the flow. The optimal trajectory and1045

vehicle heading directions are then extracted from the1046

time history of the evolution of the reachability front by 1047

solving a backtracking problem. The approach is inter- 1048

disciplinary: it is inspired by ideas in fluid mechanics, 1049

ocean science and computational sciences (level set and 1050

numerical methods) and applies them to path planning, 1051

which has roots in robotics and optimal control. 1052

As the methodology is based on solving partial dif- 1053

ferential equations, it is rigorous and obviates the need 1054

for heuristics. We illustrated the theory and schemes 1055

using analytical flows as well as unsteady double-gyre 1056

flows driven by wind stress and flows behind a circular 1057

island. The latter case showed that stationary obsta- 1058

cles that affect both the flow and the vehicle motions1059

can be easily accommodated. The extension to moving1060
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Fig. 15: Optimal paths (red) overlaid on intermediate
level set contours (black) for a jet flow (§5.3.3). Nearby
end points (2, 0.8) and (1.95, 0.75) produce very differ-
ent optimal paths. The ‘shock’ line (thick black) is the
set of points to which multiple optimal paths exist.

obstacles and forbidden regions (which affect only ve-1061

hicle motions and not the flow-field) is straightforward1062

and has discernible societal applications (e.g. ships, air-1063

planes). Though we have only focused on underwater1064

path planning here, our methodology is general and1065

applies to many other flows (e.g. atmospheric, micro-1066

scopic) and vehicles (e.g. UAVs, bio-robots). We have1067

also studied several other idealized and realistic sce-1068

narios, including cases with moving obstacles and for-1069

bidden regions (Lolla et al, 2012, 2014a,c; Lermusiaux1070

et al, 2014).1071

As we illustrated, the low computational cost allows1072

the use of our methodology to plan paths for multi-1073

ple vehicles simultaneously. Coordinated path planning,1074

which has been extensively studied and developed re-1075

cently (Leonard and Fiorelli, 2001; Paley et al, 2008;1076

Leonard et al, 2007), renders certain types of missions1077

possible, which otherwise, could not be executed by1078

single-vehicle systems. A possible future direction is to1079

integrate our approach with existing schemes for effi-1080

cient and optimal coordination. Secondly, in this work,1081

we have assumed the flow-fields to be exactly known. In1082

some cases, such as oceanic applications, the predicted1083

flows are uncertain. It is then possible to extend our1084

methodology to plan paths in a stochastic setting by1085

optimizing suitable path statistics (Lolla et al, 2014c).1086

As more information about the forecasted flow-field be-1087

comes available, the paths can be updated using on-1088

board routing. Here, we have focused only on continu- 1089

ous trajectory optimization problems. In some practical 1090

situations such as those involving underwater gliders 1091

(Lolla, 2012), communication between the glider and 1092

the controller may only be possible at discrete times 1093

(Schneider and Schmidt, 2010; Hollinger et al, 2012; 1094

Cheung et al, 2013; Cheung and Hover, 2013). In such 1095

realistic cases, we need discrete control averaged over 1096

time. This is discussed in (Lolla et al, 2014a). Finally, 1097

we can also explore the extension of our methodology 1098

to plan paths that optimize the energy spent by the 1099

vehicles (Subramani, 2014), instead of travel time. 1100

7 Acknowledgements 1101

We are very thankful to the MSEAS group, in partic- 1102
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A Preliminaries 1115

In this Appendix, we describe some of the relevant definitions 1116

and terminology needed for the theoretical results. Most of 1117

the material presented in this §A may be found in (Bardi and 1118

Capuzzo-Dolcetta, 2008; Clarke et al, 1998; Cannarsa and 1119

Sinestrari, 2004; Frankowska, 1989; Bressan, 2011). In what 1120

follows, we let n ∈ N, Ω ⊆ Rn be an open set and ξ : Ω → R.1121

Remark 1 Let ξ ∈ C(Ω). Let ∂+ξ(x0) and ∂−ξ(x0) denote1122

the sets of super- and sub-differentials (Bardi and Capuzzo-1123

Dolcetta, 2008; Clarke et al, 1998) of ξ at x0. Then q ∈1124

∂+ξ(x0) (resp. ∂−ξ(x0)) if and only if there exists a function1125

γ ∈ C1(Ω) such that γ(x0) = ξ(x0), ∇γ(x0) = q and the1126

function γ − ξ has a strict local minima (resp. maxima) at1127

x0.1128

Definition 1 (Generalized Gradient.) Let ξ be locally Lip-1129

schitz at x0. For any u ∈ Rn, let ξg(x0; u) denote the gener-1130

alized directional derivative of ξ at x0 (Clarke et al, 1998).1131

The set of generalized gradients of ξ at x0 is the non-empty1132

set1133

∂ξ(x0) = {q ∈ Rn : ∀u ∈ Rn,q · u ≤ ξg(x0; u)} . (20)

Definition 2 (Regular Function.) ξ is said to be regular1134

at x0 ∈ Ω if it is Lipschitz near x0 and admits directional1135

derivatives ξd(x0; u) for all u ∈ Rn, with ξg(x0; u) = ξd(x0; u).1136

Properties of Regular Functions.1137

1. If ξ is continuously differentiable at x0, then it is regular1138

at x0. Furthermore, ξd(x0; u) = ∇ξ(x0) · u = ξg(x0; u)1139

for all u ∈ Rn.1140

2. If ξ is convex and Lipschitz near x0, then it is regular at1141

x0.1142
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3. Let ξ be regular at x0 ∈ Ω. Then,1143

∂−ξ(x0) = ∂ξ(x0) . (21)

Definition 3 (Viscosity Solution.) Let F ≥ 0 and let V(x, t)1144

satisfy assumptions (3)–(4). Consider the Hamilton-Jacobi1145

equation1146

∂φ

∂t
+ F |∇φ|+ V(x, t) · ∇φ = 0 in Ω × (0,∞) , (22)

with initial conditions1147

φ(x, 0) = ν(x) , (23)

where ν : Ω → R is Lipschitz continuous. A function φ ∈1148

C(Ω × [0,∞)) is a viscosity subsolution of (22) if for every1149

(x, t) ∈ Ω × (0,∞) and (q, p) ∈ ∂+φ(x, t),1150

p+ F |q|+ V(x, t) · q ≤ 0 . (24)

A function φ ∈ C(Ω × [0,∞)) is a viscosity supersolution of1151

(22) if for every (x, t) ∈ Ω × (0,∞) and (q, p) ∈ ∂−φ(x, t),1152

p+ F |q|+ V(x, t) · q ≥ 0 . (25)

φ is said to be a viscosity solution of (22) if it is both a1153

viscosity subsolution and a viscosity supersolution.1154

Theorem 1 (Frankowska, 1989) A locally Lipschitz func-1155

tion φ : Ω × (0,∞)→ R is a viscosity solution to (22) if and1156

only if for every (x, t) ∈ Ω × (0,∞),1157

max
(q,p)∈∂φ(x,t)

{p+ F |q|+ V(x, t) · q} = 0 (26)

and for all (q, p) ∈ ∂−φ(x, t),1158

p+ F |q|+ V(x, t) · q = 0 . (27)

Theorem 2 (Clarke et al, 1998) (Lebourg’s Mean Value1159

Theorem.) Let S ⊆ R be an open set. Let x, y ∈ S and suppose 1160

that f : S → R is Lipschitz on an open set containing the 1161

segment [x, y]. Then there exists 0 < λ < 1 such that 1162

f(y)− f(x) = g × (y − x) , (28)

for some g ∈ ∂f(z), where z = λx+ (1− λ)y. 1163

Theorem 3 (Clarke et al, 1998) (Chain Rule.) Let Ω1 ⊆ 1164

Rn and Ω2 ⊆ Rm be two open sets with m,n ∈ N. Let g : 1165

Ω1 → Ω2 be continuously differentiable near x ∈ Ω1, and 1166

let F : Ω2 → R be Lipschitz near g(x). Then f := F ◦ g is 1167

Lipschitz near x and 1168

∂f(x) ⊆ (g′(x))∗ ∂F (g(x)) , (29)

where ∗ denotes the adjoint. 1169

B Theoretical Results 1170

We now state a lemma that provides a monotonicity result 1171

related to φ, the viscosity solution of the Hamilton-Jacobi 1172

equation (22). According to this result, the generalized gra- 1173

dient of φ is non-positive on trajectories eXP (ys, t), along the 1174

direction
“

d eXP (ys,t)
dt , 1

”
for t > 0. This lemma is then used to 1175

prove Theorem 4, which establishes the relationship between 1176

reachable sets and the viscosity solution of a modified level 1177

set equation. 1178

Lemma 1 Let Ω ⊆ Rn be open, F > 0 and let V(x, t) satisfy 1179

assumptions (3)–(4). Let φ be the viscosity solution to (22). 1180

Let the trajectory eXP (ys, t) satisfy (1) with initial conditions 1181eXP (ys, 0) = ys. Then, 1182

1.

p+
d eXP (ys, t)

dt
· q ≤ 0 ∀ (q, p) ∈ ∂φ( eXP (ys, t), t) (30)

2.

φg
 eXP (ys, t), t;

 
d eXP (ys, t)

dt
, 1

!!
≤ 0 ∀ t > 0 . (31)

The proof of this Lemma may be found in (Lolla et al, 2014c). 1183

Theorem 4 Let Ω ⊆ Rn be an open set, V(x, t) : Ω × 1184

[0,∞)→ Rn satisfy (3)–(4), and F ≥ 0. Let To(y) : Ω → R 1185

denote the optimal first arrival time at y. Let the trajectory1186 eXP (ys, t) satisfy (1) with initial conditions eXP (ys, 0) = ys.1187

Let φo(x, t) be the viscosity solution to the Hamilton-Jacobi1188

equation (9) with initial condition (10). Then,1189

1. φo( eXP (ys, t), t) ≤ 0 for all t ≥ 0.1190

2. If φo is regular at (Xo
P (ys, t), t) for all t > 0 and Xo

P1191

satisfies1192

dXo
P

dt
= F

qo

|qo|
+ V(Xo

P (ys, t), t), t > 0, (32)

for some (qo, po) ∈ ∂φo(Xo
P (ys, t), t), then1193

φo(Xo
P (ys, t), t) = 0 ∀ t ≥ 0 .

3.

To(y) = inf
t≥0
{t : φo(y, t) = 0} , (33)

where inf denotes the infimum.1194

4. The optimal trajectory to yf ∈ Ω satisfies (11) whenever1195

φo is differentiable at (X?
P (ys, t), t) and |∇φo(X?

P , t)| 6=1196

0.1197

5. If F > max
x∈Ω,t≥0

|V(x, t)|, then To(y) is the viscosity so-1198

lution of the modified Eikonal equation1199

F |∇To(y)|+ V(y, T o(y)) ·∇To(y)− 1 = 0 ,y ∈ Ω . (34)

Proof (1). The viscosity solution to (9) is locally Lipschitz1200

(see (Tonon, 2011; Bianchini and Tonon, 2012; Cannarsa and1201

Sinestrari, 2004)). We now argue that φoP (t) := φo( eXP (ys, t), t)1202

is locally Lipschitz for all t ≥ 0. Observe that φoP (t) = φo(gP (t))1203

where gP (t) := ( eXP (ys, t), t). Since gP (t) is continuously1204

differentiable in (0,∞) with dgP (t)
dt =

“
d eXP

dt , 1
”

and φo is1205

locally Lipschitz, φoP (t) is also locally Lipschitz in (0,∞) by1206

the chain rule stated in Theorem 3.1207

Let t1 > 0 be fixed. Since φoP is locally Lipschitz, there1208

exists an open interval around t1 in which φoP is Lipschitz.1209

Thus, for any t2 > t1 in this interval, Lebourg’s Mean Value1210

Theorem (Theorem 2) implies there exist t3 ∈ (t1, t2) and1211

s ∈ ∂φoP (t3) such that1212

φoP (t2)− φoP (t1) = s× (t2 − t1) . (35)

Using the chain rule of Theorem 3 again (∗ denotes the ad-1213

joint),1214

∂φoP (t3) ⊆ (g′P (t3))∗ ∂φo (gP (t3))

=

(
p+ q ·

d eXP (ys, t3)

dt

: (q, p) ∈ ∂φo( eXP (ys, t3), t3)
o
. (36)
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Hence, any s ∈ ∂φoP (t3) can be written as1215

s = p+ q ·
d eXP (ys, t3)

dt
. (37)

for some (q, p) ∈ ∂φo( eXP (ys, t3), t3). From (30),1216

p+ q ·
d eXP (ys, t3)

dt
≤ 0 ,

implying that for any s ∈ ∂φoP (t3), s ≤ 0. Using this result in1217

(35) yields φoP (t2) ≤ φoP (t1) for all t1, t2. Since φoP is locally1218

Lipschitz in (0,∞), we conclude that φoP (t) is non-increasing 1219

on (0,∞). Moreover, since φoP is continuous on [0,∞), with 1220

φoP (0) = 0 (from (10)) and non-increasing in (0,∞), we have 1221

φoP (t) = φ( eXP (ys, t), t) ≤ 0 for all t ≥ 0. 1222

1223

(2). When the trajectory Xo
P (ys, t) is regular, i.e. when φo 1224

is regular at points (Xo
P (ys, t), t) for all t > 0, (21) implies 1225

∂−φo(Xo
P (ys, t), t) = ∂φo(Xo

P (ys, t), t) for all t > 0. Since 1226

φo is the viscosity solution to (9), we obtain from Theorem 1 1227

that for any t > 0, p + F |q| + V(Xo
P (ys, t), t) · q = 0 for all 1228

(q, p) ∈ ∂−φo(Xo
P (ys, t), t) = ∂φo(Xo

P (ys, t), t). Specifically, 1229

for the member (qo, po) of ∂φo(Xo
P (ys, t), t) that satisfies 1230

(32), the definition of generalized gradient (20) implies 1231

φog
„

Xo
P (ys, t), t;

„
dXo

P (ys, t)

dt
, 1

««
≥ po + qo ·

dXo
P (ys, t)

dt

= po + F |qo|+ V(Xo
P (ys, t), t) · qo

= 0 . (38)

Combining this result with (31), we obtain 1232

φog
„

Xo
P (ys, t), t;

„
dXo

P (ys, t)

dt
, 1

««
= 0 .

Since φo is regular at (Xo
P (ys, t), t) by assumption, we then 1233

also have 1234

φod
„

Xo
P (ys, t), t;

„
dXo

P (ys, t)

dt
, 1

««
= 0 . (39)

For any h > 0, the definition of φoP implies 1235˛̨̨̨
φoP (t+ h)− φoP (t)

h

˛̨̨̨
=

˛̨̨̨
φo (Xo

P (ys, t+ h), t+ h)− φo (Xo
P (ys, t), t)

h

˛̨̨̨
. (40)

Since φo is locally Lipschitz, ∃C > 0 such that for h > 0 1236

small enough, 1237˛̨̨̨
φ (Xo

P (ys, t+ h), t+ h)− φo
„

Xo
P (ys, t) + h

dXo
P

dt
, t+ h

«˛̨̨̨
≤ C

˛̨̨̨
Xo
P (ys, t+ h)−Xo

P (ys, t)− h
dXo

P

dt

˛̨̨̨
= C |o(h)| , (41)

where o(h) ∈ Rn denotes a vector whose individual terms are 1238

o(h). Adding and subtracting φo
“
Xo
P + h

dXo
P

dt , t+ h
”

from 1239

the numerator of (40) and using the triangle inequality, we 1240

obtain 1241˛̨̨̨
φoP (t+ h)− φoP (t)

h

˛̨̨̨

≤

˛̨̨̨
˛̨φo

“
Xo
P (ys, t) + h

dXo
P
(ys,t)
dt , t+ h

”
− φo (Xo

P (ys, t), t)

h

˛̨̨̨
˛̨

+ C

˛̨̨̨
o(h)

h

˛̨̨̨
.

The first term on the right converges to: φod
“
Xo
P , t;

“
dXo

P

dt , 1
””

1242

as h ↓ 0 and by (39), its value is zero. The second term uni- 1243

formly converges to zero as h ↓ 0, by definition. This implies 1244

lim
h↓0

˛̨̨̨
φoP (t+ h)− φoP (t)

h

˛̨̨̨
= 0 ,

and consequently that 1245

lim
h↓0

φoP (t+ h)− φoP (t)

h
= 0 . (42)

Since (42) holds for all t > 0, φoP is right differentiable in 1246

(0,∞) and the value of the right-derivative is zero for all t > 0. 1247

This implies that φoP is constant in (0,∞). Since φoP (0) = 0, 1248

we obtain φoP (t) = φo(Xo
P (ys, t), t) = 0 for all t ≥ 0. There- 1249

fore, trajectories Xo
P (ys, t) that are regular and satisfy (32) 1250

always remain on the zero-level set of φo. 1251

1252

(3). It has been shown in part (1) that φo( eXP (ys, t), t) ≤ 0 1253

for all t ≥ 0 for any trajectory eXP (ys, t) that satisfies (1) 1254

and the initial conditions eXP (ys, 0) = ys. Therefore, for a1255

trajectory XP (ys, t) that reaches a given end point y ∈ Ω at1256

time eT (y) (not necessarily optimal),1257

φo(y, eT (y)) = φo( eXP (ys, eT (y)), eT (y)) ≤ 0 . (43)

Since this inequality holds for any arbitrary arrival time eT (y),1258

it will also hold for the optimal arrival time To(y), implying1259

φo(y, T o(y)) ≤ 0 for all y ∈ Ω . (44)

For y = ys, (33) holds trivially. For any y 6= ys, φo(y, 0) > 01260

by (10). The continuity of φo and (44) together then yield1261

To(y) ≥ inf
t≥0
{t : φo(y, t) = 0} . (45)

In part (2), we showed the existence of trajectories that al-1262

ways remain on the zero level set of φo. Furthermore, any1263

point on the zero level set of φo belongs to a characteristics of1264

(9) emanating from ys, since ys is the only point in Ω where1265

φo is initially zero. Therefore, when the zero level set reaches1266

y for the first time, it implies the existence of a trajectory1267

Xo
P (ys, t) with Xo

P (ys, 0) = ys that satisfies (1). For this1268

trajectory, (45) holds with an equality, thereby establishing1269

(33). Physically, this means that fastest arrival time at any1270

end point y ∈ Ω is when the zero level set of φo reaches y1271

for the first time, and equivalently that the reachability front1272

∂R(ys, t) coincides with the zero level set of φo at time t.1273

1274

(4). Let yf ∈ Ω be fixed. From part (3), the optimal trajec-1275

tory to yf satisfies φo(X?
P (ys, t), t) = 0 for all t ≥ 0. Hence,1276

φoP (t) := φo(X?
P (ys, t), t) equals zero for all 0 ≤ t ≤ T?(yf ).1277

Let us fix a time 0 < t < T?(yf ) such that φo is differentiable1278

at (X?
P (ys, t), t). The usual chain rule then yields1279

0 =
dφoP (t)

dt
=
∂φo

∂t
+∇φo ·

dX?
P (ys, t)

dt
, (46)
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where the derivatives of φo are evaluated at (X?
P (ys, t), t). 1280

Since φo is assumed to be differentiable at this point, (9) 1281

holds in the classical sense and ∂φo

∂t
= −F |∇φo(X?

P , t)| − 1282

V(X?
P , t) · ∇φo(X?

P , t). Substituting this in (46) gives 1283

dX?
P

dt
· ∇φo(X?

P , t) = F |∇φo(X?
P , t)|+ V(X?

P , t) · ∇φo(X?
P , t) .

(47)

Using (1), 1284

dX?
P

dt
· ∇φo(X?

P , t)

= F?P (t) ĥ?(t) · ∇φo(X?
P , t) + V(X?

P , t) · ∇φo(X?
P , t)

≤ F |∇φo(X?
P , t)|+ V(X?

P , t) · ∇φo(X?
P , t) ,

equality holding iff F?P (t) = F and ĥ?(t) =
∇φo(X?

P
,t)

|∇φo(X?
P
,t)| , for

|∇φo(X?
P , t)| 6= 0. Using this result in (47) yields

dX?
P

dt
= F

∇φo(X?
P , t)

|∇φo(X?
P , t)|

+ V(X?
P , t) .

(5). Under the assumption F > supx∈Ω,t≥0{|V(x, t)|}, the 1285

start point ys belongs to the interior of the reachable set 1286

R(ys, t) for all t > 0, i.e. for any t > 0, there exists εt > 0 1287

such that all points x′ satisfying |ys − x′| < εt are mem- 1288

bers of R(ys, t). This condition is equivalent to the ‘Small 1289

Time Local Controllability’ condition discussed in (Bardi and 1290

Capuzzo-Dolcetta, 2008) as a result of which, To is continu- 1291

ous inΩ. See (Bardi and Capuzzo-Dolcetta, 2008) for a formal 1292

proof of this statement. Let us fix y ∈ Ω. By definition, To(y) 1293

satisfies 1294

To(y) = inf
h>0
{To(ey) + h} , (48)

where ey ∈ Ω is a point such that there exists a trajectory 1295eXP (ys, t) satisfying (1) and the limiting conditions 1296eXP (ys, T
o(ey)) = ey, eXP (ys, T

o(ey) + h) = y . (49)

In order to show that To is a viscosity solution to (34), we 1297

show that it is both a viscosity subsolution and a supersolu- 1298

tion to (34). 1299

1300

Viscosity Subsolution: From Definition 3 and Remark 1, 1301

To ∈ C(Ω) is a viscosity subsolution to (34) if at every y ∈ Ω 1302

and for every C1 function τs : Ω → R such that τs(y) = To(y) 1303

and τs − To has a local minima at y, 1304

F |∇τs(y)|+ V(y, To(y)) · ∇τs(y)− 1 ≤ 0 . (50)

Since τs ≥ To in a neighborhood of y, we obtain for h > 0 1305

small enough, 1306

τs(y)− τs(ey) ≤ To(y)− To(ey) .

Moreover, for this choice of h and the resulting ey, (48) implies 1307

To(y) ≤ To(ey) + h .

Combining the above two inequalities yields 1308

τs(y)− τs(ey) ≤ To(y)− To(ey) ≤ h . (51)

Since τs is differentiable at y, Taylor’s theorem may be used 1309

to expand τs(ey) near y. 1310

τs(ey) = τs(y) +∇τs(y) · (ey − y) + o (|ey − y|)

= τs(y)−
Z T o(ey)+h

T o(ey)
∇τs(y) ·

d eXP

dt
dt+ o (|ey − y|) .

(52)

Inserting (52) in (51) and dividing by h, 1311

1

h

Z T o(ey)+h

T o(ey)
∇τs(y) ·

d eXP

dt
dt+

o (|ey − y|)
h

≤ 1 .

As h ↓ 0, and after noting that the second term on the left 1312

vanishes under this limit, we obtain 1313

∇τs(y) ·
d eXP

dt
(ys, T

o(y)) ≤ 1 . (53)

One can see that (50) is satisfied trivially when |∇τs(y)| = 0. 1314

Thus, we may assume |∇τs(y)| 6= 0. Since (53) holds for 1315

any valid choice of d eXP

dt , we may choose d eXP

dt (ys, T o(y)) = 1316

F ∇τs(y)
|∇τs(y)| + V(y, T o(y)) to obtain 1317

∇τs(y) ·
„
F
∇τs(y)

|∇τs(y)|
+ V(y, T o(y))

«
= F |∇τs(y)|+ V(y, T o(y)) · ∇τs(y) ≤ 1 ,

thereby establishing (50). Therefore, To is a viscosity subso-1318

lution to (34).1319

1320

Viscosity Supersolution: To is a viscosity supersolution to1321

(34) if at any y ∈ Ω and for every C1 function τs : Ω → R1322

such that τs(y) = To(y) and τs − To has a local maxima at1323

y,1324

F |∇τs(y)|+ V(y, T o(y)) · ∇τs(y)− 1 ≥ 0 . (54)

For any 0 < h < T o(y), there exists by ∈ Ω satisfying To(by)+1325

h = To(y) and a trajectory bXP (ys, t) satisfying (1) and the1326

limiting conditions1327

bXP (ys, T
o(by)) = by, bXP (ys, T

o(y)) = y . (55)

Of course, the optimal trajectory leading to y is a valid choice1328

for bXP (ys, t). For h > 0 small enough,1329

h = To(y)− To(by) ≤ τs(y)− τs(by) . (56)

As in the earlier sub-section, we may use Taylor’s theorem to1330

expand τs(by) near y to obtain1331

τs(by) = τs(y) +∇τs(y) · (by − y) + o (|by − y|)

= τs(y)−
Z T o(by)+h

T o(by)
∇τs(y) ·

d bXP

dt
dt+ o (|by − y|) .

(57)

Inserting (57) in (56) and dividing by h,1332

1

h

Z T o(by)+h

T o(by)
∇τs(y) ·

d bXP

dt
dt+

o (|by − y|)
h

≥ 1 . (58)

Observe that from (1),1333

∇τs(y)·
d bXP (ys, t)

dt
≤ F |∇τs(y)|+V( bXP (ys, t), t)·∇τs(y) .

Taking limits of (58) as h ↓ 0 gives1334

1 ≤ ∇τs(y)·
d bXP

dt
(ys, T

o(y)) ≤ F |∇τs(y)|+V(y, T o(y))·∇τs(y) ,

which proves that To is a viscosity supersolution of (34).1335

Therefore, To is a viscosity solution to (34).1336
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C Numerical Schemes1337

We now summarize the numerical schemes utilized to dis-1338

cretize and solve (9) and (12). These equations are solved1339

using a Finite Volume framework implemented in MATLAB.1340

The term |∇φo| in (9) is discretized using either a first order1341

(Sethian, 1999b; Lolla, 2012) or a higher order (Yigit, 2011)1342

upwind scheme and V(x, t) ·∇φo is discretized using a second1343

order TVD scheme on a staggered C-grid (Ueckermann and1344

Lermusiaux, 2011).1345

C.1 Forward Level Set Evolution1346

We discretize (9) in time using a fractional step method as1347

follows:1348

φ̄− φo(x, t)

∆t/2
= −F |∇φo(x, t)| (59)

¯̄φ− φ̄
∆t

= −V

„
x, t+

∆t

2

«
· ∇φ̄ (60)

φo(x, t+∆t)− ¯̄φ

∆t/2
= −F |∇ ¯̄φ| (61)

(59)–(61) are solved only in the interior nodes of the dis-1349

cretized system. For boundaries that are open inlets/outlets1350

or side walls (i.e. not interior obstacles nor forbidden regions),1351

open boundary conditions are used on φo, and on the inter-1352

mediate variables φ̄ and ¯̄φ at each time step. Specifically, a1353

radiation boundary condition with infinite wave speed is as-1354

sumed, which amounts to an internal zero normal gradient1355

(Neumann) condition: so the boundary values are updated 1356

by replacing them with the value of the variable one cell in- 1357

terior to the boundary. Obstacles and forbidden regions in 1358

the domain are masked, i.e., (9) is solved only at interior 1359

nodes not lying under these regions. For points adjacent to 1360

the mask, open boundary conditions are implemented and 1361

necessary spatial gradients are evaluated using neighboring 1362

nodes that do not lie under the mask. As a result, the value 1363

of φo under the mask is never used in the computation. We 1364

note that in some situations, more complex open boundary 1365

conditions could be used as done in regional ocean model- 1366

ing (Lermusiaux, 1997; Haley Jr. and Lermusiaux, 2010). We 1367

have implemented the narrow-band scheme of (Adalsteinsson 1368

and Sethian, 1995) to solve (59)–(61). 1369

The reachability front ∂Rφo(t) is extracted from the φo 1370

field at every time step using a contour algorithm. In a 2-D 1371

problem, the amount of storage required for this is not sig- 1372

nificant, because ∂Rφo(t) is a 1-D curve which is numerically 1373

represented by a finite number of points. We also note that 1374

this contour extraction is not needed: we could simply store 1375

the times when the zero contour of φo crosses each grid point 1376

in order to compute the normals for the backtracking (Yigit, 1377

2011). 1378

C.2 Backtracking 1379

(12) is discretized using first order (Lolla, 2012) or higher- 1380

order (Yigit, 2011) time integration schemes. Ideally, it suf- 1381

fices to solve (9) until the level set front first reaches yf . 1382

However, due to the discrete time steps, a more convenient 1383

stopping criterion is the first time, T , when φo(yf , T ) ≤ 0. 1384

Due to this, yf does not lie on the final contour ∂Rφo(T ) 1385

exactly. Thus, we first project yf onto ∂Rφo(T ). The pro- 1386

jected n̂p is computed as the unit normal to ∂Rφo(T ) at the 1387

projected point. The discretized form of (12), 1388

X?
P (ys, t−∆t)−X?

P (ys, t)

∆t
= −V(X?

P , t)−F
∇φo(X?

P , t)

|∇φo(X?
P , t)|| {z }

n̂p(x,t)

,

(62)

is marched back in time until we reach a point on the first 1389

saved contour and this generates a discrete representation of 1390

X?
P (ys, t). Along the way, we project each newly computed 1391

trajectory point, X?
P (ys, t − ∆t) onto the corresponding in- 1392

termediate level set contour (see (Lolla, 2012)). Instead of 1393

performing these projections, one can use the two intermedi- 1394

ate discrete level set contours between which an unprojected 1395

trajectory point lies, to interpolate either the normal n̂p at 1396

the trajectory point, or a contour passing through the trajec- 1397

tory point, from which n̂p can be computed. This interpola- 1398

tion should be of sufficiently high order to prevent potential 1399

biases that may occur. One can also use a predictor-corrector 1400

scheme to compute X?
P (ys, t − ∆t) using the normals both 1401

at t−∆t and t. 1402

As discussed in §4.1 and the Uniqueness remark of §3.3, 1403

multiple optimal paths exist to end points yf which lie on 1404

shock lines. However, as (9) is solved numerically, yf does 1405

not lie on shock lines exactly due to discretization errors. 1406

In fact, yf does not even lie exactly on the final level set 1407

contour ∂Rφo(T ), as mentioned above. Consequently, solving 1408

(12) in such cases yields only one of the optimal trajectories, 1409

depending on the numerical errors. 1410
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