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ABSTRACT

We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)–Nuclear Spectroscopic
Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst
since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington
persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with
NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from
10% to 15%) up to 10 keV, above which it remains constant. The 0.5–70 keV spectra of the persistent and dip
emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an
exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming
that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about
4 × 107 cm, which translates to a surface dipole field B ≈ 9 × 1010 G. The Chandra/HETG spectrum resolves the
6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling
shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an
order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature,
with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and
any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe
components.

Key words: pulsars: general – stars: individual (GRO J1744-28) – X-rays: binaries – X-rays: bursts

1. INTRODUCTION

GRO J1744-28 is a high-energy transient in a low-mass X-
ray binary (LMXB) system, and only the second source,
besides the Rapid Burster (Lewin et al. 1993), observed to emit
multiple type II X-ray bursts, i.e., due to spasmodic accretion
rather than thermonuclear burning. The source was discovered
in 1996 with the Burst and Transient Source Experiment on
board the Compton Gamma Ray Observatory, when it emitted
a series of hard X-ray bursts during a period lasting ∼150 days
(Kouveliotou et al. 1996). Soon after its discovery, Finger et al.
(1996a) reported that the timing properties of the persistent X-
ray emission pointed toward a magnetized neutron star
pulsating at 2.14 Hz, accreting material from a low-mass
companion in a nearly circular orbit with an orbital period of

11.8 days. At that time GRO J1744-28 was the first source to
show bursts and pulsations, hence the source was nicknamed
“the Bursting Pulsar” (hereafter BP). The BP emerged from
quiescence again almost exactly 1 yr after its first outburst, in
1996 December (Woods et al. 1999). This second outburst was
very similar to the first including both burst and persistent X-
ray emission characteristics (Woods et al. 1999).
The BP and its two outbursts were studied extensively

during the first few years after its discovery. The X-ray bursts
from the source were classified as type II bursts, based on their
spectra, energetics (Kouveliotou et al. 1996), and their
resemblance to the bursts observed from the Rapid Burster
(Lewin et al. 1996). Type II bursts are most likely the result of
some sort of instability (whose origin is still unknown) in the
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accretion disk resulting in the onset of mass inflow onto the
neutron star, which is responsible for the bursting activity. The
BP average burst duration was 10 s, and each burst was
followed by a dip in flux below that of the pre-burst persistent
emission. The flux recovered exponentially back to the pre-
burst persistent emission level on timescales of a few hundred
seconds (Giles et al. 1996; Strickman et al. 1996; Borkus et al.
1997; Aleksandrovich et al. 1998; Aptekar et al. 1998a, 1998b;
Woods et al. 1999; Mejía et al. 2002). Pulsations at the spin
frequency of the source were also detected during bursts, albeit
with an average time lag of about 50 ms compared to the pre-
burst pulses (Stark et al. 1996; Strickman et al. 1996; Koshut
et al. 1998; Woods et al. 2000). The pre-burst pulse profile
(PP) was subsequently recovered on timescales of a few
hundred seconds (Stark et al. 1996). Miller (1996) attributed
these lags to the accretion column geometry at the pole.

There is no direct estimate as yet of the magnetic field of the
BP. Finger et al. (1996a; see also Daumerie et al. 1996) placed
an upper limit on the dipole magnetic field of B  6 × 1011 G
based on the spin-up rate of the source and the persistent pulsed
luminosity. Rappaport & Joss (1997) deduced from binary
evolution calculations that the dipole magnetic field of
GRO J1744-28 lies in the range of (1.8–7.0) × 1011 G, with a
most probable value of ´2.7 1011 G. Finally, Cui (1997)
derived a surface magnetic field of » ´B 2.4 1011 G,
assuming that the propeller effect is the reason for the non-
detection of X-ray pulsations when the source persistent flux
dropped below a certain level. It is, therefore, likely that the
surface magnetic field of the BP lies between classical X-ray
accreting pulsars (~1012 G) and LMXBs (~109 G). This
intermediate strength surface field could be an important
parameter defining the unusual properties of this source; hence,
the determination of its exact value is of crucial importance.

Nishiuchi et al. (1999) studied the 0.5–10 keV spectrum of
GRO J1744-28 during outbursts using ASCA. They found a
spectrum well described by an absorbed power-law (PL) and
line-like emission between 6 and 7 keV, most likely from Fe
reprocessed in the accretion disk. The heavy absorption toward
the source ( »N 10H

23 cm−2) places the BP at the Galactic
center, likely at 8 kpc.

The quiescent X-ray counterpart of the BP was discovered
with Chandra (Wijnands & Wang 2002) and was confirmed 1
month later with XMM-Newton (Daigne et al. 2002). The
spectrum in quiescence is soft and could be fit with either a PL
model with G = 2–5 or a blackbody (BB) with
kT = 0.4–1 keV, implying a quiescent 0.5–10 keV X-ray
luminosity of 3 × 1033 erg s−1 at 8 kpc. Using the Chandra
position, Gosling et al. (2007; see also Augusteijn et al. 1997;
Cole et al. 1997) found two potential infrared counterparts
within the BP error circle, with the most likely candidate being
a giant star of type G4 III.

On 2014 January 18, theMonitor of All-sky X-ray Image Gas
Slit Camera detected enhanced hard X-ray emission from the
Galactic center region (Negoro et al. 2014b). Following the
detection, they examined archival data from the Swift Burst
Alert Telescope (BAT) and found that the X-ray emission from
the BP had increased compared to its quiescent level. Soon
after, the source triggered BAT on 2014 January 18 (Negoro
et al. 2014b). Finger et al. (2014) detected pulsations from the
direction of GRO J1744-28 at the 2.14 Hz spin period of the
source during January 19.0–21.0 using the Fermi Gamma-ray
Burst Monitor. Finally, the Swift X-ray Telescope (XRT)

observed the BP on 2014 February 2 (Kennea et al. 2014),
detecting a bright source at the Chandra location, confirming
that the source entered a new outburst after about 18 yr of
quiescence (see also Chakrabarty et al. 2014; D’Ai et al. 2014;
Linares et al. 2014; Negoro et al. 2014a; Pandey-Pommier et al.
2014; Pintore et al. 2014; Sanna et al. 2014). Masetti et al.
(2014) discovered infrared brightening of the G4 III candidate
counterpart contemporary with the X-ray outburst, confirming
its identification as the BP companion.
Here we report our results of the analysis of a 10 ks

simultaneous Chandra and Nuclear Spectroscopic Telescope
Array (NuSTAR) observation of the BP taken on 2014 March 3.
Section 2 describes the observations and data reduction
techniques. Our results are presented in Section 3 and discussed
in Section 4.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Chandra

We observed the BP with Chandra using the High Energy
Transmission Grating (HETG) in continuous clocking mode
(CC-mode) with all six CCDs of the ACIS-S array. The HETG
comprises two sets of gratings, the medium-energy grating
(MEG), operating in the energy range of 0.4–7 keV, and the
high-energy grating (HEG), with energy coverage in the range
of 0.8–10 keV and a spectral resolution (FWHM)
D = -E 0.4 77 eV. Each grating spectrum is dispersed along
the ACIS-S CCDs into positive and negative spectral orders. In
addition, each grating observation results in an on-axis
undispersed image with the CCD spectral resolution. We used
the CC-mode to obtain the highest possible temporal resolution
of 2.85 ms, at the expense of obtaining a one-dimensional
image of the source.
The observation took place on 2014 March 3, 08:59:06

UTC, with 10 ks of good time intervals. A comparison between
the zeroth order and the dispersed HEG ± first-order light
curve reveals that the bursts are completely missing from the
zeroth-order light curve due to heavy pileup. The source
persistent emission also suffered a 10% pileup effect in the
zeroth order. On the other hand, the dispersed grating spectra
have a much lower total count rate compared to that of the
zeroth-order spectra. This results in spectra free of pileup
except during the peak of the bursts when pileup still occurred
at the 10% level.
To use the grating arms in our timing analysis, the photons

assigned times needed to be corrected for their diffraction
angle, which is directly proportional to the grating time offset
with respect to the zeroth order. This time offset, dt , relative to
the zeroth-order location is

d
a

= -
´ ´
D

t
tg r X

t s
sin ( _ ) sin

[ ], (1)i R i

p
p

where tg r_ i is the diffraction angle of each photon i, XR is the
Rowland spacing, ai is the grating clocking angle, Dp is the
pixel size, and tp is the read time per row (2.85 ms).
The use of CC-mode with any Chandra grating observation

introduces some complications to the data reduction and
analysis.21 For instance, due to the fact that there is no spatial
information (the clocking rows are all collapsed into one

21 http://cxc.harvard.edu/cal/Acis/Cal_prods/ccmode/
ccmode_final_doc02.pdf
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pixel), the soft X-ray background, usually low in TE mode, is
enhanced by 3 orders of magnitude.

A more pressing issue, which can alter grating dispersed
spectra in CC-mode, is the dust scattering halo, usually present
around bright absorbed sources. The BP resides in the Galactic
center region; hence, it is heavily absorbed, with a hydrogen
column density »N 10H

23 cm−2. The brightness of the source
produces a diffuse scattering halo, the emission from which
disperses and blends with the source dispersed spectrum. The
significance of this effect depends on the incident source
spectrum, with hard sources affected less than soft ones.
Luckily, the BP has a hard X-ray spectrum (Section 3.3),
which reduces the impact of this background on the source
spectrum.

Since no spatial information exists when using CC-mode, we
extract the MEG and HEG backgrounds using the order sorting
plots, which display the energies of the dispersed events versus
the ratios of these energies over the event positions on the
grating arm1. On-axis point-source photons should distribute
tightly and symmetrically around the extraction order, while
diffuse photons have a larger scatter. Finally, the extracted
background is normalized to the excluded source region. These
backgrounds are used for both timing and spectral analyses.

In addition to the background complications when dealing
with CC-mode observations, there are calibration uncertainties1

between the different orders, e.g., complicated charge transfer
inefficiency corrections on the events. To check for potential
differences, all Chandra analyses were initially performed on
the separate HEG and MEG arms. Temporal analysis returned
consistent results between all the different arms. Spectral
analyses, on the other hand, showed that the HEG p1
(hereafter, p1 refers to the positive and m1 to the negative
first-order grating arms) spectrum is markedly different from
the rest, i.e., MEG p1, MEGm1, and HEGm1. Figure 1 shows
a PL fit to the different spectral arms, where a wiggle between 2
and 6 keV is present only in the HEG p1 spectrum. We
conclude that this feature is not real, and most likely due to
either miscalibration, an improper modeling of the background,

or both. Hence, the HEG p1 arm is excluded from the spectral
analyses, except for bursts, where the above feature is not
present (likely due to the small integration times during bursts
and/or the fact that the emission during burst intervals includes
minimal background).
All narrow features in the Chandra spectra are seen above

6 keV. Due to the lower spectral resolution and collecting area
of the MEGs at energies5 keV, we also exclude these spectra
in the analysis. For our timing analyses, we use the HEG first-
order gratings (positive and negative arms combined,
i.e., HEG 1).

2.2. NuSTAR

The NuSTAR is a NASA Small Explorer satellite launched
on 2012 June 13 (Harrison et al. 2013). It is the first orbiting
focusing hard X-ray telescope, observing the sky in an energy
range from 3 to 79 keV with two co-aligned X-ray optics that
focus X-rays onto two independent detector planes (FPMA and
FPMB), each composed of four CdZnTe detectors. The field of
view of NuSTAR is roughly 12¢ × 12¢ with a point-spread
function with an FWHM of 18 and a half-power diameter of
58.
NuSTAR obtained simultaneous observations of the BP

during the Chandra observation. The broader NuSTAR BP data
set is reserved for future work; here we concentrate on the data
obtained simultaneously with Chandra. We reduced the
NuSTAR data using NuSTARDAS v 1.3.1 and the NuSTAR
CALDB 20131210, with the standard pipeline filtering. We
extracted the source photons from a circular region with a
radius of 60; these regions were centroided separately for
FPMA and FPMB to account for the small misalignments in
the absolute aspect reconstruction for the two telescopes.
NuSTAR produces event files (e.g., each row in the event file

represents a single time-tagged photon), which we can then
filter based on the source region described above to produce
“source” event files.
We produced response files (ARFs and RMFs) for the

NuSTAR spectral analysis using the custom time intervals
defined in Section 3.1. These response files capture the
response of the instrument over the specified time ranges.

3. RESULTS

3.1. Temporal Properties

We show in Figure 2 the 2–10 keV Chandra HEG first-order
light curve (top panel) of the entire 10 ks observation, with 10 s
time bins. Seven bursts are detected from the source during this
observation. Following each burst, a dip in the count rate is
observed, which recovers exponentially back to the persistent
level. The FPMA light curve of the simultaneous NuSTAR
observation is shown in the second panel in Figure 2, in the
energy range of 3–10 keV and also at 10 s resolution. Only
three bursts are detected simultaneously by both Chandra and
NuSTAR. Figure 3 is a zoom-in on these three bursts plotted
with a 0.5 s resolution.
We use a Bayesian Blocks algorithm (Scargle et al. 2013) to

identify the beginning and end times of the seven bursts
detected with Chandra, and to search for weaker bursts in the
Chandra light curve binned with 0.5 s resolution. We chose
this temporal resolution as a trade-off between speed and
accuracy, considering that the source has a comparable pulse
period. Bayesian Blocks have been frequently used for the

Figure 1. Residuals of an absorbed PL fit to the non-burst emission interval for
the + and − arms of both the HEG and MEG first order spectra. The wiggle
seen in the HEG p1 spectrum between 2 and 6 keV is not detected in any of the
other three spectra. We conclude that this shape is artificial and refrain from
using the HEG p1 in the non-burst spectral analyses.
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temporal analysis of gamma-ray bursts, magnetars, and even

flares from Sgr A* (e.g., Norris et al. 2011; Nowak et al. 2012;
Lin et al. 2013; Barrière et al. 2014). We find that only the
seven bursts clearly visible in Figure 2 show significant
deviations ( s5 ) from the persistent level of the source. We do
not find any weaker (mini-) bursts similar to the ones seen
during the first two outbursts, e.g., (Nishiuchi et al. 1999).

The start and end times of the seven Chandra bursts are
recorded from the Bayesian Blocks analysis (Figure 4). Table 1
shows these start times in MJD, and durations in seconds. The
uncertainty on these durations is dominated by the temporal
resolution we used, and it is ⩽1 s (⩽0.5 s error at the beginning
and end of each burst). All durations, except the last, are
narrowly distributed with a mean and 1σ standard deviation of
12± 2 s. The last burst consists of two pulses with a total
duration of 25 s (Figure 4). The rise and decay times of all
bursts have a mean and 1σ standard deviation of 4.0± 1.0 s

and 8.0± 2.0 s, respectively (excluding the decay time of the
last burst).
We identify the dip durations using the following method on

the 2–10 keV Chandra light curve binned at 10 s. We search
for the time bin with the minimum count rate immediately after
the end of a burst and up to the start of the following burst (the
end of the observation after the last burst). We then fit the light
curve of each of these time intervals with an exponential
function of the form

t= - - - - +( )( ){ }C t C C t t C( ) 1 exp ( ) , (2)p min min min

where Cmin is the minimum count rate at time tmin, Cp is the
persistent count rate level, and τ is the characteristic timescale
representing 63.2% recovery of the count rate to Cp. We first
performed fits keeping both Cp and τ as free parameters. We
find that Cp is similar in all cases with good enough coverage
after the recovery; hence, we keep Cp constant at the mean
count rate value calculated from time intervals far away from
bursts and dips (black solid line in Figure 5). Figure 5 shows in
red our exponential fits to the dips, and Table 2 lists the dip
temporal properties. We find that τ ranges between 112 and
246 s, with a mean and 1σ standard deviation of 191± 43 s,
whereas the average time from the end of a burst to the
minimum count rate of the dip, T _S dip, is 105± 27 s. We note
that no bursts are seen during the dipping intervals, i.e., all
bursts are emitted after the dip recovered to at least the 95%
level of the persistent emission. The gray areas in Figure 5
represent the persistent emission time intervals excluding bursts
and dip intervals.
Finally, we searched for any strong spectral variations in the

Chandra observation, especially during bursts, by looking at
the evolution of the source flux hardness ratio, H S, where H
includes the energy ranges 4–6 and 8–10 keV (to avoid
contamination from the Fe line complex; see Section 3.3), and
S includes the 2–4 keV range. The bottom panel of Figure 5
shows the H S derived from light curves with a 0.5 s resolution
during bursts and with 10 s bins elsewhere. We do not find any
spectral variations during bursts in the Chandra observation
compared to the non-burst emission, at the above temporal
resolution.

3.2. PP Analysis

For each of the intervals defined in the previous section, we
first apply a barycenter correction for the Chandra and
NuSTAR time-tagged events (see also Section 2.1 for a
description of the Chandra grating time correction). We then
correct these times for the binary motion of the system, using
the orbital parameters provided by the GBM pulsar team.22 We
estimate the spin frequency of the pulsar from the persistent
data by locating the peak Rayleigh power, nR2, in a frequency
range expected to contain the spin frequency. The Rayleigh
power is given by

å n=
=

-

nR
n

π t
1

exp{2 } (3)
i

n

i
2

0

1 2

Figure 2. Chandra (top panel) and NuSTAR (bottom panel) light curves in the
2–10 and 3–10 keV energy ranges, respectively. Both light curves are binned
with 10 s time resolution. A total of three bursts are detected simultaneously by
Chandra and NuSTAR.

Figure 3. Light curves of the three bursts that are covered simultaneously by
Chandra (top panel) and NuSTAR (bottom panel) in the 2–10 and 3–10 keV
energy ranges, respectively, plotted with 0.5 s time resolution.

22 http://gamma-ray.nsstc.nasa.gov/gbm/science/pulsars.html
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Table 1
BP Burst Temporal and Spectral Properties

Burst # Start Time Duration Rise Decay PL Norm.a Fluxa,d Fluencea,d Luminositya,b,d Flux0.5–70 keV
c

(MJD) (s) (s) (s) (photons keV−1 cm−2 s )1 (10−8 erg cm−2 s−1 ) (10−7 erg cm−2) (1038 erg s−1) (10−8 erg cm−2 s−1)

1 56719.396802 13.5 2.8 10.8 8 (5–11) 8.6 (7.7–9.7) 11.6 (10.4–13.1) 6.6 (5.9–7.4) 10.5 (10.2–10.9)
2 56719.408920 15.5 4.8 10.8 7 (5–10) 7.4 (6.7–8.4) 11.5 (10.4–13.0) 5.7 (5.1–6.4) 9.3 (8.9–9.6)
3 56719.418949 12.5 5.0 7.5 8 (6–12) 9.2 (8.3–10.4) 11.5 (10.4–13.0) 7.1 (6.4–8.0) K
4 56719.436373 9.0 3.5 5.5 10 (7–14) 10.7 (9.7–12.1) 9.7 (8.7–10.9) 8.2 (7.4–9.3) K
5 56719.445465 11.0 3.5 7.5 7 (5–10) 7.3 (6.5–8.3) 8.3 (7.2–9.1) 5.6 (5.0–6.4) K
6 56719.481460 12.5 5.3 7.3 7 (5–11) 8.2 (7.4–9.2) 10.2 (9.2–11.5) 6.3 (5.6–7.1) 9.4 (9.0–9.7)
7 56719.488544 25.0 2.3 22.3 5 (3–7) 5.3 (4.8–5.9) 13.1 (11.9–14.8) 4.0 (3.7–4.5) K

a Absorbed PL with = ´N 9.0 10H
22 cm−2, and G = 1.2.

b Assuming a distance of 8 kpc.
c Combined Chandra and NuSTAR data fit with an absorbed cutoffPL with =  ´N (10.0 1.0) 10H

22 cm−2, G = 0.5 0.1, and = E 8.8 0.7fold keV.
d Derived in the energy range 0.5–10 keV.
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(Brazier 1994), where n is the number of events, ν a trial
frequency, and ti a barycenter and binary corrected event time.

The peak power of 891 occurs at frequency 2.1411203(16)Hz.
The 1σ error is determined by the change in frequency required
for the Rayleigh power to drop by 0.5. Finally, we epoch-fold
the data at the spin frequency derived above to compute a PP.
For the persistent and dip intervals, we extract Chandra and
NuSTAR PP in different energy bands, chosen to have
comparable number of events (Figure 6).
We fit the different PPs with a sine plus cosine function of

the form (Bildsten et al. 1997),

åf f f= + +
=

[ ]C C A πk B πk( ) sin (2 ) cos (2 ) , (4)
k

m

k kmean
1

where fC ( ) is the count rate at phase bin ϕ, Cmean is the
average count rate throughout the PP, and Ak, Bk are the
coefficients of the different harmonics k of the sine and cosine

Figure 4. Two examples of Chandra 2–10 keV light curves of BP bursts with
0.5 s resolution (left panels), along with their Bayesian Blocks representation
(right panels). Times are from the start of the Chandra observation.

Table 2
BP Dip Temporal and Spectral Properties

Dips # tmin
a t b TS_dip

c Favr, t_ min
d Ft_ min

e Flux total Fluencef Flux -0.5 70 keV
g

(MJD) (s) (s) (10−9 erg cm−2 s−1) (10−9 erg cm−2 s−1) (10−8 erg cm−2 s−1) (10−6 erg cm−2) (10−8 erg cm−2 s−1)

1 56719.397861 182 ± 14 78 7.9 (6.9–9.2) 6.8 ± 0.3 1.00 (0.98–1.03) 1.3 (1.5–1.1) 2.2 (2.1–2.4)
2 56719.410129 147 ± 15 89 8.0 (7.0–9.3) 7.1 ± 0.2 1.03 (1.00–1.05) 1.0 (0.9–1.2) K
3 56719.419967 246 ± 27 75 9.7 (8.6–11.3) 8.2 ± 0.3 1.09 (1.07–1.11) 1.1 (0.9–1.3) K
4 56719.438023 189 ± 23 133 8.6 (7.6–10.0) 7.3 ± 0.3 1.02 (1.00–1.04) 1.4 (1.2–1.6) K
5 56719.447282 162 ± 25 145 9.1 (8.1–10.6) 8.0 ± 0.3 1.06 (1.04–1.08) 1.0 (0.8–1.2) K
6 56719.482814 112 ± 12 104 7.8 (6.9–9.1) 6.1 ± 0.3 0.95 (0.94–0.98) 1.2 (1.3–1.1) K
7 56719.490106 239 ± 22 109 9.0 (7.9–10.4) 7.4 ± 0.3 1.03 (1.01–1.05) 1.5 (1.3–1.7) K

a Dip times at minimum count rate after burst.
b Dip characteristic time-scale for recovery.
c Duration of interval from end of burst to tmin.
d Calculated in an 80 s interval centered on tmin.
e Calculated at tmin over 10 s by converting count rates to fluxes with PIMMS. Errors reflect the count rate errors only.
f Fluence deficiency in the dip.
g Combined Chandra and NuSTAR data.

Figure 5. Top: Chandra 2–10 keV light curve with 10 s resolution. The black
solid line is the mean rate of a pre-defined persistent emission interval far away
from bursts and dips. The gray areas are the persistent emission intervals used
in our spectral analysis. The red solid curves are exponential fits to the dip
intervals. Bottom: Hardness ratio, H S , evolution during the entire Chandra
observation (H is computed in the 4–6 and 8–10 keV range, and S in the
2–4 keV range).
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functions. The PP is nearly sinusoidal. The second harmonic
contribution is highest in between 8 and 10 keV (19%± 10%)
for Chandra and between 6 and 8 keV (8%± 1%) for
NuSTAR.

The rms pulsed fraction (PF) is defined as (Bildsten
et al. 1997)

s s
=

é
ëê å + - + ù

ûú= ( ) ( )A B

C
PF

0.5
, (5)

k
m

k k A k B k

rms
1

2 2
,

2
,

2 0.5

mean

where sA k, and sB k, are the 1σ standard deviations on the model
coefficients.
We calculate the PF of the persistent emission PPs in

different energy bands and find a slight energy dependence in
both Chandra and NuSTAR data. At the lowest energies,
3–6 keV, the PF is about 10%. It increases to 15% in the
10–15 keV energy range and remains constant at higher
energies (Figure 7). We find the same dependence and PF
values during the dip intervals in both Chandra and NuSTAR.
We do not perform timing analysis on the burst intervals.

Both Chandra and NuSTAR suffer high instrumental dead-time
during bursts, and Chandra data suffer a small pileup
percentage at the peak of the bursts (10%), all of which
distorts the burst PP.

3.3. Spectral Analysis

We perform our spectral analysis using XSPEC
(Arnaud 1996) version 12.8.1. The photoelectric cross sections
of Verner et al. (1996) and the abundances of Wilms et al.
(2000) are used throughout to account for absorption by neutral
gas. All quoted uncertainties are at the s1 level, unless
otherwise noted.

3.3.1. Persistent Emission

We extract the HEGm1 spectrum of the persistent emission
intervals as defined in Section 3.1 and fit it (binned to a signal-
to-noise ratio (S/N) of 10) with an absorbed PL. Residuals in
the form of narrow emission lines are present in the spectra in
the energy range 6.0–7.5 keV (Figure 8).
To properly model the continuum, we ignore data in the

energy range 6.0–8.0 keV. The absorbed PL provides a good fit
to the data with a reduced c2 of 0.7 for 247 degrees of freedom

Figure 6. Persistent emission pulse profiles in different energy bands as measured with Chandra (left column) and NuSTAR (middle and right columns). The black
solid lines are the best-fit models at the pulse period of GRO J1744-28.

Figure 7. Persistent emission pulse fraction as a function of energy for
NuSTAR (squares) and Chandra (circles).
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(dof). We also fit the continuum with a BB function (bbody in
XSPEC, BB hereafter), and although we find a statistically
acceptable fit with a reduced c2 of 0.9, significant fit residuals
at low and high energies (<3 and >8 keV) are present. A

diskbb model gives as good a fit as the PL with a reduced c2 of
0.76; however, the temperature »T 6.0in keV of the inner disk
is too high for an accreting pulsar. We conclude that a simple
PL is sufficient to explain the Chandra data alone.
We add the 6.0–8.0 keV data, including three Gaussian lines

at 6.4, 6.65, and 7.0 keV to account for the residuals, and re-fit.
We find a reduced c2 of 0.7 for 291 dof (Figure 8). Table 3
lists the best-fit parameters to the persistent emission
continuum and features, along with their s1 uncertainties.
The addition of the 6.4, 6.65, and 7.0 keV Gaussian
components (one at a time) improves the fit by a cD 2 of 24,
31, and 10, respectively. We find that all three lines are narrow
with comparable fluxes and equivalent widths (EWs) within
uncertainties. Most likely the lines are due to neutral or near-
neutral Fe and highly ionized Fe XXV (He-like) and Fe XXVI (H-
like). We note here that there is a CCD gap in the HEGm1 at
6.3 keV, right below the energy of the 6.4 keV Fe feature,
resulting in loss of counts at that energy, which renders the fit
parameters of this line uncertain.
Next, we extract the NuSTAR FPMA and FPMB spectra, in

the 3–70 keV range for the persistent intervals simultaneous
with Chandra, and group them to have an S/N of 25. We fit the
NuSTAR spectra and the HEGm1 spectrum simultaneously,
including a normalization factor to all model fits to take into
account any cross-calibration uncertainties between the three
instruments. We link all fit parameters between the three
spectra except for the normalization factor. Both NuSTAR
spectra show a broad emission line centered at around
6.65 keV, most likely corresponding to the Fe line complex
detected with Chandra. Hence, for our initial fits, we exclude
from both Chandra and NuSTAR the 6.0–8.0 keV energy range.
A single-component model, i.e., PL or BB, does not give a
satisfactory fit with a reduced c > 22 . An absorbed cutoffPL (a
PL with an exponential rolloff) model gives a better fit, but it is
also statistically unacceptable (reduced c = 1.82 ). The addi-
tion of a BB model improves the fit dramatically with a reduced
c = 1.32 (Figure 9, panel (e)). However, this model results in
an absorption hydrogen column density three times lower than

Figure 8. Panel (a) Data to model ratio of a PL fit to the Chandra persistent emission spectrum.Panel (b) Data to model ratio of a PL fit to the Chandra dips+persistent
emission spectrum. In both panels, we ignore the 6.0–8.0 keV range in the fits. Panel (c) Data to model ratio of a PL and three Gaussian lines to the persistent emission
spectrum.Panel (d) Data to model ratio of a PL and three Gaussian lines to the dips+persistent emission spectrum. The arrows at the Gaussian centroid energies
indicate their possible identification. Data are rebinned for clarity.

Table 3
Chandra HEG m1 Best-fit Parameters for the Dip, Persistent, and Dip

+Persistent Emission Intervals

Persistent Dips Dips+Persistent

N (10H
22 cm- )2 8.8 ± 0.3 -

+9.0 0.4
0.5 8.9 ± 0.2

Γ -
+1.16 0.05

0.03 1.2 ± 0.1 -
+1.17 0.04

0.03

Norm.a -
+1.01 0.08

0.07
-
+0.95 0.1

0.2
-
+0.96 0.05

0.04

FPL (10−8)b -
+1.22 0.03

0.02
-
+1.05 0.03

0.02 1.15 ± 0.02

E1 (keV) -
+6.45 0.03

0.06
-
+6.4 0.2

0.1 6.44 ± 0.06

s1 (eV) -
+45 17

95
-
+700 400

300
-
+250 70

90

EW1 (eV) 31 ± 14 -
+220 100

140 81 ± 21

F1 (10
−11)b -

+4.0 1.3
5.0

-
+17 12

10 9.0 ± 2.0

E2 (keV) -
+6.63 0.02

0.03
-
+6.66 0.04

0.03
-
+6.65 0.02

0.01

s2 (eV) -
+55 25

21
-
+42 26

42
-
+33 13

15

EW2 (eV) -
+42 15

17
-
+17 10

12
-
+17 6

8

F2 (10
−11)b -

+5.3 2.3
1.4

-
+1.9 0.7

1.4 2.2 ± 0.8

E3 (keV) 7.00 ± 0.03 -
+6.98 0.04

0.03 6.99 ± 0.02

s3 (eV) -
+68 34

68
-
+11 11

39
-
+32 16

30

EW3 (eV) -
+25 13

11
-
+10 10

12
-
+15 7

8

F3 (10
−11)b -

+3.0 1.4
1.7

-
+0.9 0.7

0.9
-
+1.7 0.5

0.9

Ftot (10
−8)bc 1.23 ± 0.02 -

+1.08 0.03
0.02 1.16 ± 0.02

a In units of photons keV−1 cm−2 s−1.
b In units of erg cm−2 s−1.
c Total unabsorbed flux. FPL and Ftot are caclualted in the 0.5–70 keV energy
range. Fluxes of the Gaussian components are in the 6–8 keV range.
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what we get from Chandra alone, resulting in large residuals at
the lower end of the spectrum, along with residuals at 10 keV.
Hence, we fix NH to the Chandra value of ´9.0 1022 cm−2.
This gives a similar fit quality compared to the above, but
emphasizes the residuals around 10 keV in the form of a broad
trough (Figure 9, panel (d)). Adding a negative broad feature
(cyclabs23 in XSPEC) to the model and thawing NH results in
the best fit to the continuum with a reduced c2 of 0.95 (for
767 dof).

We also investigate the effect of other model continua on the
presence and shape of the 10 keV feature. First, instead of a
cutoffpl model, we fit the spectrum using (1) a Fermi–Dirac
form of cutoff (fdcut; Tanaka 1986) and (2) a negative–
positive PL exponential (npex; Mihara 1995), both used for
fitting accreting X-ray pulsar spectra. Neither model, modified
by absorption, gives a good fit to the data (reduced c » 1.92 ).
Adding a BB results in a reduced c2 of 1.3. We then remove
the BB component and add a negative broad feature to the
models. Both fdcut and npex give a reduced c2 of 1.1 but fail to
reproduce the soft part of the spectrum. Adding both a BB
component and a negative feature gives a good fit to the data in
both cases (reduced c2 of 0.94 and 0.95 for 765 and 766 dof
for npex and fdcut, respectively). We conclude that the 10 keV
feature and the BB component are present in the data regardless
of the shape of the continuum used. We therefore adopt the
simplest empirical model, i.e., cutoffPL, for the rest of our
analysis since it has less free parameters than the above two for
comparable fit results. Moreover, the parameters of the BB

component and the 10 keV feature are consistent within 1σ in
all three models.
Finally, using the cutoffPL continuum model, we add the

6.0–8.0 keV data. We include three Gaussian lines with
centroid energies and widths fixed to the values derived from
the Chandra data (reduced c2 of 0.91 for 919 dof). We also fit
one Gaussian line to the data, with all parameters left free to
vary. We find a line centroid energy = E 6.69 0.03 keV and
a width s = -

+0.42 0.04
0.06 keV (reduced c2 of 0.92 for 919 dof).

We conclude that our best-fit model for the NuSTAR and
HEGm1 persistent emission spectra consists of a BB, a
cutoffPL, a 10 keV feature, three Gaussian lines with centroid
energies and widths fixed to the Chandra-alone values (or one
Gaussian component with all parameters left free to vary), all
affected by neutral absorption (tbabs in XSPEC) and a constant
normalization. Table 4 gives the best-fit parameters.

3.3.2. Dips

We extract the Chandra HEGm1 spectra for each of the dip
intervals separately (here we define the duration of a dip
interval as starting from the end of a burst until the time it
recovers to 95% of the persistent level). We fit all seven
intervals simultaneously with an absorbed PL model. The
hydrogen column density is linked for all spectra to ensure that
they are all equally absorbed. First, we allow the PL indices
and normalizations to vary, and we find that the PL index is
consistent across all spectra. Therefore, we also keep the
indices linked. We do not find any flux variability between the
different dips, and we estimate an average flux and 1σ standard
deviation of  ´ -(1.05 0.04) 10 8 erg s−1 cm−2. We also find
no variability in the fluence deficiency during the different dips
(the actual deficit of fluence from the persistent emission
during a dip) with an average of  ´ -(1.2 0.2) 10 6 erg cm−2.

Figure 9. (a) Best-fit model to the NuSTAR and Chandra/HEG m1 spectra of the persistent emission interval. The model consists of a BB, three Gaussians, a 10 keV
feature modeled as cyclabs, and a cutoffPL, all modified by absorption. A constant normalization is also included for instrument cross-calibration uncertainties. Dashed
lines represent the different additive components. (b) Residuals of the data from the best-fit model. (c) Ignoring the 6.0–8.0 keV data and excluding the three Gaussian
lines. (d) Excluding the 10 keV feature, and fixing NH to the Chandra value. (e) Letting NH free to vary. Data have been refit in panels (c), (d), and (e); in all five
panels, the black, red, and blue points are the NuSTAR module A, module B, and the Chandra HEG m1 data, respectively. Chandra data in the bottom two panels are
binned-up for clarity. See text for more details.

23 We tried three different negative broad components to model the 10 keV
feature, cyclabs, gabs, and an additive Gaussian component with negative
normalization. cyclabs gives a slightly better fit than the other two with
cD = 242 for the same number of dof. Hence, we use cyclabs in the rest of the

analysis.
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Table 2 gives the spectral results for the individual dip
intervals.

Motivated by the differences in the count rates at the dip
minima (Figure 5), we extract the HEGm1 spectra of all seven
dips in an 80 s interval centered at tmin and fit them
simultaneously with an absorbed PL model, keeping only the
normalizations free. We do not find any flux variability (at the

s>3 level) in the minimum level the dips reach after each burst
(Table 2). We repeat the analysis for a 40 s interval centered at
tmin and reach the same conclusions.

Next, we extract the HEGm1 spectrum for dip intervals
collectively and group them so that each bin has an S/N of 10.
We fit the spectrum with an absorbed PL and find an absorption
hydrogen column density and a PL index consistent within
errors with the results we find for the persistent emission
intervals (Table 3). We find an unabsorbed average flux
= ´-

+ -F 1.05 100.03
0.02 8 erg s−1 cm−2. The ratio of the average

flux (over the entire dip intervals) to the persistent emission
flux is 0.86, or a 14% drop in the persistent emission flux.
Finally, we find that some residuals are present in the

HEGm1 at high energies (>6 keV), in the form of excess
emission, similar to what is seen in the persistent emission
spectrum. Hence, we add three Gaussian lines at 6.4, 6.65, and
7.0 keV. Table 3 lists the best-fit parameters to the dip intervals.
Unfortunately, due to the low number of counts in the dip
spectra, we are not able to adequately constrain the parameters
of the Gaussian components, except for their energies.
Nonetheless, comparing the dip and persistent emission fit
parameters, we do not find dramatic changes in the line
properties. These results are discussed in Section 4.
We then apply the same model we used to fit the persistent

interval Chandra+NuSTAR broadband spectrum to the dip
broadband spectrum. We find very similar values between
persistent and dip intervals, except for the flux of the cutoffPL

Table 4
Best-fit Parameters for the Dip, Persistent, Dip+Persistent, and Burst Emission Intervals for the Combined NuSTAR +Chandra Data

Persistent Dips Dips+Persistent Bursts

-N (10 cm )H
22 2 11.2 ± 0.7 9.7 ± 1.0 10.6 ± 0.6 7.3 ± 0.7

kTBB 0.55 ± 0.03 0.52 ± 0.03 0.52 ± 0.02 K
Norm.BB (10−2)a -

+4.0 0.8
1.0

-
+4.6 1.2

1.5
-
+4.1 0.7

0.8 K
FBB (10−9)b 4.5 ± 0.6 4.3 ± 0.8 -

+4.5 0.5
0.4 K

E1
d (keV) 6.45 6.4 6.44 K

s d
1 (eV) 45 700 250 K
EW1 (eV) -

+22 5
8

-
+141 33

36
-
+47 7

5 K
F1 (10

−11)b 2.9 ± 0.8 12 ± 2 5.5 ± 0.7 K

E2
d (keV) 6.63 6.66 6.65 K

s d
2 (eV) 55 42 33 K
EW2 (eV) -

+33 5
7

-
+27 4

6 22 ± 3 K
F2 (10

−11)b -
+4.5 0.6

0.5
-
+3.2 0.5

0.6 3.2 ± 0.5 K

E3
d (keV) 7.01 6.98 6.99 K

s d
3 (eV) 68 11 32 K
EW3 (eV) -

+36 4
6

-
+15 5

4
-
+27 3

2 K
F3 (10

−11)b -
+4.5 0.4

0.5 1.7 ± 0.4 3.6 ± 0.3 K

Eb (keV)
c 6.69 ± 0.03 6.71 ± 0.04 -

+6.70 0.03
0.02 K

sb (eV) -
+400 40

60 420 ± 50 -
+420 20

40 K
EWb (eV) -

+123 12
16

-
+133 13

9
-
+129 9

10 K
Fb (10

−11)b -
+15 1

2
-
+14 1

2 15 ± 1 K

E10 keV (keV) 9.9 ± 0.2 -
+9.5 0.4

0.3 9.9 ± 0.1 10.5 ± 0.3

s10 keV (keV) -
+3.7 0.3

0.4
-
+4.2 0.5

0.6
-
+3.6 0.2

0.3
-
+0.8 0.3

0.8

d10 keV 0.16 ± 0.02 0.18 ± 0.02 0.17 ± 0.01 0.15 ± 0.04

G -
+0.0 0.1

0.2 0.0 ± 0.1 0.00 ± 0.04 0.2 ± 0.1

Efold 7.0 ± 0.2 7.0 ± 0.2 7.1 ± 0.1 7.6 ± 0.5

Norma
-
+0.29 0.02

0.03 0.26 ± 0.03 0.30 ± 0.02 -
+1.9 0.2

0.3

FPL (10−8)b 2.49 ± 0.04 -
+2.24 0.05

0.06 2.37 ± 0.03 9.8 ± 0.2

Ftot (10−8)be 2.62 ± 0.02 -
+2.30 0.02

0.03 2.47 ± 0.01 -
+8.9 0.1

0.2

a In units of photons keV−1 cm−2 s−1.
b In units of erg cm−12 s−1.
c Fitting one Gaussian line to the Fe line complex.
d Fixed to the Chandra best-fit results.
e Total unabsorbed flux. FBB, FPL, and Ftot are caclualted in the 0.5–70 keV energy range. Fluxes of the Gaussian components are in the 6–8 keV range.
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component, which decreased by 10% during dips. The fluxes of
the BB and the Fe line component (considering one Gaussian
line fit to the 6.7 keV excess) did not change within their s1
error. These results are shown in Table 4.

3.3.3. Persistent Emission and Dips

To achieve better S/N for the spectral fitting of the lines, we
extract the HEGm1 spectrum of the persistent and dip intervals
together. We fit the spectrum with an absorbed PL model and
three Gaussian emission lines (Figure 8). Table 3 lists the best-
fit parameters along with their s1 uncertainties.

According to the persistent+dip spectrum, which has better
statistics than the persistent or dip spectra alone, the highly
ionized lines are narrow with widths of about 30 eV. They also
contribute similarly to the total flux. The neutral Fe, on the
other hand, has a larger width and flux compared to the
other two.

The broadband model used to fit the persistent and dip
spectra alone is also successfully fit to the dips+persistent
NuSTAR and Chandra spectra (Table 4). All the parameters of
the best-fit model were compatible with the persistent and dip
fits. A one-Gaussian emission-line fit to the 6.7 keV excess
results in a width s = 0.42 keV and an EW = 129 eV. Finally,
we also fit the 6.7 keV excess using a diskline model (Fabian
et al. 1989) and find = -

+E 6.63 0.04
0.05 keV, = -

+R 130in 80
240 GM/c2

( ´-
+3 102

5 7 cm), and >i 35° (all quoted uncertainties are at
the s3 level).

3.3.4. Bursts

We extract the HEG 1 spectrum for each of the seven bursts
seen with Chandra and fit them simultaneously with an
absorbed PL. We link the hydrogen column density in the fit.
We find a consistent PL index for all spectra, and therefore, we
also link the index thereafter. The PL normalizations are left
free to vary, to account for any flux variability between the
bursts. We find =  ´N (9.0 1.0) 10H

22 cm−2 and a PL index
of G = 1.2 0.2. We report in Table 1 all burst spectral
parameters.

We find very similar energetics between the different bursts;
flux and luminosity variability (at the s3 level) is observed
only between bursts #4 and #7 (these are the shortest and the
longest burst, respectively; Table 1). In terms of fluence, all
bursts emitted comparable (at the s2 level) amounts of energy.
The mean and 1σ standard deviation of the fluxes and fluences
are  ´ -(7.4 1.6) 10 8 and  ´ -(10.3 1.6) 10 7 erg cm−2,
respectively. We also convert the 1 s peak count rates of the
seven bursts to fluxes using PIMMS (due to the low count
statistics). We find an average peak flux of ´ -2.0 10 7

erg s−1 cm−2, equivalent to a luminosity of ´1.5 1039 erg s−1 at
8 kpc. This value should be regarded as a lower limit due to a
10% pileup and the narrow energy band for which it was
derived (0.5–10 keV; NuSTAR data were excluded from this
analysis due to severe dead-time effects).

We extract the HEG 1 spectrum of all seven bursts
collectively, grouped to an S/N of 7, to search for any features
present in their added spectrum. We fit the spectrum with an
absorbed PL and find a hydrogen column density

=  ´N (1.0 0.1) 10H
23 cm−2 and a PL index

G = 1.2 0.1. No prominent absorption and/or emission
features are seen in the spectrum.

We then extract the 3–70 keV NuSTAR spectrum of the three
bursts seen simultaneously with Chandra, binned to an S/N of
15. We fit the spectrum with an absorbed cutoffPL resulting in
a reduced c2 of 0.89 for 637 dof. Some residuals around
10 keV can be seen, similar to what we find in the persistent
and dip spectra. Including a cyclabs feature to the model
improved the fit slightly, resulting in a reduced c2 of 0.86 for
634 dof, which is a cD 2 of 17 for three additional parameters.
Figure 10 shows the data and best-fit model, while the
parameter values are listed in Table 3. We see no excess
emission between 6 and 8 keV. We derive a 3σ upper limit of
119 eV on the EW of a line with centroid energy at 6.7 keV.
We also derive a 3σ upper limit on the flux of a line at the same
energy and a width of 0.4 keV of ´ -1.4 10 10 erg s−1 cm−2.
Using the co-added Chandra burst spectra, we derive a 30 eV
s3 upper limit on the EW of the neutral Fe and 16 eV on the
highly ionized species. Assuming a width of 0.05 keV for the
Fe K and the highly ionized species, we find s3 flux upper
limits of the order of 10−10 erg s−1 cm−2 for all three lines.
These upper limits indicate that if any of the lines we detect in
the dip and persistent spectra brightened proportionally to the
burst flux (on the average by a factor of 5), we should have
been able to detect them. However, if the line fluxes remained
constant during the bursts, their presence could be masked by
the much brighter burst continuum.
Finally, we note that the BB component is not required by

the fit to the burstʼs spectrum at a high significance. However,
the hydrogen column density is lower at the s3 level than the
value derived for the dips and persistent intervals (Table 4).
Hence, fixing the column density at ´10.6 1022 cm−2, we find
residuals at the lower end of the spectrum, which are well fit
with a BB component with »kT 0.6 keV and a 0.5–70 keV
flux of  ´ -(3 2) 10 9 erg s−1 cm−2, consistent with the BB
temperatures and fluxes during the persistent and dip intervals.
These results are discussed in Section 4.2.

3.4. Phase-resolved Spectroscopy

We divide the broadband persistent emission spectrum into
five pulse phase bins, which we fit simultaneously with our
best-fit model described above. We fit the 6.7 keV excess

Figure 10. Upper panel: Data and best-fit model to the Chandra+NuSTAR
burst spectra. The model consists of a cutoffPL and a 10 keV feature, modified
by absorption. Lower panel: Deviations from the fit in terms of sigmas. Black,
red, and blue points are the NuSTAR module A, module B, and the Chandra
HEG m1 data, respectively.
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energy with one Gaussian line. We first leave all model
parameters free to vary. We link one model parameter after
another (starting from the least variable according to a c2 test)
and record the F-test significance at each step to assess the
significance of leaving the parameter free in the fit. We find that
the fit parameters of the 6.7 and 10 keV features do not show
significant changes with pulse phase. On the other hand, the
BB and cutoffPL fit parameters tightly follow the PP shape
(Figure 11). We find a decrease in the photon index G and an
increase in the BB temperature, indicating that the X-ray
spectrum hardens at pulse maximum. The roll-off energy is
also anti-correlated with the pulse shape.

4. DISCUSSION

4.1. Burst and Dip Origin

Our temporal analysis shows that six out of the seven
detected bursts have comparable durations with an average of
about 12 s. These consist of a single pulse with a faster rise than
decay time. The seventh burst detected by Chandra is the only
outlier with a duration of about 25 s, consisting of two pulses.
These temporal properties are similar to the properties of
hundreds of bursts recorded during the first two outbursts from
the BP (e.g., Woods et al. 1999).

From the Chandra data, we can derive the α parameter, the
ratio of the fluence in the persistent emission to the fluence in
the bursts. We find a < 15 for all bursts (except for the sixth
one where a = 30), with an average value of 10. The same
value was also derived during the first two outbursts from the
source (Mejía et al. 2002). As pointed out by Lewin et al.
(1996), this small value of α is inconsistent with thermonuclear
burning as the origin for the BP bursts. This value is consistent
with the observed bursts being type II bursts, similar to what is
seen in the Rapid Burster, caused by some sort of instability
associated with the accretion disk (Lamb et al. 1977;
Baan 1979; Taam & Lin 1984; Lasota & Pelat 1991; Spruit

& Taam 1993; Cannizzo 1996; D’Angelo & Spruit 2010).
Unlike the Rapid Burster, however, the BP does not display
any correlation between the fluence in a burst and the time to
the following burst (e.g., Kouveliotou et al. 1996). This is also
evidenced by our data, where the fluence emitted during all
seven bursts is constant while the intervals between bursts
changed by up to a factor of 4.
Similar to the previous two outbursts, the bursts we detect in

Chandra and NuSTAR are followed by a dip, where the X-ray
emission decreases by 10% on average and 40% at dip
minimum. The emission exponentially recovers back to the
pre-burst persistent level, on timescales of a few hundred
seconds. We find that the fluence in a burst and the integrated
flux deficiency of the following dip are consistent within s1
(Tables 1 and 2). We estimate an average burst fluence
(2–10 keV) of  ´ -(1.0 0.2) 10 5 erg cm−2 and an average
missing dip fluence of  ´ -(1.2 0.2) 10 5 erg cm−2. Such a
correlation was also seen during the previous two outbursts
(e.g., Nishiuchi et al. 1999). These authors suggested that the
energy emitted during a burst could be compensated by the
deficit in energy during the following dip. A very simple
picture would be that accretion-disk instabilities would allow
for a sudden and rapid increase of the mass-inflow rate onto the
polar cap of the neutron star from a reservoir (e.g., the
accretion disk). The dips, then, would be the result of a small
fraction of the continuously accreted matter disappearing to
replenish this reservoir.

4.2. X-ray Emission Properties

The broadband spectrum of the BP is the typical spectrum of
an accreting X-ray pulsar at high accretion rates (see e.g.,
Coburn et al. 2002, for a review). It is well fit with a hard
component, modeled as a PL with an exponential roll-off, an Fe
line complex, a soft component modeled with a BB, and a
10 keV feature, all modified by absorption. In the following, we
will discuss these different components and their interplay
between persistent, dip, and burst emission, except for the Fe
line complex, which is discussed in Section 4.3.
The high persistent X-ray luminosity of GRO J1744-

28 during the present observation ( = ´L 1.9 10X
38 erg s−1)

implies that the emission is coming from an accretion column,
where the kinetic energy of the infalling gas onto the polar cap
is converted to radiation via a radiative shock above the thermal
mound (Basko & Sunyaev 1975). Thermal photons from the
mound, as well as cyclotron and bremsstrahlung radiation, are
converted to high-energy photons via inverse Compton
scattering. Hence, the resulting X-ray spectrum will depend
on several parameters such as the geometry of the system and
the properties of the compact source—mainly its dipole
magnetic field—among others (Becker & Wolff 2007). Even
with the small dipole magnetic field of GRO J1744-28 and its
complicated accretion geometry (Miller 1996), the parameters
we derive from our phenomenological fit compare reasonably
well to other accreting X-ray pulsars (e.g., Suchy et al. 2011;
DeCesar et al. 2013; Müller et al. 2013; Fürst et al. 2014b). The
photon index of the cutoffPL is slightly lower than in most
cases, implying a harder spectrum, which could be the result of
the higher luminosity of the source. Simply put, a higher
accretion rate onto the poles would lead to a higher electron
density in the accretion column and to higher Compton y-
parameter, causing a harder spectrum. The GRO J1744-
28 spectrum also shows a lower energy roll-off compared to

Figure 11. Broadband phase-resolved spectroscopy during the persistent
emission of the BP. From top to bottom, PP in the 3–70 keV range, BB
temperature, BB flux, cutoffPL index, energy roll-off, and cutoffPL flux. See
text for more details.
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other sources, which could be due to the relatively low
magnetic field of the source (Coburn et al. 2002).

The 10 keV feature is not unique to GRO J1744-28 and has
previously been reported in other accreting X-ray pulsars, e.g.,
Vela X-1 (Müller et al. 2012; Fürst et al. 2013, 2014a; see also
Coburn et al. 2002 for a review). This feature is not always
necessarily observed as an absorption trough and sometimes
manifests itself as a broad emission feature or a wiggle. It is
believed to be the result of modeling accreting X-ray pulsar
spectra with simple empirical functions, when the true physics
giving rise to their X-ray spectra is far more complicated,
especially when they are emitting near the Eddington limit (see
Coburn et al. 2002, for a discussion). In a few cases, however,
such as in the case of the Be/X-ray binary Swift J1626.6-5156
(DeCesar et al. 2013), an absorption line at 10 keV was
interpreted as a cyclotron resonance scattering feature (CRSF),
evidenced by the presence of a weak second harmonic and the
fact that the B field strength, derived from the line energy, was
consistent to the value derived from the spin-up rate of the
source (Içdem et al. 2011). In the 10 ks of NuSTAR data that we
consider here, we find no evidence of a second harmonic at
about twice the energy of the 10 keV feature (i.e., 20 keV), and
the B field strength corresponding to the line energy (B ≈
9 × 1011 G for a 10 keV line energy) is significantly larger than
the estimates we derive in Section 4.4. Moreover, CRSFs
usually show strong dependence with pulse phase (e.g., Fürst
et al. 2014b), which we do not observe in our phase-resolved
spectroscopy. Hence, we consider the 10 keV feature in
GRO J1744-28 spectrum to be a defect of our continuum
modeling. We note, however, that unlike the BP, other X-ray
pulsars showing 10 keV features invariably show CRSFs.

Soft excess emission is often modeled with a BB component
in accreting X-ray pulsars. Hickox et al. (2004; see also
Ballantyne et al. 2012) showed that in luminous sources such
as GRO J1744-28, the most likely source for this BB-like
emission is the inner region of the accretion disk, from where
the reprocessed hard X-ray emission of the accretion column is
emitted. Such reprocessed emission also pulsates at the pulse
period of the hard X-ray component, most likely with a lower
PF due to the large area where the reprocessing is taking place.
This is in agreement with both the change of the BB
temperature and flux with pulse phase (Figure 11) and the
slight decrease of the PF at low energies compared to the high
energies (Figure 7). Under this assumption and for isotropic
emission, the inner radius of the disk is s=R L π T(4 )BB

2
X

4

(Hickox et al. 2004), where σ is the Stefan–Boltzmann
constant, LX is the non-thermal X-ray luminosity, and T is
the BB temperature in K. The temperature we calculate,
however, is the apparent temperature of the plasma and is
related to the effective temperature through a color-correction
(or hardness) factor, =f T Tc c eff (Damen et al. 1990; Shimura
& Takahara 1995; Li et al. 2005), which is usually taken to be
between 1.5 and 2. Hence, the true inner radius of the BB
emission area is =R f Rin c

2
BB (Kubota et al. 1998). We find

=  ´R (4 1) 10in
7 cm (3σ confidence), for =f 1.8c . This is

consistent with the expected small accretion disk radius
considering the low B field of the source and its high
luminosity.

The burst broadband spectrum requires only emission from
the non-thermal component, with fit parameters similar to the
ones we derive for the persistent emission. This reinforces our
above picture where we envisioned the burst emission to be the

result of a sudden increase of the mass accretion rate onto the
neutron-star pole. The non-detection of the BB component
implies that the reprocessing of the non-thermal emission may
not have taken place during bursts. This is possible, for
instance, if the burst emission is anisotropic away from the
reprocessing material, i.e., the inner accretion disk. Such
anisotropy for the BP has already been discussed by Daumerie
et al. (1996) and Nishiuchi et al. (1999) to explain the
extremely high luminosities of the bursts during the previous
two outbursts, which reached luminosities two orders of
magnitude above Eddington. This conclusion is also supported
by the timing properties of the source, for which the hard X-ray
PF has been seen to increase prominently during the bursts
(Stark et al. 1996; Woods et al. 2000).
Finally, the broadband spectrum of the dip intervals is

similar to the persistent emission spectrum. The flux deficiency
during dips is primarily seen in the non-thermal component,
where the cutoffPL flux decreased by 10% compared to the
persistent emission flux. This is again in agreement with the
accretion picture where the dips are essentially the result of a
fraction of the long-term accreted matter not reaching the
neutron star pole, instead replacing the matter that produced the
preceding burst.

4.3. The Fe Line Complex

The ASCA observations during the first outburst of
GRO J1744-28 revealed a feature between 6 and 8 keV in its
persistent emission spectrum. Nishiuchi et al. (1999) modeled
the spectrum with a Gaussian line with a centroid energy of
6.7 keV and an EW of about 300 eV. The line was not resolved
by the spectral resolution of ASCA, but its energy is indicative
of a blend of emission lines from different species. The
NuSTAR persistent and dip spectra show a similar emission
excess at the same centroid energy and a somewhat smaller EW
(although consistent at the 3σ level).
Using the Chandra HETGs, we are able to resolve the broad

feature into three emission lines, which we identify as Fe K
from neutral and/or lowly ionized species at 6.44± 0.06 keV
and highly ionized Fe XXV and Fe XXVI at -

+6.65 0.02
0.01 and

6.99± 0.01 keV (these are the best estimates of the line
energies from the dip+persistent emission spectrum; see also
Degenaar et al. 2014).
We discuss first the Fe emission lines from highly ionized

species in the X-ray spectrum of GRO J1744-28. The gas
producing the lines is most likely photoionized by the X-ray
emission of the neutron star. In photoionized gas, He-like Fe
emission lines are produced by recombination and resonant
scattering (Matt et al. 1996) and include four different
transitions at slightly different energies, the resonant line w,
the two inter-combination lines x and y, and the forbidden line z
(see, e.g., Porquet & Dubau 2000; Porquet et al. 2010). Here
we could not resolve the different resonances; however, from
the centroid energy of the Fe XXV line, -

+6.65 0.02
0.01 keV, we can

safely conclude that the resonant line w (with mean energy at
6.700 keV) contributed minimally to the line strength, and
hence the emission is dominated by recombination (Matt et al.
1996; Kallman & Bautista 2001; Bianchi & Matt 2002; Bianchi
et al. 2005).
To investigate the origin of the highly ionized species, we

simulate XSTAR grids (Bautista & Kallman 2001; Kallman &
Bautista 2001) based on the broadband X-ray spectrum of the
source. We choose a covering fraction of 0.2 (assuming an
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accretion disk) and solar abundances as in Grevesse et al.
(1996). Due to the high accretion rate of the source, one would
expect the photoionized gas to have a very large density; hence,
we examined different values of the gas density n from 1010 to
1020 cm−3, each time multiplying by 10, to test the effects of
density on reproducing the line shapes. We find that the best
densities to reproduce the lines, resulting in reasonable values
of the ionization parameter ( x< <-1 log (erg cm s ) 51 ), are
1015 and 1016 cm−3. Here we consider a density of =n 1016

cm−3. Finally, we assumed no turbulence in the gas. Fitting this
XSTAR simulated grid to the persistent+dip spectrum, we find
a best-fit value for the column density in the gas24 of

= ´N 3.4 10H
22 cm−2 (< ´4 1023 cm−2) and for the

ionization parameter x =-
-
+log (erg cm s ) 3.41

0.4
0.8. The ξ para-

meter is related to the total X-ray luminosity of the source, L,
the density of the ionized gas, n, and its distance from the
ionizing source, R, by x = L nR2. Solving for R, we find

=  ´R (2 1) 109 cm (3σ confidence). This distance is
similar to the estimates of the ionized gas location in other
sources (e.g., Kallman et al. 2003; Jimenez-Garate et al. 2005;
Paul et al. 2005; Ji et al. 2009) and points toward reprocessing
in an accretion disk corona.

The other interesting feature in our spectra is the (quasi-)
neutral Fe at 6.4 keV. There are three possibilities for the
formation site of the fluorescence Fe K line in X-ray binaries:
(i) a wind from the companion seems to be unlikely in the case
of GRO J1744-28, since the companion is a low-mass star and
accretion is most likely occurring through Roche-lobe overflow
(Finger et al. 1996a); (ii) the companion surface via reflection,
which is also hard to achieve, because of the very low
inclination of the system (Finger et al. 1996a; Rappaport &
Joss 1997), would result in a very low EW for any Fe features
(Basko 1978); or (iii) the outer regions of the accretion disk,
by means of irradiation from the central source. To test this
third possibility, we fit a second XSTAR grid, similar to the
one above, to the dips+persistent spectrum. We find that the
(quasi-)neutral Fe line is well reproduced with an ionization
parameter x =-log (erg cm s ) 1.61 (<2.3 at 3σ confidence),
much lower than the value required to model the highly ionized
lines. This ionization parameter corresponds to a distance from
the neutron star of = ´R 1.5 1010 cm (> ´7.0 109 cm at 3σ
confidence). This seems to point to the outer regions of the
accretion disk as the likely origin of the Fe K. Other X-ray
binary sources showed, similar to GRO J1744-28, Fe Kα lines
most likely from the outer region of an irradiated disk (e.g.,
Miller et al. 2002; Reynolds & Miller 2010).

The 6.7 keV excess in the simultaneous NuSTAR and
Chandra data is also consistent with a broad line that we fit
using a diskline model (see also Degenaar et al. 2014). The
inner disk radius that we find ( = ´-

+R 3 10in 2
5 7 cm) is

consistent with the results of Degenaar et al. (2014) and in
agreement with a magnetically truncated accretion disk. This
radius, however, is more than an order of magnitude smaller
than the result we get from the XSTAR fits to the highly
ionized lines (assuming that the broad line is consistent with
Fe XXV; Degenaar et al. 2014). This could be due to either the
uncertainties in the density of the ionizing gas and/or in the
distance to the source, or the fact that other broadening

mechanisms, e.g., Compton scattering, are contributing to the
line profile.
Due to the low statistics of the present observation, we could

not constrain any variations in the separate Chandra lines
during dips (Table 3). The NuSTAR Gaussian line fit to the
6.7 keV excess has energy, width, EW, and flux consistent
within s1 between persistent and dip emission (Table 3). The
excess emission is not detected during bursts, which means that
either the super-Eddington burst X-ray luminosity fully ionized
the line-emitting region, including the Fe K region, or the line
strength remained more or less constant during bursts, but was
masked by the very bright continuum. To explore the first
possibility, we simulated the same XSTAR grid as above, but
instead of the persistent X-ray luminosity, we used the X-ray
luminosity as derived from the bursts. We fit this XSTAR table
to the burst spectrum and derived a 3σ lower limit on the
ionization parameter x >-log (erg cm s ) 3.01 . This limit
represents the lowest ionization state that would result in the
featureless spectrum that we see during bursts. This lower limit
translates into an upper limit on the radius of the ionized
material of < ´R 8.5 109 cm. Hence, the burst luminosity is
capable of fully ionizing the region of the disk where the highly
ionized lines are thought to originate (  ´(2 1) 109 cm). At
the s3 upper limit, it is capable of fully ionizing the region of
the neutral Fe (> ´7.0 109 cm). This result does not exclude
the second possibility.

4.4. Magnetic Field Estimate

Similar to the previous two outbursts from GRO J1744-28,
the increase in the X-ray luminosity of the source is
accompanied by an increase in the spin period of the neutron
star (GBM pulsar team; see footnote 2). This spin-up factor and
persistent pulsed emission indicate that the accretion onto the
neutron star is not quenched at the disk-magnetosphere
boundary, i.e., the propeller effect is not acting. For spin-up
to occur during accretion, the inner disk rotational frequency at
the magnetospheric radius has to be greater than the neutron
star spin frequency, which results in an upper limit on the
magnetic dipole field of

n< - - - ( )B K π R L GM2 (2 ) , (6)7 4 7 6 5 2 1 2
NS

1 3

where L is the total X-ray luminosity assuming a distance of
8 kpc, G is the gravitational constant, M and R are the mass and
radius of the neutron star, taken to be 1.4 M and 10 km, ν is
the neutron star spin frequency, and K is a dimensionless
parameter between 0.5 and 1 (Ghosh & Lamb 1979; Arons
1993; Spruit & Taam 1993; Ostriker & Shu 1995; Finger
et al. 1996b; Wang 1996). We find < ´ -B K3.5 1011 7 4 G.
This value is consistent with the estimates of the previous two
outbursts (e.g., Finger et al. 1996a; Bildsten & Brown 1997).
We note that the true upper limit is lower than the above
derived value since the source started spinning up at earlier
stages in the outburst when the source luminosity was lower.
Assuming that the BB component is the result of reproces-

sing in the inner regions of the accretion disk, we could also
use the BB radius estimate (Section 4.2) to derive the strength
of the dipole field of the source. The inner accretion disk radius
can be written as

= - -r K μ GM R L( ) , (7)0
4 7 1 7 2 7 2 724 Due to the absence of absorption lines in the spectrum, the column density

of the emitting gas could not be well constrained.
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which is consistent with the above upper limit and the expected
low dipole field of the source.

5. CONCLUSION

We studied the broadband X-ray emission (0.5–70 keV) of
the BP from a ;3 hr simultaneous NuSTAR–Chandra observa-
tion during its third detected outburst since discovery and after
nearly 18 yr of quiescence. These data were taken a few days
before the outburst reached its peak.

A total of seven bursts are detected during our observation.
Temporal analysis revealed that the first six bursts have
comparable shapes, consisting of a single pulse with duration
of 12 s and a faster rise than decay time. The last burst has a
double-peaked morphology with a duration of about 25 s. All
seven bursts, however, have equal fluences with an average of
about 10−6 erg cm−2. Similar to previous results, we find an
average ratio of the burst to the persistent emission fluence
a » 10 (with the exception of one burst where a = 30),
pointing to the type II origin for the bursts. Each of the seven
bursts is followed by a dip in the persistent emission flux,
which recovers exponentially with a characteristic timescale
t » 190 s. We find an average missing fluence in the dip of
about 10−6 erg cm−2, consistent with the fluence emitted in the
bursts. This indicates that the energy emitted during the burst is
compensated for in the dip, and that the long-term accretion
rate is constant. The PP of the persistent and the dip intervals
are nearly sinusoidal with only weak contribution from the
second harmonic. The PF increases from about 10% at 4 keV to
15% at 13 keV and remains constant thereafter.

The BP persistent and dip broadband spectra are identical
and well fit with a BB with kT = 0.5 keV, a cutoffPL with an
index G = 0.0 and an energy roll-off =E 7fold keV, a 10 keV
feature assumed to be the result of inadequate modeling of the
cutoffPL, and a 6.7 keV emission feature, all modified by
neutral absorption. Phase-resolved spectroscopy shows that the
BB and the cutoffPL components show variations at the pulse
period of the source, both getting harder at pulse maximum,
whereas no significant changes are seen in the 10 keV and the
6.7 keV feature.

Assuming that the BB is reprocessing of the non-thermal
emission in the inner regions of the accretion disk, we derive an
inner disk radius = ´R 4 107 cm. This radius translates into a
dipole magnetic field of B ≈ 9 × 1010 G.

The Chandra/HETG spectrum resolved the 6.7 keV feature
into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI

narrow emission lines. Modeling the highly ionized lines with
XSTAR places the emitting region at a distance of about
109 cm from the neutron star, consistent with an accretion disk
corona origin. Using a similar XSTAR grid to model the
(quasi-)neutral Fe, we find that it originates from a distance
1010 cm, most likely the outer regions of an accretion disk.

The broadband burst spectrum, with a peak flux more than
an order of magnitude higher than Eddington, is well fit with a
cutoffPL and a 10 keV feature, with similar fit values compared

to the persistent and dip spectra. The burst spectrum, however,
lacks a thermal component (BB) and Fe features. If the burst
emission were anisotropic (beamed), the lack of the BB
component is expected since no reflection of the burst photons
on the inner disk would take place. Similarly the Fe XXV,
FeXXVI, and the neutral Fe lines would remain at the flux levels
detected in the persistent and dip emission and, therefore, are
too weak to be detected above the strong burst continuum. If,
on the other hand, the burst emission is isotropic, we show that
the disk region where the Fe XXV and FeXXVI lines would be
produced is now fully ionized; the neutral iron line could still
be at very low levels and masked by the continuum. In that
case, however, we would expect a strong BB component,
which is not detected. We conclude that, as suggested by
Daumerie et al. (1996) and Nishiuchi et al. (1999), the burst
emission is highly beamed.
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