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Symmetry Protected Topological phases of Quantum Matter

T. Senthil

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Dated: May 19, 2014)

We describe recent progress in our understanding of the interplay between interac-

tions, symmetry, and topology in states of quantum matter. We focus on a minimal

generalization of the celebrated topological band insulators to interacting many par-

ticle systems, known as Symmetry Protected Topological (SPT) phases. In common

with the topological band insulators these states have a bulk gap and no exotic ex-

citations but have non-trivial surface states that are protected by symmetry. We

describe the various possible such phases and their properties in three dimensional

systems with realistic symmetries. We develop many key ideas of the theory of these

states using simple examples. The emphasis is on physical rather than mathematical

properties. We survey insights obtained from the study of SPT phases for a number

of other theoretical problems.
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I. INTRODUCTION

Following the theoretical prediction and experimental discovery of topological insulators

in the last decade[1–8], attention has turned to describing similar topological phenomena in

strongly correlated electronic materials. Experimentally a number of such correlated mate-

rials are currently being explored as candidate topological insulators. These include mixed-

valent materials[9] like SmB6 as well as iridium oxide materials on pyrochlore lattices[10].

On the theoretical side the study of topological insulation in the presence of strong corre-

lations poses fresh challenges. It requires us to move away from the crutch of free fermion

Hamiltonians and band topology that has thus far informed much of the discussion of the

phenomenon of topological insulation.
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In thinking about the interplay of strong correlation and topological phenomena, a num-

ber of questions immediately present themselves. Are free fermion topological phases stable

to the inclusion of electron interactions? Perhaps more interestingly are there new kinds of

topological insulators that require interactions and have no free fermion counterpart? How

many phases are there and what are their physical properties?

How should we generalize the concept of a topological insulator to interacting systems?

In this review we will describe recent dramatic progress in understanding a minimal gen-

eralization to phases of quantum matter known as Symmetry Protected Topological (SPT)

states. Consider a system of interacting electrons with some definite symmetries. We require

that the bulk of the system have a unique ground state that preserves the symmetries and

has a gap to all excitations. Related to this we require that there are no ‘exotic’ excitations

which carry, say, fractional quantum numbers or fractional statistics. Such a system may

nevertheless have non-trivial surface states that are protected by the symmetries. These

properties define the concept of an SPT phase of electrons. Clearly the topological band

insulators are special cases of SPT phases.

It is important right away to distinguish SPT states from other more exotic generaliza-

tions. For instance in the so-called Fractional Topological Insulators[11–16] the bulk may

be gapped but may develop what is known as intrinsic ‘topological order’ [17] familiar from

studies of the fractional quantum Hall and quantum spin liquid phases. In contrast to topo-

logical band insulators and other SPT phases, topological ordered phases have exotic bulk

excitations (e.g., with fractional statistics and possibly fractional quantum numbers) and a

degenerate ground state on closed manifolds. An even more exotic generalization is to phases

where the bulk has gapless excitations (such as the “Topological Mott Insulator” described

in Ref. [18]). A very useful perspective on these different generalizations is provided by the

structure of many-body quantum entanglement in the ground state of these various phases.

In SPT phases - in common with Topological Band Insulators - the degrees of freedom in one

region of a sample are only entangled quantum mechanically with neighboring regions. We

may call this Short Range Entanglement (SRE). In contrast, topologically ordered phases

and their gapless cousins have what may be called Long Range Entanglement (LRE).

A classic example of an interacting SPT phase is the Haldane spin chain in one dimension.

This has a unique gapped bulk ground state but develops dangling spin-1/2 moments in the

presence of open boundaries. Modern work on interacting SPT phases have their origins in
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formal mathematical classifications[19] of all such phases in d = 1. In an important advance

Chen et al[20] proposed a generalization of this formal classification to bosonic systems in

d > 1, based on the concept of group cohomology. They also provided exactly soluble (albeit

rather complex) models for many of these new bosonic SPT phases in d > 1.

This work left a number of fundamental questions open. First the formal methods em-

ployed for the classification do not directly shed light on the physics of these phases. Second

these methods are hard to generalize to electronic systems (in d > 1). A generalization

- known as the group super-cohomology[21] - has been attempted but cannot handle the

Kramers structure of the electron and further does not provide answers for the physically

important situation of continuous symmetries (like charge conservation). Finally even for

bosonic systems it was not clear whether the group cohomology classification is complete.

Indeed it is now known that in 3d there are SPT states that are not captured[22–25] by this

classification.

Tremendous progress has been made on these questions through a variety of less formal

physics-based approaches in both d = 2 and d = 3. For bosonic systems they give an under-

standing of the phases predicted by the classification for many simple protecting symmetries,

and predict further new phases. Most crucially physics-based methods enable addressing

electronic systems with realistic symmetries in the important case of three dimensional sys-

tems. For instance for spin-orbit coupled electronic insulators in 3d, it has been shown

that there are precisely 6 new topological insulating phases[26] that have no non-interacting

counterpart. Possible experimental signatures of these phases have been identified. These

states have simple descriptions. They are either electronic Mott insulators where the spins

have formed time reversal protected SPT states (as described in Refs. [22–24]) or are

combinations of them and the conventional topological band insulator. For topological in-

sulators/superconductors with many other physically relevant symmetries[27, 28] both the

stability to interactions and the possible new phases have been determined.

Why are these generalizations of the free fermion topological phases to interacting SPT

phases interesting? First, because they may be there. In the context of ongoing experimen-

tal explorations of topological phenomena in correlated quantum materials it is important

to be aware of the possible interesting phases that might exist. Second, being short-range

entangled, SPT phases provide what may be the simplest setting to study the interplay of

three fundamental themes of quantum condensed matter physics: symmetry, strong corre-
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lation, and topology. These are the same ingredients in other frontier problems many of

which involve long range entangled quantum ground states. Examples are quantum spin

liquid phases of frustrated magnets[29], non-Fermi liquid metals[30], and quantum critical

points beyond the Landau paradigm[31]. Studies of the relatively simple SPT phases have

provided fresh and powerful theoretical insights into the physics of these complex long range

entangled states, in particular on the realization of symmetry in these phases.

We will review the key ideas behind these developments here using several examples.

The emphasis will be on providing physical intuition and insight with a focus on electronic

systems in 3d. It is beyond the scope of this review however to describe group cohomology

and other pertinent mathematical structures. A useful earlier review with more details on

1d and 2d systems is in Ref. 32.

II. REVIEW OF TOPOLOGICAL BAND INSULATORS

The three dimensional Topological Band Insulator (TBI) is known[33, 34] to be stable to

weak electron-electron interactions. Let us first review its physics emphasizing properties

that are robust in the presence of interactions. The TBI phase occurs in spin-orbit coupled

electronic systems with charge conservation (corresponding to U(1) phase rotations) and

time reversal (denoted ZT
2 ) symmetries. If cα represents the electron destruction operator

of spin α, these symmetries are implemented through

U−1cαU = eiθcα (1)

T −1cαT = i(σy)αβcβ (2)

Note that time reversal is anti-unitary, and that the U(1) phase rotation does not commute

with the time reversal operation. Formally these define the symmetry group U(1) o ZT
2 .

The electron transforms as a Kramers doublet under time reversal.

Within one electron band theory insulators with these symmetries come in two distinct

classes: the conventional band insulator and the topological band insulator. A striking

physical characterization of the TBI is in terms of its protected surface states. The surface

is gapless with a Fermi surface that encloses an odd number of Dirac cones. A strictly two

dimensional metal with these symmetries is prohibited from having such a Fermi surface.

Thus the surface of the three dimensional TBI realizes symmetries in a manner forbidden
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in strictly two dimensional systems.

Though the TBI is often described within band theory, its surface states have the re-

markable property that they cannot be localized by disorder (at least in the non-interacting

limit - see Section VII) so long as the symmetries of charge conservation and time reversal

are retained. This is again in sharp contrast to a strictly two dimensional metal even with

spin orbit coupling. Thus the TBI phase itself remains distinct from the conventional band

insulator even in the presence of disorder.

It is interesting to consider the fate of the surface when time reversal is broken by ap-

plication of a magnetic field or by depositing a ferromagnetic thin film on top. The surface

can then be gapped out at the expense of introducing a surface quantum Hall response (in

units where the electron charge and Planck’s constant h are equal to 1)

σxy = n+
1

2
(3)

where n is an integer. The shift by 1
2

from an integer distinguishes the surface from a strictly

two dimensional systems of non-interacting electrons. A very useful way of thinking about

this surface quantum Hall state is to consider a domain wall in the deposited ferromagnet

across which the magnetization changes sign. The surface of the TBI induces a gapless chiral

‘edge’ mode at this domain wall that is identical to the edge mode of the two dimensional

integer quantum Hall effect.

The magneto-electric response described above is nicely encapsulated in a different way

by considering the response of the bulk insulator to external electromagnetic fields. For any

insulator in 3D, the effective long wavelength Lagrangian for an external electromagnetic

field obtained by integrating out all the matter fields will take the form

Leff = LMax + Lθ (4)

The first term is the usual Maxwell term and the second is the ‘theta’ term:

Lθ =
θ

4π2
E ·B (5)

where E and B are the external electric and magnetic fields respectively.

Under time reversal, θ → −θ and in a fermionic system the physics is periodic under

θ → θ+ 2π. Time reversal symmetric insulators thus have θ = nπ with n an integer. Trivial

time-reversal symmetric insulators have θ = 0 while free fermion topological insulators have

θ = π[33, 34].
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A physical understanding of the periodicity is obtained as follows. If we allow for a

boundary to the vacuum and further assume that the boundary is gapped, then the θ term

leads to a surface Hall conductivity of θ
2π

. To see this, assume a boundary (say at z = 0),

θ = θ(z) is zero for z < 0 and constant θ for z > 0. The action associated with the θ term is

Sθ =
1

8π2

∫
d3x dt θ(z)∂µK

µ (6)

= − 1

8π2

∫
d3x dt

dθ

dz
Kz (7)

=
θ

8π2

∫
∂B

d2x dtεzνλκAν∂λAκ (8)

where A is the external electromagnetic potential and Kµ = εµνλκAν∂λAκ. This is a surface

Chern-Simons term and leads to a Hall conductivity θ/2π.

For fermion topological insulators θ = π so that the surface σxy = 1
2
. If we shift θ →

π+ 2nπ, then the surface σxy = (n+ 1
2
). This corresponds to simply depositing an ordinary

integer quantum Hall state of fermions at the surface of this insulator - hence this should

not be regarded as a distinct bulk state so that the only non-trivial possibility is θ = π.

A very powerful theoretical device - which we will use later - is to imagine introduc-

ing an external magnetic monopole as a source of the magnetic field. The θ term in the

induced action implies that such a monopole carries electric charge[35] θ
2π

. In the TBI

phase it follows that the monopole carries charge 1/2. This fractional charge on an external

monopole provides an alternate characterization of the TBI phase that is equivalent to the

characterization in terms of a θ term.

III. WARM-UP: BOSONIC SPT PHASES IN d = 2

Before launching into electronic SPT phases let us first study SPT phases in systems

of interacting bosons. As usual in strong correlation problems bosons are expected to be

a lot easier to handle than fermions. Further there are natural realizations of correlated

bosons: indeed any quantum magnet may be fruitfully viewed as a strongly correlated

bosonic system. Needless to say cold atomic gases provide another realization.

As already mentioned the Haldane spin-1 antiferromagnetic chain in d = 1 is the classic

example of a 1d bosonic SPT phase. A path to understand the physics of d = 2 bosonic

SPT phases (first deduced through the formal classification[20]) for a number of simple
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symmetries was pioneered in Ref. [16] and particularly Ref. [36] using a Chern-Simons/edge

theory approach1. Here we will review some examples of such phases with a view to gleaning

physical insights that will be useful in understanding electronic SPT phases. More details

on these 2d boson SPT phases can be found in Ref. [32].

A. d = 2: Integer quantum Hall effect for bosons

A celebrated precursor to the electronic topological insulator is the integer quantum Hall

state of electrons in two dimensions. We now study the question[20, 36, 37] of whether

interacting two dimensional bosons in a strong magnetic field can form an integer quantum

Hall state without any exotic bulk excitations. There is a long history of study of quantum

Hall states of bosons, including some with Hall conductivity quantized to be an integer.

However till recently the states studied all had intrinsic topological order in the bulk leading

to excitations with anyonic self/mutual statistics. In the context of this review we are

interested in an integer quantum Hall state of bosons which does not have such intrinsic

topological order.

The electronic integer quantum Hall effect is usually discussed in terms of completely

filling a Landau level of states within an independent electron picture. In contrast for

bosons, even the integer quantum Hall state requires interactions. We now describe the

simplest example of such a state using a physical model[37].

Consider a system of two component bosons in a strong magnetic field at a filling factor

ν = 1 for each boson species. A natural realization is in terms of pseudospin-1/2 “spinor”

bosons of ultracold atoms in artificial gauge fields. Initially we assume that there is no

inter-species tunneling but we can relax this assumption later. The system then actually

has U(1) × U(1) symmetry corresponding to separate conservation of the two species of

1 This approach fails in some examples with more complex symmetries than the ones considered here.
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bosons. The Hamiltonian is:

H =
∑
I

HI +Hint (9)

HI =

∫
d2x

∑
I

b†I

−
(
~∇− i ~A

)2

2m
− µ

 bI (10)

Hint =

∫
d2x

∑
I

gs (ρI(x))2 + 2gdρ1(x)ρ2(x)

Here bI is the boson annihilation operator for species I where I = 1, 2, and ρI the corre-

sponding density. The vector potential ~A describes the external B-field. When gs = gd

the Hamiltonian has an extra pseudospin SU(2) symmetry which rotates the two species of

bosons into one another.

We construct a candidate state using a flux attachment Chern-Simons theory where we

attach to each boson one flux quantum of the other species. Define new boson operators

b̃1(x) = e−i
∫
d2x′Θ(x−x′)ρ2(x′) · b1(x) (11)

b̃2(x) = e−i
∫
d2x′Θ(x−x′)ρ1(x′) · b2(x) (12)

where Θ(x) is the angle at which the vector x points. We will call the bosons b̃1,2 “mutual

composite bosons.” With ν = 1 for each species, we can clearly cancel the flux of the

external magnetic field in a flux smearing mean field approximation. The mutual composite

bosons can then condense and the result will be a quantum Hall state. Simple arguments

determine the transport properties of this state. Consider passing currents I1y, I2y of the

two species along the y-direction (see Fig. 1). The I1y current corresponds to a flow of the

mutual composite boson b̃1. As this is attached to a flux quantum of species 2, there is a

voltage V2x induced along the x-direction (and similarly a voltage V1x induced by the current

I2y) given by

V1x = I2y (13)

V2x = I1y (14)

(in units where e = 2π~ = 1). Now let us consider the total charge and pseudospin currents

and the corresponding voltages: Icy = I1y + I2y, Isy = I1y − I2y, Vcx = V1x+V2x
2

, Vsx = V1x−V2x
2

.
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1

y
x

I1y

V2x

1 2

FIG. 1. Mutual composite bosons and their transport in the 2-component boson integer quantum

Hall effect

It follows that

Icy = 2Vcx (15)

Isy = −2Vsx (16)

Thus this state has electrical Hall conductivity σcxy = 2 while the pseudospin Hall conduc-

tivity σsxy = −2.

We can try to construct excitations a ’la Laughlin. We thread in a 2π flux quantum at

some point z0 of the sample. This will pick up an electric charge σxy = 2. Further if we

exchange two such quasiparticles the phase we get is πσxy = 2π, i.e these excitations are

bosons. Thus unlike for familiar quantum Hall states we do not get fractional charge or

statistics through this construction.

Let us now describe the structure of the edge states. Consistent with the Hall conduc-

tivities, there are two counterpropagating chiral modes (see Fig. 2) of which one carries

electric charge, and the other is electrically neutral (but carries pseudospin). As a result of

this structure, the thermal Hall conductivity vanishes, even though the electric Hall conduc-

tivity is nonzero. Note that backscattering between the two counterpropagating modes is

prohibited by the U(1) charge conservation symmetry (even if we allow interspecies tunnel-
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Charge current Pseudospin current

FIG. 2. Edge structure in the boson integer quantum Hall effect

ing which breaks pseudospin conservation). Thus despite being non-chiral the gapless edge

modes are “symmetry-protected.”

Even though the edge theory looks like a standard one dimensional theory, the realization

of charge symmetry is ‘anamolous’, and is forbidden in strictly one dimensional systems. This

will be a recurring theme in the study of SPT phases. Indeed 2d SPT phases with many

other symmetries have similar ‘chiral’ symmetry realization at the edge[38]

This simple analysis is easily formalized through a Chern-Simons Landau-Ginzburg the-

ory which can then be used to derive an effective Chern-Simons topological field theory in

terms of two U(1) gauge fields. This formulation confirms that the state described is short

range entangled with the properties described above.

Ref. [37] also proposed ground state wave functions for this state; for instance:

Ψflux = PLLL
∏
i<j

|zi − zj|2 ·
∏
i<j

|wi − wj|2

·
∏
i,j

(zi − wj) · e−
∑

i
|zi|

2+|wi|
2

4 (17)

where PLLL denotes the projection onto the lowest Landau level and zi, wi are the complex

coordinates of the particles of two boson species respectively.

This wave function is a spin singlet under the SU(2) pseudospin symmetry2, suggesting

that the SU(2) symmetric Hamiltonian gs = gd may support this boson integer quantum

2 To see this note that, before projection, it can be written as a product of the anti-analytic spin-singlet

(221) state and a fully symmetric function of zi, wj .
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Hall state. Finally several exact diagonalization studies[39–41] have been performed on the

model and find strong evidence for the boson integer quantum Hall state.

Having constructed an integer quantum Hall SPT state for bosons with an electric Hall

conductivity of σxy = 2 (in appropriate units), clearly we can obtain other states with

σxy = 2n by taking copies. The formal Chern-Simons classification[36] shows that σxy

cannot be odd for such states. To understand this simply[37] consider a general bosonic

quantum Hall state, and imagine threading in 2π flux at some point z0. This produces an

excitation with charge σxy, and braiding statistics πσxy. However in an SPT state of bosons

all excitations must have bose statistics. It follows that σxy must be even.

Other realizations of the boson integer quantum Hall state have been studied. Ref. [42]

constructed lattice models for this phase that admit a sign-problem free formulation and

enabled studying the edge through Monte Carlo simulations. Refs. [43, 44] described parton

constructions for lattice system with U(1) symmetry, and proposed candidate Hamiltonians.

In general a quantum Hall phase also has a quantized thermal Hall conductivity κxy =

νQ
π2

3

k2B
h
T where kB, T are Boltzmann’s constant and the temperature respectively. The

constant νQ counts the different between the number of counter propagating edge modes

(sometimes known as the chiral central charge), and is a universal topological property

of the state. The states we have discussed so far have νQ = 0. A different class of un-

fractionalized bosonic state that requires no symmetry at all is possible so long as νQ is a

multiple of 8. These have been discussed in Refs. [36, 45–47].

B. Ising SPT in d = 2: Braiding statistics

We now discuss another 2d SPT phase, now in spin systems with Ising (i.e Z2 symmetry).

The familiar transverse field Ising model in d = 2 space dimensions has both an ordered

phase and a paramagnetic phase. This paramagnetic phase is smoothly connected to a

product state and we will call it the trivial paramagnet. As shown in Refs. [48, 49] - though

it is realized only in more complicated models - quantum magnets with Ising symmetry

support an SPT phase. We will call this phase a ‘topological Ising paramagnet’.

How is the topological Ising paramagnet different from a trivial Ising paramagnet? As an

SPT phase it has protected edge states: the edge is either gapless or spontaneously breaks

the Ising symmetry. An insightful discussion of the fundamental physics of the topological
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Ising paramagnet was provided in Ref. [49]. Consider the ground state wave function of

Ising paramagnets. It is useful to think of the paramagnetic state as arising out of the

ordered Ising ferromagnet by proliferating domain walls of the Ising order. A prototypical

wave function for the trivial Ising paramagnet is simply an equal amplitude sum over all

domain wall loops:

|P 〉 =
∑
D

|D〉 (18)

For the topological Ising paramagnet on the other hand a prototypical wave function is

|TP 〉 =
∑
D

(−1)N(D) |D〉 (19)

Here N(D) is the total number of loops in the domain wall configuration D. The key

difference is the extra phase factor that weights configurations with an odd number of loops

with a relative − sign. Following the discussion on TBI phases of electrons in 3d, we can

formally imagine gauging the Z2 symmetry, and studying the fate of the resulting Z2 fluxes.

In the trivial paramagnet these fluxes (which are point particles) have either bose or fermi

statistics (these two possibilities differ by attaching an Ising spin, i.e Z2 charge to the flux).

In contrast in the topological paramagnet the extra (−1)N(D) phase factor leads to semion

or antisemion statistics[49] for the Z2 flux (again the 2 possibilities differ by attachment of

Ising spin). Thus the braiding statistics of fluxes obtained by gauging the global symmetry

is a diagnostic of the SPT order in the phase.

These features of the ground state wave function and in the statistics of the fluxes can

be shown to directly lead to the symmetry protected edge states of the topological Ising

paramagnet[49].

IV. BOSONIC TOPOLOGICAL INSULATORS IN D = 3

We now turn to the physics of time reversal invariant bosonic topological insulators

in 3d. We will consider two distinct physical situations which have both boson number

conservation and time reversal symmetries. For bosons (such as He-4) the U(1) phase

rotation corresponding to boson number conservation does not commute with time reversal.

The corresponding symmetry group is U(1) o ZT
2 . A different situation arises in quantum

spin models with time reversal symmetry with, in addition, XY symmetry corresponding to
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Symmetry Label θ value

Surface

vortex/bulk

monopole

U(1) o ZT2 F 2π fermion

U(1)× ZT2 F 2π

fermion,

Kramers

singlet

U(1)× ZT2 K 0
Kramers

doublet

U(1)× ZT2 FK 2π

fermion,

Kramers

doublet

TABLE I. Some properties of the various boson topological insulators in 3d. There are additional

SPT phases protected by ZT2 alone which are discussed in Section VI B. The labels describe the

surface vortex or equivalently the bulk neutral monopole as described in the text.

conservation of Sz. Then the U(1) group of spin rotations about the z axis commutes with

the time reversal transformation and the corresponding symmetry group is U(1)× ZT
2 .

We begin by constraining the EM response of a bosonic topological insulator when the

symmetry group is U(1)oZT
2 . Again T-reversal and periodicity imply θ = nπ and a surface

σxy = n/2. A crucial observation[22] is that now θ = 2π must be regarded as distinct from

θ = 0. At θ = 2π the surface σxy = 1. But this cannot be obtained from the surface of the

θ = 0 insulator by depositing any 2d integer quantum Hall state of bosons. Thus the surface

state of the θ = 2π boson insulator is not a trivial 2d state but rather requires the presence

of the 3d bulk. Therefore θ = 2π necessarily corresponds to a non-trivial 3d bosonic TI[22].

Exactly the same result also describes bosons with symmetry U(1)×ZT
2 appropriate for

spin systems: the response to external gauge fields that couple to the conserved global U(1)

current has a θ term where θ = 2π is a distinct state from θ = 0. With these symmetries

however we will see below that even at θ = 0 there are two distinct topological insulators[22].

Thus the θ value in the EM response does not uniquely define the SPT order3. The different

3 More precisely we are referring to SPT phases protected by the full symmetry. For both symmetries in
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SPT phases for either symmetries are summarized in Table. I.

A. Surface theory

We now discuss the surface theory of these bosonic topological insulators. A key physical

requirement on any putative effective theory of the surface is that it does not admit a trivial

insulating phase. Implementing this leads very directly to a powerful effective ‘Landau-

Ginzburg’ theory of the surface[22].

Let us consider a superfluid state at the surface that spontaneously breaks the global

U(1) symmetry. It will be extremely useful to formulate the surface effective theory in

terms of vortices of the superfluid order parameter. Indeed for bosons in two dimensional

systems there exists a duality transformation[50–52] that trades a formulation in terms of

the physical charge-carrying bosons for a different formulation in terms of vortex degrees of

freedom. Specifically there is a dual effective Landau-Ginzburg theory with the Lagrangian

written schematically as

Ld = L[Φv, aµ] +
1

2π
Aµεµνλ∂νaλ (20)

The first term describes a bosonic field Φv coupled minimally to a dual internal gauge field

aµ, and Aµ is an external probe gauge field. The field Φv describes the vortex of the original

physical boson. The global U(1) current is

jµ =
1

2π
εµνλ∂νaλ (21)

In the superfluid phase the vortices are gapped. Consequently in the dual formulation the

superfluid is understood as a Mott insulator of the vortices[52]. A trivial boson insulator

is, on the other hand, obtained by condensing the 2π vortices[52] described by Φv. This

quantizes the flux of the dual vector potential
∫
d2x(∂xay − ∂yax) to multiples of 2π which

corresponds precisely to the quantization of particle number expected in the boson insulator.

Turning now to the surface of the three dimensional bosonic topological insulator, it

is clear that to implement the absence of a trivial insulator we must require that these 2π

vortices not be able to condense. This is very simply guaranteed if the vortex is a fermion[22]

rather than a boson!

addition to the phases discussed in this section there are SPT phases which are protected just by the ZT
2

alone. These additional states will be discussed in Section VI B. Including these the full classification is

Z3
2 for bosons with U(1) o ZT

2 , and Z4
2 for bosons with U(1)× ZT

2 symmetry.
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Let us now explore this idea seriously. With a fermionic vortex field which we denote c,

the surface Landau-Ginzburg Lagrangian may be written schematically

Ld = L[c, aµ] +
1

2π
Aµεµνλ∂νaλ (22)

The important modification from the standard dual Lagrangian (Eqn. 20) described above

is in the statistics of the vortex field which precludes 2π vortices from condensing. As usual

if the c-fermionic vortex is gapped (say in an ordinary band insulator) then we get the

surface superfluid phase. As described in Ref. [22, 23] if we break time reversal at the

surface we can get a gapped phase without topological order. This is obtained by simply

letting the c-fermionic vortices completely fill a topological band with Chern number ±1,

i.e the Hall conductivity of the c-fermion is σcxy = ±1. It is readily seen that the surface

then has an electrical Hall conductivity σxy = ±1 exactly consistent with a bulk θ term in

the electromagnetic response with θ = 2π. Thus the dual Landau-Ginzburg theory correctly

describes a θ = 2π boson topological insulator. As the surface vortex is a fermion we will

label this phase F .

If we were to discuss SPT phases of time reversal symmetric spin systems with conserved

Sz (symmetry U(1)×ZT
2 ) then we can again start with the XY ordered phase and create an

obstruction for 2π vortices of the XY spin order to condense. But now there is more than

one way to create this obstruction[22] corresponding to more than one non-trivial topological

insulating phase. The key point is that with this symmetry the vorticity is even under time

reversal so that a vortex stays a vortex. Then it makes sense to ask if the vortex is Kramers

or not under time reversal (i.e if T 2 = ±1). Note that the vortices are non-local objects

and hence are allowed to transform projectively (i.e as Kramers) under time reversal. In

contrast for bosons with U(1) o ZT
2 the vortex goes to an anti vortex under time reversal,

and the question of Kramers or not does not arise. Thus for spin systems, the obstruction

to condensing 2π vortices can be implemented by choosing them to be (1) bosonic Kramers

doublets (we label this phase K) (2) fermionic Kramers singlet (label F ) or (3) fermionic

Kramers doublets (label FK). In the first case the vortices can condense but the condensate

necessarily breaks time reversal. These different possibilities correspond to distinct bulk SPT

phases for spin systems with symmetry U(1)× ZT
2 .

With a bosonic Kramers doublet vortex zα, the dual Landau-Ginzburg theory takes the
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form

Ld = L[zα, aµ] +
1

2π
Ada (23)

Under time reversal zα → iσyαβzβ. It is readily seen in this case that if we break time reversal

to produce a surface state without topological order then it has σxy = κxy = 0. Thus the

corresponding bulk SPT state responds to external gauge fields coupling to the U(1) currents

with θ = 0.

The surface phase structure of these other SPTs can be readily discussed in terms of

these dual Landau-Ginzburg theories[22, 23].

B. Monopoles in the bulk

For the 3d electronic TBI phase, we saw that the θ term in the bulk EM response implies

that external magnetic monopoles carry a fractional charge 1/2. This fractional charge on

the monopole provides an interesting characterization of the TBI phase. Similarly for the 3d

bosonic topological insulators (with either U(1) o ZT
2 or U(1)× ZT

2 symmetry) we can ask

about the structure of the magnetic monopole when the global U(1) currents are coupled to

external gauge fields.

In the bosonic case the properties of the bulk monopole are directly inherited from the

properties of the surface vortex in the dual Landau-Ginzburg description. Indeed if we gauge

the global U(1) symmetry and imagine tunneling a monopole from the vacuum into the bulk

it will leave behind at the surface precisely the 2π vortex. Since the monopole in the vacuum

is a trivial boson the exotic vortex left behind determines the properties of the monopole in

the bulk of the SPT phase. Thus for the bosonic TI with U(1)oZT
2 symmetry we conclude

that there is a bulk monopole that is electrically neutral and has fermionic statistics (dubbed

the ‘statistical Witten effect’[53]). For the bosonic TIs with U(1) × ZT
2 symmetry for the

three non-trivial SPT phases discussed above, the bulk monopole is electrically neutral, and

is either (i) a Kramers doublet boson (which we dub the ‘Kramers Witten effect’) or (ii) a

Kramers singlet fermion or (iii) a Kramers doublet fermion.

The monopole structure for bosonic TIs with a θ = 2π EM response can also be deter-

mined directly[53] through a different argument which we illustrate for U(1)oZT
2 symmetry.

Consider first the theory when θ = 0 and imagine gradually increasing θ. At θ = 0 the

monopole is a trivial electrically neutral boson. For general θ, the monopole carries electric
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charge θ
2π

. So when θ = 2π, it carries charge-1. But now we can obtain a neutral monopole

by binding the elementary charge −1 boson to this monopole. However as is well known

binding unit charge to a unit monopole changes the statistics from boson to fermion. We

thus conclude that the neutral monopole is a fermion.

This argument may be used as an alternate logical starting point to discuss the physics

of the bosonic TI with U(1) o ZT
2 symmetry. As elegantly argued in Ref. [53], the non-

trivial structure of the bulk monopole can be used to constrain the surface physics. We will

illustrate this in the next subsection.

Finally a physical picture[22, 54] of the bulk of the various boson SPT phases we have

discussed is very useful to keep in mind. In general any 3d boson insulator can be regarded as

descending from a 3d superfluid by proliferating vortex loops. The different boson SPTs are

distinguished by the structure of these vortex loops. One possibility is that the vortex loops

should be viewed as ribbons and the vortex loop condensate has a phase (−1) associated

with the self-linking of these ribbons[54]. At the interface with the vacuum (or a trivial

boson insulator) these vortex ribbons terminate into point vortices. The self-linking phase

in the bulk directly then leads to fermi statistics of these surface vortices[54] corresponding

to the F phases in Table. I. Similarly if the global U(1) symmetry is gauged we identify the

vortex lines with 2π magnetic flux lines; open ends of these lines are the magnetic monopoles.

These again will have Fermi statistics coming from the self-linking phase. For the K state

(allowed for symmetry U(1)×ZT
2 ) a different option is possible. The vortex loop may have

a time reversal symmetric Haldane chain residing in its core[22, 54]. As the Haldane chain

is gapped naively there seems to be nothing special about such a vortex loop. However at

the surface the points of penetration of the vortex line expose an open end of the Haldane

chain. It follows that these are Kramers doublet surface vortices. Similarly bulk monopoles

of external gauge fields will correspond to open ends of bulk vortex lines which will therefore

also be Kramers doublets.

A complementary physical picture is to view the F state (for U(1) × ZT
2 symmetry) as

descending from a state with broken ZT
2 symmetry by proliferating domain walls. If these

domain walls are decorated[55] with the 2d boson integer quantum Hall state then a 3d SPT

phase results.
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C. Surface topological order

A very interesting possible surface phase is one that preserves all symmetries and is

gapped. The price is that such a surface must have intrinsic topological order[22, 56] (i.e

must be long range entangled even though the bulk is not). A key property of this surface

topological order is that the physical symmetries are implemented in an ‘anamolous’ way,

i.e, in a manner prohibited in strictly two dimensional systems with the same topological

order[22]. Surface topological ordered phases have played a crucial conceptual role in our

understanding of interacting 3d SPT phases.

Let us illustrate the physics of the surface topological ordered phase in the example of

the boson topological insulator. As discussed above the surface is described by the dual

Landau-Ginzburg theory of Eqn. 22 with a fermionic vortex. Though this prevents single

vortices from condensing to produce a trivial insulator, surface superfluid order can be killed

if pairs of c-vortices condense, i.e < cc >6= 0. As is familiar from discussions of fractionalized

boson insulators in two dimensions[57, 58], this leads to a surface topological order described

by a deconfined Z2 gauge theory. The unpaired c-fermion survives as a gapped excitation

carrying zero global U(1) charge. We call this the neutral ε particle. The pair condensation

quantizes flux of aµ in units of π. The result is a bosonic particle that carries global U(1)

charge 1/2 that we dub the e particle. Note that the e and ε are mutual semions as expected

for a deconfined Z2 gauge theory. Their bound state - denoted the m particle - also has

charge-1/2 and is a mutual semion with both e and ε. As both e and m carry fractional

charge we denote this phase the eCmC Z2 topological order[22, 23].

The topological content of this gapped symmetry preserving surface state is not at all

unusual. What is unusual is the symmetry realization: The charge assignment is inconsistent

with time reversal[22] in any strictly 2d system even though it naturally emerges at the

surface of the 3d boson TI. To see this simply[53], let us imagine threading 2π flux through

the system. If we think of the 2d system as embedded in 3d space we can think of this as

tunneling a magnetic monopole through the 2d sample. As the electrical Hall conductivity

is zero (by time reversal) this flux insertion acquires no charge and must create a bosonic

excitation. Equivalently since the magnetic monopole in the vacuum is a neutral boson its

tunneling through the 2d sample will also leave behind a neutral boson. Now in the eCmC

phase this neutral excitation is seen by both the e and m particles as π flux (due to their
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FIG. 3. Coupled-layer construction of SPT states. The particle composite in the ellipses are con-

densed, and only the four surface particles in the dotted ellipses survived as deconfined topological

quasi-particles.

charge of 1/2). We therefore identify the relic of the flux threading with the ε particle.

However this is a fermion contrary to what we inferred above. Thus the eCmC state is

forbidden in strict 2d. At the surface of the 3d boson TI however the monopole in the bulk

is a fermion. Consequently when we tunnel in the monopole from the vacuum its relic at

the surface will also be a fermion, and the eCmC state becomes allowed.

D. Coupled layer construction

It should now be clear that to construct a 3+1-D SPT state, we only need to construct

the corresponding topological order on the surface but have a confined bulk with gapped

excitations. An explicit such construction was described in Ref. [23] in a 3d system built

out of coupled layers of 2d systems which we now illustrate by constructing the eCmC state

with U(1) o ZT
2 symmetry.

In each layer consider a boson system in a fractionalized insulator with Z2 topological

order such that the e particle carries charge-1/2 while the m particle is neutral. Further

assume that under time reversal both e and m are invariant. Such states are allowed in

strictly 2d (for microscopic models see Refs. [59, 60]). Consider stacking N layers of such

states. Now turn on an inter-layer coupling to make the composite particles e†imi+1ei+2

condensed, where i is the layer index running from 1 to N − 2. Note that the e†imi+1ei+2

all have bosonic self and bosonic mutual statistics so that they may be simultaneously

condensed. As illustrated in Figure 3, this procedure confines all the non-trivial quasi-



21

particles in the bulk but not at the surface. For instance at the top surface e1 and m1e2

survive as deconfined excitations which are mutual semions and have self-boson statistics.

Thus they form a Z2 topological order at the top surface. However they both have global

U(1) charge 1/2. so that the surface is in the eCmC state though the bulk has no exotic

excitations. By the analysis above we identify this with the 3d bosonic TI with U(1) o ZT
2

symmetry.

The coupled layer construction is readily generalized to the other 3d boson SPT states

discussed in this section and to others discussed in Section VI B.

V. ELECTRONIC SPT PHASES IN 1D AND 2D

Spin-orbit coupled insulators in 2d admit a TBI phase (corresponding to a Z2 classifica-

tion). With interactions the Chern-Simons/edge theory approach may be used to show that

this remains unmodified by the presence of interactions. The 2d TBI is stable, and no fur-

ther new phases are introduced(see upcoming arxiv version of [36]). In d = 1 there is no TI

phase even within band theory, and this remains true in the interacting system[19, 61, 62].

In particular the Haldane phase of spin systems - which is an SPT phase protected by just

the ZT
2 symmetry - is adiabatically connected to a trivial band insulator in an electronic

system[61]. Thus in d = 1 and 2, interactions do not change the band theory classification

of spin-orbit coupled insulators. We will see below that 3d insulators are different and in-

teractions induce additional phases not present within band theory. Insulators with other

symmetries in 2d have been discussed in Refs. [36, 64].

For topological superconductors it was first shown in Ref. [62] that in d = 1 there are

symmetries where interactions destabilize phases. Specifically a Z classification of certain

topological band superconductors was shown to collapse to Z8 in the presence of interactions.

A similar phenomenon was later demonstrated for some 2d topological superconductors[63,

64]. We will discuss 3d topological superconductors below in Section VIII.
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VI. ELECTRONIC TOPOLOGICAL INSULATORS IN 3D

A. Classification

We are now ready to discuss interacting electronic topological insulators (SPT) in 3d.

We focus initially on spin-orbit coupled insulators with the same symmetries that protect

the familiar electronic topological band insulator, namely time reversal and charge conser-

vation. We review recent progress[26] showing that with apart from the topological band

insulator, there are 6 other non-trivial topological insulating states that require the presence

of interactions. The appropriate generalization of the Z2 classification of band insulators is

classification by the group Z3
2. This group structure means that all these interacting topo-

logical insulators can be obtained from 3 ‘root’ states and taking combinations. One of these

root states is the standard topological band insulator. The other two require interactions

and can be understood as Mott insulating states of the electrons where the resulting quan-

tum spins have themselves formed a time reversal protected SPT phase. Such SPT phases

of quantum spins (dubbed ‘topological paramagnets’) were described in Ref. [22]. The three

root states and their properties are briefly described in Table. II.

In general we may attempt to construct possible SPT phases of fermion system by first

forming bosons as composites out of the fermions and putting the bosons in a bosonic SPT

state. However not all these boson SPTs remain distinct states in an electronic system.

The distinct ones can all be understood as electronic Mott insulators in spin-SPT states[26].

Note also the contrast to the 1d and 2d cases where boson SPTs formed out of the electrons

do not add any new phases beyond the band theory classification.

Generalities: Time reversal symmetric electronic SPT insulators have θ = nπ with n an

integer. Trivial time-reversal symmetric insulators have θ = 0 while free fermion topological

insulators have θ = π[33]. Suppose that for interacting electrons there is a new topological

insulator that also has θ = π. Then by combining it with the usual one we can produce a

TI with θ = 0. Thus without loss of generality we can restrict attention to the possibility

of new TIs which have θ = 0.

Ref. [26] employed the route of first constraining monopole sources of the external mag-

netic field, and then using these to constrain the surface. At θ = 0, the elementary monopole

carries zero electric charge. Under time reversal the monopole becomes an anti-monopole as
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Topological

Insulator

Representative

surface state

T -breaking

transport

signature

T -invariant

gapless

superconductor

Free fermion

TI
Single Dirac cone

σxy =
κxy
κ0

=

±1/2
None

Topological

paramagnet I

(eTmT )

Z2 spin liquid with

Kramers doublet

spinon(e) and

vison(m)

σxy = κxy = 0

N = 8

Majorana

cones

Topological

paramagnet

II (efmf )

Z2 spin liquid with

Fermionic spinon(e)

and vison(m)

σxy = 0;
κxy
κ0

=

±4

N = 8

Majorana

cones

TABLE II. Three root non-trivial topological insulators, with representative symmetry-preserving

surface states, and surface signatures when either time-reversal or charge conservation is broken

on the surface (with topological orders confined). σxy is the surface electrical Hall conductivity in

units of e2

h . κxy is the surface thermal Hall conductivity and κ0 = π2

3
k2B
h T (T is the temperature).

N is the number of gapless Majorana cones protected by time-reversal symmetry when the surface

becomes a superconductor. A combination of these measurements could uniquely determine the

TI.

the magnetic field is odd. Together these fix the symmetry properties of the monopoles. In

particular as the time reversed partner of a monopole lives in a different topological sector

with opposite magnetic charge it is meaningless to ask if it is Kramers doublet or not4.

There are still in principle two distinct choices corresponding to the statistics of the

monopole: it may be either bosonic or fermionic. Ref. [26] showed that bosonic monopoles

only allow for the topological paramagnets mentioned above while fermionic monopoles are

forbiddden to occur in strictly three dimensional SPT systems built out of charge-1 electrons.

Below we will describe the essential ideas involved, and refer the reader to the original paper

for details.

4 This should be contrasted with the discussion in Section IV on boson systems with U(1)×ZT
2 symmetry.

There the monopole stays a monopole under time reversal and hence has the possibility of being a Kramers

doublet.
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Topological insulators at θ = 0 - bosonic monopoles: Following the discussion of

bosonic topological insulators it will be very helpful for us to begin by thinking about a

superconducting surface where the U(1) symmetry is spontaneously broken. We then obtain

symmetry preserving surface states by ‘quantum disordering’ the superconductor. To that

end it is convenient to think in terms of a dual formulation[58] of the surface superconductor

in terms of vortices and other electrically neutral excitations (like the neutralized Bogoliubov

quasiparticles)5.. Consider any 3d insulator with θ = 0 and a bosonic monopole, and such a

superconducting surface. Now imagine tunneling a monopole from the vacuum to the system

bulk. Since the monopole is trivial (chargeless and bosonic) in both regions, the tunneling

event - which leaves a 2π-vortex (or hc
e

vortex in the usual units) on the surface - also carries

no non-trivial quantum number. Furthermore this hc
e

vortex is local with respect to all the

other excitations in the system.

We emphasize that we have, at this stage, no constraints on the fundamental hc
2e

vortex.

However since the hc
e

vortex is trivial we can condense it to obtain a symmetry preserving

surface state. As is well-known from descriptions of spin-charge separation in 2d the resulting

state has distinct topological sectors. The hc
e

condensate quantizes the electric charge in each

topological sector to be an integer q = ne. However, it is always possible to remove integer

charge from the excitations in any topological sector by binding physical electrons. Thus

the theory of the surface factorizes into an electrically neutral sector (which may itself be

non-trivial) supplemented with a gapped electron in a trivial surface insulator. Furthermore

the neutral sector is closed under time reversal. The only potentially non-trivial physics at

the surface thus lives in this neutral sector. But in an electronic system any local charge-

neutral object has to be bosonic. Hence the surface theory should be viewed as emerging

purely from a neutral boson system.

This implies that the bulk SPT order, if any, should also be attributed to the neutral boson

(spin) sector, i.e it should be a time reversal protected SPT of spins in a Mott insulating

phase of the electrons. The SPT states of neutral bosons with time-reversal symmetry

are classified[22–24] by Z2
2, with two fundamental root non-trivial phases. As we describe

these below these can be characterized by their symmetry preserving surface topological

orders. Furthermore since even in the presence of electrons, the surface theory factorizes

into this topologically ordered neutral sector supplemented with a gapped charge electron it

5 To be general, we can allow the neutral sector itself to have topological order or even be gapless



25

follows that (unlike in d = 1) these spin-SPTs stay distinct from the trivial band insulator.

Combining this result with the Z2 classification of band insulators, we arrive at the promised

Z3
2 classification of spin-orbit coupled electronic insulators in three dimensions.

Fermionic monopoles: To complete the argument we need to dispose of the possibility

that the monopole may be fermionic. This was done in Ref. [26] by using a criterion known

as ‘edgeability’[23] . Any physical theory in strict d spatial dimension must allow a physical

edge to the vacuum while preserving symmetries. States that can only be realized at the

surface of a d+ 1-dimensional SPT phase are clearly not edgeable. For the putative electron

topological insulator with θ = 0 and a fermionic monopole the edge theory was shown to be

inconsistent within the electronic Hilbert space.

B. Physics and construction of topological paramagnets

Having shown that the only root states not captured by band theory are the topological

paramagnets, we now describe their physical properties. The Z2
2 classification means there

are two root states. Actually the group cohomology classification[20] gives a Z2 classifica-

tion, i.e it misses one of the two root states. This new root state was first proposed on

physical grounds in Ref. [22]. Subsequently this was shown to exist using a coupled layer

construction[23], and using Walker-Wang models[24].

It is convenient to characterize these states by their representative surface states. If the

symmetry is preserved then the surface realizes a quantum spin liquid state. This quantum

spin liquid must realize time reversal symmetry in a manner forbidden in strictly 2d magnets.

Below we will describe two such surface quantum spin liquids for each of the two root states

- one gapped and the other gapless.

1. Gapped surface quantum spin liquids

The simplest such surface quantum spin liquid states have Z2 topological order, with two

particles e and m having a mutual π-statistics. The first root SPT state supports a surface

theory in which both e and m particles are Kramers bosons (denoted as eTmT ), while the

second SPT state has a surface in which both e and m are non-Kramers fermions (efmf ).

The third state, being a composite of the previous two, has e and m both being Kramers
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fermions (efTmfT ).

In all these quantum spin liquids the topological order itself naively seems consistent

with time reversal symmetry but nevertheless they are not allowed in strictly 2d systems

(see Supplementary Information). However these states can occur at the surface of 3d SPT

states while preserving time reversal. This may be seen explicitly using the coupled layer

construction[23]. For the eTmT state we stack together layers of Z2 quantum spin liquids

such that in each layer i the ei particle is Kramers doublet while mi is a Kramers singlet.

This is allowed in strictly 2d systems, and indeed is the standard example[58, 65–67] of a

2d Z2 quantum spin liquid. We then condense the combinations ei+1miei−1. This confines

all the bulk topological orders but leaves behind the eTmT topological order at the surface.

Similarly for the efmf state we stack together 2d Z2 quantum spin liquids with trivial

action of time reversal on the ei,mi, εi. We then condense εi+1eiεi−1. This again confines all

non-trivial particles in the bulk but leaves behind the efmf topological order on the surface.

A different construction of the efmf state was provided by Ref. [24] through a powerful

approach based on models introduced by Walker and Wang[68] for 3d topological phases.

The key idea is to start with the efmf surface topological order and first construct a cor-

responding bulk ground state wave function in terms of superpositions of string configura-

tions. To that end three distinct species of strings are introduced that correspond to the

three distinct particle types of the surface topological order. The efmf state when realized

in strictly 2 + 1-D is described[23, 24, 45] by a time reversal breaking Topological Quantum

Field Theory (TQFT) even though the braiding and fusion rules themselves are time rever-

sal symmetric. In the three dimensional Walker-Wang wave function the amplitude for a

string configuration C is taken to be the same as the corresponding Wilson loop W [C] in

this 2 + 1-D TQFT:

Ψ3d[C] = 〈W [C]〉2+1 TQFT (24)

Formally this procedure can be used to write down 3d wavefunctions corresponding to

any 2 + 1 − D TQFT. The different string types can fuse according to the fusion rules of

this TQFT. In cases - like the efmf Z2 topological order - where all particle types braid

non-trivially around one another, it is possible to show[24] that the bulk 3d wave function

is itself not topologically ordered. However when a 2d surface is introduced the boundary

develops the intrinsic topological order of the 2 + 1 − D TQFT. Note however that as all

the braiding and fusion rules of the 2 + 1 − D TQFT are time reversal symmetric the 3D
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ground state wave function Ψ3D is itself real (even with a boundary) and hence time reversal

symmetric. Thus the Walker-Wang procedure leads us to the topological paramagnet with

efmf surface topological order. Finally it is possible to construct a model for which Ψ3D is

the exact ground state wave function[24].

2. Gapless surface quantum spin liquids

We now describe a symmetry preserving gapless surface quantum spin liquid state for

these root topological paramagnets. The equivalence to the gapped surface quantum spin

liquid is shown in the Supplementary Section building on the results of Ref. [26–28]. For

both root states the surface is again described by a deconfined Z2 gauge theory. This theory

has an electrically neutral fermionic Kramers doublet excitation χ (the spinon) that carries

the Z2 gauge charge. These fermions have a dispersion with 8 gapless Majorana cones,

identical actually to that of electrons at the surface of a certain time reversal symmetric

topological superconductor. At the free fermion level the gaplessness is thus protected by

time reversal symmetry. There is in addition a gapped vision excitation v that carries the

Z2 gauge flux so that χ and v have mutual π statistics. The two root states eTmT and efmf

differ in the statistics of v. In the former it is a boson while in the latter it is a fermion.

C. Experimental fingerprints

We now describe experimental fingerprints of the two new root states - the topological

paramagnets. The fingerprints of states obtained by taking combinations of these with each

other or the TBI are readily inferred.

If the topological paramagnets are in the gapless quantum spin liquid surface state, the

gapless excitations can be probed through surface thermal transport experiments. Alter-

nately the surface may spontaneously break symmetry. Detection of surface magnetism in a

bulk paramagnet may then provide a hint of spin-SPT order. More revealing fingerprints are

obtained by breaking symmetry at the surface to obtain states with no intrinsic topological

order. The results are summarized in Table.II.

It is most useful to first consider depositing a ferromagnet at the surface to break time

reversal. For all three root states the surface can then be gapped without any intrinsic
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TBI

TPeTmT

TPefmf

FIG. 4. Ferromagnetic domain wall at the surface of the three root topological insulators. The TBI

phase has a chiral charged edge mode in the domain wall. One Topological Paramagnet (labeled

by surface topological eTmT ) has a gapped domain wall while the other (labeled TPefmf ) has

neutral chiral modes with νQ = 8.

topological order. Let us now consider a domain wall where the magnetization changes sign

(see Fig. 4). For the TBI this domain wall hosts a chiral electrically charged edge mode. For

the efmf topological paramagnet such a domain wall hosts gapless chiral modes but these are

electrically neutral. Furthermore these neutral modes transport heat as though there were

eight species of neutral one-way fermions (more precisely the ‘chiral central charge’ = 8).

These neutral modes may alternately be interpreted in terms of a thermal Hall conductivity

of each domain of the form κxy = νQ
π2

3

k2B
h
T with νQ = ±4. For the eTmT topological

paramagnet on the other hand there are no gapless modes in such a domain wall, i.e for

each domain κxy = 0.

Thus a combined measurement of electrical and thermal Hall transport when T is broken

at the surface can provide a very useful practical (albeit partial) characterization of these

distinct topological insulators.

Next we consider depositing an s-wave superconductor instead of a ferromagnet at the

surface so that charge U(1) symmetry is broken while preserving time reversal. For the TBI

this leads to a gapped surface but with exotic vortices that host Majorana zero modes[69].

For both the root states of the topological paramagnets it is convenient to start with the
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gapless surface spin liquid surface described above. The gapless Majorana fermion of the

quantum spin liquid state can then hybridize with the Bogoliubov quasiparticle of the super-

conductor. This gets rid of the exotic excitations of the Z2 quantum spin liquid. But now

mixing between the gapless Majorana fermions and the Bogoliubov quasiparticles makes

them visible to probes like Angle Resolved Photoemission (ARPES) or tunneling. Thus

the induced superconductor will be gapless with 8 Majorana cones that can be detected by

ARPES.

Taken together with the T -breaking surface transport we have a unique fingerprint for

each of the 8 TIs.

VII. CORRELATED SURFACE STATES FOR THE 3d ELECTRONIC TBI

We now return to the 3d electronic TBI when it is realized in a strongly correlated system

and ask about the fate of its surface states. Following the non-perturbative understanding

of the surface of the boson TI, it is natural to ask if the surface of the electronic TBI can be

gapped by strong interactions while preserving symmetry by paying the price of introducing

intrinsic topological order.

Two different such symmetry preserving surface topological orders were described in

Refs. [70–73]. Interestingly the topological order at the surface of the electron TBI is

necessarily non-abelian. By starting with the known superconducting surface[69] of the

TBI and proliferating vortices it is possible to derive a surface topological order (dubbed

T-Moore-Read) which is a time reversal symmetric version of the non-abelian Moore-Read

fractional quantum Hall state[70, 71]. A different non-abelian topological order (dubbed

T-Pfaffian) was obtained through Walker-Wang methods[72] (and guessed in Ref. [73]) and

shown to correspond to the surface of some electronic SPT state with θ = π EM response.

Actually the methods of Ref. [72] yield two distinct realizations of time reversal symmetry

in this surface topological order corresponding to two distinct bulk SPT states. One of these

describes the TBI and the other its combination with the eTmT topological paramagnet

(the precise matching between these two is still not clear).

Previously symmetric surface topological orders were also proposed for the time reversal

invariant 3d topological superconductor[27]. In some cases this is non-abelian (but of course

different from the ones describing the TBI). In cases where it is abelian this proposed surface
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topological order can be derived simply by using a generalization of the vortex condensation

arguments[28, 74].

Two comments are appropriate: first as expected in all these cases the STO has anomalous

implementation of the global symmetry: strictly 2d states with the same topological order

cannot have the same symmetry implementation. Second, it is not granted that every 3d

SPT phase admits such a symmetry preserving STO. Recent work[28] described an example

(topological superconductor with spin SU(2) and time reversal symmetries) where such

a surface termination does not exist. In this case the surface is gapless so long as the

symmetries are preserved even in the presence of strong interactions. This phenomenon was

dubbed “symmetry-enforced gaplessness”.

VIII. 3D ELECTRONIC SPTS WITH OTHER SYMMETRIES

The various kinds of arguments described above have enabled extensive progress[28] in

describing and classifying 3d electronic SPT phases with various symmetries. Free fermion

systems with various symmetries fall into one of 10 different classes (the 10-fold way) of

topological phases[75]. With interactions we need to think about the specific symmetry

group. For symmetry groups representative of each member of the 10-fold way, the classi-

fication and properties of SPT phases have been described[28]. These results are described

in Table. III. We now highlight some of these results.

For spin rotation invariant insulators with time reversal symmetry, within band theory

there is no topological insulator. With interactions[28] the only SPT phases are bosonic

SPTs formed by first forming Mott insulators and letting the resulting spins form a spin-SPT.

These are classified by Z4
2 and have properties closely resembling time reversal symmetric

spin systems with conserved Sz discussed in Section IV

Similarly for time reversal symmetric insulators of spinless fermions, the only SPT states

are bosonic ones formed by SPTs of neutral composites from the fermions[26].

It is also interesting to consider the fate of topological superconductors in the presence of

interactions. The quadratic Bogoliubov-deGennes Hamiltonian for time reversal invariant

superconductors in three dimensions allows for Z classification corresponding to n species of

gapless Majorana fermions at the surface. Using their Walker-Wang based studies of surface

topological order , Ref. [27] argued that this reduces to a Z16 classification in the presence
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Symmetry class

Reduction of

free fermion

states

Distinct

boson SPT

Complete

classification

U(1) o ZT2 with

T 2 = −1 (Spin-orbit

coupled insulators)

Z2 → Z2 Z2
2 Z3

2

U(1)× ZT2 (Triplet

SC, conserved Sz)
Z→ Z8 Z2 Z8 × Z2

(U(1) o ZT2 )× SU(2)

(Spin-rotation

invariant insulators)

0 Z4
2 Z4

2

ZT2 with T 2 = −1

(Topological SC)
Z→ Z16 0 Z16 (?)

SU(2)× ZT2

(Spin-rotation

invariant topological

SC)

Z→ Z4 Z2 Z4 × Z2 (?)

TABLE III. A selection of results on classifications of electronic SPT states in three dimensions.

More results and detail can be found in Ref. [28]. The second column gives free fermion states

that remain nontrivial after introducing interactions. The third column gives SPT states that are

absent in the free fermion picture, but are equivalent to those obtained from bosonic composites

of the electron. In the last 2 cases it is not currently clear if the classification is complete.

of interactions. In other words when there are 16 species of gapless Majorana fermions at

the surface the theory can be gapped out by interactions to yield a trivial surface (even

though this does not happen in free fermion theory). Refs. [28, 74] provided an elementary

derivation of this result.

Another interesting case is to consider time reversal invariant triplet paired supercon-

ductors where Sz is still conserved. The corresponding symmetry group is U(1) × ZT
2 . In

free fermion theory this has a Z classification which reduces to a Z8×Z2 classification with

interactions[28]. Here the Z8 subgroup describes topological superconductors that admit a
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free fermion description while the Z2 describes SPT states formed by bosonic composites

of the electrons (or more precisely bosonic SPTs that are not equivalent to one of the free

fermion topological SC states already contained in the Z8 classification).

IX. INSIGHTS FROM SPTS FOR OTHER PROBLEMS

Though SPT phases are short range entangled (and hence fairly simple) their study has

given surprisingly powerful insights into the more complex ‘long range entangled’ phases of

matter. Here we briefly discuss the nature of these insights.

Duality between SPT and topological order: Perhaps the simplest long range

entangled phases are those with intrinsic topological order in 2d (like the fractional quantum

Hall states or gapped 2d quantum spin liquids). Interestingly 2d SPT phases are related

to these long ranged entangled phases through a duality transformation[49]. A number of

difficult theoretical questions (such as phase transitions) about such topologically ordered

phases may thus be formulated as questions about SPT phases.

Symmetry and intrinsic topological order: The interplay of physical global symme-

try and topological order is an old topic. For instance the possibility of fractional quantum

numbers for quasiparticles (e.g., in the fractional quantum Hall effect or for spinons in a

quantum spin liquid) is a statement about how global symmetries are implemented on the

anyonic excitations of the associated topological order. Recently topologically ordered phases

in the presence of global symmetries have been christened “Symmetry Enriched Topological”

(SET) phases.

What constraints are there about how symmetry may be implemented in topologically

ordered states? Here the understanding of SPT phases provides powerful insights. Given

some particular topological order with some implementation of symmetries, we may be able

to generate others by putting one of the emergent quasiparticles in an SPT phase. This

enables us to establish a connection between seemingly different such topologically ordered

phases.

A different kind of constraint comes from the understanding of surface topological order

in 3d SPT phases. The surface topological order has ‘anomalous’ implementation of the

global symmetry, ı.e strictly 2d systems with the same topological order cannot implement

symmetry in the same way. Thus studying surface topological order generates ‘no-go’ the-
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orems on what kinds of symmetry implementations are legal in 2d topologically ordered

states[22–24, 53, 76–78].

The theory of SPT phases is thus a crucial ingredient in ongoing efforts to understand

SET phases[79].

Gapless quantum phases: A number of frontier questions in correlated quantum sys-

tems relate to the physics of many body ground states with gapless excitations. Perhaps the

most familiar example to most physicists are phase of matter with a continuous global sym-

metry that is spontaneously broken. The broken symmetry gives rise to gapless Goldstone

modes. A different kind of protected gapless excitation is also well known: For instance

Landau quasiparticles in a Fermi liquid, or the Bogoliubov quasiparticles in a gapless BCS

superconductor. The protection of these gapless excitations as due to the long range entan-

glement in the corresponding ground state together with unbroken global symmetry. Modern

examples are the excitations of gapless quantum spin liquids and of non-fermi liquid metals.

In the context of such gapless phases an immediate question is whether they have symme-

try realization that is legitimate in any strictly-d dimensional system. In other words is the

symmetry realization anomalous? Again studying possible gapless phases at the boundary

of a d+ 1-dimensional SPT phase generates no-go theorem for their existence in strictly d-

dimensions. For instance certain conjectured gapless quantum vortex liquid states[80] were

recently shown[23] - based on insights from SPT phases - to not occur in strictly 2d magnets

with time reversal symmetry.

A different application of SPT ideas is to the physics of 3d quantum spin liquids with an

emergent deconfined U(1) gauge field (see Refs. [60, 81–86] for models with these phases)

with a gapless photon. Such phases are currently actively being sought in experiments

on quantum spin ice materials on pyrochlore lattices[87]. Microscopic models of the spin

interactions in these materials are complicated and have no internal symmetries other than

time reversal. What can we say on general grounds about such time reversal invariant U(1)

quantum spin liquids? Using insights from the understanding of SPT phases it is possible to

show[88] that there are precisely 8 such distinct phases where the only gapless excitation is

the emergent photon. The properties of these phases are readily determined. Indeed many

of these 8 phases can be understood as gauged versions of either a boson or fermion SPT

phase with both U(1) and time reversal symmetry. The others can then be obtained as SPT

phases of the either the emergent electric charge or the magnetic monopole.
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X. SUMMARY AND OUTLOOK

SPT phases are a minimal generalization of the topological band insulators to interacting

systems. We reviewed recent progress in our understanding of the physics of these phases.

Our main focus was on three dimensional systems, particularly electrons, with realistic sym-

metries. We showed how a variety of physical arguments and methods can be fruitfully used

to understand the possible interacting topological insulators and their physical properties.

For systems with the symmetries reviewed in this paper we now have a good conceptual

understanding of the possible SPT phases and their universal physical properties. This

progress however is just the beginning of what are likely to be bigger challenges. The

immediate practical challenge for theory is to understand the microscopic conditions that

facilitate these phases. Clearly this will be aided by studying the realization of the d > 1 SPT

phases in realistic models of particular experimental situations. In this context a theoretical

question that has not received much attention so far is whether there exist sign-problem free

Hamiltonians for d > 1 SPT phases and how SPT order might be detected in a quantum

Monte Carlo simulation. The results of Ref. [42] on the 2d boson integer quantum Hall state

are an encouraging sign that other SPT phases may be accessible in Monte Carlo calculations.

Another important question, which has just begun to be studied[89], is the identification

of SPT order from the ground state wave function of some system for physically relevant

symmetries. This may help detect SPT phases through DMRG calculations on strips.

There have thus far been very few suggestions for experimental realizations of these phases

in d > 1. . For the boson integer quantum Hall state in d = 2, the model of two-component

bosons at filling factor ν = 1 each with delta function repulsion[37, 39–41] is a good guide.

The challenge is to reach the quantum hall regime in ultra-cold atoms. Other suggestions

have been made for obtaining this phase in frustrated 2d lattice spin models in a strong

magnetic field[43]. In d = 3 the topological paramagnets may be realized in electronic Mott

insulators with frustrated spin interactions. Very recent work[92] suggests that a particularly

good place may be in frustrated spin-1 quantum magnets in three dimensions.

Some hints on physical realizations of bosonic SPT phases may be provided by a non-linear

sigma model description developed in Refs. [22, 90, 91]. An interesting recent description of

some of the interacting topological insulators as TBI phases of clusters of three electrons[93]

has been developed, and may also be a guide toward physical realization.
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On the conceptual side, an important open issue is the phase transitions between various

SPT phases. A start is in Refs. [94, 95]. These are related to phase transitions of current

interest[96] in quantum spin liquid theory after some (or all) of the global symmetry is

gauged.

Very recently the braiding statistics description reviewed here for 2d Ising SPTs has been

generalized[97] to 3d for bosons with discrete global symmetry of the form Zk
n. Interestingly

this involves considering statistical phases associated with braiding of three distinct loops[97]

- a concept that may also be useful in other 3d topological phases[98, 99].

We described some of the impact studies of SPT phases are having on other frontier

problems in theoretical condensed matter physics. In a different direction, an interesting

application[100–102] of SPT ideas is to issues of which chiral gauge field theories (like the

standard model of particle physics) can be lattice regulated while preserving all internal

symmetries in the same space-time dimension. This is a long standing question in lattice

gauge theory studies of the standard model which may be clarified by insights from SPT

physics.
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Appendix A: Anomalous symmetry at the topological paramagnet surfaces

Let us ask if the eTmT or efmf states are edgeable. In both these states the ε particle

is a Kramers singlet. It will be convenient to consider a putative edge theory where the ε

is tuned to be gapless. A time reversal symmetric system cannot be chiral, and hence the

number nR of right-moving channels of ε particles at the edge must equal the number nL of
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left-moving channels. Denoting these right/left moving (Majorana) fermions χRa (χLa) the

corresponding edge Hamiltonian may be written

H1d =

∫
dx

n∑
a=1

χRa (−i∂x)χRa + χLa (i∂x)χLa (A1)

Under time reversal we have χRa → χLa and vice versa.

It is useful to have a bulk model which has this edge structure. Start initially with two

species of bulk fermions ε+ and ε−. We put ε± in n copies of a px ± ipy paired state. This

system is time reversal invariant if ε+ → ε− (and vice versa) under time reversal. The well

known edge structure of the px± ipy paired states ensure that the edge Hamiltonian has the

form Eqn. A1. In the bulk we then add all possible (local) time reversal invariant terms.

These will include inter-species mixing terms, in particular mixing between ε+ and ε−. Now

in the bulk the e (and m) particle is a mutual semion with ε. If we ignore interspecies

mixing, the e particle has n Majorana zero modes of ε+ and likewise n Majorana modes for

ε−. However inter-species mixing will produce lift the degeneracy associated with these zero

modes. The result is a unique Kramers singlet bosonic e particle (and similarly for the m

particle). Thus neither the efmf nor the eTmT state is realized.

Now let us understand this generally from the edge theory. The e and m can be identified

with ’twist’ operators that shift the phase of ε by π. The (abelian) statistics of the bulk

e particle is determined by the ‘spin’ of the corresponding operator at the edge (i.e the

difference of the scaling dimension in the right and left moving theories). As the right and

left movers are related by time reversal it follows that the twist operator has 0 spin - hence

the bulk e particle is a boson. Thus the time reversal symmetric efmf state is not edgeable,

and cannot be realized in strict 2d. Indeed it is easy to see[45] that in strict 2d e will be a

fermion if nR − nL = 4 mod 8 (and hence requires broken time reversal).

To address the edgeability of the eTmT state let us begin by considering nR = nL = 1.

Then the edge theory is the same as the critical Ising model. A twist operator is the Ising

order parameter field σ which we take to be the edge avatar of the e particle. Under time

reversal as R and L interchange, the right and left moving components of σ interchange

but clearly σ → σ. In particular σ is a Kramers singlet. If we have n species of edge

Majorana fermions, the e particle may be represented as σ1σ2.......σn where σa is the Ising

order parameter for species a. Clearly this too just goes to itself under time reversal and is

not a Kramers doublet. Thus we conclude that the eTmT topological ordered state is not
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edgeable, and hence cannot be realized in any strictly 2d magnet.

Note that the eTmT , efmf topological orders are related through a phase transition to

the gapless Z2 quantum spin liquids described in Section VI B 2. Thus we conclude that

these gapless spin liquids can also not be realized in strictly 2d magnet. A corollary is that

the 8 gapless Majorana modes of this state cannot be trivially gapped while preserving time

reversal. If such gapping were possible we could then condense the bosonic vision v (present

in the eTmT case) and get a trivial gapped state.

Appendix B: Gapless quantum spin liquids at the surface of topological paramagnets

We begin with an observation of Ref. [27] about the surface topological order of electronic

topological superconductors with T symmetry. Using Walker-Wang techniques it was argued

that when the surface has 8 gapless Majorana cones it can be gapped to leave behind either

eTmT or efmf surface topological order. An elementary argument to understand this was

described in Refs. [26] which we now sketch. We first group the 8 gapless Majorana fermions

into 4 Dirac fermions with the Lagrangian

Lfree =
4∑
i=1

ψ†i (pxσ
x + pyσ

z)ψi, (B1)

in which time-reversal acts as

T ψiT −1 = iσyψ
†
i . (B2)

It is easy to see that there is no time reversal symmetric quadratic mass term that can gap

these fermions. To address it non-perturbatively we first enlarge the symmetry to U(1)×ZT
2

with the U(1) acting as

UθψU
−1
θ = eiθψ (B3)

We then add a ‘pairing’ mass term

Lgap = i∆
4∑
i=1

ψiσyψi + h.c. (B4)

which breaks both U(1) and T but preserves the combination T̃ = T Uπ/2. We now attempt

to restore the broken symmetry while preserving T̃ by proliferating vortices of the pair order

parameter. However the vortices have zero modes which restricts the kinds of vortices that

can condense. With 8 Majorana cones, the single vortex can be shown to be a Kramers



38

doublet under T̃ , and hence cannot condense. The “minimal” construction is to proliferate

double vortices. The resulting insulating state has Z2 topological order {1, e,m, ε} where

we identify the e particle with the unpaired vortex and the ε with the ‘neutralized’ version

of the fermionic quasiparticle.

Now the full U(1)× T is restored, we can ask how are they implemented on {1, e,m, ε}.

Obviously these particles are ‘charge’-neutral and the question is then about the implemen-

tation of T alone. However, since the particles are ‘neutral’ the extra auxiliary U(1) rotation

in T̃ is irrelevant and they transform identically under T̃ and T . Thus T 2 = T̃ 2 = −1 on e

and m, and T 2 = T̃ 2 = 1 on ε, which is exactly the topological order eTmT . The physical

‘charged’ fermion ψ is now trivially gapped and plays no role in the topological theory. We

can now introduce explicit pairing to break the auxiliary U(1) symmetry. Since topologi-

cal order stems from the ‘charge-neutral’ sector, pair-condensation of ψ does not alter the

topological order, and the resulting state is just the eTmT state with only T symmetry.

Applying this logic now to the proposed gapless Z2 quantum spin liquids, we see that these

states are connected through surface phase transitions to the gapped state (1, eT ,mT , ε) ×

(1, χ, v, vχ). Now if the v is a boson we cam simply condense it to leave behind the eTmT

topological order. If on the other hand v is a fermion we can condense the combination vε.

It is easy to see that this leaves behind the efmf topological order. This establishes the

promised equivalence between the gapped and gapless surface quantum spin liquids.
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