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Abstract

Humans routinely make inductive generalizations about unobserved features
of objects. Previous accounts of inductive reasoning often focus on infer-
ences about a single object or feature: accounts of causal reasoning often
focus on a single object with one or more unobserved features, and accounts
of property induction often focus on a single feature that is unobserved for
one or more objects. We explore problems where people must make infer-
ences about multiple objects and features, and propose that people solve
these problems by integrating knowledge about features with knowledge
about objects. We evaluate three computational methods for integrating
multiple systems of knowledge: the output combination approach combines
the outputs produced these systems, the distribution combination approach
combines the probability distributions captured by these systems, and the
structure combination approach combines a graph structure over features
with a graph structure over objects. Three experiments explore problems
where participants make inferences that draw on causal relationships be-
tween features and taxonomic relationships between animals, and we find
that the structure combination approach provides the best account of our
data.
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1. Introduction

Will that berry taste good? Is that table strong enough to sit on?
Questions like these require a reasoner to predict whether an object has a
feature that has not yet been observed. Two versions of this basic inductive
challenge can be distinguished. Across-object generalization is a problem
where a reasoner observes one or more objects that have a given feature
(e.g. Tim has feature F) then decides whether other objects have the same
feature (does Tim’s twin brother Tom have feature F?). Across-feature

generalization is a problem where a reasoner observes one or more features of
a given object (e.g. Tim is obese) then makes inferences about other features
of the same object (does Tim have diabetes?). These two generalization
problems form a natural pair, and both can be viewed as inferences about
the missing entries in a partially-observed object-feature matrix. Figure 1
shows an example where the objects are animals of different species and the
features are biological or behavioral attributes. Because the mouse and the
rat are similar, observing that the mouse has gene X suggests that the rat
is likely to to carry the same gene (across-object generalization). If gene X
causes enzyme Y to be expressed, then observing that the mouse has gene
X suggests that the mouse is likely to express enzyme Y (across-feature
generalization).

Across-object and across-feature generalization are typically studied in
isolation but these two forms of generalization often interact. For example,
given that Tim is obese, we might predict that Tim’s twin brother Tom
is more likely to have diabetes than an unrelated individual called Zach.
This prediction appears to rely on across-object generalization (since Tim
is obese, Tom is likely to be obese) and on across-feature generalization (if
Tom is obese, then Tom is likely to have diabetes). Similarly, if we learn
that the mouse in Figure 1a carries gene X and that gene X causes enzyme Y
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Figure 1: Generalization problems involving a set of animals and their features. (a)
Across-object generalization is a problem where a reasoner makes inferences about the
distribution of a single feature—here “has gene X.” The example shown is a one premise
argument: given that the statement above the line is true, the reasoner must decide
whether the statement below the line is likely to be true. (b) Across-feature generalization
is a problem where a reasoner makes inferences about the features of a single object. The
argument shown here is strong if gene X is known to cause enzyme Y to be expressed.
(c) Generalization problems may require a reasoner to generalize across both objects and
features. Here the reasoner is told that a given animal (the mouse) has a given feature
(gene X), then asked to decide whether a different animal (the rat) has a different feature
(enzyme Y).(d) Generalization can be formalized as the problem of filling in the missing
entries in an object-feature matrix. The three problems in (a)–(c) are all special cases of
this matrix completion problem.

to be expressed, we might predict that the rat is likely to express enzyme Y
(Figure 1c). Both of these predictions can be formulated as inferences about
the missing entries in an object-feature matrix. We develop an account of
generalization that handles inferences of this kind, and that includes both
across-object and across-feature generalization as special cases.

Our approach is based on the idea of integrating multiple knowledge
structures. An object structure can capture relationships among objects—
for example, a structure defined over the three individuals previously intro-
duced can indicate that Tim and Tom are more similar to each other than
either is to Zach. A feature structure can capture relationships between
features—for example, one feature structure might indicate that obesity
tends to cause diabetes. We show how object and feature structures can be
combined in order to reason about the missing entries in a partially-observed
object-feature matrix.

Previous researchers have explored both object structures and feature
structures, but most previous models work with just one kind of structure
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at a time (Figure 2a). Accounts of across-feature generalization (Waldmann
et al., 1995; Ahn et al., 2000; Rehder, 2003) often use a structure that fo-
cuses exclusively on causal relationships between features. For example, a
conventional causal model might specify that obesity causes diabetes with-
out capturing any information about relationships between objects. To see
the limitations of this approach, suppose that Tim, Tom and Zach are all
obese, that Tim and Tom are identical twins, and that Tim has diabetes.
Since Tom and Zach are both obese, the conventional model will predict
that both men are equally likely to suffer from diabetes. It seems clear,
however, that the causal relationship between obesity and diabetes is me-
diated by hidden causal factors, and that Tom and Tim are similar with
respect to these factors. Since Tim’s obesity led to diabetes, Tom’s obesity
is likely to have a similar effect, and we might therefore predict that Tom
is more likely than Zach to suffer from diabetes.

Accounts of across-object generalization (also known as property induc-
tion, category-based induction, or stimulus generalization (Shepard, 1987;
Osherson et al., 1990; Sloman, 1993; Heit, 1998; Hayes et al., 2010)) of-
ten work with a structure that focuses exclusively on relationships between
categories or objects. For example, Kemp & Tenenbaum (2009) present a
model that uses a tree-structured representation of relationships between
animals in order to account for inferences about blank biological features
(e.g. “has enzyme X”). Models of this kind, however, are unable to reason
about features that are causally related to known features. Suppose, for
example, you learn that whales “travel in a zig-zag trajectory” and need
to decide whether bears or tuna are more likely to share this feature (Heit
& Rubinstein, 1994). A model that relies on taxonomic relationships alone
is likely to prefer bears, but a model that incorporates causal relationships
between features might choose tuna on the basis that “traveling in a zig-
zag trajectory” is related to other features like swimming and living in the
water.

Accounts that rely on feature structures or object structures in isolation
are fundamentally limited, but we show that combining these structures can
lead to a more comprehensive account of generalization. Like many previ-
ous accounts of generalization, we take a probabilistic approach (Shepard,
1987; Anderson, 1991; Heit, 1998; Rehder, 2003; Kemp & Tenenbaum, 2009;
Holyoak et al., 2010). Probability theory alone, however, does not specify
how different knowledge structures should be combined, and we evaluate
several alternatives. The output combination approach (OC approach for

4



Distribution combination,

S1 S2 S1 S2

response response response

S1 S2
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Figure 2: Approaches to generalization problems where two relevant systems of knowl-
edge are available. (a) A response is generated that depends on only one of the systems.
(b) A response is generated by using a simple mathematical function such as a weighted
average to combine the outputs generated by each system in isolation. (c) The systems
themselves are combined to generate a response. We consider two versions of this ap-
proach: the distribution combination model combines systems at the level of probability
distributions, and the structure combination model combines systems at the level of
graph structures.

short) combines two knowledge structures by combining the outputs that
they produce (Figure 2b). This approach is related to previous accounts of
knowledge integration that rely on simple mathematical functions such as
sums and products to combine the predictions of multiple models (Medin
& Schaffer, 1978; Anderson, 1981; Massaro & Friedman, 1990; Lombardi
& Sartori, 2007), and is appropriate when the two knowledge structures
correspond to independent modules (Fodor, 1983).

If the knowledge structures do not correspond to separate modules, the
two may be combined more directly (Figure 2c). We consider two possi-
bilities. The distribution combination approach (DC approach for short)
combines two knowledge structures by multiplying the prior distributions
that they capture. Multiplying prior distributions provides a probabilistic
way to capture the intuition that an outcome is likely only if it is consistent
with both component knowledge structures. The structure combination

approach (SC approach for short) combines two knowledge structures by
creating a third structure that corresponds to a graph product of the two
component structures. One important difference between these approaches
is that the DC approach predicts that object and feature structures are com-
bined in a way that is not intrinsically causal. In contrast, the SC approach
leads to a model that is defined over a causal graph and that therefore sup-
ports inferences about interventions and counterfactuals. Our experiments
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suggest that humans combine object and feature structures in a way that
supports subsequent causal inferences, and we therefore conclude that the
SC approach accounts for human inferences better than the DC approach.

Although previous models of inductive reasoning do not incorporate
both feature structures and object structures, several researchers have ex-
plored whether these forms of knowledge are combined. Experiment 3 of
Rehder (2006) suggests that causal relationships between features dominate
similarity relationships between objects, and that similarity relationships
are used only when causal information is unavailable. Other researchers
have also considered cases where causal inferences and inferences based
on surface similarity lead to opposite conclusions (Lassaline, 1996; Wu &
Gentner, 1998; Hayes & Thompson, 2007; Lee & Holyoak, 2008; Holyoak
et al., 2010), and the consistent finding is that causal inferences dominate
similarity-based inferences. Causal relationships may indeed be primary,
but the vast majority of real-world problems involve cases where causal re-
lationships between features are known only partially. In cases of this kind
similarity relationships between objects provide a guide to shared causal
structure, and inferences should therefore exploit both causal relationships
between features and similarity relationships between objects. Hadjichris-
tidis et al. (2004) provide some evidence for this view, and show that induc-
tive inferences are influenced both by the centrality of a feature in a causal
structure and by similarity relationships between objects. Although we do
not focus on feature centrality, our model can be viewed as a computational
treatment of some key intuitions behind the work of Hadjichristidis et al.
(2004). In particular, the model captures the idea that the taxonomic re-
lationships between two objects can help to predict whether the two are
similar with respect to unobserved causal variables.

We begin in the next section by introducing a general probabilistic
framework for reasoning about partially observed object-feature matrices.
The three combination models (OC, DC, and SC) all rely on prior distri-
butions over matrices, and we show how priors of this kind can capture
relationships between objects and relationships between features. The re-
mainder of the paper describes three experiments that we conducted to
evaluate our models. The results suggest that people are able to reason
simultaneously about relationships between objects and relationships be-
tween features, and to make causal inferences that draw on both kinds of
relationships. We demonstrate that the SC model accounts better for this
ability than the OC and DC models, and that all three combination models
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perform better than alternatives that rely on a feature structure or object
structure in isolation.

2. Bayesian generalization

Our account of inductive generalization is founded on Bayesian inference.
Any Bayesian approach relies on a hypothesis space, a prior distribution
that captures the background knowledge relevant to a given problem, and
a general purpose inference engine. This section focuses on the inference
engine, and the following sections describe how the prior distribution can
capture knowledge about objects and knowledge about features.

Suppose that we are interested in a certain set of objects and a certain
set of features. Let M be a complete object-feature matrix—a matrix that
accurately specifies whether each object has each of the features. Figure 3
shows the sixteen possible object-feature matrices for a problem involving
two objects (o1 and o2) and two binary features (f1 and f2). Suppose, for
example, that o1 and o2 are two cousins, and that the features indicate
whether the cousins are obese (f1) and whether they have diabetes (f2). It
seems clear that the sixteen matrices M in Figure 3 are not equally probable
a priori. For example, the case where both cousins have diabetes but only
o1 is obese seems less probable than the case where both have diabetes
and both are obese. Assume for now that the prior probability P (M) of
each matrix is known. The prior in Figure 3 captures the idea that f2

is probabilistically caused by f1, and therefore tends to be present if f1 is
present. The specific probabilities shown are consistent with a causal model
which indicates that obesity has a base rate of 0.3 and causes diabetes with
probability 0.15.

Suppose that we observe Mobs, a version of the true matrix M with many
missing entries. In Figure 3b, Mobs indicates that the first cousin is obese.
Even though Mobs is incomplete we can use it to make inferences about all
of entries in M . For example, learning that the first cousin is obese should
make us more likely to believe that the first cousin has diabetes, and that
the second cousin is obese. We propose that inferences of this kind are
based on probabilistic reasoning. These inferences can be modeled using
the posterior distribution P (M |Mobs), which captures expectations about
M after observing Mobs. Using Bayes’ rule, we rewrite this distribution as

P (M |Mobs) ∝ P (Mobs|M)P (M). (1)
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Figure 3: Bayesian generalization. (a) If there are two objects and two features, there
are 16 possible binary matrices M . The figure shows one possible prior distribution
P (M) over these matrices. The prediction matrix on the right shows predictions about
individual cells in the matrix computed by summing over the space of hypotheses. (b)
Suppose that we observe the information shown in Mobs: we learn that o1 has f1. Eight
of the matrices are no longer possible and are shown in gray. The posterior distribution
P (M |Mobs) is computed by reweighting the prior distribution P (M) on the eight matrices
that remain. Relative to the prediction in (a), the prediction matrix now indicates that
o1 is more likely to have f2 and that o2 is more likely to have f1.

The likelihood term P (Mobs|M) will depend on how the entries in Mobs were
generated. Different formulations of this term can capture, for instance,
whether the observations in Mobs are corrupted by noise, and whether a
systematic method is used to select the occupied entries in Mobs. We will
assume throughout that Mobs is created by randomly choosing some entries
in M then revealing their true values. It follows that

P (Mobs|M) ∝

{

1, if Mobs is consistent with M

0, otherwise
(2)

where Mobs is consistent with M if every entry that appears in Mobs matches
the corresponding entry in M .

Combining Equation 2 with Equation 1 we see that

P (M |Mobs) ∝

{

P (M), if Mobs is consistent with M

0, otherwise
(3)

where the prior P (M) captures our prior expectations about matrix M . In-
tuitively, Equation 3 states that any matrix M which is incompatible with
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the observations in Mobs has zero posterior probability, and that the poste-
rior distribution over the candidates that remain is computed by reweighting
the prior P (M) (Figure 3).

The posterior distribution in Equation 3 can be used to make predictions
about individual entries in matrix M . Suppose, for example, that we are
primarily interested in entry Mij, or the entry that indicates whether object
i has feature j. The probability that this entry equals 1 is equal to the
combined posterior probability of all matrices with a 1 in position (i, j):

P (Mij = 1|Mobs) =
∑

M :Mij=1

P (M |Mobs) (4)

where the sum ranges over all candidate matrices M with a 1 in posi-
tion (i, j). For example, the prediction matrix in Figure 3 indicates that
P (M12 = 1|Mobs) = 0.08 + 0.002 + 0.05 + 0.03 ≈ 0.16.

The Bayesian computations specified by Equations 3 and 4 are straight-
forward applications of statistical inference. Statistical inference is a general-
purpose approach that can be applied across many different settings, and
has previously been used to develop psychological accounts of property
induction (Heit, 1998; Kemp & Tenenbaum, 2009), stimulus generaliza-
tion (Shepard, 1987; Tenenbaum & Griffiths, 2001), word learning (Xu &
Tenenbaum, 2007), categorization (Anderson, 1991; Sanborn et al., 2010),
identification (Kemp et al., 2010) and causal learning (Anderson, 1990; Grif-
fiths & Tenenbaum, 2005). These different applications may address very
different phenomena, but all of them use statistical inference to explain how
prior knowledge and observed data combine to produce inductive inferences.

Even though the Bayesian approach emphasizes domain-general statisti-
cal inference, it recognizes that differences between inductive problems are
critical. The prior distribution plays a fundamental role in any Bayesian
model, and different prior distributions can capture the different kinds of
knowledge that are relevant to different inductive problems. The next sec-
tions focus on the prior distribution P (M) that plays a role in Equation 3.
Formalizing this prior will require us to think carefully about the knowledge
that guides generalization.

3. Knowledge structures

A reasoner may know about relationships between objects, relationships
between features, and relationships between objects and features, and each
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kind of knowledge is useful for making inferences about the missing entries
in an object-feature matrix. The prior P (M) can capture all three kinds
of knowledge. For example, suppose that M is a matrix that specifies the
features of a set of pets. A reasoner might know that his pet mouse and his
pet rat are similar (a relationship between objects), and might assign low
prior probability to matrices where his mouse and rat have many different
features. A reasoner might know that having sharp teeth and gnawing
wood are linked (a relationship between features), and might assign low
prior probability to matrices where many animals gnaw wood but do not
have sharp teeth. Finally, the reasoner might know that his pet squirrel
gnaws wood (a relationship between an object and a feature) and might
assign low prior probability to any matrix that violates this condition.

We will work towards a prior distribution that simultaneously captures
relationships between features and relationships between objects. Let F

be a structure that captures relationships between features. For instance,
F might be a causal model which specifies a causal relationship between
having sharp teeth and gnawing wood. Let O be a structure that captures
relationships between objects. For instance, O might be a model of sim-
ilarity which indicates that mice and rats are similar. The next sections
describe priors P (M |F ) and P (M |O) that rely on a single structure, and
we then consider priors P (M |F,O) that take both structures into account.

3.1. Feature structures

Inferences about partially-observed object-feature matrices can draw on
different kinds of relationships between features. Some of these relationships
may capture non-causal correlations—for example, an appliance which is
large and is found within the home is likely to be white. Here, however, we
focus on causal relationships—for example, an appliance with an engine is
likely to be noisy.

Building on previous work in psychology, artificial intelligence and statis-
tics, we will formalize causal knowledge using graphical models, also known
as Bayesian networks (Pearl, 2000). Bayesian networks can capture prob-
abilistic relationships between variables—for example, the network in Fig-
ure 4a captures a case where feature f1 (e.g. obesity) probabilistically causes
feature f2 (e.g. diabetes). Note that f2 is present 16% of the time when f1

is present, but only 1% of the time when f1 is absent. Most psychological
applications of Bayesian networks have focused on probabilistic causal re-
lationships, but we will work with models that capture deterministic causal
relationships. For example, the probabilistic relationship between obesity
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(a)

b1 P (f1 = 0|b1) P (f1 = 1|b1)
0 1 0

1 0 1
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(b)

P (f1 = 0)P (f1 = 1)
0.7 0.3

P (b2 = 0) P (b2 = 1)
0.99 0.01

P (b1 = 0) P (b1 = 1)
0.7 0.3

P (t = 0) P (t = 1)
0.85 0.15

f1 P (f2 = 0|f1) P (f2 = 1|f1)
0 0.99 0.01

1 0.84 0.16

b1 b2

t

f2f1

f2f1

Figure 4: Causal models. (a) A model that captures a probabilistic relationship between
features f1 and f2. (b) A functional causal model that induces the same joint distribution
over f1 and f2. Variables b1 and b2 indicate whether background causes for f1 and f2 are
active, and variable t indicates whether the mechanism of causal transmission between f1

and f2 is active. All of the root variables (b1, b2 and t) are independent, and the double
lines around f1 and f2 indicate that these variables are deterministically specified once
the root variables are fixed.

and diabetes may be described more accurately as a deterministic rela-
tionship that depends on one or more genetic and environmental factors.
Figure 4b suggests that the probabilistic relationship between f1 and f2 in
Figure 4a can be reformulated as a deterministic relationship that depends
on variables b2 and t. Variable b2 indicates whether some background cause
of f2 is active, and variable t indicates whether or not the mechanism of
causal transmission between f1 and f2 is active. For example, suppose
that fat cells produce a hormone that acts together with a special enzyme
to cause diabetes. In this case the transmission variable t might indicate
whether or not the special enzyme is present in a given individual. The
distributions in Figure 4b show that variables f1 and f2 are both determin-
istic functions of their parents in the graph. For example, f2 is true only if
background cause b2 is present, or if f1 is present and the link between f1

and f2 is active (i.e. both f1 and t are true). Note that the distributions
in Figure 4b induce exactly the same distribution P (f2|f1) that is captured
by the model in Figure 4a.
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Both models in Figure 4 are specified by defining probability distribu-
tions over graph structures. The edges in the graph indicate patterns of
causal dependence, and each model specifies a conditional probability dis-
tribution on the value of each variable given the values of its parents in
the graph. Together, these conditional probability distributions define a
joint distribution over the values of all variables. For example, the joint
distribution for structure S in Figure 4a is

P (f1, f2|S) = P (f1)P (f2|f1) (5)

This joint distribution can be written more generally as

P (v1, . . . , vn|S) =
∏

j

P (vj|π(vj)) (6)

where π(vj) indicates the parents of variable vj, or the set of all variables
in S that send an edge to vj. Variables with no parents will be referred to
as root variables, and P (vj|π(vj)) is equivalent to the distribution P (vj) for
any root variable vj.

The models we consider rely on the factorization in Equation 6, but the
conditional probability distributions for all variables other than the root
variables must be deterministic. Models of this kind are often described as
functional causal models (Pearl, 2000). Note, for example, that the func-
tional model in Figure 4b specifies distributions P (b1), P (b2) and P (t) on the
three root variables, but that the distributions P (f1|b1) and P (f2|f1, t, b2)
are deterministic. At first it may seem that working with deterministic
causal relationships is a severe restriction, but any network N that incor-
porates probabilistic relationships can be replaced by a functional model
that is equivalent in the sense that it captures the same distribution over
the variables in N . For example, Figures 4a and 4b both capture the same
distribution over variables f1 and f2.

For our purposes, the primary reason to work with functional causal
models is that they provide a natural way to combine causal relation-
ships between features with relationships between objects. For example,
the structure combination model developed in a later section is based on
the intuition that similar objects (e.g. identical twins) ought to have sim-
ilar settings for the hidden variables (e.g. genes) that influence observable
features (e.g. health outcomes). There are, however, at least two additional
reasons why functional models may be appealing. First, functional models
are consistent with the proposal that people are causal determinists (Pearl,
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2000; Goldvarg & Johnson-Laird, 2001; Luhmann & Ahn, 2005b; Frosch &
Johnson-Laird, 2011), and with empirical results which suggest that people
often invoke hidden variables to account for causal relationships that may
appear to be probabilistic on the surface (Schulz & Sommerville, 2006).
Second, Pearl (2000) has shown that functional causal models improve on
networks that incorporate probabilistic relationships by providing a natural
account of certain kinds of counterfactual inferences. Psychologists continue
to debate whether humans are causal determinists (Cheng & Novick, 2005;
Frosch & Johnson-Laird, 2011), but our work fits most naturally with the
determinist position.

Although many applications of causal models focus on a single object
at a time, a causal model F can be used to make predictions about an
entire object-feature matrix M . Suppose that the feature values for object
i are collected into a vector oi. The causal model F specifies a distribution
P (oi|F ) on these vectors using Equation 6, and these distributions can be
combined to produce a prior distribution on matrices M :

P (M |F ) =
∏

i

P (oi|F ). (7)

Equation 7 assumes that the object vectors {oi} (i.e. the rows of the ma-
trix) are conditionally independent given the feature model F (Figure 5a).
Many models of causal reasoning make this assumption of conditional inde-
pendence (Rehder & Burnett, 2005), and we refer to it as the assumption
of object independence.

Even though previous causal models are rarely described as models for
reasoning about entire object-feature matrices, most can be viewed as ap-
proaches that combine the Bayesian framework of Equation 3 with a prior
(Equation 7) defined using a feature model. Approaches of this kind have
been used to address problems including causal attribution, causal learning,
and property induction (Waldmann et al., 1995; Rehder, 2003; Danks, 2003;
Gopnik et al., 2004; Sloman, 2005). These approaches, however, suffer from
a well-known and serious limitation (Luhmann & Ahn, 2005b,a). In most
cases of interest, the feature model F will not capture all of the causally
relevant variables, and hidden variables will ensure that the assumption
of object independence is violated. Consider again the feature model F in
Figure 4a which specifies that obesity causes diabetes with probability 0.15.
Recall our earlier example where Tim, Tom and Zach are obese, where Tim
and Tom are identical twins, and where Tim has diabetes. The assumption
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Figure 5: Independence assumptions made by models of generalization. (a) Models of
causal reasoning generally assume that the rows of an object-feature matrix are condi-
tionally independent given a structure over the features. These models are often used
to account for across-feature generalization. (b) Models of similarity-based reasoning
generally assume that the columns of the matrix are conditionally independent given
a structure over the objects. These models are often used to account for across-object
generalization.

of object independence implies that Tom and Zach are equally likely to suf-
fer from diabetes, a conclusion that seems unsatisfactory. The assumption is
false because of variables that are unknown but causally relevant—variables
capturing unknown biological and environmental factors that mediate the
relationship between obesity and diabetes.

One possible response to this problem is to work with a functional model
that captures one or more unobserved variables. Consider, for example, the
functional model in Figure 4b where transmission variable t indicates the
presence of a certain gene that determines whether obesity causes diabetes.
If we were confident that Tom carried the gene but were uncertain about
whether Zach was a carrier, we might predict that Tom should be more
likely than Zach to have diabetes. Note, however, that the gene variable
is unobserved. In order to conclude that Tom carries the gene, we need to
use the observation that Tim has diabetes, which suggests that Tim carries
the gene, which in turn suggests that Tom also carries the gene. The final
step depends critically on the knowledge that Tim and Tom are similar—
knowledge that is violated by the assumption of object independence. In
other words, even if we use a functional feature model F , we need to find
some way to take relationships between objects into account.

We will relax the assumption of object independence by defining a prior
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distribution P (M) that combines the feature structure F with a structure
O that captures relationships between objects. Object structure O, for
example, can capture the fact that Tim and Tom are identical twins, and
are similar in many respects. First, however, we describe a prior distribution
P (M) that depends only on relationships between objects.

3.2. Object structures

We noted earlier that inferences may draw on different kinds of relation-
ships between features, and knowledge about relationships between objects
can be just as rich. The case of the three obese men shows that genetic
relationships can matter, but many other relationships can guide inferences
about unobserved features. Social relationships are relevant: for example,
John is more likely to be obese if many of his friends are obese (Christakis
& Fowler, 2007). Joint category membership may be relevant—if Rex and
Spot are both dogs, then they are likely to have certain features in com-
mon, and if Rex and Rover are both Labradors, then even more inferences
are licensed. Taxonomic relationships are often important when reasoning
about animals, but other kinds of relationships including ecological rela-
tionships and predator-prey relationships may also play a role (Shafto &
Coley, 2003). Finally, similarity can be treated as a relationship between
objects, and there may be many kinds of similarity that guide inductive
inferences (Medin et al., 1993).

Here we focus on a setting where the relationships of interest are cap-
tured by a single taxonomic tree. We previously described how Bayesian
networks can capture relationships between features, and the same approach
can capture relationships between objects.1 Suppose that we are given a
binary tree that captures taxonomic relationships among a set of m objects.
The objects o1 through om lie at the leaves of the tree, and we will use labels
om+1 through o2m−1 for the internal nodes of the tree. Figure 6a shows a
simple case where the leaves of the tree represent four animals: a mouse, a
rat, a squirrel and a sheep. The tree captures taxonomic similarity in the

1Although we focus in this paper on taxonomic relationships between objects, a tax-
onomic tree can also be used to capture inferences that rely on taxonomic relationships
between categories (Tenenbaum et al., 2007). One possible approach is to use a tree
where the leaves represent categories. The more general approach is to use a tree where
the leaves represent objects and the internal nodes represent categories—the resulting
representation can be used to make inferences about both objects and categories, and
may be useful for modeling tasks like those described by Murphy & Ross (2010).
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sense that objects nearby in the tree (i.e. nearby leaf nodes) are expected
to have similar feature values. Let each feature be a vector (o1, . . . , o2m+1)
that assigns a value to each node in the tree, including the internal nodes.
We will define a probability distribution over feature vectors which captures
the idea that adjacent nodes tend to have the same feature value. Figure 6b
shows two possible feature vectors. The first includes only one case where
adjacent nodes have different values—object o4 takes value 1 but the root
node takes value 0. The second feature vector includes two cases where
adjacent nodes take different feature values, and will therefore be assigned
lower probability than the first feature vector.

We formalize these intuitions by turning the tree structure into a Bayesian
network O. Suppose that λj is the base rate of feature fj: in other words,
the expected proportion of objects that have feature fj. The Bayesian net-
work O takes the base rate λj as a parameter, and specifies a distribution
P (fj|O, λj) over possible extensions of feature fj. Like all Bayesian net-
works, O includes a set of conditional probability distributions that specify
how the value at each node depends on the values of its parents. The con-
ditional probability distributions for O capture two basic intuitions: nodes
tend to inherit the same values as their parents, but exceptions are possible,
and become more likely when a child node is separated by a long branch
from its parent. The following conditional distribution satisfies all of these
requirements:

P (oi = 1|π(oi)) =











λ + (1 − λ)e−l, if π(oi) has value 1

λ − λe−l, if π(oi) has value 0

λ, if oi is the root node

(8)

where l is the length of the branch joining object oi to its parent. The last
case in Equation 8 specifies that the probability distribution at the root
node (o2m+1) is determined directly by the base rate λ.

The conditional probability distributions in Equation 8 emerge from
some simple assumptions about how features are generated. Suppose that
feature fj takes a value at every point along every branch in the tree, not just
at the nodes. Imagine feature fj spreading over the tree from root to leaves:
the feature starts out at the root node with some value, and may switch
its value (or mutate) at any point along any branch. Whenever a branch
splits, both lower branches inherit the value of the feature at the point
immediately before the split, and the feature now spreads independently
along the two lower branches. Equation 8 follows from the assumption that
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Figure 6: Capturing taxonomic relationships between objects. (a) A tree structured
graphical model. The conditional probability distribution for node v is shown, and
all other conditional probability distributions are defined in the same way. (b) Prior
probabilities assigned by the model in (a). Black nodes take value 1, and white nodes
take value 0.

the feature value at any point in the tree depends only on the base rate λ and
the feature value at the immediately preceding point.2 Equation 8 has been
previously used by computational biologists to study the evolution of genetic
features (Huelsenbeck & Ronquist, 2001), and has also been proposed as a
psychological model of property induction (Tenenbaum et al., 2007). Other
methods for defining probability distributions over trees are possible (Kemp
& Tenenbaum, 2009), and any model which captures the idea that nearby
objects in the tree tend to have similar features is likely to work for our
purposes.

The branch lengths in the tree help to capture the taxonomic relation-
ships between objects. In Figure 6a, for example, the distance between o1

and o3 in the tree is twice the distance between o1 and o2, indicating that
o1 is more similar to o2 than o3. For all applications we assume that the
topology of the tree and the relative magnitudes of the branch lengths are
fixed, but that there is a single free parameter which corresponds to the
total path length of the tree. If the total path length is very small then all
of the objects are effectively very close to each other, and the prior distri-
bution captured by network O will assign a prior probability of 1−λ to the

2Technically speaking, transitions between feature values are modeled using a
continuous-time Markov chain with infinitesimal matrix:

Q =

[

−λ λ

1 − λ −(1 − λ)

]
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feature where all objects take value 0 and a prior of λ to the feature where
all objects take value 1. If the total path length is very large then all of
the objects are effectively very distant from each other, and the prior dis-
tribution captured by O will be similar to a distribution where the feature
values for each object are independently generated by tossing a weighted
coin with bias λ.

We have now defined a Bayes net O that specifies a distribution P (fj|O, λj)
over single features. As before, this distribution can be used to define a prior
distribution on object-feature matrices:

P (M |O,λ) =
∏

j

P (fj|O, λj) (9)

where λ is a vector that specifies base rates for all features in the matrix.
Equation 9 follows from the assumption of feature independence: the as-
sumption that the features (ie. the columns of the matrix) are conditionally
independent given the object structure O (Figure 5b).

The assumption of feature independence is relatively common in the
psychological literature. Kemp & Tenenbaum (2009) describe four models
of property induction that rely on this assumption, and Anderson’s rational
model of categorization is based on a very similar assumption. There are
some cases of interest where this simplifying assumption appears to be jus-
tified. Consider, for example, inferences about blank features: given that
whales have feature F, which other animals are likely to share this fea-
ture (Rips, 1975; Osherson et al., 1990)? Since little is known about feature
F, it cannot be directly linked with any single known feature, and inferences
about tasks of this kind tend to conform to taxonomic similarity. Partic-
ipants might conclude, for example, that dolphins are more likely to have
feature F than mice, since whales are more similar to dolphins than mice.
A model that uses Equation 9 as its prior will account for results of this
kind if the structure O captures taxonomic relationships between animals.

Although the assumption of feature independence is occasionally appro-
priate, models that make this assumption are limited in a fundamental way.
A core finding from empirical work on property induction is that different
features lead to different patterns of inductive inference (Gelman & Mark-
man, 1986; Macario, 1991; Heit & Rubinstein, 1994; Shafto & Coley, 2003).
Suppose, for example, that whales have a given feature, and that you need
to decide whether bears or tuna are more likely to share the feature (Heit
& Rubinstein, 1994). If the feature is anatomical (e.g. “has a liver with two
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chambers”), the anatomical match (bear) seems like the better response,
but behavioral features (e.g. “travels in a zig-zag trajectory”) support the
behavioral match (tuna) instead. The assumption of feature independence
cannot account for this result. Any model that makes this assumption pre-
dicts that two novel features will be treated in exactly the same way, since
both are conditionally independent of all other features given a representa-
tion (O) of the relationships between animals.

The assumption of feature independence is unwarranted in part because
people know about causal relationships between features. People know, for
example, that “traveling in a zig-zag trajectory” is likely to be related to
other features (like swimming and living in the water) that are shared by
tuna and whales but not by bears and whales. Cases of this kind can be
handled by combining causal relationships between features with taxonomic
relationships between objects, and the next section considers how this com-
bination can be achieved.

4. Combining knowledge structures

We have now described two models that can be used for reasoning about
partially observed object-feature matrices. The feature model relies on a
graph structure that captures causal relationships between features, and the
object model relies on a graph structure that captures taxonomic relation-
ships between objects. This section describes three approaches that can be
used to combine these models. The approaches are summarized in Figure 7,
and the critical difference between the three is the level at which the ob-
ject and feature models are combined. The output combination approach
combines the outputs generated by the two models, the distribution combi-

nation approach combines the probability distributions captured by the two
models, and the structure combination model combines the graph structures
over which the two models are defined. All three approaches seem plausi-
ble, but we will end up concluding that the structure combination approach
provides the best account of our data.

4.1. The output combination model

Suppose first that the feature structure F and the object structure O

are stored and used by two distinct reasoning modules. If these modules
are informationally encapsulated (Fodor, 1983) there can be no direct in-
teractions between these two structures. The predictions consistent with
each structure, however, may be combined by some system that receives
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Figure 7: Three methods for combining an object structure O and a feature structure F .
(a) The object and feature structures both induce prior distributions over object-feature
matrices M . The output combination approach uses priors PO(M) and PF (M) to gen-
erate outputs consistent with each structure in isolation, then combines these outputs to
generate output C , the overall combined output. (b) The distribution combination ap-
proach combines the priors PO(M) and PF (M) to generate a combined prior distribution
PC(M) over object-feature matrices. This prior is used directly to generate the overall
output. (c) The structure combination model combines the object and feature structures
to create a combined structure C over which a prior distribution PC(M) is defined.

input from both modules. This approach to knowledge integration is shown
schematically in Figure 2b, and we refer to it as the output combination
model (or OC model for short). Figure 7a shows how the OC approach can
be applied given probabilistic models defined over structures F and O. The
two models induce priors PO(M) (Equation 9) and PF (M) (Equation 7)
over object-feature matrices M , and these two priors can be used to gener-
ate outputs in response to any given query. The overall or combined output
is generated by combining these two outputs.

The OC model has been previously discussed in the literature on infor-
mation integration (Anderson, 1981), which explores how multiple sources
of information can be combined. The most typical approach in this litera-
ture is to combine multiple predictors using a simple mathematical function
such as a sum (Lombardi & Sartori, 2007), a product (Medin & Schaffer,
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1978; Massaro & Friedman, 1990; Ernst & Banks, 2002), or a weighted av-
erage (Anderson, 1981). We implemented all of these possibilities and the
OC model evaluated in this paper uses a weighted average, which turned
out to be the best performing combination function.

The OC approach is very general and can be used to combine the pre-
dictions of any set of models, including some that are probabilistic and
some that are not. In addition to the psychological literature on informa-
tion integration, the approach has also been explored in several other fields,
including statistics, machine learning, and artificial intelligence. For exam-
ple, the weighted average model evaluated in this paper will be familiar to
machine learning researchers as a “mixture of experts” approach (Jacobs
et al., 1991).

From a normative perspective, one limitation of the OC model is that it
sometimes fails to draw out the full implications of the available information.
For example, suppose that you know that obesity causes diabetes, that
Tim and Tom are identical twins, and that Tim is obese. The OC model
can infer that Tim is likely to have diabetes and that Tom is likely to be
obese, since these conclusions follow from the feature and object models
respectively. The OC model, however, cannot infer that Tom is likely to
have diabetes, since this conclusion follows from neither component model
in isolation. More generally, the OC model cannot make informed inferences
about arguments where the objects and features mentioned in the conclusion
do not appear among the premises. The argument in Figure 1c is one
example: the OC model can infer that the rat is likely to have gene X, and
that the mouse is likely to have enzyme Y, but cannot infer that the rat is
likely to have enzyme Y. This potential weakness of the OC model can be
addressed by combining the feature and object models directly instead of
combining their outputs. This approach is shown schematically in Figure 2c,
and the following sections describe two instances of this approach.

4.2. The distribution combination model

If the two component models are both probabilistic models, the two
can be combined by combining the prior distributions that they capture.
Figure 7b summarizes this approach and shows that the priors PO(M) and
PF (M) are combined to create a prior PC(M) that is then used to compute
the final output. We refer to this approach as the distribution combination
model, or the DC model for short.

Just as there are several ways to combine the outputs of two modules,
the prior distributions induced by two models could be combined using a
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weighted average or a product. The DC model evaluated in this paper uses
a prior that is the product of the priors for the two component models:

P (M |F,O) ∝
∏

i

P (oi|F )
∏

j

P (fj|O, λj), (10)

where the base rate λj for feature fj is set by the marginal probability of fj

according to F . This model will be familiar to machine learning researchers
as a “product of experts” model (Hinton, 2000). A DC model that relies on
a weighted average of priors is also worth considering, but this model turns
out to be equivalent to an OC model that relies on a weighted average. In
general, however, a DC model will not be equivalent to an OC model—for
example, a DC model that relies on a product of priors does not generate
the same predictions as an OC model that relies on a product. As a result,
the DC approach should be distinguished from the OC approach.

The DC prior in Equation 10 assigns high probability only to matrices
that receive relatively high prior probability according to both the feature
model (Equation 7) and the object model (Equation 9). For example, in the
obesity and diabetes example, the matrices that receive high prior probabil-
ity are those where Tim and Tom have the same feature values, and where
individuals with diabetes are obese. This prior can then be used to generate
predictions about unobserved entries in an object-feature matrix, as sum-
marized by Figure 3. For example, the model can handle the argument in
Figure 1c that proved challenging for the OC model. Given that the mouse
has gene X, the DC model can predict that the rat is likely to have enzyme
Y, an inference that relies on both the similarity between the mouse and
the rat and the causal relationship between gene X and enzyme Y.

Although the DC model is capable of making sensible qualitative pre-
dictions about all of the generalization problems described so far, it may
struggle to make accurate quantitative predictions. From a normative per-
spective, one limitation of the approach is that it assigns too much weight to
feature base rates. Consider a very simple setting where there is one object
and one feature with a base rate of 0.9. Matrix M is either 1 or 0, and the
probability that M = 0 should intuitively be 0.1. The DC model, however,
generates a prior distribution where P (M = 0) ≈ .01. Since the prior is
generated by multiplying a distribution over rows with a distribution over
columns, the model effectively uses the base rate twice, which means that
probabilities of rare events (e.g. M = 0) end up much smaller than they
should. Our experiments do not address this limitation directly, but it may
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Figure 8: The structure combination model is created by combining an object structure
O with a feature structure F . The feature structure F shown here is the same as the
structure in Figure 4b, although the spatial layout of the variables has been altered. The
SC model assumes that the root variables in F (here b1, b2 and t) are independently
generated over O, and can be represented as a causal graphical model. The arrows on
the edges of the graphical model are inherited from the component structures, but all
except three have been suppressed for visual clarity. Note, for example, that all edges
inherited from the feature structure F are oriented from left to right.

help to explain why the DC model achieves relatively low quantitative fits
in some cases.

Moving from simple generalization problems to problems involving causal
inferences about interventions and counterfactuals may raise some more fun-
damental challenges for the DC model. One common approach to causal
reasoning makes use of a directed graph that captures causal relationships
between variables, and manipulates this graph in order to reason about in-
terventions and counterfactuals. The two components of the DC model are
defined over directed graphs, but there is no overall graph structure that
captures the way in which these two component graphs combine. It may
turn out that manipulating each component graph separately then combin-
ing the two according to the DC approach is enough to account for human
inferences about interventions and counterfactuals. Our third experiment
explores this possibility, and to preview the results we find a qualitative mis-
match between human inferences and the predictions of the DC approach.
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4.3. The structure combination model

The DC model combines an object and a feature structure by combining
the distributions induced by these structures, but the structure combina-
tion approach (SC approach for short) combines these structures directly.
Figure 2 shows that the combined structure C induces a prior distribution
PC(M), which can then be used to make inferences about generalization
problems.

To explain how the two structures are combined, we use an example
where feature structure F is the functional model in Figure 4b and O is a tree
defined over three objects (Figure 8a). Recall that structure F indicates that
obesity (f1) causes diabetes (f2), and suppose that structure O indicates
that Tim and Tom (o1 and o2) are more similar to each other than either
one is to Zach (o3). Note that the relationship between obesity (f1) and
diabetes (f2) in Figure 4b is mediated by a transmission variable t, which
summarizes the influence of genetic factors that are unknown but relevant.

Even though variable t may capture one or more unknown factors, we
do know something about this variable—we expect that the values it takes
across the three objects will tend to respect the similarity relationships
captured by O. For example, if the transmission variable t takes value 1 for
just two of the three individuals, we might expect that these two individuals
are more likely to be Tim and Tom (a similar pair) than Tim and Zach
(a dissimilar pair). The other root variables should likewise respect the
similarity relationships captured by O, and we therefore assume that all
root variables in F are generated independently over O:

P (M |F,O) = P (b1|O, λb1)P (b2|O, λb2)P (t|O, λt)P (f1|b1)P (f2|b2,f1, t)
(11)

where each matrix M now includes five columns for variables b1, b2, t, f1 and
f2, and the base rates λb1 , λb2 , and λt are specified by the feature structure
F . The last two terms on the right-hand side of Equation 11 indicate that
variables f1 and f2 depend on the root variables but not the object structure
O. There is no need to generate f1 and f2 over the object structure, since
these variables are deterministically specified once the root variables have
been fixed.

The prior distribution in Equation 11 can be represented as a causal
Bayesian network defined over a graph product of feature structure F and
object structure O. Figure 8 shows the graph for this network. Note that we
have introduced a copy of O for each root variable in F , and that these root
variables are connected to the deterministic variables f1 and f2 as specified
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by F . The graph product in Figure 8 inherits its conditional probability
distributions from the feature structure F and the object structure O. As
a result, the Bayesian network corresponds exactly to the prior distribution
in Equation 11.

The SC model in Figure 8 is a network where the six variables of primary
interest (i.e. the six variables representing values of f1 and f2 for the three
objects) are deterministically specified given their parent variables. The
model therefore qualifies as a functional causal model and offers all of the
advantages of these models. For example, the SC model can be used in the
standard way to reason about interventions and counterfactuals. Since the
SC model can be represented as a Bayesian network, model predictions can
be computed efficiently by standard algorithms for inference in Bayesian
networks. All of the results in this paper were computed using the Bayes
Net toolbox (Murphy, 2001). Figure 8 shows how our approach can be
used to integrate one specific feature structure F and one specific object
structure O, but the same approach can be used when F is any functional
causal model and O is any tree structure. We will illustrate this flexibility
by considering several different feature structures in our experiments.

Although the SC model is motivated by problems where object struc-
tures and feature structures should be combined, previous studies have doc-
umented cases where multiple structures are not combined. For example,
Rehder (2006) describes some cases where causal relationships between fea-
tures appear to dominate similarity relationships between objects, and the
two are not combined. Any account of knowledge integration should there-
fore attempt to distinguish between cases where multiple structures are and
are not combined. Since this paper focuses on taxonomic relationships be-
tween objects and causal relationships between features, we need some way
to predict when taxonomic relationships should be taken into account. The
SC model motivates the following taxonomic influence principle:

Taxonomic relationships should be taken into account if and only
if these relationships provide information about the distribution
of variables that are unobserved but causally relevant to some
feature of interest.

The taxonomic influence principle identifies two distinct cases where
taxonomic relationships should play no role. The first case includes prob-
lems where taxonomic relationships are simply irrelevant to the features of
interest. Suppose, for example, that an eccentric businessman is interested
in buying animals with names that end in a consonant. In this case the
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assumptions of the SC model do not apply, since the causal variables that
influence the businessman’s decision do not respect the similarity relation-
ships between animals captured by a taxonomic tree. The second case in-
cludes problems where taxonomic relationships are relevant to the features
of interest, but where there are no unobserved root variables. In Figure 4b,
for example, there are three root variables (t, b1 and b2), and the SC model
in Figure 8 predicts that taxonomic relationships will not shape inferences
once these three variables are observed for each object. Although this sec-
ond case is a legitimate theoretical possibility, in real-world settings it is
usually impossible to observe all of the causal root variables. We therefore
expect that the first case will cover most of the real-world settings where
taxonomic relationships are found to play no role in inductive reasoning.

4.4. Special cases of the structure combination model

Although this paper focuses on problems where object structures and
feature structures must be combined, the combination models just described
can also make inferences about cases where only one structure is relevant.
We illustrate by explaining how our approach of choice—the SC model—
subsumes previous probabilistic models that rely on either a feature struc-
ture or an object structure in isolation.

Many previous authors have used Bayes nets to account for inductive
reasoning, and any model that corresponds to a Bayes net defined over
features or a Bayes net defined over objects can be viewed as a special case of
the SC model. Accounts of causal reasoning (Glymour, 2001; Rehder, 2003;
Gopnik et al., 2004; Griffiths & Tenenbaum, 2005) often rely on Bayes nets
defined over features, and the SC model reduces to a Bayes net of this kind
when the object structure O indicates that all objects are equally similar to
each other. Suppose, for example, that object structure O is a tree where
all objects are directly linked to the root node and lie at the same distance
from this node. In this case the object structure plays no role and the
SC model is identical to a model which assumes that objects correspond
to independent samples from a Bayes net defined over features. Several
previous accounts of across-object generalization rely on Bayes nets defined
over objects (Shafto et al., 2008; Tenenbaum et al., 2007), and the SC model
reduces to a Bayes net of this kind when the feature structure F indicates
that all features are independent. In this case the feature structure plays no
role, and the SC model is identical to a model which assumes that features
correspond to independent samples from a Bayes net defined over objects.
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Since the SC model subsumes most previous models that rely on Bayes
nets, it accounts for the data that have been presented in support of these
models in exactly the same way as the original models. The SC model should
therefore be viewed not as a competitor to these previous models, but as
an extension of these models. Previous models suggest that Bayes nets can
be used to capture both relationships between features and relationships
between objects, and the key contribution of the SC model is to demonstrate
how these different kinds of knowledge can be combined.

5. Experiment 1: Generalization across objects and features

Our working hypothesis is that people find it natural to combine rela-
tionships between features and relationships between objects. Real-world
examples like the case of the three obese men appear to support our hy-
pothesis, and we designed three experiments to test this hypothesis under
controlled laboratory conditions. All of our experiments used a set of four
animals—a mouse, a rat, a squirrel and a sheep. These animals were cho-
sen to include pairs that are similar (e.g. mouse and rat) and pairs that
are not (mouse and sheep). A taxonomy that captures similarity relation-
ships between these animals is shown in Figure 9a. A generalization task
described in Appendix Appendix A confirmed that this tree matches hu-
man judgments about the relationships between these four animals. We
explored several different feature structures and four examples are shown in
Figure 9b.

Our first two experiments explore whether people make inferences that
simultaneously draw on relationships between objects and relationships be-
tween features. The OC, DC and SC models all predict that object and
feature structures are combined, and we compare these models with alter-
natives that rely on a feature structure alone or an object structure alone.
Our third and final experiment focuses on counterfactual interventions, and
we explore whether and how people combine object and feature structures
in this setting.

Our first experiment considers a setting where participants are asked to
make inferences about the missing entries in an object-feature matrix. The
matrix is sparsely observed: for example, participants might be told only
that the mouse has f1, then asked to fill in the remaining entries. We were
interested to see whether their responses would be guided by the causal
relationships between the features, the taxonomic relationships among the
four animals, or by both kinds of relationships.
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Figure 9: Object and feature structures used for experiments 1 and 2. (a) An object
structure O that captures taxonomic relationships between the four animals in our ex-
periments. (b) Feature structures F that summarize four kinds of relationships between
the observed features in our experiments. The thick grey edge between features f1 and
f2 in the common effect model indicates that these features are mutually exclusive. The
undirected edge between f1 and f2 in the cluster structure indicates that these features
are known to co-occur, but that neither feature causes the other. Functional causal
models consistent with each structure are shown in Figure B.20 of the appendix.

5.1. Participants

16 MIT undergraduates participated in the experiment in exchange for
pay. Participants were recruited through newsgroup and bulletin board
postings and had no personal connection with the experimenters.

5.2. Materials

Participants read the following instructions:

“You are a biochemist and you study enzyme production in
mammals. Each mammal produces many enzymes, and different
mammals can produce very different sets of enzymes. In your
lab today you have a mouse, a rat, a sheep and a squirrel. You
will be running tests on each animal to determine the presence
of certain enzymes.”

The experiment had three within-participant conditions, each of which
was associated with a different set of features. Each feature indicates the
presence or absence of an enzyme. Pseudo-biological names like “dexotase”
were used in the experiment, but here we use labels such as f1 and f2. The
relationships between the observed features in each condition are summa-
rized in Figure 9b. In the chain condition, participants were told that f3

is known to be produced by several pathways, and that the most common
pathway begins with f1, which stimulates production of f2, which in turn
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leads to the production of f3. In the common-effect condition, participants
were told that f3 is known to be produced by several pathways. One of
the most common pathways involves f1 and the other involves f2, although
f1 and f2 are rarely found in the same animal. In the cluster condition,
participants were told about four enzymes: f1 and f2 are complementary
enzymes that work together in the same biochemical pathway, and f3 and f4

are complementary enzymes that work together in a different biochemical
pathway.

To reinforce each causal structure, participants were shown 20 cards
representing animals from twenty different mammal species (names of the
species were not supplied). The card for each animal included a bar chart
which showed whether or not that animal had tested positive for each en-
zyme in the current condition. The cards were chosen to be representative
of the distribution induced by a functional model with known structure
and known parameterization. The functional models and the cards used
for each condition are described in Appendix Appendix A. Even though
each condition is based on a functional causal model, note that the cards
and all other experimental materials mention only some of the variables
in these models, and all of the information participants received was con-
sistent with the existence of probabilistic causal relationships between the
observed variables. We chose not to train participants on functional mod-
els for two reasons. First, real-world causal problems often involve systems
where many of the relevant variables are unknown, which means that causal
relationships between observed variables typically appear to be probabilis-
tic. Second, previous psychological studies typically focus on probabilistic
relationships between observed variables, and we wanted to maintain con-
tinuity with the large body of existing work in this area.

5.3. Procedure

The experiment began with a preliminary taxonomic task that was de-
signed to probe background knowledge about taxonomic relationships be-
tween the four animals in the study. Participants were told that scientists
had recently identified four enzymes and were asked 12 questions of the
following form:

“You discover that the mouse produces enzyme Q84. How likely
is it that the rat produces Q84?”

Responses were provided on a scale from 0 (very unlikely) to 100 (very
likely).
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Participants then moved on to the three within-participant conditions.
In each condition, participants read a description of a given causal struc-
ture: chain, common-effect or clusters. As described above, participants
were given a set of 20 cards showing samples consistent with the causal
structure. After participants had studied the cards for as long as they
liked, the cards were removed and participants responded to a preliminary
causal task including questions about unidentified mammals. One group of
questions asked about the base-rate of each feature:

“You learn about a new mammal. How likely is it that the
mammal produces enzyme f1?

The remaining questions asked about relationships between features:

“You learn that a mammal produces enzyme f1. How likely is
it that the same mammal also produces enzyme f2?

The questions in this preliminary task were intended to encourage partici-
pants to reflect on the causal relationships between the enzymes.

In each condition, participants were told that they would be testing the
four animals (mouse, rat, sheep and squirrel) for each enzyme of interest. In
the chain and common-effect conditions there were 12 tests in total (three
for each animal), and in the clusters condition there were 16 tests in total.
Each condition included two tasks. In the chain condition, participants were
told that the mouse had tested positive for f1 and were asked to predict the
outcome of the 11 remaining tests. Participants were then told in addition
that the rat had tested negative for f2, and asked to predict the outcome
of the 10 remaining tests. Note that this second task requires participants
to integrate causal reasoning with taxonomic reasoning: causal reasoning
predicts that the mouse has f2, and taxonomic reasoning predicts that it
does not. In the common-effect condition, participants were told that the
mouse had tested positive for f3, then told in addition that the rat had
tested negative for f2. In the cluster condition, participants were told that
the mouse had tested positive for f1, then told in addition that the rat had
tested negative for f4.

Responses to all questions were provided on a scale from 0 (very likely to
test negative) to 100 (very likely to test positive). Participants made their
responses by filling in a matrix with a row for each object and a column
for each feature. One or two entries in the matrix were already present: for
example, if participants had been told that the mouse had tested positive
for f1, the corresponding entry in the matrix was set to 100.
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Figure 10: Experiment 1: Average human responses (column 1) and predictions for
four models. All models generate probabilities as output, and these probabilities have
been multiplied by 100 for comparison with the human data. (a) Results for the chain
condition. In this figure and subsequent figures, known test results are marked with
wedges. In task 1, participants were told only that the mouse had tested positive for
f1, and in task 2 they were told in addition that the rat had tested negative for f2.
Error bars represent the standard error of the mean. (b) Results for the common-effect
condition. (c) Results for the clusters condition.
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5.4. Model predictions

We will evaluate all models by considering both the qualitative effects
that they predict and their quantitative correspondence with the human
data. All models except the feature model rely on a tree that captures
taxonomic relationships between the animals. We used the tree shown in
Figure 9 which captures the idea that the mouse and the rat are very similar,
that these two animals are somewhat similar to the squirrel, and that none
of these three animals is very similar to the sheep. The branch terminating
at the sheep is 3 units long, the branch terminating at the squirrel is 2 units,
and all remaining branches are of length 1. Note that the four animals all lie
at the same distance from the root. The tree component of each model has
one free-parameter—the total path length of the tree. The smaller the path
length, the more likely that all four animals have the same feature values,
and the greater the path length, the more likely that distant animals in the
tree (e.g. the mouse and the sheep) will have different feature values. For
each model, the path length is set to the value that maximizes the average
correlation with human data across Experiments 1 and 2. The values for
the object model, OC model, DC model and SC model were 3.5, 1.9, 2.9
and 2.0 respectively.

All models except the object model rely on a functional causal model
that captures relationships between the features. The functional models F

used for each condition are shown in Figure B.20. Note that the functional
models include no free numerical parameters, since the base rates for the
root variables are fixed by the parameters of the network that generated
the cards shown to participants during the training phase. The OC model
has one additional parameter that specifies the weights assigned to the two
component models. All results reported here use a weight of 0.42 for the
feature model and a weight of 0.58 for the object model, and these values
maximize the average correlation with human data across Experiments 1
and 2. The correlations achieved by the model are only marginally lower if
the component models are weighted equally.

The second and third columns of Figure 10 show predictions for a feature

model that uses the feature structure alone, and an object model that uses
the object structure alone. In task 1 of the chain and common-effect condi-
tions, neither approach predicts that inferences about all three features will
decay smoothly over the tree. The feature model does not incorporate tax-
onomic relationships between the objects and makes identical predictions
about the rat, the squirrel and the sheep. The object model does not incor-
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porate causal relationships between features and therefore has no basis for
making predictions about f2 and f3 given information about f1.

The final three columns in Figure 10 show predictions for the three
combination models. The predictions of all models are probabilities, and
these probabilities have been multiplied by 100 for comparison with the
human data reported in the next section. All combination models predict
that responses will be guided by both the feature structure F and the ob-
ject structure O. The predictions for task 1, however, reveal an important
qualitative difference between the OC model and the DC and SC models.
Given a single observed entry in an object-feature matrix, all of the com-
bination models predict that humans will make informed inferences about
the row and the column that contain the observation. For example, given
that the mouse has f1 and that f1 causes f2 (chain condition), all three
models predict that participants will infer that the rat is relatively likely
to have f1 and that the mouse is relatively likely to have f2. The DC and
SC models predict that participants will use the single observation provided
to make inferences about the rest of the matrix—for example, in the chain
condition both predict that participants will infer that the rat is relatively
likely to have f2. In contrast, the OC model cannot make informed infer-
ences about entries in the matrix that do not belong to the same row or
column as the single observation, and predicts that participants will fall
back on base rates when reasoning about these entries. Our model evalua-
tion will focus on one important consequence of this qualitative difference
between the models. In task 1 of each condition, the OC model predicts
that inferences about the observed feature will decay over the tree, but that
inferences about the remaining features will be identical for the rat, squirrel
and sheep. The DC and SC models predict that inferences about all features
(chain and common-effect) or about the first two features (clusters) will de-
cay smoothly over the tree. For example, in task 1 of the chain condition
the OC model predicts that inferences about f2 and f3 will be identical for
the rat, squirrel, and sheep, but the DC and SC models both predict that
the rat is more likely to have f2 and f3 than the sheep.

In task 2 of each condition, all combination models use the causal struc-
ture F and the object structure O to reconcile the two observations pro-
vided. In the chain condition, the second observation is unexpected: given
that the mouse has f1, the rat is similar to the mouse, and that f1 causes
f2, it is surprising that the rat does not have f2. All combination models
infer that the second observation makes it less likely that the mouse has
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f2 and that the rat has f1. In the common effect condition the second ob-
servation is less surprising: given that the mouse has f3, this feature was
probably caused by f1 or f2, and given that the rat does not have f2, f1 is
the more likely of the two causes. All combination models therefore infer
that all of the animals are more likely to have f1 than f2. Task 2, however,
does produce some subtle qualitative differences between the models. As
for task 1, we focus here on predictions about entries in the matrix that do
not belong to the same row or the same column as an observed entry. In
the chain condition, the OC model predicts that the squirrel and sheep are
both equally likely to have f3, but the DC and SC model predict that the
sheep is marginally more likely than the squirrel to have this feature. In
the common effect condition, the OC model predicts that the squirrel and
sheep are both equally likely to have f1, but the DC and SC model predict
that the squirrel is more likely than the sheep to have this feature. In the
cluster condition, the OC model predicts that the squirrel and sheep are
equally likely to have f2 and f3. The DC and SC models, however, predict
that all of the animals are more likely to have the features in the first cluster
(f1 and f2) than the features in the second cluster (f3 and f4). All of these
qualitative differences are consequences of the fact that the OC model can
make informed entries only about matrix entries that belong to either the
same row or the same column as an observed entry.

5.5. Results

Responses to the preliminary taxonomic task suggested that the tree
in Figure 9 accurately captures background knowledge about taxonomic
relationships between the four animals in our experiment. Responses to the
preliminary causal tasks suggested that participants understood the causal
structures in Figure 9. These results support the idea that the structures
in Figure 9 are appropriate for modeling the data collected in the rest of
the experiment. More details about the results of the preliminary tasks are
provided in Appendix Appendix A.

Mean responses for the three conditions are shown in the first column
of Figure 10. Before considering the quantitative fit of each model, we first
assess the qualitative predictions identified in the previous section. In all
three conditions, human inferences appear to be guided by both the causal
relationships between features and the taxonomic relationships between ob-
jects. In task 1 of each condition, predictions about all features (chain and
common-effect conditions) or about the first two features (clusters condi-
tion) decay smoothly over the tree. As predicted by the DC and SC models
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but not the OC model, participants are able to use a single observation to
make informed predictions about the entire object-feature matrix. Compar-
isons between predictions for the rat and the sheep are especially revealing.
In the chain condition, sign tests indicate that the rat is judged more likely
than the sheep to have f2 and f3 (p < 0.05 in both cases). In the common-
effect condition, the rat is judged more likely than the sheep to have f1

and f2 (sign tests yield p < 0.05 in both cases). In the clusters condition,
the rat is judged more likely than the squirrel and sheep to have f2 (sign
tests yield p < 0.05 in both cases). All of these results are inconsistent with
the feature, object, and OC models, but are captured by the DC and SC
models.

Responses for the second task in each condition suggest that participants
reconcile multiple observations as predicted by the combination models.
After receiving a second observation in the chain condition, participants
consider it less likely that the mouse has f2 and that the rat has f1. In
task 2 of the common effect condition, participants infer that the mouse,
the rat and the squirrel are all more likely to have f1 than f2. In task
2 of the clusters condition, participants infer that the mouse, the rat and
the squirrel are all more likely to have f1 and f2 than f3 and f4. Unlike
the results for task 1, the data for task 2 provide only partial support for
the prediction that participants make informed inferences about entries in
the object-feature matrix that do not belong to the same row or column
as an observed entry. In the chain condition, the squirrel is judged more
likely than the sheep to have f3, but the DC and SC models generate a
small difference in the opposite direction. In the common effect condition,
the squirrel is judged more likely than the sheep to have f1 but a sign test
indicates that this difference is only marginally significant (p < 0.1). In the
clusters condition, the squirrel is judged more likely than the sheep to have
f3 (again p < 0.1), but the sheep is judged equally likely to have f2 and f3.
Overall, the qualitative effects identified for task 1 provide strong support
for the DC and SC models ahead of the OC model, but the qualitative
effects for task 2 do not distinguish as clearly between the combination
models. Note, however, that the qualitative effects for task 2 all correspond
to relatively small quantitative differences according to the predictions of
the SC model.

To further assess the performance of the models we computed correla-
tion coefficients between the human data and the predictions of each model.
A correlation coefficient is a relatively crude measure of performance in this
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setting, but Figure 10 shows that the SC model achieves the highest corre-
lations overall. The most important differences between the SC model and
the OC model emerge in Task 1 of each condition. Although the correlations
achieved by these models are similar, the OC model performs slightly worse
than the SC model because it does not make informed inferences about rows
and columns that do not include the single observation provided. In task 1
of the chain condition, for example, the model observes that the mouse has
f1 but does not infer that the probability that the rat has f2 is now above
baseline. Instead, the model predicts that the rat, squirrel and sheep are
equally likely to have f2. In contrast, the SC model successfully predicts
that inferences about all features (including f2 and f3) will decay over the
tree.

The SC and DC models perform similarly in the common-effect and
clusters conditions, but the SC model provides the better account of the
chain condition. In task 1, the DC model predicts that the rat, the squirrel
and the sheep are all less likely to have f1 than f2 and f3. This result is
driven by the base-rate of f1 specified by the causal model—note that the
feature model also makes the same prediction. The poor performance of
the DC model is therefore consistent with our earlier suggestion that this
model tends to overweight base rate information. The correlation for task
2 of the chain condition is better, but note that the DC model still makes
inaccurate predictions: unlike the SC model, the DC model predicts that
the rat and the squirrel are more likely to have f3 than f1. Both tasks in
the chain condition therefore suggest that the DC model provides an imper-
fect account of how humans combine causal relationships with taxonomic
relationships.

The inferences made by the DC model depend on the free-parameter
mentioned previously: the total path length of the tree O. When this pa-
rameter is very small, predictions about all four animals are very similar
to predictions about the mouse, and when the parameter is very large, the
DC model makes predictions very similar to the feature model. Adjusting
the parameter allows the model to interpolate between these two extremes,
but no setting of the parameter allows the model to strike the right balance
between the causal relationships and the taxonomic relationships. The pre-
dictions in Figure 10 are for the parameter setting that maximizes model
performance across all of the tasks, but if the parameter is fitted specifically
for task 1 of the chain condition, the correlation achieved is still only 0.70.

Although the SC model provides a good account of the average response
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to each task, it may seem possible that the success of this model depends
on averaging the predictions of participants with very different strategies.
If some participants matched the feature model and others matched the ob-
ject model, then the average response would be similar to the predictions of
the OC model, which computes a weighted average of the predictions of the
component models. The qualitative differences between the OC predictions
and the human data provide some initial evidence that some participants
are combining feature and object structures. More direct evidence is pro-
vided by partitioning participants into three groups depending on whether
their responses relied on the feature relationships alone, the object relation-
ships alone, or on a combination of these relationships. To create these
groups we computed whether the responses of each participant correlated
best with the feature model, the object model, or the SC model. The
pathlength parameters used by the object and SC models were not fit to
each individual participant but fixed throughout to the values that gener-
ated the predictions in Figure 10. Four participants matched the feature
model, two participants matched the feature model, and 10 out of 16 partic-
ipants matched the SC model. We can therefore conclude that the average
responses in Figure 10 are representative of the responses of many partici-
pants, and that the majority of participants combined feature relationships
with object relationships.

Overall, the results of Experiment 1 suggest that the combination models
are superior to the models that rely on a feature structure alone or an object
structure alone, and that the SC model is the best of the three combination
models. These results suggest that participants can combine relationships
between features and relationships between objects when making inductive
inferences, and that the structure combination model helps to explain how
these different kinds of information are combined.

6. Experiment 2: Generalization across objects and features

Experiment 1 provides strong evidence that humans can make inferences
that draw on both causal relationships between features and taxonomic re-
lationships between objects. This result may seem incompatible at first
with the work of Rehder (2006), who found no evidence that people could
combine causal and similarity-based reasoning. So far, however, our data
are consistent with the hypothesis that causal relationships between fea-
tures are primary and that taxonomic relationships are used only when no
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observations at all are available for some objects.3 For example, taxonomic
relationships may have played a role in the chain condition of Experiment 1
only because participants were never given any information about whether
the squirrel and sheep had features f1, f2 or f3. As a result, taxonomic
relationships provided the only relevant information that participants could
use to make inferences about these animals.

Our second experiment explores whether taxonomic relationships con-
tinue to play a role when observations for all four animals are available.
Since these observations support causal inferences about each animal, it is
possible that participants will now ignore taxonomic relationships and focus
exclusively on causal relationships between features. We predict, however,
that participants will continue to rely on taxonomic relationships in this sit-
uation. Our prediction is a consequence of the taxonomic influence principle
introduced previously. Even if observations are provided for all animals in
the experiment, taxonomic relationships should continue to play a role as
long as there are variables that are unobserved but causally relevant to the
features of interest.

6.1. Participants

18 MIT undergraduates participated in this experiment. The responses
of one participant were removed because he left some pages in the experi-
mental packet blank.

6.2. Procedure

Experiment 2 included two conditions: a chain condition and a common-
cause condition. Each condition included two tasks. In the first task, par-
ticipants were told only that the mouse had tested positive for f1. In the
second task, participants were told in addition that the rat, the squirrel
and the sheep had tested positive for f1, and that the mouse had tested
negative for f2. Note that the second task is a case where values for feature
f1 were provided for all animals. Apart from this task, the procedure for
Experiment 2 was identical to that of Experiment 1.

6.3. Model predictions

Predictions for four models are shown in Figure 11. Predictions for the
second task in each condition are most critical. Even though feature f1 is ob-
served for all four animals, the SC and DC models still predict a taxonomic

3We thank Bob Rehder for suggesting this hypothesis.
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Figure 11: Experiment 2: Behavioral data and predictions of five models. In task 2 of
each condition, feature f1 is observed for all four animals.

effect: as taxonomic distance from the mouse increases, animals become
more likely to have f2. The feature model makes a different prediction—
note that this model does not take taxonomic relationships into account,
and therefore makes identical predictions about the rat, the squirrel and
the sheep.

6.4. Results

Figure 11 shows mean responses for the participants and the four models
described previously. The judgments for the first task in each condition
replicate the finding from Experiment 1 that participants combine feature
relationships and object relationships when just one of the 12 animal-feature
pairs is observed. The results for the second task suggest that taxonomic
information continues to be used even when observations for all four animals
are provided. In both conditions, for example, participants infer that the
rat is less likely than the sheep to have f2 (sign tests yield p < 0.05 in both
cases).

39



As for Experiment 1 we explored individual differences by dividing par-
ticipants into groups depending on whether their responses correlated best
with the feature model, the object model, or the SC model. Two par-
ticipants matched the feature model, six participants matched the object
model, and 9 out of 17 participants matched the SC model on the basis
of their complete set of responses. Since the second task in each condition
is critical for distinguishing between the feature model and the SC model,
we ran a second analysis using data from the second task only and com-
puting whether each participant better matched the feature model or the
SC model. 14 out of 17 participants matched the SC model better than the
feature model, and a sign test suggests that this result is statistically signifi-
cant (p < 0.05). We can therefore conclude that the majority of participants
relied on taxonomic information even in task 2.

Taken together, Experiments 1 and 2 provide strong evidence that hu-
mans combine causal relationships between features with similarity relation-
ships between objects. This result may seem incompatible at first with pre-
vious studies which suggest that causal inferences often dominate similarity-
based inferences (Lassaline, 1996; Wu & Gentner, 1998; Rehder, 2006; Hayes
& Thompson, 2007). Experiment 3 of Rehder (2006) is a representative ex-
ample. In this experiment, participants were presented with a source object
with features C and E and told that C caused E. They then had to de-
cide whether a target object also had feature E. Responses were primarily
shaped by whether or not the target object had feature C, and there was
only a small effect of the overall similarity between the source and target
objects. Rehder (2006) uses this experiment to support his overall conclu-
sion that causal reasoning and similarity-based reasoning often compete,
but the results of this experiment are consistent with the predictions of the
SC model. First, the model can account for the small but statistically sig-
nificant effect of similarity. Second, the model can explain why the effect of
similarity is relatively small in this case. If C is the only possible cause of E,
and if the relationship between C and E is near-deterministic, then the SC
model predicts that the similarity between source and target is relatively
uninformative about whether the target has feature E. This prediction is
a consequence of the taxonomic influence principle identified above, which
suggests that similarity relationships are used only when they are informa-
tive about the distribution of unobserved but causally relevant variables.
Other studies where causal inferences appear to dominate similarity-based
inferences also use causal relationships that are plausibly interpreted as
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near-deterministic (Lassaline, 1996; Wu & Gentner, 1998), and this factor
may explain the consistent finding that causal inferences tend to dominate
similarity-based inferences (Stephens et al., 2009).

Although our theory accounts for the third experiment presented by Re-
hder (2006), it does not account for his first experiment. This experiment
considers a case where some participants rely on similarity-based reasoning,
others rely on causal reasoning, and no individual appears sensitive to both
similarity relationships and causal relationships. The SC model can ac-
commodate contexts where similarity-based reasoning appears to dominate
causal reasoning, and others where causal reasoning appears to dominate
similarity-based reasoning. The model, however, does not explain how a
single context could produce both patterns of responses. We return to this
issue in the General Discussion, and consider the implications for future
models of generalization.

7. Experiment 3: Counterfactual interventions

Our previous two experiments explored how relationships between fea-
tures and relationships between objects are combined in order to carry out
generalization tasks. Our final experiment explores whether relationships
between features and relationships between objects are combined in a way
that is intrinsically causal. As mentioned earlier, a popular approach to
across-feature generalization uses causal Bayes nets to capture relationships
between features (Rehder, 2003). Many accounts of across-object general-
ization, however, are not intrinsically causal, including the similarity cover-
age model (Osherson et al., 1991) and Sloman’s feature-based model (Slo-
man, 1993). Since accounts of across-feature generalization have emphasized
causal knowledge but models of across-object generalization have not, it re-
mains to be seen whether causal knowledge plays a critical role in settings
that require generalization across both objects and features.

The combination models we have considered throughout suggest two
qualitatively different ways in which people might make causal inferences
that draw on multiple systems of knowledge. Suppose, for example, that
a reasoner is asked to make predictions about a counterfactual interven-
tion. The OC and DC approaches suggest a strategy where each component
model is adjusted to allow for the counterfactual intervention and then the
adjusted models are combined. Each component model may support causal
reasoning, but once these models are combined the combination does not
support causal reasoning in any obvious way. The SC approach suggests a
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different strategy where the component models are combined in a way that
is intrinsically causal. As a result, the combination of the models can be di-
rectly used to address causal queries. Note that the SC model is defined over
a causal graph structure, and that this structure can be manipulated in the
standard way to make inferences about interventions and counterfactuals.

The critical difference between the three combination models is whether
knowledge is combined at the level of predictions (the OC model), the level
of probability distributions (the DC model) or the level of causal structures
(the SC model). Experiments 1 and 2 suggest that all approaches can ac-
count for generalization to some extent, but the SC model may be uniquely
able to predict certain inferences that rely on computations defined over
a causal structure. Inferences about counterfactual interventions are one
candidate (Pearl, 2000; Sloman & Lagnado, 2005; Rips, 2010) and our fi-
nal experiment explores whether human counterfactual inferences rely on
a causal structure that simultaneously incorporates relationships between
features and relationships between objects.

7.1. Participants

32 CMU undergraduates participated in this experiment for course credit.
All participants were drawn from the general CMU participant pool.

7.2. Materials

Experiment 3 used six feature structures F , each of which captures a re-
lationship between a cause feature and an effect feature. The six structures
were identical except that different pseudo-biological labels were used for
each pair of features. Here we use f1 to refer to each cause feature and f2

to refer to each effect feature. For all six structures, participants were told
that f2 is known to be produced by several pathways, and that the most
common pathway begins with f1, which directly stimulates production of
f2.

7.3. Procedure

Participants were asked to reason about the same four animals used in
Experiments 1 and 2. The experiment began with three preliminary tasks.
The first task was the taxonomic task used in Experiments 1 and 2. The
second and third tasks were an intervention task and an observation task,
and each task used one of the six feature structures described in the previous
section. In the intervention task, participants were told that “earlier in the
day the mouse was injected with a syringe full of f2”. They were told
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that the mouse had subsequently tested positive for f2, and were asked
to predict the outcomes of the seven remaining tests involving the four
animals and the two features. In the observation task, participants were
told that the mouse had tested positive for f2 and were asked to predict the
outcomes of the seven remaining tests. The intervention and observation
tasks were included in order to introduce the notion of causal interventions,
and to give participants a chance to reflect on whether observations and
interventions support different kinds of inferences. The order of these tasks
was counterbalanced across participants.

After the preliminary tasks, participants were given four tasks where
they were asked to make inferences about counterfactual interventions. In
each case participants were presented with a complete matrix of objects by
features. The four matrices used are shown in Figure 12. In each case,
participants were asked to imagine that earlier in the day the mouse had
been injected with a syringe full of enzyme f1. They then rated the proba-
bility that the mouse would have tested positive for enzyme f2 on a seven
point scale where 1 was labeled “very unlikely” and 7 was labeled “very
likely.” The order of the four counterfactual tasks was counterbalanced
across participants.

The preliminary intervention task and the counterfactual tasks both ask
participants to think about cases where the mouse is injected with an en-
zyme “earlier in the day” and is later tested for the presence of one or more
enzymes. The time interval between the injection and the tests is criti-
cal for the counterfactual task—the biological process by which f1 causes
f2 presumably takes some time, which means that it makes sense to ask
participants about a test for f2 that is carried out some time after the
counterfactual intervention. The intervention task, however, could be im-
proved by asking participants about tests carried out immediately after the
intervention. As a result, the intervention task is not ideal for assessing how
participants reason about interventions, and is best viewed as a preliminary
task that helps to set up the cover story for the counterfactual tasks.

Two of the preliminary tasks and all four of the counterfactual tasks
used a feature structure where f1 causes f2. As for experiments 1 and 2,
this information was reinforced by showing participants 20 cards for each
feature structure. The distribution of cards appears in Table A.3, and is
consistent with the functional causal model shown in Figure B.20e. As
for Experiments 1 and 2, participants could study these cards for as long
as they liked, but the cards were removed before they proceeded with the
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1 1

f1 f2
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1 1

f1 f2
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1 1

1 1

1 1

Task 1 Task 2 Task 3

f1 f2

mouse 1 0

rat 1 1

squirrel 1 1

sheep 1 1

Figure 12: Observations for the four counterfactual tasks. In each case participants
are asked to decide whether the mouse would have tested positive for f2 if it had been
injected with f1.

experiment.

7.4. Model predictions

Suppose first that we are interested only in the mouse which has tested
positive for f1 and negative for f2. Since the mouse already had enzyme
f1, injecting it with f1 would probably have made little difference, and the
mouse would probably still have tested negative for f2. Suppose next that
the mouse tests negative for f1 but positive for f2. If we had intervened
and injected the mouse with f1 it is reasonable to expect that the mouse
would still have tested positive for f2. Suppose finally that the mouse tests
negative for both f1 and f2. Since f1 causes f2, we might expect that
injecting the mouse with f1 would have made it more likely that the test
for f2 would have been positive.

All of the inferences just described can be captured by working with
a functional causal model that captures the relationship between f1 and
f2 (Pearl, 2000). The first step is to create a twin graph that includes
nodes for the counterfactual values of f1 and f2. In Figure 13a.i, these
counterfactual nodes are labeled g1 and g2. Note that the parents of g1

and g2 correspond to the parents of f1 and f2, consistent with the idea
that the causal mechanisms in the counterfactual world match the causal
mechanisms in the actual world. We can now reason about a counterfactual
intervention on f1 by using the manipulated graph in Figure 13a.ii. All
incoming edges to g1 have been broken to capture the idea that variable g1 is
set by an intervention, and that observing the value of g1 therefore provides
no information about the values of its parent variables. Inferences about
any other variables can now be made by carrying out Bayesian inference
over the manipulated graph. In particular, we can compute the probability
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that g2 = 1, which represents the probability that the mouse would have
tested positive for f2 after being injected with f1.

The second plot in Figure 14 shows the predictions when the feature
model is adjusted as just described to allow for the four counterfactual
interventions. Since the feature model assumes that the rows of the object-
feature matrix are conditionally independent given the feature structure,
the predictions of this model can be computed by using the twin graph in
Figure 13a.i to reason about the mouse in isolation. Note that the pre-
dictions for tasks 2 and 3 are identical—since the feature vectors for each
animal are conditionally independent, information about the rat, the squir-
rel and the sheep does not influence counterfactual predictions about the
mouse.

The third plot shows predictions according to the object model. Since
the object model is not formulated as a functional causal model, the ap-
proach to counterfactual reasoning summarized by Figure 13a cannot be
directly applied. The prediction of the object model, however, is straight-
forward. Since the features are assumed to be conditionally independent
given the object structure, a counterfactual intervention on f1 would have
had no influence on f2, which means that predictions about f2 should track
the actual values of f2. In other words, adjusting the object model to al-
low for the counterfactual intervention leads to no change in the f2 value
observed for the mouse.

The fourth plot shows predictions of the OC model. These predictions
are computed by adjusting the feature and object models to allow for the
counterfactual intervention, then averaging the predictions of these adjusted
models. The OC predictions therefore correspond to a weighted average of
the predictions for the feature and object models, and are qualitatively
similar to the predictions of the feature model.

The fifth plot shows predictions according to the DC model. As already
described, the adjusted object model assigns a probability of 1 to the hy-
pothesis that the counterfactual f2 value for the mouse is identical to the
f2 value actually observed. As a result, the predictions of the DC model
are identical to the predictions of the object model. Since the adjusted ob-
ject model assigns probability mass to just one hypothesis, multiplying the
distributions for the adjusted object and feature models produces a distri-
bution that assigns nonzero probability mass to just one hypothesis—the
same hypothesis favored by the adjusted object model.

The final plot shows predictions of the SC model. Figure 13b.i shows
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(b) (i) (ii)

(i)(a) (ii)

counterfactualactual counterfactualactual

counterfactualactualcounterfactualactual

f1 f2t g2g1b1 b2 f1 f2tg2g1b1 b2

Figure 13: Counterfactual reasoning (a) (i) The causal model from Figure 4b has been
supplemented with two additional nodes (g1 and g2) which represent counterfactual val-
ues of f1 and f2. A manipulated graph for reasoning about the value that f2 would have
taken if an intervention had fixed the value of f1. (ii) The SC model from Figure 8 has
been supplemented with six additional nodes that represent counterfactual values of the
two features for the three objects. (ii) A manipulated graph for reasoning about what
would have happened if the f1-value for object o1 had been fixed by an intervention.

how the SC model in Figure 8 can be converted into a twin graph. Manip-
ulating this graph as shown in Figure 13b.ii allows us to make inferences
about a counterfactual situation where o1 is injected with enzyme f1. Model
predictions for all four of the counterfactual tasks in Experiment 3 are shown
in Figure 14. The first task is a case where the mouse already has enzyme
f1 in the actual world. A counterfactual manipulation where the mouse
is injected with f1 should therefore make little difference, and the mouse
should still test negative for f2. The second task is a case where the mouse
tests negative for f1 and f2. Note that the rat and the squirrel have f1 but
not f2, suggesting that the mouse would also have tested negative for f2

even if injected with f1. The third task is similar, except that now the rat
and the squirrel have both f1 and f2, which suggests that the mouse would
also test positive for f2 if injected with f1. The final task is a case where the
mouse already has f2. Injecting the mouse with f1 should therefore make
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Figure 14: Results and model predictions for Experiment 3. The object-feature matrices
for each task are reproduced from Figure 12.
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Figure 15: Individual differences analysis for Experiment 3. The classifications are based
on the rank order of responses to the four tasks, and vertical lines indicate differences in
rank. For example, 1|2|3|4 matches the rank order predicted by the SC model, and 1234
indicates that the same response was given to all four tasks.

little difference and the mouse should still test positive for f2.

7.5. Results

Responses to the preliminary taxonomic task were similar to the re-
sponses to the taxonomic tasks in Experiments 1 and 2 and are not de-
scribed further. Responses to the remaining two preliminary tasks sug-
gested that observations and interventions were treated differently overall.
Because these results do not differentiate among the models considered in
this paper, full details are provided in Appendix Appendix A.

Average responses for the four counterfactual tasks are shown in Fig-
ure 14. Out of the five models in Figure 14, the rank order of the four
responses is consistent only with the SC model. The most critical compar-
ison occurs between tasks 2 and 3, and a sign test indicates that responses
for task 3 are significantly greater than responses for task 2 (p < 0.05).
The observed feature values for the mouse are the same for both tasks, and
the first four models therefore make identical predictions about these tasks.
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Only the SC model correctly predicts that observed feature values for the
other animals will shape counterfactual inferences about the mouse. Sign
tests also indicate that responses for task 3 are significantly greater than re-
sponses for task 1 (p < 0.05), and that responses for task 4 are significantly
greater than responses for task 2 (p < 0.001). Note that both pairs differ
only with respect to the observed feature values for the mouse.

Figure 15 summarizes the responses of individual participants, and shows
that the modal response is consistent with the SC model. Seven out of 32
participants generated responses that match the rank order predicted by the
model, and an additional 13 participants generated responses that collapse
one or more of the distinctions present in the modal response.

Taken overall, our results suggest that people are capable of reasoning
about counterfactual interventions in settings that draw on relationships
between objects and relationships between features. Only the SC model
accounts for the full pattern of results, which suggests that people com-
bine multiple models at the level of causal structures rather than at the
level of predictions or probability distributions. Our data therefore suggest
that relationships between objects and relationships between features are
combined in a way that is intrinsically causal.

8. General Discussion

We formalized generalization as the problem of reasoning about object-
feature matrices and evaluated three computational approaches that address
this problem by incorporating both relationships between objects and re-
lationships between features. All three models rely on a graph structure
over objects and a graph structure over features, and our data suggest that
combining these structures directly (the SC approach) provides a better
account of human reasoning than combining the distributions induced by
these structures (the DC approach) or combining the outputs produced by
these structures (the OC approach).

Our first two experiments suggested that humans readily combine re-
lationships between objects and relationships between features. The SC
model accounts well for the results of these experiments and performs sub-
stantially better than alternatives that rely on object knowledge alone or
feature knowledge alone. The model also accounts for an important qual-
itative effect that is inconsistent with the OC model. Given a partially-
observed object-feature matrix, the OC model predicts that people are able
to make informed inferences only about entries that belong to the same row
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or column as an observed entry. Experiment 1, however, showed that par-
ticipants make informed inferences about an entire object-feature matrix
after observing a single entry in the matrix.

Experiments 1 and 2 suggested that the SC model provides a better
quantitative account of human reasoning than the DC model, but even so
the DC model accounts relatively well for the results of these experiments.
Experiment 3 explored a setting where the predictions of the SC model
depart sharply from both the DC and the OC models. Our data suggest that
the SC model alone is able to explain why inferences about a counterfactual
intervention on a given object (e.g. a mouse) are shaped by the observed
features of other objects (e.g. a rat and a squirrel).

Our comparison between the three combination models suggests that
human knowledge about relationships between objects is tightly integrated
with knowledge about relationships between features. The OC model ex-
plores the hypothesis that these two forms of knowledge are captured by
distinct modules, but our data suggest that a modular approach will strug-
gle to explain how humans make inferences about an entire object-feature
matrix given only a handful of observations. Multiplying probability distri-
butions provides one way to integrate systems of knowledge, but our data
suggest that combining structured representations will provide the best way
to explain how different systems of knowledge work together.

Although the SC model is constructed by combining existing models
of inductive reasoning it goes beyond these models in several ways. First,
it provides a unified view of two inductive problems—across-object and
across-feature generalization—that are often considered separately. Sec-
ond, unlike previous accounts of across-feature generalization, it acknowl-
edges the importance of unknown but causally relevant variables, and uses
taxonomic relationships to constrain inferences about the effects of these
variables. Third, unlike most previous models of across-object generaliza-
tion, the model can handle novel features that are causally linked to known
features. Finally, the model helps to explain how counterfactual inferences
are made in settings that simultaneously draw on relationships between
objects and relationships between features.

8.1. Generalization and causal reasoning

Studies of inductive generalization in adults (Lee & Holyoak, 2008; Re-
hder, 2009) and children (Carey, 1985; Opfer & Bulloch, 2007; Hayes &
Thompson, 2007) have suggested that inductive inferences often rely on
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causal theories. Our approach is consistent with this general claim. For ex-
pository convenience we have emphasized the distinction between causal re-
lationships between features and taxonomic relationships between objects,
but relationships between objects will often have a causal interpretation.
A tree-structured taxonomy, for example, is a simple representation of
the causal process that generated biological species—the process of evo-
lution (Kemp & Tenenbaum, 2009). The graphical model in Figure 8 can
therefore be viewed as a causal theory that incorporates causal relationships
between features and causal relationships between species.

Our comparison between the DC and SC approaches supports the idea
that causal reasoning plays an important role in human generalization. The
most fundamental difference between these approaches is that the SC ap-
proach alone combines models in a way that is intrinsically causal. The DC
approach is intuitive and accounts fairly well for our first two experiments.
Our third experiment, however, demonstrates that the approach fails to
account in full for human inferences about counterfactuals.

Although causal reasoning appears to contribute to many inferences,
studies suggest that humans often rely on causal theories that are fragmen-
tary or incomplete (Rozenblit & Keil, 2002). Results of this kind challenge
causal accounts of generalization—how can humans make successful causal
inferences if they do not understand the causal mechanisms that apply in
any given setting? Our approach suggests a partial answer. Even though de-
tailed causal theories are typically unavailable, general causal principles can
still support accurate causal inferences. One such principle holds that ob-
jects with similar observable features are often influenced by similar causal
factors, and this similarity can support causal reasoning even if the actual
causal mechanisms remain unknown. Our work therefore begins to explain
one of the most impressive aspects of human causal reasoning—the ability
to make successful inferences in the presence of many hidden variables.

8.2. Combining knowledge structures

There are many previous accounts of inductive reasoning, including ac-
counts that focus on relationships between objects (Osherson et al., 1991)
and accounts that focus on relationships between features (Rehder, 2003).
A distinctive aspect of our account is that it incorporates these two kinds
of relationships. Hadjichristidis et al. (2004), Holyoak et al. (2010) and
Stephens et al. (2009) have also developed accounts that incorporate rela-
tionships between objects and relationships between features, and here we
compare these accounts to our own.
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Hadjichristidis et al. (2004) focus on a problem similar to across-object
generalization (Figure 1a), but consider arguments where the premise and
conclusion refer to categories (e.g. mice and rats) rather than individual
objects (e.g. a specific mouse and a specific rat). They propose that the
strength of an argument depends on the similarity of the conclusion category
to the premise category and the causal centrality of the feature involved.
The causal centrality of a feature depends on its relationships to other fea-
tures, and the account of Hadjichristidis et al. (2004) therefore incorporates
both relationships between categories and relationships between features.
Although the work of Hadjichristidis et al. (2004) is directly relevant to
the problem of combining multiple knowledge structures, it differs from our
approach in least two respects. First, our model addresses the general prob-
lem of completing a partially-observed matrix of objects by features, but
Hadjichristidis et al. (2004) consider only the problem of across-object gen-
eralization. For example, their account would need to be supplemented in
order to handle the generalization problem in Figure 1c. Second, Hadjichris-
tidis et al. (2004) do not provide a computational model that indicates how
causal centrality and similarity should be combined. Sloman et al. (1998)
have developed a computational account of causal centrality, but additional
work is needed to specify how this model might be combined with a formal
model of similarity-based reasoning.

Holyoak et al. (2010) have developed a computational model that in-
tegrates causal inference with analogical reasoning and will be referred to
here as the causal-analogical model (CA model for short). The CA model
is motivated by the idea that a causal model learned for a source object
can influence the model used to reason about the features of an analogous
target object. Although we focused on taxonomic relationships between
objects rather than analogical mappings, the SC model is motivated by a
similar idea. We believe, however, that the two models have complementary
strengths. Unlike the SC model, the CA model is designed to handle cases
where the causal models for two objects may have different structures—
for example, cases where there is no perfect correspondence between the
causal edges in the graphs for source and target. Unlike the CA model,
the SC model captures the idea that the causal parameters associated with
two objects can be more or less similar depending on the overall taxonomic
relationship between the two objects.4 Ultimately it may be possible to

4Holyoak et al. (2010) assume that base rate parameters for the source and target are
identical, and also assume that any causal relationship in the target that is analogous
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develop a model that combines the strengths of both approaches, and that
uses taxonomic relationships to shape inferences about both the structure
and the parameters of the causal model for a given object.

In a separate line of work, Stephens and colleagues (Stephens et al.,
2009) have used a paradigm similar to ours to study integrated reasoning
and have developed an integrated causal model that is different from ours.
The SC model combines a functional causal model and an object-based
taxonomy by introducing a copy of the taxonomy for each root variable in
the functional model. Stephens and colleagues use the same approach to
combine a taxonomy with a causal model that incorporates probabilistic
relationships—in other words, they introduce a copy of the taxonomy for
each root variable in the probabilistic causal model. We will refer to the
resulting model as the probabilistic structure combination model, or PSC
model for short. The PSC model makes similar predictions to the SC model
in some settings but suffers from two limitations. First, the PSC model
predicts that taxonomic relationships have no further role to play once the
root variables in the probabilistic model are observed for each object, and
therefore cannot account for the result of our second experiment. Second,
the PSC model does not rely on functional causal models, and is therefore
unable to account for the counterfactual inferences explored in our third
experiment. Given both of these limitations, we believe that the SC model
should be preferred to the alternative that Stephens and colleagues consider.

The models discussed in this section combine knowledge structures in
slightly different ways, and there are presumably many other ways in which
knowledge structures could be combined. The combination strategy pre-
ferred by humans could well depend on the context, but our work suggests
two basic principles that may be widely applicable. First, causal considera-
tions will often dictate how knowledge representations should be combined.
For example, the SC and DC models both incorporate the same compo-
nents, but the SC model alone combines these components in a way that
respects causality. As a result, the SC model provides a more accurate

to a causal relationship in the source has the same causal strength in these two cases.
Equation 3 in their paper allows the possibility that corresponding causal parameters
may differ, but the model as implemented appears to assume that corresponding causal
strengths are identical as described in Equations 4 and A4 of their paper. In order to
account for the results of our experiments, we believe that the CA model would need
to use a version of their Equation 3 which captures the idea that the source and target
are likely to have similar causal parameters to the extent that the two are taxonomically
related.
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account of inferences about counterfactuals. The second basic principle is
that probabilistic inference provides a useful general framework for combin-
ing different kinds of knowledge. Different probabilistic models may capture
qualitatively different forms of knowledge, but probability theory provides
a lingua franca for binding them together.

8.3. When are knowledge structures combined?

As applied to our experiments, the structure combination model relies on
two structures: the first captures taxonomic relationships between objects
and the second captures causal relationships between features. Common-
sense knowledge, however, includes many other kinds of structures, and
models of generalization should ultimately aim to incorporate all of these
structures. For example, inductive generalizations about animals may draw
on ecological knowledge (animals that share the same habitat are likely to
catch the same diseases) and social knowledge (animals chosen as pets are
likely to share certain features).

Here we focused on problems where multiple knowledge structures are
available and the best inferences tend to be compatible with all them. In
other settings multiple knowledge structures may be relevant, but the best
inference in any case may not depend on all of them. Suppose, for exam-
ple, that inferences about biological features depend on a structure that
captures taxonomic relationships between animals, and a second structure
that captures ecological categories (Shafto et al., 2011). Inferences about
some features will depend on both structures—for example, “has blubber”
is a feature that tends to be shared only by marine mammals. Other fea-
tures will depend on only one structure: for example, “is warm-blooded” is
shared by all mammals, and “has a streamlined body shape” is shared by
many marine creatures. A comprehensive account of generalization should
be able to select the structures that are relevant to a given inference, and
to flexibly combine these structures when needed.

The need for an account of structure selection becomes especially appar-
ent as the number of different structures increases. Experiment 1 of Rehder
(2006) suggests, however, that structure selection can play an important role
even in relatively simple contexts. As part of Rehder’s study, participants
were shown a novel exemplar of a category and were told that this exem-
plar had a feature E that was caused by one of the characteristic features of
the category. They were then asked to estimate the proportion of category
members that had feature E. Two distinct strategies were observed—half
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of the participants relied on the fact that E was causally related to a charac-
teristic category feature, and the other half relied on the similarity between
the novel exemplar and the category prototype. No single participant gave
responses that were sensitive to both the causal information and the simi-
larity between the exemplar and the category prototype.

Rehder’s data suggest that there are settings where multiple knowledge
structures are relevant, but where participants make inferences based on
the single structure that first comes to mind. Our data, however, suggest
that there are similar settings where the majority of participants combine
multiple knowledge structures. An important direction for future work is
therefore to characterize the factors that determine whether reasoners se-
lect a single knowledge structure or attempt to combine multiple structures.
One relevant factor is the salience of the structures involved. Unlike Re-
hder’s first experiment, all of our experiments included a preliminary task
that drew upon causal knowledge and a preliminary task that drew on
taxonomic knowledge. As a result, both kinds of knowledge were presum-
ably relatively salient when participants were completing the generalization
tasks of primary interest. A second relevant factor is the principle of least
effort (Zipf, 1949): even if multiple structures are salient, participants pre-
sumably incur the cognitive cost of combining them only if they believe
that a single structure is unlikely to provide acceptable answers.5 Shafto
et al. (2007) use a speeded induction task to show that some knowledge
structures are easier to access than others, and a similar paradigm could
be used to test the proposal that combining multiple structures is relatively
demanding.

Although the problem of structure selection is important, it is not ad-
dressed by structure combination model developed in this paper. The model
applies in cases where the relevant structures have been selected already,
and the remaining task is to decide how to combine them. Ultimately, how-
ever, it may be possible to develop a more comprehensive computational
account where the input to the structure combination module is provided
by a computational account of structure selection.

5We thank an anonymous reviewer for highlighting the issue of structure selection,
and for pointing out that a principle of least effort is likely to be relevant.
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9. Conclusion

Humans make many kinds of inductive inferences. Psychologists have
made substantial progress by studying each kind of inference in isolation,
but should ultimately aim for unifying accounts (Newell, 1989; Kemp &
Jern, 2009) that can account for many kinds of inferences. We have taken
a step in this direction by developing a model that accounts for across-
object and across-feature generalization, including cases where both kinds
of generalization must work in tandem. Our model simultaneously draws on
taxonomic relationships between objects and causal relationships between
features, and our experiments confirm that people are able to combine these
two kinds of information.

Although our model incorporates multiple kinds of information, the
knowledge captured by this model still falls well short of the complexity of
commonsense knowledge. Accounts of generalization will eventually need
to grapple with this complexity, and future studies of inductive reasoning
will need to explore how many different pieces of knowledge are integrated
and composed. Our work suggests that causal representations are useful
for combining multiple systems of knowledge, and future studies can aim
to use this approach to capture increasingly large systems of commonsense
knowledge.

Appendix A. Experimental details

In each condition of our experiments, participants read a description of
the causal relationships between a set of enzymes. Participants were then
given a set of 20 cards that showed the distribution of these enzymes among
a group of 20 unnamed mammals. The cards for each condition are shown in
Tables A.1, A.2 and A.3. In the chain condition, for example, most animals
that have f1 also have f2, and most animals that have f2 also have f3.

Experiment 1 included a preliminary task to confirm that participants
were familiar with the taxonomic relationships between the four animals
in the experiment (rat, mouse, sheep and squirrel). Each question on this
test informed participants that one of the animals had tested positive for
a novel enzyme, and asked them to predict whether the remaining animals
would also test positive for this enzyme. The results (Figure A.16) are
consistent with the taxonomic relationships captured by the tree structure
O in Figure 9a, and are accurately predicted by a probabilistic model defined
over this structure.
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f1 f2 f3 Chain Common effect Common cause
0 0 0 6 6 8
0 0 1 3 2 1
0 1 0 1 1 1
0 1 1 3 5 0
1 0 0 1 1 1
1 0 1 0 5 2
1 1 0 1 0 2
1 1 1 5 0 5

Table A.1: To reinforce the causal structure described in each condition, participants
were shown cards that indicated the presence or absence of three enzymes (f1, f2 and
f3) in 20 unnamed animals. The final three columns of the table show card counts for
the chain, common effect and common cause conditions.

f1 f2 f3 f4 Clusters
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 1 1 2
1 1 0 0 2
1 1 1 0 2
1 1 0 1 2
1 0 1 1 2
0 0 1 1 2
1 1 1 1 3

Table A.2: Card counts for the clusters condition.

f1 f2

0 0 9
0 1 4
1 0 1
1 1 6

Table A.3: Card counts for the tasks in Experiment 3.
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Figure A.16: A preliminary taxonomic task measured pre-existing knowledge about tax-
onomic relationships between the four animals in our experiment. Each plot in the top
row shows human inferences about the distribution of a novel enzyme given that one an-
imal (the column with value 100) is known to have the enzyme. The bottom row shows
predictions of the tree-structured probabilistic model in Figure 9.
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Figure A.17: A second set of preliminary tasks was included to determine whether partic-
ipants had understood the causal information provided during the training phase. Each
plot shows inferences about the enzymes expressed by a novel mammal. The first plot
in each row shows inferences about a mammal that has not yet been tested for any of
the enzymes. The remaining plots show inferences about a mammal that has tested pos-
itive for one enzyme (the column with value 100). The bottom row of each pair shows
predictions of the functional model used to model each condition.
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Experiment 1 also included a set of preliminary causal tasks to confirm
that participants had learned the feature structures F for each condition.
The results (Figure A.17) suggest that participants had learned these struc-
tures, and are well predicted by the functional models used to model each
condition.

Experiment 3 included a preliminary observation task and a preliminary
intervention task. Model predictions and mean responses to these tasks are
shown in Figure A.18. All models predict that the two tasks will be treated
differently. For example, observing that the mouse has f2 should suggest
that the mouse is likely to have f1 and that the rat is likely to have f2, but
intervening so that the mouse has f2 should not provide any information
about the other entries in the object-feature matrix. We evaluated the pre-
diction that the observation and the generalization tasks are psychologically
different by using a two-way ANOVA with repeated measures to explore the
relationship between the task (observation or intervention) and the seven
missing entries in the object-feature matrix. There were main effects of
task (F = 12.4, p < 0.001) and matrix entry (F = 62.1, p < 0.001), but
no interaction between task and matrix entry (F = 1.63, p = 0.13). The
main effect of task suggests that the observation and intervention tasks are
treated differently, and we ran follow-up tests to explore the prediction that
inferences were stronger for the observation task than the intervention task.
Inferences that the mouse had f1, that the rat had f1 and that the rat had
f2 were all stronger for the observation task than the intervention task (sign
tests yield p < 0.01 in all cases).

Although the observation and intervention tasks appear to be treated
differently, the generalization gradients for the intervention task are not
completely flat as predicted by the models. Analyzing the responses of
individual participants suggests that these weak generalization gradients
are produced by averaging the responses of two groups, where one group
generates decaying generalization gradients and the other generates uniform
gradients. Each participant generates a matrix of predictions for 4 objects
by 2 features. The columns of these matrices can be classified as decaying
(D), uniform (U) or other (O). A column is classified as decaying if the first
entry is greater than the last entry and if no entry exceeds the entry in the
previous row. A column is classified as uniform if all entries are identical,
and all remaining columns are classified as “other.” Since the intervention
fixes the value of f2 for the mouse, only the predictions for the remaining
three values are used when classifying the second column. Depending on the
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Figure A.18: Results for the preliminary observation and intervention tasks in Experi-
ment 3.

classifications of its two columns, the matrix for each participant is assigned
to one of nine possible categories. Counts for these categories are shown
in Figure A.19. The most common pattern for the observation task is DD,
which indicates that inferences about both f1 and f2 decay over the tree. 19
out of 32 participants produced this response, and the mean response for this
group of 19 is shown in Figure A.19. The counts for the intervention task
reveal two common responses. 12 participants generated DD responses, and
eleven generated UU responses. Average responses across these two groups
are shown in Figure A.19.

The responses of the UU group in Figure A.19b are consistent with
the model predictions in Figure A.18b but the responses of the DD group
are not predicted by any of the models. One possible explanation is that
participants in the DD group recognized that the situation described is
more complex than a simple intervention. The intervention task describes
an intervention (earlier in the day the mouse is injected with f2) and an
observation (the mouse tests positive for f2). If participants assume that
any foreign enzyme is quickly broken down, the positive test result provides
some evidence that f2 is naturally present in the mouse’s bloodstream, and
therefore that the mouse is likely to have f1 and that the rat is likely to have
f2. Interpreting the task in this way is possible because some time elapses
between the injection and the test result, and removing this time interval
would allow a cleaner test of how participants reason about interventions.
As described in the main text, however, the time interval was deliberately
introduced in order to set up the cover story for the counterfactual tasks.
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Figure A.19: Individual differences analysis for the preliminary observation and interven-
tion tasks of Experiment 3. The DD group includes participants who generated ratings
for both features that decay (D) over the tree. The UU group includes participants who
generated ratings for both features that were uniform (U) over the tree.

Appendix B. Modeling details

The SC model makes use of a functional causal model F that captures
causal relationships between features. Figure B.20 shows the structures F

that were used to generate the training cards for each experiment and to
model our experimental data.
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Figure B.20: Functional causal models used to generate the training cards for each con-
dition and to compute the predictions of the OC, DC, SC and feature models (Figures 10
and 11). In each network, the nodes without parents are independent random variables,
and the base rate for each variable is shown. Each remaining node takes a value that
is a deterministic function of the values of its parent nodes. (a) The chain structure is
equivalent to a noisy-OR network. Variable bi indicates whether the background cause
for fi is present, and variable ti indicates whether the mechanism of causal transmission
between fi−1 and fi is active. (b) Variables f1 and f2 in the common effect structure
are mutually exclusive. If the background cause b is present, then exactly one of these
variables will be true, and this choice is a deterministic function of the switching variable
s. (c)-(d) The cluster and common cause structures are equivalent to noisy-OR net-
works. Only two of the deterministic conditional probability distributions for the cluster
structure are shown. (e) The structure used for Experiment 3.
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