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We consider a general class of online optimization problems, called online selection problems, where customers

arrive sequentially, and one has to decide upon arrival whether to accept or reject each customer. If a

customer is rejected, then a rejection cost is incurred. The accepted customers are served with minimum

possible cost, either online or after all customers have arrived. The goal is to minimize the total production

costs for the accepted customers plus the rejection costs for the rejected customers. These selection problems

are related to online variants of offline prize collecting combinatorial optimization problems that have been

widely studied in the computer science literature. In this paper, we provide a general framework to develop

online algorithms for this class of selection problems. In essence the algorithmic framework leverages any

cost sharing mechanism with certain properties into a poly-logarithmic competitive online algorithm for the

respective problem; the competitive ratios are shown to be near-optimal. We believe that the general and

transparent connection we establish between cost sharing mechanisms and online algorithms could lead to

additional online algorithms for problems beyond the ones studied in this paper.
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1. Introduction The literature in supply chain, logistics, and network design theory provides

many streamlined optimization models where the goal is to satisfy a deterministic or stochastic

sequence of demand at minimum cost. More recent practice and research trends in have led to

broader models that consider decisions on the supply side as well as on the demand side. More

specifically, the customers to which one responds and commit to are not entirely exogenous parame-

ters, but may be influenced by endogenous decisions such as pricing, promotions, and other strategic
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marketing-based factors. In particular, a supplier or provider should strive to optimally match

demand to the supply chain’s production capabilities or the network’s infrastructure. A fundamen-

tal aspect of this issue is the choice of customers to which the supplier commits to serving, and how

these customers are implicitly, or explicitly, chosen. For example, the decision whether to serve a

customer heavily depends on the customer’s willingness to pay, as well as the costs expected to be

incurred if the customer is satisfied. These decisions are often very challenging since at the time of

the decision it is not clear what customers will arrive in the future. Moreover, in many setting there

are economies of scale that create dependencies between the cost incurred by satisfying different

customers.

In this work, we study a general class of online customer selection models that capture these

challenges and tradeoffs in many important supply chain management, network design, and logis-

tics areas. These models also capture online variants of many well-known and studied offline

prize-collecting problems. For example, consider the facility location problem, where there a set of

customers that require service and one must decide on the optimal set of facilities to open. The

total cost is the cost to open the facilities plus the service cost for each customer to receive service

from the nearest facility. In the facility location problem with online customer selection, customers

arrive one-by-one and reveal their location. One must decide in real-time whether to accept and

commit to serving the customer, or reject and incur a customer-specific rejection cost. Solving the

facility location problem for the accepted customers is done either online or after all customers

have arrived.

In this paper, we develop a general framework to design online algorithms for problems with

online customer selection that can be applied under very little or no knowledge on future demands.

The performance of the algorithms is analyzed by comparing them to the optimal solution of

the respective offline variant, where the assumption is that the decision maker has fully upfront

information on the future customers and their demands. This is known as the competitive ratio of

the algorithm, i.e., the worst case ratio between the costs of the online algorithm and the optimal

offline algorithm (Albers [1]).
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The online algorithmic framework that we develop in this work is based on a novel use of cost

sharing mechanisms for the respective offline problems (without customer selection). Cost sharing

is an important and well-studied concept in economics and computer science, whereas one has to

decide how to share the service (or production) costs amongst the players that received service

(Moulin and Shenker [35], Jain and Mahdian [26]). These problems arise when there are multiple

players that want to pay for service or goods, but the production costs have economies of scale.

In other words, the cost of serving every player separately is far greater than the cost of serving

them all simultaneously due to the economies of scale. For a given production (or service) cost

function, a cost sharing mechanism determines how much each player should pay to be served and

distributes the economies of scale in a fair manner. In this paper, we obtain general results that

show how to leverage any cost sharing mechanism for an offline problem with certain (rather general

and commonly used) properties into an online algorithm for the corresponding online selection

problem. For example, for the facility location problem we use the cost sharing mechanism of Pál

and Tardos [37] to obtain an online algorithm for the facility location problem with online customer

selection. In fact, the competitive ratio of the online algorithm is directly characterized by certain

characteristics of the respective cost sharing mechanism. This leads to a general framework that

not only leverages existing cost sharing mechanisms, but also will transparently leverage any future

result in this area. Moreover, for many of the problems that we study, it is shown that these

competitive ratios are close to best possible by any online algorithm.

1.1. Models. In this work we study a large class of online selection variants to core supply

chain management, logistics and network design problems, such as the economic lot sizing problem,

the facility location problem and the minimum Steiner tree problem. In these online customer

selection variants, decisions are made in two phases. First, there is a selection phase, in which

the supplier has to decide in real-time (i.e., upon customer arrivals) whether to accept or reject

each arriving customer. Customers have different willingness to pay that is captured through an

associated revenue, and may have different requirements with respect to quantities desired, due
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dates, and locations. After (or while) the selection decisions are made, there is a production phase,

in which the accepted customers are served with minimum possible production cost. The goal

is to minimize the total cost of lost revenue from rejected customers plus the cost of satisfying

the accepted customers. Most of the previous related work assumed that all customers are known

in advance when the accept/reject decisions are made; this is called offline customer selection

(Goemans and Williamson [21], Charikar et al. [14], Geunes et al. [18]). In contrast, we consider

a much more realistic setting, where selection decisions are made adaptively over time with no

information on the future customers and their demands. This lack of information about the future

is a more realistic assumption in many practical settings. However, it adds significantly to the

complexity of the decision-making problem, particularly in settings where the production costs

have economies of scale. The types of production costs we consider are the cost of economic lot

sizing, facility location, and network design problems.

The online customer selection models studied in this work attempt to capture real-life operational

situations of a make-to-order supplier or service provider. Typically, decisions are broken up into

phases (weeks, quarters, years). In each phase, the supplier receives customer orders (requests) due

in some time period in the next phase, and needs to instantaneously decide which customers to

serve as their requests arrive. During the same phase, the supplier is also serving the customers that

were accepted in the previous phase with minimum production cost. In many of these settings, it is

often extremely challenging to form a reliable distribution of future customers and their demands.

The challenge stems from market volatility, lack of reliable data, and the fact that customers have

very different needs for customized orders (or service) and associated revenues. In light of these

issues, the assumption that the supplier has minimal knowledge about future customer arrivals

could lead to more robust policies. Our model and algorithms can also help the supplier suggest

an appropriate price to the customer that would ensure profitability for the supplier.

1.2. Contributions. In this paper, we develop a general class of online algorithms called

FairShare to make online customer selection decisions. We show that FairShare performs well for
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a variety of inventory management, facility location, and network design problems with online

customer selection. As previously mentioned, the performance is measured by the notion of com-

petitive ratio, which is widely used in many online optimization settings. An online algorithm with

a competitive ratio of c means that, even in the worst-case scenario, the cost of the online algorithm

is at most c time the cost of the optimal offline solution.

The FairShare algorithm is based on repeatedly simulating a cost sharing mechanism for the

respective production problem. In this type of mechanism, N “players” each submit a “bid” repre-

senting how much they would like to be served. Then, the mechanism decides which set of players

to serve and how much each player should pay according to a cost sharing method. This cost sharing

method is a proxy for how much each customer contributes to the overall production cost. When

FairShare simulates a cost sharing mechanism, all previously observed customers are the players

and their associated revenues are the bids. If the simulated cost sharing mechanism decides to

serve the customer that just arrived, then FairShare accepts that customer, and otherwise rejects.

We show that the competitive ratio of FairShare is directly linked to certain characteristics of the

cost sharing method. Therefore, this allows us to leverage many existing results for cost sharing

mechanisms in order to generate online selection algorithms with strong performance guarantees.

Specifically, desirable cost sharing methods satisfy several nice properties such as competitiveness,

cost recovery, and cross-monotonicity. Competitiveness implies that the sum of the cost shares

assigned to the selected players is no more than the total cost of service for those players, while cost

recovery implies that the sum of the cost shares covers a large fraction of the actual cost to serve the

accepted players. Cross-monotonicity means that the cost shares of each player decreases as more

players receive service. These three properties together imply that cost sharing methods provide

a very good way to share the costs of production fairly across customers so that good selection

decisions can be made. We also rely on the summability of the cost sharing method, described

by Roughgarden and Sundararajan [39], which turns out to characterize how much FairShare

will regret rejecting customers. We believe that our use of game theory mechanisms in an online

optimization setting has potential for many more applications. Finally, we obtain lower bounds
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on the best possible competitive ratio that depend on the logarithm of the number of customers.

This shows that FairShare achieves competitive ratios (i.e., upper bounds) that are very close to

optimal, which provides even stronger evidence of the intrinsic connection between cost sharing

mechanisms and online selection problems.

1.3. Literature Review. Earlier work on the prize-collecting traveling salesman problem

and the prize-collecting Steiner tree problem studied by Bienstock et al. [8] and Goemans and

Williamson [21], respectively, falls into our offline customer selection framework. In Charikar et al.

[14], an approximation algorithm is given for the facility location problem with offline customer

selection. Some models considered offline market selection, where a market is a sequence of demands

requested by a customer over time (or in multiple locations) that must be either fully accepted or

rejected. van den Heuvel et al. [44] shows that it is NP-hard to approximate the profit maximization

variants of these models within any constant. This motivates the focus on cost minimization variants

that we and others have studied. In Geunes et al. [18], a general linear programming rounding

framework that provides approximation algorithms for several production planning and logistics

problems with offline market selection. In contrast, the problems in this work consider markets

that consist only of a single period (or location), but the market/customer selection decisions are

made online without any information about the future. A more general area of literature can be

found in Slotnick [42].

There has also been a recent stream of literature on the use online optimization for operational

planning. In van den Heuvel and Wagelmans [45], the competitive ratio of the online economic lot

sizing problem without customer selection is shown to have a lower bound of two, matching the best

known guarantee achieved in Axsater [3]. More general single item models are considered in Wagner

[47]. In Buchbinder et al. [11], an online primal-dual algorithm is proposed for a make-to-order

variant of the online joint replenishment problem with a competitive ratio of three. The work of

Fotakis [17] provides a lower and matching upper bound depending on the number of customers for

the online facility location problem. Meyerson [33] provides randomized algorithms for a variant of
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the online facility location problem that gives a constant competitive ratio. In Ball and Queyranne

[5], booking policies are found that achieve small competitive ratio for online revenue management

problems. Finally, Jaillet and Lu [24] propose algorithms for the online traveling salesman problem

with online customer selection. The ideas used in all these papers are very different than the ones

used in this work.

The area of cooperative game theory, which focuses on how to fairly allocate costs among players,

has gained recent interest in operations management (see Cachon [13], Nagarajan and Sosic [36],

Bhaskaran and Krishnan [7], Kim and Netessine [28]). Of main interest to this paper are the

cost sharing mechanisms for inventory management (Xu and Yang [48]), facility location (Pál and

Tardos [37]) and Steiner tree (Jain and Vazirani [27]) problems. Roughgarden and Sundararajan

[39] developed a notion called summability, which was used to study the social welfare of the

previously mentioned mechanisms. Our paper is the first to leverage cost sharing mechanisms

directly in an online optimization setting.

In previous recent work, Elmachtoub and Levi [16] considered a special class of online customer

selection problems, where the rejection cost per unit was the same for all customers. Under this

assumption, they were able to obtain online algorithms with constant competitive ratios. The

algorithms they used were based on variants of re-optimization that ignored previously made

decisions. However, the uniform rejection cost assumption does not capture situations where the

willingness to pay among customers may vary (i.e., different associated revenues among customers)

or where prices may be changing over time. Moreover, we show that if the rejection costs vary with

each customer, no constant competitive ratio guarantees exist for the applications we consider.

The remainder of this paper proceeds as follows. In Section 2, we describe a general model for

online customer selection problems along with some useful notation. In Section 3, we describe the

FairShare Algorithm and provide a general analysis of its performance. In Section 4, we give several

applications with polylogarithmic competitive ratios. In Section 5, we provide a lower bounds on

the competitive ratio for the facility location and economic lot sizing problems with online customer
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selection (minimum Steiner tree lower bound is in Appendix). In Section 6, we discuss an extension

to online market selection. In Section 7, we offer some concluding remarks and future research

directions.

2. General Model and Notation The models studied in this paper involve decisions that

are made in two phases. First, there is a selection phase in which customers arrive sequentially in

an online manner. In stage k of the selection phase, customer k arrives with requirements Ik and

rejection cost rk. Requirements (information) Ik may include demand quantities, due dates, and

locations needed by the customer. After customer k arrives, the supplier needs to decide whether to

accept or reject customer k using only the information regarding the first k customers. If customer

k is rejected, a cost of rk is incurred, which represents the lost revenue from that customer. The

selection phase completes when the supplier stops observing new customers. At this point the

customers that arrived have been partitioned into accepted and rejected sets denoted by A and R,

respectively.

The second phase is the production phase, where the accepted customers are served accordingly to

meet their requirements. For a set of customers T , P (T ) denotes the minimum possible production

cost to serve the customers in T . The function P (T ) typically represents the cost of an optimal

solution to a minimization problem. The production cost for the accepted set of customers A is

then denoted by P (A). We make the natural assumptions that P (T ) is nondecreasing in T and

P (∅) = 0. The overall goal is to minimize the total production costs of the accepted customers plus

the rejection costs of the rejected customers. This two phase problem is generally referred to as an

online customer selection problem. In Section 4 we will describe specific applications of the model

by specifying definitions for Ik, rk, and P (·). In addition, we also consider the possibility where the

two phases overlap and one needs to solve the production problem online as well.

We now outline convenient notation used throughout the paper. Let N be the number of cus-

tomers that arrived (unknown a priori), U be the full set of customers {1, . . . ,N} and Uk be the first

k customers {1, . . . , k}, implying that U = UN . When referring to the final stage N , the subscript



Elmachtoub and Levi: From Cost Sharing in Online Selection Problems
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the mansucript number!) 9

may be dropped for simplicity. The rejection cost of a subset of customers T ⊆ U is defined as

R(T ), i.e., R(T ) =
∑

k∈T rk. The notation Ak and Rk denote the customers that were accepted and

rejected, respectively, by the online algorithm through the first k stages. Note that Ak ∪Rk =Uk,

Ak ∩Rk = ∅, Ak−1 ⊆Ak, and Rk−1 ⊆Rk for all k.

If all information I1, . . . , IN and r1, . . . , rN is known upfront, then the offline customer selection

problem is defined as OPT(U) = minA⊆U P (A) + R(U\A). Let A∗k and R∗k denote an optimal

pair of accepted and rejected sets in the offline problem OPT(Uk). Note that A∗k ∪R∗k = Uk and

A∗k ∩ R∗k = ∅ for all k, but monotonicity does not necessarily hold since an offline solution may

change its selection decisions as the stages progress.

The optimal offline cost through stage k is denoted by C∗(Uk), which can be expressed as

C∗(Uk) = P (A∗k)+R(R∗k). The value C(Uk) denotes the total cost incurred by the online algorithm

through stage k, i.e., C(Uk) = P (Ak)+R(Rk). Using these definitions, it follows that for any online

algorithm and any stage k, C∗(Uk)≤C(Uk). We note that another natural objective to use is profit,

i.e., R(Ak)−P (Ak). Although this objective is equivalent in an offline setting , i.e., it results in the

same optimal offline solution, approximating profit in an online setting is very challenging due to

the mixed sign objective. In fact, even in an offline setting approximating profit within any factor

is NP-hard for many customer selection problems (van den Heuvel et al. [44]).

The performance of an online algorithm is evaluated using the notion of competitive ratio. An

algorithm has a competitive ratio of d and is called d-competitive if C(U) ≤ dC∗(U) for any

online sequence of customers U and their respective characteristics. In other words, the cost of

the algorithm is guaranteed to be at most d times the cost of an optimal offline solution for any

customer sequence.

3. Algorithm Our algorithm is based on the repeated simulation of specific cost sharing

mechanisms. Suppose we are given a set of players U and a cost function P (·). A cost-sharing

mechanism is a mechanism that first collects bids from each player in U , and then decides which

subset of players to serve. In addition, the mechanism assigns a cost share (price) to each serviced
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player. If the mechanism chooses to serve T ⊆U , then we let χ(i, T ) denote the cost share assigned

to player i∈ T for service. We refer to the function χ as a cost sharing scheme (or method), which

can possibly take on some of the properties discussed later on. In the next section we describe

several useful cost sharing methods for various production cost functions of interest.

Given a set of customers T , a cost-sharing scheme χ, and a scalar c, we let M(χ,T, c) denote the

set of customers output by the following procedure, known as a Moulin mechanism (Moulin [34]).

A Moulin mechanism is a class of cost sharing mechanisms where every player begins by receiving

service, and players are iteratively removed if their cost share is higher than their (scaled) bid.

The mechanism terminates when every remaining player has a cost share less than or equal to his

(scaled) bid, which we denote by ri for player i for convenience.

Moulin Mechanism: M(χ,T, c)

1. Collect bids ri from each player i∈ T .
2. If cri ≥ χ(i, T ) for all i∈ T , halt and output T .
3. Else, let j ∈ T be a player with crj <χ(j,T ). Set T := T\{j}.
4. Go to Step 2.

Now we can define our general online customer selection algorithm, which we call FairShare,

according to the following procedure. FairShare relies on a cost sharing method χ and a scalar

c, where c is a cost scaling parameter chosen to optimize performance. The cost sharing method

χ must be specific for the production cost function P (·) being considered in the application, and

will act as a proxy for how much each customer is contributing to the overall production cost of

the accepted customers. For example, we will use the facility location cost sharing method of Pál

and Tardos [37] for running the FairShare on the facility location problem with online customer

selection. For the current customer k, the FairShare algorithm is simulating a Moulin mechanism

with χ as the cost sharing method, the entire set of observed customers so far Uk as the players,

and their respective rejection costs as their bids. If the simulated mechanism accepts customer

(player) k, then so does FairShare and vis versa.
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FairShare Accept current customer k if and only if k ∈M(χ,Uk, c).

Clearly the FairShare algorithm converges in at most N iterations since there is at least one

person removed in every iteration except for the very last one. Furthermore, since all of the cost

sharing schemes we consider can be computed efficiently in polynomial time, then FairShare is

generally an efficient algorithm. We now define some desirable properties for χ. A cost sharing

scheme χ is

1. cross-monotonic if χ(i,S)≥ χ(i, T ) for all i∈ S ⊆ T ⊆U .

2. (β,γ)-budget balanced if P (T )

γ
≤
∑

i∈T χ(i, T )≤ βP (T )

3. α-summable for a monotonically increasing function α(·) if
∑|T |

l=1χ(il, Tl) ≤ α(|T |)P (T ) for

every ordering σ of U and every set T ⊆ U , where Tl denotes the set of the first l demands in T

and il denotes the lth demand of T (with respect to σ).

The cross-monotonicity property simply states that if the number of players receiving service

grows, then the cost share of each individual will not increase. In other words, if we remove a

player, then the cost share of all remaining players can only increase. In the mechanism design

setting, if χ is cross-monotonic, then the Moulin mechanism will induce truthful bidding (Moulin

and Shenker [35]).

The (β,γ)- budget balanced property ensures that the sum of the cost shares is no more than β

times the associated cost, but also recovers at least 1/γ of the cost. A (1, γ)-budget balanced is said

to be competitive while a (β,1)-budget balanced mechanism is said to be no-deficit. Although χ is

providing a specific approximation to P (·), we use the exact value of P (·) computing the values of

C∗(·) and C(·).

Finally, the α-summable property is a measure of the efficiency (social welfare), of the Moulin

mechanism, as described by Roughgarden and Sundararajan [39]. To see this, pick an arbitrary

order σ of T ⊆ U , and let each player l’s valuation, and therefore bid, be χ(l, Tl) − ε for some

arbitrarily small ε. If we run the Moulin mechanism M(χ,T,1), then no player will be chosen, since
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they will be eliminated in reverse order by construction. Therefore the total cost of the system will

be roughly
∑|T |

l=1χ(il, Tl), where the optimal cost would be just C(U). If σ is chosen adversarily,

then α(·) represents the worst possible situation that we can construct using the previous example.

(A more rigorous analysis is in Roughgarden and Sundararajan [39].) We note that contrary to β

and γ, α is typically not a scalar but rather a function that depends on the number of customers

being served.

Given a cost sharing scheme χ that satisfies these three properties, we can intuitively explain

why we can expect the FairShare algorithm to perform well. First, the cross-monotonicity implies

that once a player is accepted by FairShare, he will always be accepted in every simulated output

of the Moulin mechanism after his arrival. Thus, the current set of accepted customers is always a

subset of the current output of the Moulin mechanism, whose costs can be bounded by the other

two properties. In essence, cross-monotonicity implies that χ is a fair way to share the costs among

the customers, since as more customers are added, the less each customer is ‘charged’ for service.

Due to the (β,γ)-budget balanced property, we can expect that the production costs for serving

the accepted customers will be not too large. Finally, motivated by the previous example, the

α-summability directly characterizes how much we will expect to incur in rejection costs. In the

next section, we formally provide theoretical guarantees on the cost of the FairShare algorithm.

We explicitly characterize the competitive ratio of FairShare as a function of α,β, γ, c, and N . In

Section 4, we discuss specific cost sharing methods from the literature that yield relatively small

competitive ratios.

3.1. Analysis In this section, we will provide explicit bounds on both the production and

rejection costs incurred by FairShare. We assume that we have a (β,γ)-budget balanced, α-

summable, cross-monotonic, cost sharing scheme χ for the production cost function P (·). Remem-

ber that Uk refers to the first k customers that have arrived. We will let AMk = M(χ,Uk, c) and

RMk = Uk\M(χ,Uk, c) for a given choice of parameter c to be optimized later. A set with no sub-

script simply refers to the final customer N . We first prove a key lemma which says that the the
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sets AMk are monotonically increasing in k. Intuitively, the reason for this is that as more customers

are added, the better off everyone is due to the cross-monotonicity of χ. This will be key to prove

our production bound in Lemma 2.

Lemma 1. The accepted set of customers by M(χ,Uk, c) is monotonically increasing in k, i.e.,

AM1 ⊆AM2 ⊆ . . .⊆AMN .

Proof. We will prove the lemma by induction. The base case is trivial since we start the problem

with no customers. Assume AM1 ⊆AM2 ⊆ . . .⊆AMk and we want to show that AMk ⊆AMk+1. Assume

for contradiction that a customer j ∈AMk was not in AMk+1. In case there are multiple choices for j,

we choose the j that was first removed by the Moulin mechanism for M(χ,Uk+1, c). Let Sj denote

the set of players that had not been rejected by the Moulin mechanism for M(χ,Uk+1, c) just before

j was removed. By construction, j ∈ Sj. Then we know that

crj <χ(j,Sj)≤ χ(j,AMk )≤ crj.

The first inequality follows from the fact that j was removed by the mechanism M(χ,Uk+1, c)

when the current remaining set at the time was Sj. The second inequality follows from the cross-

monotonicity of χ and the fact that by definition AMk ⊆ Sj by construction. The last inequality

follows from the fact that the set AMk was previously output by the Moulin mechanism. Thus, we

arrived at a contradiction, which implies that each j ∈AMk is also in AMk+1, and thus AMk ⊆AMk+1.

�

Using this lemma, we can now prove a bound on the production costs of FairShare.

Lemma 2. The production costs of the FairShare algorithm are P (A)≤ γ (cR(R∗) +βP (A∗)).

Proof. The production cost of serving the accepted customers is

P (A)≤ P (AM)

≤ γ
∑
k∈AM

χ(k,AM)
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≤ γ

 ∑
k∈AM∩R∗

χ(k,AM) +
∑

k∈AM∩A∗

χ(k,AM ∩A∗)


≤ γ

 ∑
k∈AM∩R∗

χ(k,AM) +βP (AM ∩A∗)


≤ γ

 ∑
k∈AM∩R∗

χ(k,AMk ) +βP (AM ∩A∗)


≤ γ

 ∑
k∈AM∩R∗

crk +βP (AM ∩A∗)


= γ

(
cR(AM ∩R∗) +βP (AM ∩A∗)

)
≤ γ (cR(R∗) +βP (A∗)) .

The first inequality follows since Lemma 1 implies A⊆AM and P (·) is monotonic. The second

inequality follows from χ being (β,γ)-budget balanced. The third inequality follows from cross-

monotonicity of χ. The fourth inequality follows from χ being (β,γ)-budget balanced. The fifth

inequality follows Lemma 1 which implies AMk ⊆AM and the cross-monotonicity of χ. The sixth

inequality follows from the fact that AMk is an output of the Moulin mechanism. The equality

follows from the definition of R(·). The last inequality follows from the monotonicity of R(·) and

P (·). �

We now show that any subset of the rejected customers of FairShare will be rejected by the

Moulin mechanism as well. Intuitively this is also due to the cross-monotonicity of χ since these

customers were already being rejected when they were in consideration with an even larger set of

customers. This result will be useful in proving our rejection cost bound in Lemma 4.

Lemma 3. For any subset of customers Q⊆R, the Moulin mechanism for M(χ,Q, c) outputs

the empty set.

Proof. Assume for contradiction that the Moulin mechanism for M(χ,Q, c) outputs T 6= ∅. Let

k be the last customer that arrived in T . Consider the first time a customer j ∈ T was removed by

M(χ,Uk, c) and let Tj denote the players remaining just before j was removed. Note since k ∈R

that j and Tj are well-defined. Then we know that
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crj <χ(j,Tj)≤ χ(j,T )≤ crj.

The first inequality from the fact j was removed by the Moulin mechanism for M(χ,Uk, c) when

the current remaining set at the time was Tj. The second inequality follows from the fact that

T ⊆ Tj by construction and the cross-monotonicity of χ. The last inequality follows from the fact

that T is an output of the Moulin mechanism. Thus we arrived at a contradiction and conclude

that T must be indeed empty. �

Using the previous lemma, we can now obtain a bound the rejection costs of the FairShare

algorithm.

Lemma 4. The rejection costs of the FairShare algorithm are R(R)≤R(R∗) + α(N)

c
P (A∗).

Proof. Let Q=R∩A∗ which is the set of customers that FairShare rejected but the optimal

offline solution accepted. From Lemma 3, we know that M(χ,Q, c) returns the empty set. For each

j ∈Q, let Qj be the remaining set of customers just before customer j was rejected in the Moulin

mechanism for M(χ,Q, c). Then by construction we know that

crj <χ(j,Qj).

Then we can show that

R(R∩A∗) =R(Q)

<
∑
j∈Q

χ(j,Qj)

c

≤ α(|Q|)
c

P (Q)

≤ α(N)

c
P (A∗).

The first equality follows from the definition of Q. The first inequality follows from the previous

inequality we derived. The second inequality follows from α-summability of χ. The last inequality

follows from the monotonicity of α(·) and P (·). Adding R(R∩R∗) ≤ R(R∗) to both side of the

inequality completes the proof. �
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Using the bounds we have obtained for the FairShare algorithm, we can now easily prove the

general theorem below.

Theorem 1. Given a (β,γ)-budget balanced, α-summable, cross-monotonic cost sharing

scheme χ for a production problem P with online customer selection, the FairShare algorithm is

max(1 + γc, α(N)

c
+ γβ)-competitive.

Proof. We have that

C(U) =R(R) +P (A)

≤R(R∗) +
α(N)

c
P (A∗) +P (A)

≤R(R∗) +
α(N)

c
P (A∗) + γ (cR(R∗) +βP (A∗))

≤max(1 + γc,
α(N)

c
+ γβ)(R(R∗) +P (A∗))

= max(1 + γc,
α(N)

c
+ γβ)C∗(U).

The first equality follows from the definition of C(·). The first inequality follows from Lemma 4.

The second inequality follows from Lemma 2. The third inequality is combining terms. The last

equality follows from the definition of C∗(·) which completes the proof. �

The following corollary states what happens if we want to use an approximation algorithm or

online algorithm for P .

Corollary 1. If a d-approximation or d-competitive algorithm is used to compute P (·), then

the FairShare algorithm is max(1 + γcd, α(N)

c
+ γβd)- competitive.

Finally, if the number of customers is known up to a constant factor, then c can be chosen to

be Θ(
√
α(N)) which optimizes the bound in Theorem 1. In particular, knowing N approximately

allows for a substantial improvement in the competitive ratio from O(α(N)) to O(
√
α(N)).

Corollary 2. If N is known up to constant factors, and β and γ are scalars, then choosing

c= Θ(
√
α(N)) makes the FairShare algorithm O(

√
α(N))-competitive.
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4. Applications We now describe several problems with online customer selection and then

state the main results (see Table 4). The metric Facility Location (FL) problem is a well studied

NP-hard problem. The goal is to serve a set of customers, each with a specified demand quantity

and location, by opening a set of facilities. There are M potential facilities, indexed by j = 1, . . . ,M .

The opening cost of facility j is fj. Each unit of demand is served by the nearest open facility,

and pays a service cost c(j, k) if facility j serves customer k. We assume that c induces a metric

(symmetric and satisfies triangle inequality) over the facilities and customers’ demands. The goal

is to serve all the customers so as to minimize the total facility costs plus service costs. The first

constant factor approximation algorithm was given by Shmoys et al. [41], and the current best

approximation factor is 1.49 due to Li [31]. When customers can be rejected, this is known as the

Facility Location Problem with Offline Customer Selection. The first approximation algorithm was

given by Charikar et al. [14], and the current best approximation factor of 1.52 is due to Li et al. [32].

In this paper, we focus on the Facility Location Problem with Online Customer Selection. When a

customer k arrives online, we observe Ik = (lk), where lk specifies the location of where customer

k’s demand is. The rejection cost is just rk. The production cost function P (T ) is now the optimal

cost of the FL problem for a given set of customers T . Pál and Tardos [37] provides a cost sharing

scheme that is cross-monotonic and (3,1)-budget balanced. Roughgarden and Sundararajan [40]

show that this scheme is log-summable in the number of customers.

The Economic Lot Sizing (ELS) problem is a single item, single location, discrete time inventory

model. There is a set of customers, each with a due date and single unit demand, that need to

be served by a sequence of production orders over a planning horizon of T periods. Each order

incurs a setup cost K. Each customer is served by exactly one order. If a customer with due date

t is satisfied by an order at time s < t, then a per unit holding cost h ≥ 0 is incurred for every

period in inventory from period s to t. Similarly, if the demand is served by an order s > t then a

per unit per period backlogging cost b≥ 0. The objective is to minimize the total setup ordering

cost plus holding and backlogging costs. The ELS problem can be solved efficiently via dynamic

programming (Wagner and Whitin [46]). The Economic Lot Sizing problem with Offline Customer
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Selection can also be solved efficiently (Geunes et al. [19]). We will focus on the Economic Lot Sizing

problem with Online Customer Selection. Customers arrive in an online manner and the supplier

needs to make an immediate selection decision before new customers arrive. When a customer k

arrives, he specifies Ik = (tk), where tk is the due date for customer k. The rejection cost of customer

k is rk. The production cost P (T ) is then the optimal cost of the ELS problem on a subset of

customers T . If the rejection cost per unit is fixed, then Elmachtoub and Levi [16] shows that there

is a 3-competitive online algorithm. Xu and Yang [48] adapted the cost sharing scheme of Pál and

Tardos [37] and found one that is cross-monotonic and (max(b/h,h/b),1)-budget balanced. Using

the same proof as in Roughgarden and Sundararajan [40] for the Pál and Tardos [37] scheme, one

can show that this scheme is log-summable in the number of customers.

The Steiner tree problem is a network design model where we are a given a graph G= (V,E)

and subset of nodes S ⊆ V that needs to be connected with a tree. The cost of the tree is the

sum of the costs of each edge used in the tree. The first approximation algorithm was given by

Gilbert and Pollak [20], and the current best approximation factor of 1.39 is due to Byrka et al.

[12]. Extensions of this problem include the Steiner forest problem (Jain [25]), the Single Source

Rent or Buy (SSROB) problem (Talwar [43]), and the Multi-commodity Rent or Buy (MROB)

problem (Kumar et al. [30]). (The Steiner forest problem requires one to connect a set of node

pairs. The rent-or-buy problems assume that each edge is either paid per use or bought once for

a fixed cost. The single commodity and multi-commodity variants correspond to the Steiner tree

and Steiner forest problems, respectively.) When nodes can be rejected, this is typically called

the Prize-Collecting Steiner Tree problem. The first approximation for this was due to Bienstock

et al. [8], and the current best approximation factor of 1.99 is due to Archer et al. [2]. Directly

related to these problems is the prize-collecting traveling salesman problem Balas [4]. We focus on

the Steiner Tree Problem with Online Customer Selection where customers arrive online and the

information for customer k is his node location. The production cost P (T ) is the optimal cost of

the Steiner tree to serve the customers in T . Jain and Vazirani [27] provides a cost sharing scheme

that is cross-monotonic and (2,1)-budget balanced for the minimum spanning tree problem, which
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can also be used for the Steiner tree problem. Roughgarden and Sundararajan [39] show that this

scheme is log2-summable in the number of customers.

The table below summarizes the results based on the ideas in this paper. The first column

denotes the production cost problem along with the citation of the cost sharing method that we

use in FairShare. The second column displays the summability function α for the corresponding

problem along with the paper that showed this. The third and fourth columns show the β and

γ factors that were shown with the corresponding cost-sharing method paper. The fifth column

denotes the optimal choice for c. The sixth column denotes the competitive ratio achieved by using

FairShare with the corresponding cost sharing method and choice of c (we assume we know Θ(N)

and use Corrollary 2). Note that the results for facility location and economic lot sizing assuming

each customer requests one unit, we discuss extensions in Section 6. The final column shows lower

bounds on the best possible competitive ratios, shown in Section 5 and the Appendix.

Problem α β γ c FairShare Lower Bound

Facility Location [37] logN [40] 3 1
√

logN O(
√

logN) Ω
(√

logN
log logN

)
Economic Lot Sizing [48] logN [40] max( b

h
, h
b
) 1

√
logN O(

√
logN) Ω

(√
logN

log logN

)
Steiner Tree [27] Θ(log2N) [39] 2 1 logN O(logN) Ω(

√
logN)

Steiner Forest [29] Θ(log2N) [15] 2 1 logN O(logN) Ω(
√

logN)
SSROB [22] Θ(log2N) [40] 4.6 1 logN O(logN) Ω(

√
logN)

MROB [40] Θ(log2N) [40] O(1) 1 logN O(logN) Ω(
√

logN)

Based on the results of Brenner and Schäfer [10] and Bleischwitz and Schoppmann [9], we can also

get O(
√

logN) competitive ratios with FairShare for the machines scheduling problems with online

customer selection using identical and related machines, respectively. Finally, it is worth noting

that using the cost sharing method of Moulin and Shenker [35] we can get O(
√

logN) competitive

ratios for submodular problems with online customer selection, although this does not match the

optimal guarantee of 2 in Elmachtoub and Levi [16]. To the best of our knowledge, the results in

the last two columns are the first of their kind with one exception in that Qian and Williamson

[38] found a similar guarantee for the Steiner tree problem with online customer selection.
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5. Lower Bound for Facility Location Problem with Online Customer Selection In

this section, we provide lower bounds on the competitive ratio for any algorithm, deterministic or

randomized, for the facility location problems with online customer selection. The proof for the

economic lot sizing problem is almost identical and therefore omitted. In the Appendix, we provide

the proof for the Steiner tree problem which has many similar features to the proof below. The

technique relies on constructing an instance similar to the one used in the lower bound proof for

the online facility location problem without customer selection in Fotakis [17]. However, we modify

the demand instance and add rejection costs in order to obtain a worst case adversary.

Theorem 2. The competitive ratio for any deterministic or randomized algorithm for the facil-

ity location problem with online customer selection is Ω
(√

logN
log logN

)
.

Proof. To show this lower bound, we need to specify an instance of the problem such that no

algorithm can come with in a factor of Ω
(√

logN
log logN

)
of the optimal offline cost, where N is the

total number of customers. The proof is by construction, and we start by building a hierarchically

well-separated binary tree (Bartal [6]) of depth h (Figure 1), where h will be specified later. The

root node will be level 0, its children will be level 1, and so on. There is a potential facility at each

leaf in the tree, each with a facility cost f . The distance from a level-i node to its children will be

D/mi, where D and m will also be specified later. For a node v in the tree, we define Tv to be the

subtree rooted at v. We now state two easily verifiable facts about the tree.

1. Let v be a level-i node. Then the distance from v to a node not in Tv is at least D/mi−1.

2. Let v be a level-i node. Then the distance from v to any node in Tv is at most D/(mi−1(m−1)).

We will now provide a distribution of customer sequences and give a lower bound of Ω
(√

logN
log logN

)
on the competitive ratio of any deterministic algorithm. Using Yao’s principle (Yao [49]), this

achieves the desired result. The distribution can be described according to the following procedure.

See Figure 1 for an example. The sequence v1, . . . , vh denotes the locations of where the customers’

locations will occur, and v is simply keeping track of how to move along the tree. We will assign

each vi to either V Â or V R̂ depending on whether we will accept or reject it in the feasible offline
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D 

Level 

D/m3 

D/m2 

D/m 
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4 

v1 

v2 

v3 

v4 

Figure 1. Example of the tree metric and a customer sequence.

Note. In this figure, each circle represents a node, and the lines represent where the node can travel to. The black

nodes denote a random path that the v node took in the demand sequence construction. In this example, V Â = {v1, v4}

and V R̂ = {v2, v3}.

solution we will consider.

1. Let v :=root, i := 0, V Â = ∅ and V R̂ = ∅.

2. Let i= i+ 1. Set vi :=left child of v. Generate mi−1 consecutive demands at vi each with
rejection cost of ri =D/(mi−1√m).

3. With probability 1− 1/
√
m, set v :=left child of v and let V Â = {vi} ∪ V Â. Otherwise,

with probability 1/
√
m, set v :=right child of v and V R̂ = {vi}∪V R̂.

4. If i < h, go to Step 2. Else, Stop.

We now compute an upper bound on the expected cost of the optimal offline solution, E[OPT],

by constructing a feasible solution for any sample path. Let Â denote all the customers located at

a node in V Â and let R̂ denote all the customers located at a node in V R̂. In our feasible solution,

we will accept Â and reject R̂. Note that there is a common facility in the subtrees of all the nodes

that have customers in Â, which is where how they will be served in this feasible solution. We call

this facility F̂ . We can then show that
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E[OPT]≤E[P (Â) +R(R̂)]

≤ f +
D

m− 1
E[|V Â|] +R(R̂)

≤ f +
D

m− 1
E[|V Â|] +

D√
m
E[|V R̂|]

= f +
D

m− 1

h
√
m−h√
m

+
D√
m

h√
m

≤ f + 2
hD

m− 1

The first inequality follows from optimality. From Fact 2, it follows that for each location vi ∈

V Â, the service cost for all the customers at vi to F̂ is mi−1 D
mi−1(m−1) = D

m−1 , which implies the

second inequality. For each location vi ∈ V R̂, the rejection cost for all the customers at vi will be

mi−1 D
mi−1

√
m

= D√
m

, which implies the third inequality. The fourth line follows from Step 3 of the

customer sequence construction and the fact that there are h levels in total(probability of vi ∈ V Â

is 1− 1/
√
m for all i). The last inequality follows from simple algebra.

We now focus on the cost of an arbitrary deterministic algorithm, ALG, on this input. Let us

again refer to A and R as the accepted and rejected customers by ALG. Let V A ⊆ {v1, . . . , vh} be

the locations where at least half of the customers are in A and let V R be the remaining locations.

The expected cost of ALG is then

E[ALG] =E[P (A) +R(R)]

≥E[P (A∩R̂)] +E[R(R∩Â)]

≥min{f,D/2}E[|V A ∩V R̂|] +E[R(R∩Â)]

≥min{f,D/2}E[|V A ∩V R̂|] +
D

2
√
m
E[|V R ∩V Â|]

≥min{f,D/2}E[|V A|]√
m

+
D

2
√
m

√
mE[|V R|]−E[|V R|]√

m

≥min{f,D/4}E[|V A|]√
m

+
D

4
√
m
E[|V R|]
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The first inequality follows from monotonicity of P (·) and R(·). Note that to serve the customers

in A, we need to serve at least half of the customers at each location vi ∈ V A∩V R̂. By construction

of V R̂, none of the subtrees of the nodes in V A ∩ V R̂ intersect. Thus, for each vi we must either

construct a facility in Tvi or serve the customers from another facility which, by Fact 1, will cost

mi−1

2
D

mi−1 = D
2

. Thus, the second inequality follows from the lower bound just derived of serving

the accepted customers at V A ∩ V R̂. The third inequality follows from the fact that we need

to reject at least half of the customers located at V R ∩ V Â. For a given location, this will cost

mi−1

2
D

mi−1
√
m

= D
2
√
m

. The fourth inequality follows from the fact that the probability that any node

vi is in V Â is 1− 1/
√
m by Step 3 of the construction, regardless of the fact that vi ∈ V R as well.

The last inequality follows when m≥ 4.

Now we will carefully set h :=m and D := 4f . Then the competitive ratio of ALG on this instance

will be

E[ALG]

E[OPT]
≥

min{f,D/4}E[|V
A|]√
m

+ D
4
√
m
E[|V R|]

f + 2 hD
m−1

=

E[|V A|]√
m

+ 1√
m
E[|V R|]

1 + 8 m
m−1

=

√
m

1 + 8 m
m−1

= Ω(
√
m)

The first inequality follows directly from the two bounds we derived above. The first equality

follows from canceling out f terms. The second equality follows from the fact that the expected

total number of locations is m by construction.

Finally, we need to determine m. Since there are 1+m+ . . .+mm−1 ≈mm total units of demand,

then the most m can be is Θ( logN
log logN

). Thus, the competitive ratio for any algorithm is at least

Ω
(√

logN
log logN

)
. �
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6. Extensions for Online Market Selection In this section, we consider a more typical

scenario where each customer actually has a multi-unit request that can even be across multiple

time periods or locations. We refer to this type of customer as a market, which requires special

consideration since cost sharing schemes have typically only been developed with single demand

customers in mind. Geunes et al. [18] gives a 2.06-approximation algorithm for several problems

with offline market selection. In order to handle online market selection, we simply create a new

cost sharing scheme that is based on summing up the cost shares for each demand when the original

cost sharing scheme is used.

For example, assume we have a cross-monotonic, (β,γ)-budget balanced, α-summable cost shar-

ing scheme χ̂. However, χ̂ assumes that each player has one demand request. If customers have

multiple demand requests, which create markets, and they only want to be served if their entire

market of demands can be served, then we need to come up with a new cost sharing scheme.

Specifically, for each customer j, let Tj be the set of demands that customer j wants. We will

define the new cost sharing scheme χ as χ(j, ·) =
∑

k∈Tj
χ̂(k, ·). Clearly χ maintains the cross-

monotonicity and (β,γ)-budget balanced properties. It remains α summable, but the input to α(·)

is now the total number of demands, rather than the number of customers. Thus, the competitive

ratios achieved by FairShare are now dependent on the total number of units of demand requested.

In addition, our lower bounds also have the feature that the lower bound will also depend on the

the total number of units of demand request. Specifically, all our results are trivially extended by

just replacing N by the total number of demands requested.

7. Conclusion In this paper we considered a general class of online customer selection prob-

lems where customers arrive sequentially and each customer must be either accepted or rejected

upon arrival, without knowledge of the future remaining customer sequence. The goal is to minimize

the production cost for the accepted customers plus the rejection cost of the rejected customers.

We provided a general algorithm called FairShare for this class of problems that is based on the

use of cost sharing mechanisms. These cost sharing mechanisms aim to naturally distribute the
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cost of production to the “players” in the cooperative game in such a way that the allocation is

fair and recovers most of the cost. Therefore, the cost shares very closely approximate the cost

incurred by each player, and we are able to leverage this information to determine whether to

accept or reject customers. Our algorithm provides poly-logarithmic competitive ratio guarantees

for a variety of facility location, network design, and inventory management problems with online

customer selection. We also showed that these guarantees are close to best possible by constructing

customer sequences that result in poly-logarithmic competitive ratios for all algorithms. Future

research directions would be to bridge the gap between the upper and lower bounds we developed

and to consider further applications of mechanism design in online optimization.
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Appendix. Lower Bound for Steiner Tree with Online Customer Selection

In this section, we derive a lower bound on the competitive ratio for the Steiner tree problem

with online customer selection. The proof is similar in spirit to Imase and Waxman [23] who

provided a lower bound for the online Steiner problem without customer selection. Note that this

proof also holds for the Steiner forest, single-commidity rent-or-buy problem, and multi-commodity

rent-or-buy problems with online customer selection since they are all generalizations.

Theorem 3. The competitive ratio for any deterministic or randomized algorithm for the

Steiner tree problem with online customer selection is Ω
(√

logN
)
.

Proof. We begin by constructing the same graph as in Imase and Waxman [23]. The procedure

to build graph Gk is as follows. Begin with two nodes, v0 (bottom) and v1 (top) connected by an

edge of length 1, and call this graph G0. Now to create graph Gk, take every edge in Gk−1 and

replace it by 2 paths, each consists of 2 new edges and 1 new node. The lengths of the 4 new edges

will each be half of the length of the original edge, so their length is 2k. The new nodes are called

level k nodes, and each pair of new nodes created are called k-adjacent to each other. See Figure 2,

3, 4, and 5 for an example of G3 (nodes are labeled according to their level, each edge is of length

1/8).

The procedure below demonstrates how we will generate customers. We begin by having 1

customer at level 1, 2 customers at level 2, 4 customers at level 3, and so on until we have 2k−1

customers at level k. The rejection cost of a level i customer is ri = 1/(2i−1
√
k). V Â and V R̂ denote

the node levels that are accepted and rejected, respectively, by the feasible solution we will consider.

See Figures 2-5 for examples on G3 of the customer sequence.
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Figure 2. Example of the Steiner tree problem with online customer selection.

Note. In this figure, V Â = {0,1,2,3}.

Figure 3. Example of the Steiner tree problem with online customer selection.

Note. In this figure, V Â = {0}.
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Figure 4. Example of the Steiner tree problem with online customer selection.

Note. In this figure, V Â = {0,2,3}.

Figure 5. Example of the Steiner tree problem with online customer selection.

Note. In this figure, V Â = {0,1,3}.
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1. Let V := v0, i := 0, V Â = {0} and V R̂ = ∅. Let the first two customers be v0 and v1, each
with infinite rejection cost (must accept).

2. Let i= i+ 1. Set Vi :=left i-level nodes of V . Generate 2i−1 customers, one at each node
in Vi, each with rejection cost of ri = 1/(2i−1

√
k).

3. With probability 1 − 1/
√
k, set V := Vi and let V Â = {i} ∪ V Â. Otherwise, with

probability 1/
√
k, set V :=i-adjacent nodes of Vi and V R̂ = {i}∪V R̂.

4. If i < k, go to Step 2. Else, Stop.

By construction, it’s clear that all the customer nodes with levels in V Â can be connected

by a single path of length 1. The cost of rejecting all the nodes at any given level is 2i−1ri =

2i−1(1/(2i−1
√
k)) = 1/

√
k. The expected number of levels that are rejected is E[|V R̂|], which we

can compute to be (1/
√
k)k=

√
k since the probability that any level is in V R̂ is 1/

√
k. The total

cost of the feasible solution implied by Â and R̂ is then 1 +E[|V R̂|]/
√
k= 2.

Now let V A be the levels where an online algorithm accepted at least half of the customers,

and let V R be the levels where an online algorithm rejected at least half of the customers. By

construction, in expectation 1/
√
k of the levels in V A will be in V R̂ due to the random customer

distribution. By construction, nodes in level i ∈ V R̂ can only be connected to any other nodes if

they each pay a cost of at least 1/2i. Therefore, the cost of connecting half the nodes in any level

of V R̂ is (1/2)(2i−1)(1/2i) = 1/4. Since on average 1/
√
k of levels in V A are in in V R̂, then the cost

of serving nodes in levels of V A is at least E[|V A|]/4
√
k. The cost of rejecting half of the nodes in

levels of |V R| is computed similarly as before, and is E[|V R|]/2
√
k. Therefore the total cost of the

online algorithm is at least E[|V A|]/4
√
k+E[|V R|]/4

√
k=
√
k/4.

Thus, the cost ratio between the online and feasible solution is O(
√
k). So if we have 2 + 20 +

21 + . . .+ 2k =N total customers, then k is at most Θ(logN) which completes the result. �
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