
MIT Open Access Articles

Box drawings for learning with imbalanced data

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Siong Thye Goh and Cynthia Rudin. 2014. Box drawings for learning with imbalanced
data. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD '14). ACM, New York, NY, USA, 333-342.

As Published: http://dx.doi.org/10.1145/2623330.2623648

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/99143

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/99143
http://creativecommons.org/licenses/by-nc-sa/4.0/

ar
X

iv
:1

40
3.

33
78

v2
 [

st
at

.M
L

]
 7

 J
un

 2
01

4

Box Drawings for Learning with Imbalanced Data

Siong Thye Goh and Cynthia Rudin
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract

The vast majority of real world classification problems
are imbalanced, meaning there are far fewer data from
the class of interest (the positive class) than from other
classes. We propose two machine learning algorithms
to handle highly imbalanced classification problems.
The classifiers are disjunctions of conjunctions, and are
created as unions of parallel axis rectangles around the
positive examples, and thus have the benefit of being
interpretable. The first algorithm uses mixed integer
programming to optimize a weighted balance between
positive and negative class accuracies. Regularization
is introduced to improve generalization performance.
The second method uses an approximation in order to
assist with scalability. Specifically, it follows a charac-

terize then discriminate approach, where the positive
class is characterized first by boxes, and then each box
boundary becomes a separate discriminative classifier.
This method has the computational advantages that it
can be easily parallelized, and considers only the rele-
vant regions of feature space.

Introduction

Our interest is in deriving interpretable predictive clas-
sification models for use with imbalanced data. Data
classification problems having imbalanced (also called
“unbalanced”) class distributions appear in many do-
mains, ranging from mechanical failure detection or
fault detection, to fraud detection, to text and image
classification, to medical disease prediction or diagno-
sis. Imbalanced data cause typical machine learning
methods to produce trivial results, that is, classifiers
that only predict the majority class. One cannot op-
timize vanilla classification accuracy and use standard
classification methods when working with imbalanced
data. This is explained nicely by Chawla, Japkowicz,
and Kolcz (Chawla, Japkowicz, and Kotcz 2004) who
write: “The class imbalance problem is pervasive and
ubiquitous, causing trouble to a large segment of the
data mining community.”
In order for the models we derive to be interpretable

to human experts, our classifiers are formed as a union
of axis parallel rectangles around the positive (minority
class) examples, and we call such classifiers box draw-
ing classifiers. These are “disjunctions of conjunctions”

0 50 100
0

20

40

60

80

100

dimension 1

di
m

en
si

on
 2

Figure 1: Example of box drawing classifier.

where each conjunction is a box. An example of a box
drawing classifier we created is in Figure 1, exemplify-
ing our goal to classify the positive examples correctly
even if they are scattered within a sea of negative exam-
ples. Our classifiers are regularized in several ways, to
prefer fewer boxes and larger boxes. We take two polar
approaches to creating box drawing classifiers, where
the first is an exact method, based on mixed integer
programming (MIP). This method, called Exact Boxes
can be used for small to medium sized datasets, and
provides a gold standard to compare with. If we are
able to make substantial approximations and still ob-
tain performance close to that of the gold standard, our
approximations would be justified. Our second method,
Fast Boxes makes such an approximation.

Fast boxes takes the approach of characterize then
discriminate, where we first characterize the positive
(minority) class alone, and then bring in the negative
examples to form decision boundaries around each clus-
ters of positives. This approach has significant com-
putational advantages, in that using just the minority
class in the first step requires a small fraction of the
data, assuming a high imbalance ratio. Also by creating

http://arxiv.org/abs/1403.3378v2

decision boundaries locally in the second step, the num-
ber of examples involved in each classifier is smaller; fur-
ther, creating each classifier separately allows computa-
tions to be made parallel, though since the computation
for each decision boundary is analytical, that may not
be necessary for many datasets. The computation is
analytical because there is a closed form solution for
the placement of the decision boundary. Thus, the dis-
criminate step becomes many parallel local analytical
calculations. This is much simpler and scalable than,
for instance, a decision tree that chooses splits greedily
and fails to scale with dimension and large number of
observations.
We make several experimental observations, namely

that: box drawing classifiers become more useful as
data imbalance increases; the approximate method per-
forms at the top level of its competitors, despite the fact
that it is restricted to producing interpretable results;
and performance can be improved on the same datasets
by using the mixed integer programming method.
After related work just below, we describe the ad-

vantages of our approach in Section 2. In Section 3, we
introduce our two algorithms. Experimental results will
be presented in Section 4. Section 4 provides a vignette
to show how box drawing models can be interpretable.
In Section 5, theoretical generalization bounds will be
presented for box drawing classifiers. Section 6 dis-
cusses possible approaches to make the MIP formula-
tion more scalable.

Related Works
Overviews of work on handling class imbal-
ance problems include those of He and Gar-
cia (He and Garcia 2009), Chawla, Japkowiz
and Kolcz (Chawla, Japkowicz, and Kotcz 2004)
and Qi (Qi 2004). Many works discuss prob-
lems caused by class imbalance (Weiss 2004;
Prati, Batista, and Monard 2004). There are
many avenues of research that are not directly
related to the goal of interpretable imbalanced
classification, specifically kernel and active learn-
ing methods (Raskutti and Kowalczyk 2004;
Wu and Chang 2003), and work on sampling
(Abe 2003; Chawla et al. 2002) that includes un-
dersampling, oversampling, and data generation,
which can be used in conjunction with methods like
the ones introduced here. We use a cost-sensitive
learning approach in our methods, similar to Liu
and Zhou (Liu and Zhou 2006) and McCarthy et al.
(McCarthy, Zabar, and Weiss 2005). We note that
many papers on imbalanced data do not experimentally
compare their work with the cost-sensitive versions of
decision tree methods. We choose to compare with
other cost-sensitive versions of decision trees as our
method is a cost-sensitive method.
There is some evidence that more complex ap-

proaches that layer different learning methods seem to
be helpful for learning (Raskutti and Kowalczyk 2004;
Wu and Chang 2003), though the results would not be

interpretable in that case. This, however, is in contrast
with other views (e.g., (Holte 1993)) that for most com-
mon datasets, simple rules exists and we should explore
them.
The works most similar to ours are that of

the Patient Rule Induction Method (PRIM)
(Friedman and Fisher 1999) and decision tree methods
for imbalanced classification (e.g., (Japkowicz 2003)),
as they partition the input space like our work.
Approaches that partition space tend to recover simple
decision rules that are easier for people to understand.
Decision tree methods are composed using greedy
splitting criteria, unlike our methods. PRIM is also
a greedy method that iteratively peels off parts of
the input space, though unfortunately we found it
to be extremely slow - as described by Sniadecki
(Sniadecki 2011), “PRIM is eloquently coined as a
patient method due to the slow, stepwise mechanism by
which it processes the data.” Neither our Exact Boxes
nor Fast Boxes methods are greedy methods, though
Fast Boxes makes a different type of approximation,
which is to characterize before discriminating. As
discussed by Raskutti (Raskutti and Kowalczyk 2004),
one-class learning can be useful for highly imbalanced
datasets - our characterization step is a one-class
learning approach.

New Algorithms

We start with the mixed-integer programming formula-
tion, which acts as our gold standard for creating box
drawing classifiers when solved to optimality.

Exact Boxes

For box drawing classifiers, a minority class (positive)
example is correctly classified only if it resides within
at least one box. A majority class (negative) example is
correctly classified if it does not reside in any box. We
are given training examples {(xi, yi)}

m
i=1,xi ∈ Rn, yi ∈

{−1,+1}. We introduce some notation in Table 1 that
we will use throughout this subsection. We use this
notation from here on.
The Exact Boxes method solves the following, where

the hypothesis space F is the set of box drawings
(unions of axis parallel rectangles), where f ∈ F has
f : Rn → {−1, 1}.

max
f∈F

∑

i:yi=1

1[f(xi)=1] + CI

∑

i:yi=−1

1[f(xi)=−1]

−CE(#of boxes of f).

The objective is a weighted accuracy of positives and
negatives, regularized by the number of boxes. This
way, the number of boxes is not fixed, and a smaller
number of clusters is preferred (analogous to nonpara-
metric Bayesian models where the number of clusters is
not fixed). Our gold standard will be the minimizer of
this objective. We now derive the MIP that computes
this minimizer.

Notation Definitions
K Number of parallel axes boxes
m Number of examples
n Number of features
i Index for examples
j Index for features
xij j-th feature of example i

k Index for box
ljk Lower boundary of feature j for box k

ujk Upper boundary of feature j for box k

v Margin for decision boundary

l̃ijk l̃ijk = 1 if xij > ljk + v and 0 otherwise
ũijk ũijk = 1 if xij < ujk − v and 0 otherwise
wik wik = 1 if example i is in box k and 0 otherwise
zi zi = 1 if it is classified correctly.
S+ Index set of example of minority class
S
−

Index set of example of majority class
ce A regularizer to encourage expansion of box
cI Weight for majority class, cI < 1

Table 1: Notation for Box Drawings with Mixed Integer
Programming

If i ∈ S+, the definitions of l̃ijk, ũijk, wik, and zi give
rise to the following constraints:

ljk + v < xij iff l̃ijk = 1 (1)

ujk − v > xij iff ũijk = 1, (2)

which say that xij need to be at least margin v away
from the lower (resp. upper) boundary of the box in

order for l̃ijk = 1 (resp. ũijk = 1). Further, our defini-
tions give rise also to

n∑

j=1

ũijk + l̃ijk > 2n− 1 iff wik = 1, (3)

which says that for example i to be in box k, all of the

ũijk and l̃ijk are 1 for box k. We also have, still for
i ∈ S+, that the example must be in one of the boxes
in order to be classified correctly, that is:

K∑

k=1

wik > 0 iff zi = 1. (4)

Continuing this same type of reasoning for i ∈ S−, the

definitions of l̃ijk ,ũijk, wik, and zi give rise to the fol-
lowing constraints:

ljk − v > xij iff l̃ijk = 1

ujk + v < xij iff ũijk = 1
n∑

j=1

ũijk + l̃ijk > 0 iff wik = 0

K∑

k=1

wik > 0 iff zi = 0.

By setting M to be a large positive constant and set-
ting ǫ to be a small positive number (to act as a strict

inequality), we now have the following formulation:

max
l,l̃,u,ũ,w,z

−ceK +
∑

i∈S+

zi + cI
∑

i∈S
−

zi

 subject to

xij − ljk − v ≤ Ml̃ijk, ∀i ∈ S+, ∀j, k (5)

M(l̃ijk − 1) + ǫ ≤ xij − ljk − v, ∀i ∈ S+, ∀j, k (6)

ujk − v − xij ≤ Mũijk, ∀i ∈ S+, ∀j, k (7)

M(ũijk − 1) + ǫ ≤ ujk − xij − v, ∀i ∈ S+, ∀j, k (8)
n∑

j=1

l̃ijk +
n∑

j=1

ũijk − 2n+ 1 ≤ wik, ∀i ∈ S+, ∀j, k (9)

2nwik ≤

n∑

j=1

l̃ijk +

n∑

j=1

ũijk, ∀i ∈ S+, ∀j, k (10)

K∑

k=1

wik ≤ Kzi, ∀i ∈ S+, ∀k (11)

zi ≤

K∑

k=1

wik, ∀i ∈ S+, ∀k (12)

ljk − v − xij ≤ Ml̃ijk, ∀i ∈ S−, ∀j, k (13)

M(l̃ijk − 1) + ǫ ≤ ljk − v − xij , ∀i ∈ S−, ∀j, k (14)

xij − ujk − v ≤ Mũijk, ∀i ∈ S−, ∀j, k (15)

M(ũijk − 1) + ǫ ≤ xij − ujk − v, ∀i ∈ S−, ∀j, k (16)
n∑

j=1

l̃ijk +
n∑

j=1

ũijk − 2n+ 1 ≤ 2n(1− wik),

∀i ∈ S−, ∀j, k (17)

1− wik ≤
n∑

j=1

l̃ijk +
n∑

j=1

ũijk, ∀i ∈ S−, ∀j, k (18)
K∑

k=1

wik ≤ K(1− zi), ∀i ∈ S−, ∀k (19)

1− zi ≤

K∑

k=1

wik, ∀i ∈ S−, ∀k (20)

ljk ≤ ujk, ∀j, k. (21)

Here, (5) and (6) are derived from (1), (7) and (8)
are derived from (2), (9) and (10) are derived from (3),
(11) and (12) are derived from (4), equations (13)-(20)
are derived analogously for S−. The last constraint
(21) is to make sure that the solution that we obtain is
not degenerate, where the lower boundary is above the
upper boundary. In practice, M should be chosen as a
fixed large number and ǫ should be chosen as a fixed
small number based on the representation of numbers
in the computing environment.
In total, there are O(mnK) equations and O(mnK)

variables, though the full matrix of variables corre-
sponding to the mixed integer programming formula-
tion is sparse since most boxes operate only on a small
subset of the data. This formulation can be solved ef-
ficiently for small to medium sized datasets using MIP
software, producing a gold standard box drawing clas-
sifier for any specific number of boxes (determined by
the regularization constant). The fact that Exact Boxes
produces the best possible function in the class of box
drawing classifiers permits us to evaluate the quality of
Fast Boxes, which operates in an approximate way on
a much larger scale.

Fast Boxes

Fast Boxes uses the approach of characterize then dis-
criminate. In particular, we hypothesize that the data
distribution is such that the positive examples cluster
together relative to the negative examples. This implies
that a reasonable classifier might first cluster the pos-
itive examples and then afterwards discriminate pos-
itives from negatives. The discrimination is done by
drawing a high dimensional axis-parallel box around
each cluster and then adjusting each boundary locally
for maximum discriminatory power. If the cluster as-
sumption about the class distributions is not correct,
then Fast Boxes could have problems, though it does
not seem to for most real imbalanced datasets we have
found, as we show in the experiments. Fast Boxes has
three main stages as follows.

1. Clustering stage: Cluster the minority class data into
K clusters, where K is an adjustable parameter. The
decision boundaries are initially set as tight boxes
around each of the clusters of positive examples.

2. Dividing space stage: The input space of the data is
partitioned to determine which positive and negative
examples will influence the placement of each decision
boundary.

3. Boundary expansion stage: Each boundary is ex-
panded by minimizing an exponential loss function.
The solution for the decision boundary is analytical.

Details of each stage are provided below.

Clustering Stage In the clustering stage, the minor-
ity class data are clustered into K clusters. Since this
step involves only the minority class data, it can be
performed efficiently, particularly if the data are highly
imbalanced. Cross-validation or other techniques can
be used to determine K. In our experiments, we used
the basic k-means algorithm with Euclidean distance.
Other clustering techniques or other distance metrics
can be used.

After the minority class data are separated into small
clusters, we construct the smallest enclosing parallel
axes rectangle for each cluster. The smallest enclos-
ing parallel axes rectangle can be computed by taking
the minimum and maximum of the minority class data
in each cluster and for each feature. Let ls,j,k and us,j,k

denote the lower boundary and upper boundary for the
j-th dimension, for the k-th cluster. Here the subscript
s is for “starting” boundary, and in the next part we
will created a “revised” boundary which will be given
subscript r. The “final” boundary will be given sub-
script f .

Dividing Space Stage Define the set Xl,j,k as fol-
lows:

Xl,j,k := {x : xj ≤ ls,j,k} ∪ {x : ls,j,k ≤ xj

≤
ls,j,k + us,j,k

2
, ls,p,k ≤ xp ≤ us,p,k,

p 6= j} , (22)

These are the data points that will be used to adjust
the lower boundary of the j-th dimension of the k-th
rectangle.

Similarly, we let

Xu,j,k := {x : xj ≥ us,j,k} ∪

{
x :

ls,j,k + us,j,k

2
≤ xj

≤ us,j,k, ls,p,k ≤ xp ≤ us,p,k, p 6= j

}
. (23)

These are the training examples that will be used to
determine the upper boundary of the j-th dimension of
the k-th rectangle.

Figure 2 illustrates the domain for Xu,j,k to the right
of the blue dashed line.

−2 −1 0 1 2
−2

−1

0

1

2

dimension 1

di
m

en
si

on
 2

Figure 2: The examples used to determine the right
vertical decision boundary are on the right side of the
blue dotted line.

Note that this method is very parallelizable after the
clustering stage. The dividing space stage computa-
tions can be done in parallel for each cluster, and for the
boundary expansion stage discussed below, each bound-
ary of each box can be determined in parallel.

Boundary Expansion Stage In this stage we dis-
criminate between positives and negatives by creating a
1-dimensional classifier for each boundary of each box.
We use a regularized exponential loss. Specifically, for
lower boundary j of box k, We minimize the follow-
ing with respect to lr,j,k where lr,j,k refers to the lower
boundary of the j-th dimension of k-th revised box be-

ing determined by the loss function:

∑

x∈Sk
+
∩Xl,j,k

exp[−(xj − lr,j,k)]

+ c
∑

x∈Sk
−

∩Xl,j,k

exp

+

xj − lr,j,k

+
∑

p6=j

(⌊xp − us,p,k⌋+ + ⌊ls,p,k − xp⌋+)

+ βlr,j,k.

where c is the weight for the majority class, c < 1,
Sk
+ is the set of positive examples in the k-th clus-

ter, Sk
− is the set of examples not in the k-th clus-

ter, β is a regularization parameter that tends to ex-
pand the box, and ⌊.⌋ denotes max(., 0). For simplicity,
we use the same parameter to control the expansion
for all the clusters and all the features. Note that the
term

∑
p6=j(⌊xp − us,p,k⌋+ + ⌊ls,p,k − xp⌋+) is designed

to give less weight to the points that are not directly
opposite the box edges (the points that are diagonally
away from the corners of the box). To explain these
terms, recall that the exponential loss in classification
usually operates on the term yif(xi), where the value
of f(xi) can be thought of as a distance to the decision
boundary. In our case, for the lower decision bound-
ary we use the perpendicular distance to the decision
boundary |xj − lr,j,k|, and include the additional dis-
tance in every other dimension p for the diagonal points.
For the upper diagonal points we include the distance
to the upper boundary us,p,k, namely xp − us,p,k, and
analogously for the points on the lower diagonal we in-
clude distance ls,p,k − xp. We perform an analogous
calculation for the upper boundary.

Note that we perform a standard normalization of
all features to be between -1 and 1 before any com-
putation begins, which also mitigates numerical issues
when dealing with the (steep) exponential loss. An-
other mechanism we use for avoiding numerical prob-
lems is by multiplying each term in the objective by
exp(1) and dividing each term by the same factor. We
will construct the derivation of the lower boundary as
follows. We rewrite the objective to minimize:

R
l,j,k
+ exp (−ls,j,k + 1 + lr,j,k)

+ cR
l,j,k
− exp (ls,j,k − 1− lr,j,k) + βlr,j,k, (24)

where

R
l,j,k
+ :=

∑

x∈Sk
+
∩Xl,j,k

exp [−(xj − ls,j,k + 1)] ,(25)

R
l,j,k
− :=

∑

x∈Sk
−

∩Xl,j,k

exp

xj − ls,j,k + 1

+
∑

p6=j

(⌊xp − us,p,k⌋+

+ ⌊ls,p,k − xp⌋+)

 . (26)

Because of the factors of 1 added and subtracted in the
exponent, we ensure R

l,j,k
+ is at least exp(−1) > 0.3,

avoiding numerical problems. From there, we can solve
for lr,j,k by taking the derivative of the objective and
equating it to zero. Then we multiply both sides of the
resulting equation by exp (ls,j,k − 1− lr,j,k) and solve
a quadratic equation. The the result is below. The
details have been omitted due to space constraints.

Proposition 1 If Rl,j,k
− > 0, the solution to (24) is

lr,j,k = ls,j,k − 1 + log

−β +

√
β2 + 4cRl,j,k

+ R
l,j,k
−

2Rl,j,k
+

 .

(27)
.

If Rl,j,k
− = 0 or close to zero, which can happen when

there are no points outside the smallest enclosing box
in direction j, we set lr,j,k = lj where lj is the smallest
value of feature j. In that case, the boundary effectively
disappears from the description of the classifier, making
it more interpretable.

The interpretation of the proposition is that the
boundary has moved from its starting position ls,j,k by

amount 1− log

(
−β+

√
β2+4cRl,j,k

+
R

l,j,k

−

2Rl,j,k

+

)
.

Similarly, we let ur,j,k be the revised upper boundary
of the jth dimension for the k-th revised box and it can
be computed as follows.

Proposition 2 If Rl,j,k
− > 0,

ur,j,k = us,j,k + 1 + log

β +

√
β2 + 4cRu,j,k

+ R
u,j,k
−

2cRu,j,k
−

(28)

where

R
u,j,k
+ :=

∑

x∈Sk
+
∩Xu,j,k

exp [−(us,j,k − xj + 1)] ,(29)

R
u,j,k
− :=

∑

x∈Sk
−

∩Xu,j,k

exp

us,j,k − xj + 1

+
∑

p6=j

(⌊xp − us,p,k⌋+

+ ⌊ls,p,k − xp⌋+)

 . (30)

The proof and interpretation are similar to Proposi-
tion 1.
If Ru,j,k

− = 0 or close to zero, we set v = uj where uj

is the largest possible value for feature j.
After we learn each of the decision boundaries, we

perform a final adjustment that accomplishes two tasks:
(i) it ensures that the box always expands rather than
contracts, (ii) further expands the box to ǫ away from
the nearest negative example. This gives us final val-
ues lf,j,k and uf,j,k, where subscript “f” is for final.
Written out, this is:

lf,j,k := sup {xj |x ∈ S−, xj

< min(lr,j,k, ls,j,k)}+ ǫ, ∀j, k (31)

uf,j,k := inf {xj |x ∈ S−, xj

> max(ur,j,k, us,j,k)} − ǫ, ∀j, k (32)

where ǫ is a small number. The boxes always expand
for this algorithm, which implies that this algorithm
is meant for applications where correct classification of
the minority class data is crucial in practice. This ex-
pansion step can be omitted if desired, for instance if
misclassifying the negative examples is too costly.
The algorithm is summarized as follows:

Overall Algorithm Input: number of boxes K,
tradeoffs c and β, Data {xi, yi}i.
Output: Boundaries of boxes.

1. Normalize the features to be between -1 and 1.

2. Cluster the minority class data into K clusters.

3. Construct the minimal enclosing box for each cluster,
that is compute starting boundaries ls,j,k and us,j,k,
the j-th dimension lower boundary and upper bound-
ary respectively for the k’th cluster.

4. Construct data for local classifiers Xl,j,k and Xu,j,k

based on equations (22) and (23) respectively.

5. Compute R
l,j,k
+ , R

l,j,k
− , R

u,j,k
+ , R

u,j,k
− , according to

equations (25), (26), (29), and (30).

6. Compute lr,j,k based on equation (27) and ur,j,k

based on equation (28) respectively.

7. Perform expansion based on equations (31) and (32).

8. Un-normalize by rescaling the features back to get
meaningful values.

Note that after the clustering step on the minority class
data, all the other steps are easily parallellizable.

Prediction Quality

Now that we have two very different algorithms for cre-
ating box drawing classifiers, we will compare their per-
formances experimentally.

Evaluation Metric We chose to use the area
under the convex hull of the ROC curve (AUH)
(Provost and Fawcett 2001) as our evaluation metric;
it is frequently used for imbalanced classification prob-
lems and considers the full ROC curve (Receiver Op-
erator Characteristic) curve to evaluate performance.
To compute the AUH, we compute classifiers for vari-
ous settings of the tradeoff parameter c, which controls
the relative importance of positive and negative classes.
Each setting of c corresponds to a single point on the
ROC curve, with a count of true and false positives.
We compute the AUH formed by the points on the
ROC curve, and normalize as usual by dividing it by
the number of positive examples times the number of
negative examples. The best possible result is an AUH
of 1.

Baseline Algorithms For comparison, we consider
logistic regression, SVM with radial basis kernel,
CART, C4.5, Random Forests, AdaBoost (with de-
cision trees), C5.0, and Hellinger Distance Decision
Tree (HDDT) (Cieslak et al. 2012). Most of these algo-
rithms are listed among the top 10 algorithms in data
mining (Wu et al. 2008). Among these algorithms, only
CART, C4.5, C5.0, and HDDT yield potentially inter-
pretable models. HDDT uses Hellinger distance as the
splitting criterion, which is robust and skew-insensitive.
In addition to the baselines above, we implemented

the Patient Rule Induction Method (PRIM) for “bump
hunting” (Friedman and Fisher 1999). This method
also partitions the input variable space into box shaped
regions, but in a different way than our method. PRIM
searches iteratively for sub-regions where the target
variable has a maxima, and peels them off one at a
time, whereas our clustering step finds maxima simul-
taneously.
The data sets we considered are listed in Ta-

ble 2. Some data sets (castle, corner, diamond,
square, flooded, castle3D, corner3D, diamond3D,
flooded3D, flooded3D) are simulated data that are
able to be visualized (made publicly available at
(Goh and Rudin 2014)). The breast and pima data sets
were obtained from the UCI Machine Learning Reposi-
tory (Bache and Lichman 2013). The data set fourclass
was obtained from LIBSVM (Chang and Lin 2011).
The remaining imbalanced data sets were obtained
from the KEEL (Knowledge Extraction based on
Evolutionary Learning) imbalanced data repository
(Alcala-Fdez et al. 2011). The Iris0 data set is an im-
balanced version of the standard iris data set, where
two of the classes (iris-versicolor and iris-virginica) have
been combined to form the majority class.

Performance analysis Here we compare the per-
formance of Fast Boxes with the baseline algorithms.

Data number of
examples

feature
size

imbalance
ratio

pima 768 8 1.8657
castle 8716 2 22.2427
corner 10000 2 99

diamond 10000 2 24.9067
square 10000 2 11.2100
flooded 10000 2 31.1543
fourclass 862 2 1.8078
castle3D 545 3 7.2576
corner3D 1000 3 28.4118

diamond3D 1000 3 33.4828
square3D 1000 3 7
flooded3D 1000 3 26.7778
breast 569 30 1.6840

abalone19 4174 9 129.4375
yeast6 1484 8 41.4
yeast5 1484 8 32.7273

yeast1289 947 8 30.5667
yeast4 1484 8 28.0980
yeast28 482 8 23.1000

yeast1458 693 8 22.1000
abalone918 731 9 16.4048

pageblocks134 472 10 15.8571
ecoli4 336 7 15.8000
yeast17 459 7 14.3
shuttle04 1829 9 13.8699
glass2 214 9 11.5882
vehicle3 846 18 2.9906
vehicle1 846 18 2.8986
vehicle2 846 18 2.8807
haberman 306 3 2.7778
yeast1 1484 8 2.4592
glass0 214 9 2.0571
iris0 150 4 2

wisconsin 683 9 1.8577
ecoli01 220 7 1.8571
glass1 214 9 1.8158

breast tissue 106 9 3.8182

Table 2: Summary of datasets used for experiments

For each algorithm (except C4.5) we set the imbalance
weighting parameter to each value [0.1, 0.2, 0.3,
. . . , 1]. The other parameters were set in data-
dependent way; for instance, for SVM with RBF ker-
nel, the kernel width was chosen using the sigest func-
tion in the R programming language. The data were
separated into 10 folds, where each fold was used
in turn as the test set. We do not prune the de-
cision trees beyond their built-in pruning as previ-
ous research shows that unpruned decision trees are
more effective in their predictions on the minority class
(Provost and Domingos 2002; Chawla 2003), and be-
cause it would introduce more complexity that would be
difficult to control for. Within the training set, for the
Fast Boxes algorithm we used 3-fold cross-validation to
select the cluster number and expansion parameter.

Table 5 shows the performances in terms of AUH
means and standard deviations. The values that are

bolded represent the algorithms whose results are not
statistically significantly different from the best algo-
rithm using a matched pairs sign test with significance
level α = 0.05. When there was more than one best-
performing classifier, the one with the smaller standard
deviation was chosen as the best performer for that
data set. Fast Boxes was often (but not always) one
of the best performers for each dataset. This brings up
several questions, such as: Under what conditions does
Fast Boxes perform well? How do its parameters effect
the result? Does it tend to produce trivial results? Can
Exact Boxes improve upon Fast Boxes’ results in cases
where it does not perform well? Are the results inter-
pretable? These are questions we will address in the
remainder of this section.
We start with a partial answer to the question of

when Fast Boxes performs well - it is when the classes
are more imbalanced. Figure 3 shows a scatter plot of
the quality of Fast Boxes’ performance versus the imbal-
ance ratio of the dataset. The vertical axis represents
our rank in performance among all of the algorithms we
tested. The horizontal axis is the number of negatives
divided by the number of positives. The performance
of Fast Boxes changes from being among the worst per-
formers when the data are not imbalanced (and the
cluster assumption is false), to being among the best
performers when the data are imbalanced.

0 50 100 150
0

2

4

6

8

imbalanced ratio

ra
nk

Ranking against imbalanced ratio

Figure 3: Ranking of Fast Boxes versus imbalance ratio
of data
Below we provide some intuition about Fast Boxes’

clusters and the expansion parameter before answering
the questions posed just above.

Effect of Fast Boxes’ parameter settings We ex-
pect that if our main modeling assumption holds, which
is that the positive examples naturally cluster, there
should be a single best number of clusters. If we choose
the number of clusters too small, we might underfit, and
if we allow too many clusters, we could overfit. Figure
4 illustrates the cluster assumption on the diamond3D
dataset, where this effect of overfitting and underfitting
can be seen.
The expansion parameter is also designed to assist

with generalization. We would like our boxes to be able
to capture more of the positive cluster than is provided
by the tightest box around the training examples, par-
ticularly since true positives are worth more than true

0 5 10
0

0.2

0.4

0.6

0.8

1

number of clusters

A
U

H

Figure 4: The effect of the number of clusters on AUH
for the data set diamond3D. Fast Boxes was run once
for each number of clusters. Training AUH is reported
as circles, and testing AUH as stars.

negatives in our objective function. The exponential
loss creates a discriminative classifier, but with a push
outwards. Naturally, as we increase the expansion pa-
rameter, the training AUH will drop as more negative
training examples are included within the box. On the
other hand, the test AUH tends to increase before de-
creasing, as more positive examples are within the ex-
panded box. This effect is illustrated in Figure 5.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

expansion parameter

A
U

H

Figure 5: The effect of the expansion parameter on
AUH for the diamond3D data set.
Considering the final expansion stage, Figure 6 illus-

trates why this stage is necessary. We visualize the iris0
dataset with dimension 1 and dimension 4, where if we
had not expanded out to the nearest negative example,
we would have missed a part of the positive distribution
within the test set.

Production of trivial rules When the data are
highly imbalanced, we have found that some of the
baseline algorithms for producing interpretable models
often produce trivial models, that is, models that al-
ways predict a single class. This is true even when the
weighting factor on the positive class is varied through-
out its full range at a reasonably fine granularity. This
means that either it is not possible to obtain a mean-
ingful model for the dataset with that method, or it
means one would need to work fairly hard in order to
find a weighting factor that did not produce a trivial
model; that is, the range for which nontrivial models

0 0.5 1
0

0.2

0.4

0.6

0.8

1

dimension 1

di
m

en
si

on
 4

Figure 6: The red and yellow points are negative train-
ing points and testing point respectively, the blue and
green points are positive training points and testing
points respectively. If we had used the tightest deci-
sion boundary around the positive training examples,
we would have missed part of the positive distribution.

are possible is very small. Figure 3 considers three in-
terpretable methods we compare with, namely CART,
C4.5, and C5.0. It shows the fraction of time these
algorithms produce trivial models. For CART, C5.0,
and Fast Boxes, the percentage was computed over 100
models computed over 10 splits and 10 options for the
imbalance parameter. C4.5 does not have a built in
imbalance parameter, so the percentage was computed
over 10 splits.

Comparison of Fast Boxes and Exact Boxes
Since we know that Fast Boxes is competitive with other
baselines for handling imbalanced data, we would like
to know whether Exact Boxes has the potential to yield
significant performance gains over Fast Boxes and other
methods. We implemented the MIP using GUROBI on
a quad core Intel i7 860 2.8 GHz, 8GB cache, processor
with 4 cores with hyperthreading and 16GM of RAM.
We first ran the Exact Boxes algorithm for 30 minutes,
and if the AUH performance was not competitive and
the optimality gap was above 1%, we ran it up to 90
minutes for each instance. We did not generally allow
the MIP to solve to provable optimality. This has the
potential to hinder performance, but as we were per-
forming repeated experiments we needed to be able to
solve the method repeatedly.

Table 4 shows results from Exact Boxes for several of
the smaller data sets, along with the results from Fast
Boxes for comparison. Bold font in this table summa-
rizes results from the other baseline algorithms as well:
if the entry is in bold, it means that the result is not
statistically significantly different than the best out of
all of the algorithms. Thus, for 5 out of 8 datasets we
tried, the MIP was among the top performers. Further,
the AUH value was substantially improved for some of
the data sets. Thus, restricting the algorithm to pro-
duce a box drawing classifier does not generally seem

Data CART C4.5 C5.0 Fast Boxes
pima 0.00 0.00 0.00 0.07
castle 0.00 0.00 0.00 0.10
corner 0.00 0.60 0.70 0.00

diamond 0.00 0.00 0.00 0.00
square 0.00 0.00 0.00 0.00
flooded 0.00 0.70 0.80 0.00
fourclass 0.00 0.00 0.00 0.03
castle3D 0.00 0.00 0.00 0.10
corner3D 0.00 0.50 0.50 0.07

diamond3D 0.00 1.00 1.00 0.06
square3D 0.00 0.90 0.80 0.10
flooded3D 0.05 1.00 1.00 0.09
breast 0.00 0.00 0.00 0.37

abalone19 0.43 1.00 1.00 0.35
yeast6 0.00 0.00 0.00 0.02
yeast5 0.00 0.00 0.00 0.36

yeast1289 0.16 0.70 0.60 0.35
yeast4 0.00 0.20 0.20 0.30
yeast28 0.39 0.90 0.90 0.00

yeast1458 0.24 0.70 0.90 0.19
abalone918 0.00 0.10 0.10 0.40

pageblocks134 0.00 0.00 0.00 0.39
ecoli4 0.00 0.00 0.00 0.32
yeast17 0.03 0.20 0.30 0.21
shuttle04 0.00 0.00 0.00 0.00
glass2 0.09 0.40 0.70 0.28
vehicle3 0.00 0.00 0.00 0.01
vehicle1 0.00 0.00 0.00 0.02
vehicle2 0.00 0.00 0.00 0.27
haberman 0.00 0.40 0.70 0.13
yeast1 0.00 0.00 0.00 0.08
glass0 0.00 0.00 0.00 0.08
iris0 0.00 0.00 0.00 0.03

wisconsin 0.00 0.00 0.00 0.34
ecoli01 0.00 0.00 0.00 0.21
glass1 0.00 0.00 0.00 0.16

breast tissue 0.00 0.00 0.00 0.08

Table 3: Fraction of the time we get a trivial model.
Bold indicates values over 0.5.

to hinder performance.
Note that it is time-consuming to perform cross-

validation on the MIP, so the cluster number that we
found using cross-validation for Fast Boxes was used for
Exact Boxes.

Interpretability demonstration We provide a
classifier we learned from the glass2 data set that pre-
dicts whether a particular glass is a building window
that is non-float processed. The other types of glasses
are building windows that are float processed, vehicle
windows, containers, tableware, and headlamps. The
attributes include the refraction index as well as vari-
ous indices for metals. These metals include Sodium,
Magnesium, Aluminum, Silicon, Potassium, Calcium,
Barium, and Iron.
One of the predictive models from Fast Boxes is as

follows. To be a particular glass of a building window
that is non-float processed:

Data Best
Perfor-
mance

Fast
Boxes

Exact
Boxes

Exact
Boxes
rank-
ing

vehicle2 0.9496
(0.015)

0.9191
(0.0242)

0.9496
(0.015)

1

haberman 0.6699
(0.0276)

0.5290
(0.0265)

0.6632

(0.0303)
2

yeast1 0.7641
(0.0133)

0.5903
(0.0286)

0.7392
(0.0172)

2

glass0 0.8312
(0.0345)

0.7937
(0.0212)

0.7977
(0.0421)

2

iris0 1
(0)

1

(0)
1

(0)
1

wisconsin 0.9741
(0.0075)

0.8054
(0.1393)

0.9726

(0.0079)
2

ecoli01 0.9840
(0.0105)

0.9433
(0.0300)

0.9839

(0.0109)
2

glass1 0.7922
(0.0377)

0.6654
(0.0356)

0.7922

(0.0337)
1

Table 4: Comparison of test data AUH of interpretable
methods with Exact Boxes. Bold font includes results
from non-interpretable methods.

1) The refractive index should be above 1.5161.
2) Magnesium index must be above 3.3301.
3) Aluminum should be below 1.7897.
4) Silicon should be below 73.0199.
5) Potassium should be below 0.6199.
6) Calcium should be between 8.3101 and 2.3741.
7) Barium should be below 2.6646.
8) Sodium and iron are not important factors.

We believe that this simple form of model would ap-
peal to practitioners because of the natural threshold
structure of the box drawing classifiers.

Theoretical guarantee on performance

Statistical learning theory will allow us to provide a
probabilistic guarantee on the performance of our al-
gorithms. We will construct a uniform generalization
bound, which holds over all box drawing classifiers with
K boxes anchored at Mj different fixed values for each
dimension, where K is fixed. We might choose Mj as
the count of numbers with at most a certain number
of decimal places (say 2 decimal places) in between the
largest and smallest possible values for a particular fea-
ture. (Often in practice only 2 decimal places are used.)
The main step in our proof is to count the number of
possible box drawing classifiers. The set of all box draw-
ing classifiers with up to K boxes, with lj and uj at-
taining the Mj values, will be called F .
Define the empirical risk to be the objective of Exact

Boxes with no regularization,

Remp(f) =
∑

i:yi=1

1[f(xi)=1] + CI

∑

i:yi=−1

1[f(xi)=−1],

and let the true risk Rtrue(f) be the expectation of this

taken over the distribution that the data are drawn iid
from.

Proposition 3 For all δ > 0 with probability at least
1− δ, ∀f ∈ F ,

Rtrue(f) ≤ Remp(f)+

√
K
∑n

j=1 log(
Mj(Mj−1)

2)− logK! + log 1
δ

2m
.

To outline the proof, there are
∏n

j=1

(
Mj

2

)
ways

to construct a single box, since for each dimension, we
select 2 values, namely the lower boundary lj and upper
boundary uj . To construct multiple boxes, there are at

most
∏n

j=1

(
Mj

2

)K

ways if the order of construction

of the boxes matter. Since the order does not matter,
we need to divide the term by K!. Note that this is an
upper bound which is not tight since some boxes can
be a proper subset or equal to another box. Although
we are considering the set of all box drawing classi-
fiers up to K boxes, it suffices to consider box drawing
classifiers with exactly K boxes. This can be seen by
supposing we constructed a classifier with l < K boxes,
and noting the same classifier can be constructed using
K boxes by duplicating some boxes. We apply Hoeffd-
ing’s inequality and the union bound to complete the
proof.

Making the MIP more practical

From the experimental outcome, it is clear that Ex-
act Boxes is indeed a competitive solution. The main
challenge lies in its computational complexity. There
are several ways one might make the MIP more prac-
tical: first, one could limit computation to focus only
a neighborhood of the positive data, and use the solu-
tion to this problem to warm start the MIP on the full
problem. In that case we would consider only negative
points that are close to the positive points in at least
one dimension, which can be identified in a single pass
through the negative examples. Alternatively, one can
perform clustering first as in the Fast Boxes approach,
and solve the MIP on each cluster. For each cluster, we
would scan through each feature of the data in a single
pass and keep only the data that are close to the mean
of the cluster center to use in the MIP.

Discussion and Conclusion

We have presented two new approaches to designing
interpretable predictive models for imbalanced data
settings. Exact Boxes is formulated as a mixed integer
program, and acts as a gold standard interpretable
modeling technique to compare with. It can be used for
small to moderately sized problems. Fast Boxes uses a
characterize-then-discriminate approach, and tends to
work well when the minority class is naturally clustered
(for instance when the clusters represent different fail-
ure modes of mechanical equipment). We illuminated

the benefits and limitations of our approaches, and
hope that these types of models will be able to provide
alternative explanations and insights into imbalanced
problems. In comparing Fast Boxes with gold standard
interpretable techniques like Exact Boxes, and with
many other methods, we can now judge the power of
the class of interpretable models: it is interesting that
such simple approaches can achieve comparable per-
formance with even the best state-of-the-art techniques.

Acknowledgements Funding for this work provided
by Siemens.

References
[Abe 2003] Abe, N. 2003. Sampling approaches to learn-
ing from imbalanced datasets: Active learning, cost
senstive learning and beyond. Proc. ICML, Workshop
Learning from Imbalanced Data Sets II.

[Alcala-Fdez et al. 2011] Alcala-Fdez, J.; Fer-
nandez, A.; Luengo, J.; Derrac, J.; and Gar-
cia, S. 2011. Keel data-mining sofware
tool: Data set repository, integration of al-
gorithms and experimental analysis framework.
http://sci2s.urg.es/keel/imbalanced.php#sub3.

[Bache and Lichman 2013] Bache, K., and Lichman,
M. 2013. UCI machine learning repository.
http://archive.ics.uci.edu/ml.

[Chang and Lin 2011] Chang, C.-C., and Lin, C.-J.
2011. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems
and Technology 2:27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[Chawla et al. 2002] Chawla, N. V.; Bowyer, K. W.;
Hall, L. O.; and Kegelmeyer, W. P. 2002. Smote:
Synthetic minority over-sampling technique. Journal
of Artificial Intelligence Research 16:321–357.

[Chawla, Japkowicz, and Kotcz 2004] Chawla, N. V.;
Japkowicz, N.; and Kotcz, A. 2004. Editorial: Special
issue on learning from imbalanced data sets. SIGKDD
Explor. Newsl. 6(1):1–6.

[Chawla 2003] Chawla, N. V. 2003. C4.5 and imbal-
anced data sets: investigating the effect of sampling
method, probabilistic estimate, and decision tree struc-
ture. In In Proceedings of the ICMLo03 Workshop on
Class Imbalances.

[Cieslak et al. 2012] Cieslak, D.; Hoens, T.; Chawla, N.;
and Kegelmeyer, W. 2012. Hellinger distance decision
trees are robust and skew-insensitive. Data Mining and
Knowledge Discovery 24(1):136–158.

[Friedman and Fisher 1999] Friedman, J., and Fisher,
N. 1999. Bump hunting in high-dimensional data.
Statistics and Computing 9(2):123–143.

[Goh and Rudin 2014] Goh, S. T., and Rudin, C. 2014.
http://web.mit.edu/stgoh/www/imbalanceddatafolder/.

[He and Garcia 2009] He, H., and Garcia, E. 2009.
Learning from imbalanced data. Knowledge and Data
Engineering, IEEE Transactions on 21(9):1263–1284.

http://sci2s.urg.es/keel/imbalanced.php#sub3
http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://web.mit.edu/stgoh/www/imbalanceddatafolder/

[Holte 1993] Holte, R. C. 1993. Very simple classi-
fication rules perform well on most commonly used
datasets. In Machine Learning, 63–91.

[Japkowicz 2003] Japkowicz, N. 2003. Class imbalances:
Are we focusing on the right issue? In Notes from
the ICML Workshop on Learning from Imbalanced Data
Sets II.

[Liu and Zhou 2006] Liu, X.-Y., and Zhou, Z.-H. 2006.
The influence of class imbalance on cost-sensitive learn-
ing: An empirical study. In Data Mining, 2006. ICDM
’06. Sixth International Conference on, 970–974.

[McCarthy, Zabar, and Weiss 2005] McCarthy, K.;
Zabar, B.; and Weiss, G. 2005. Does cost-sensitive
learning beat sampling for classifying rare classes?
In Proceedings of the 1st International Workshop on
Utility-based Data Mining, UBDM ’05, 69–77. New
York, NY, USA: ACM.

[Prati, Batista, and Monard 2004] Prati, R.; Batista,
G.; and Monard, M. 2004. Class imbalances versus
class overlapping: An analysis of a learning system be-
havior. In Monroy, R.; Arroyo-Figueroa, G.; Sucar, L.;
and Sossa, H., eds., MICAI 2004: Advances in Artificial
Intelligence, volume 2972 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 312–321.

[Provost and Domingos 2002] Provost, F., and Domin-
gos, P. 2002. Tree induction for probability-based rank-
ing.

[Provost and Fawcett 2001] Provost, F., and Fawcett,
T. 2001. Robust classification for imprecise environ-
ments. Machine Learning 42(3):203–231.

[Qi 2004] Qi, Y. 2004. A brief literature review of class
imbalanced problem. IR-Lab Project of Yanjun Qi.

[Raskutti and Kowalczyk 2004] Raskutti, B., and
Kowalczyk, A. 2004. Extreme re-balancing for svms:
A case study. SIGKDD Explor. Newsl. 6(1):60–69.

[Sniadecki 2011] Sniadecki, J. 2011. Bump hunting with
sas: A macro approach to employing prim. SAS Global
Forum 2011, Data Mining and Text Analytics.

[Weiss 2004] Weiss, G. M. 2004. Mining with rarity: A
unifying framework. SIGKDD Explor. Newsl. 6(1):7–
19.

[Wu and Chang 2003] Wu, G., and Chang, E. Y.
2003. Class-boundary alignment for imbalanced dataset
learning. In In ICML 2003 Workshop on Learning from
Imbalanced Data Sets, 49–56.

[Wu et al. 2008] Wu, X.; Kumar, V.; Ross; Ghosh, J.;
and et al. 2008. Top 10 algorithms in data mining.
Knowledge and Information Systems 14(1):1–37.

Data Logistic SVM CART C4.5 Ada-
Boost

RF C5.0 HDDT Fast
Boxes

pima 0.8587

(0.0112)
0.8468

(0.0126)
0.7738
(0.0123)

0.6579
(0.0347)

0.6810
(0.0218)

0.6942
(0.0126)

0.6574
(0.0353)

0.6642
(0.0274)

0.7298
(0.0241)

castle 0.5
(0)

1

(0)
0.9941
(0.0068)

0.9947
(0.0060)

0.9949

(0.0046)
0.9922

(0.0079)
0.9941
(0.0060)

0.9949

(0.0062)
1

(0)
corner 0.9871

(0.0129)
0.9948

(0.0005)
0.9488
(0.2717)

0.5997
(0.1482)

0.6984
(0.0449)

0.6828
(0.0265)

0.5612
(0.1110)

0.6865
(0.0365)

0.9891
(0.0001)

diamond 0.5
(0)

0.9980

(0.0004)
0.9585
(0.0129)

0.9328
(0.0181)

0.9460
(0.0117)

0.9433
(0.0121)

0.9311
(0.0208)

0.9364
(0.0180)

0.9744
(0.0062)

square 0.5404
(0.0718)

0.9944
(0.0001)

0.9949
(0.0051)

0.9949
(0.0043)

0.9939
(0.0033)

0.9947
(0.0033)

0.9949
(0.0043)

0.9949
(0.0027)

0.9984

(0.0015)
flooded 0

(0)
0.9831

(0.0010)
0.9466
(0.0157)

0.5488
(0.1074)

0.7017
(0.0231)

0.7036
(0.0252)

0.5482
(0.1077)

0.6992
(0.0208)

09638
(0.0091)

fourclass 0.8122
(0.0195)

0.9957

(0.0176)
0.9688
(0.0176)

0.9916
(0.0296)

0.9670
(0.0265)

0.9920

(0.0053)
0.9670
(0.0130)

0.9698
(0.0116)

0.9546
(0.0174)

castle3D 0.5449
(0.0324)

1

(0)
0.9532
(0.0347)

0.9530
(0.0374)

0.9272
(0.0499)

0.9455

(0.0563)
0.9439
(0.0615)

0.9530
(0.0374)

1

(0)
corner3D 0.8448

(0.0316)
0.9225

(0.0463)
0.8481
(0.0504)

0.5596
(0.0729)

0.6245
(0.03927)

0.5657
(0.0309)

0.5622
(0.0778)

0.6413
(0.0457)

0.9736

(0.0091)
diamond3D 0.5449

(0.0324)
0.7962

(0.0917)
0.7372
(0.0347)

0.5
(0.0374)

0.5492
(0.0499)

0.5957
(0.0309)

0.5622
(0.0778)

0.6883
(0.0542)

0.9516

(0.0119)
square3D 0.5

(0)
0.9626

(0.0156)
0.9106

(0.0306)
0.5387
(0.1224)

0.8703
(0.01451)

0.8790
(0.0234)

0.5811
(0.1712)

0.9034
(0.0322)

0.9578

(0.0090)
flooded3D 0.5

(0)
0.7912
(0.0781)

0.7724
(0.0902)

0.5
(0)

0.5471
(0.0329)

0.5489
(0.0440)

0.5
(0)

0.6422
(0.0749)

0.9233

(0.0307)
breast 0.9297

(0.0230)
0.9801

(0.0079)
0.9516
(0.0173)

0.9251
(0.0138)

0.9457
(0.0329)

0.9609
(0.0102)

0.9281
(0.0135)

0.9231
(0.0180)

0.8888
(0.0313)

abalone19 0.5188
(0.0182)

0.5
(0)

0.5382
(0.0261)

0.5
(0)

0.5
(0)

0.5
(0)

0.5
(0)

0.5116
(0.0164)

0.6882

(0.0583)
yeast6 0.8503

(0.0341)
0.8649

(0.0246)
0.7995
(0.0624)

0.7129
(0.0829)

0.7126
(0.0536)

0.7277
(0.0581)

0.7129
(0.0853)

0.7064
(0.0772)

0.8609

(0.0585)
yeast5 0.9499

(0.0479)
0.9229
(0.0339)

0.9197

(0.0575)
0.8280
(0.1159)

0.8305
(0.0859)

0.8061
(0.0616)

0.8241
(0.1157)

0.7931
(0.1126)

0.9767

(0.0092)
yeast1289 0.6319

(0.0433)
0.5618
(0.0332)

0.7076

(0.0665)
0.5088
(0.0322)

0.5152
(0.0288)

0.5067
(0.0141)

0.5156
(0.0342)

0.5531
(0.0436)

0.5932
(0.0557)

yeast4 0.8001
(0.0309)

0.7836
(0.0480)

0.7595
(0.0410)

0.6115
(0.0902)

0.6131
(0.0326)

0.5922
(0.0326)

0.6210
(0.07899)

0.6289
(0.0471)

0.8794

(0.0274)
yeast28 0.7907

(0.0525)
0.6596
(0.0565)

0.6402
(0.0893)

0.5100
(0.0316)

0.5
(0)

0.6489
(0.0472)

0.5248
(0.0784)

0.6126
(0.0606)

0.7366

(0.0467)
yeast1458 0.6164

(0.0510)
0.5420
(0.0322)

0.6032

(0.0281)
0.5
(0)

0.5023
(0.0088)

0.5095
(0.0154)

0.5
(0)

0.5340
(0.0467)

0.6090

(0.0431)
abalone918 0.8849

(0.0270)
0.6780
(0.0391)

0.7427
(0.0517)

0.5904
(0.0581)

0.6117
(0.0456)

0.5580
(0.03213)

0.5725
(0.0470)

0.6310
(0.0418)

0.7171
(0.0603)

pageblocks
134

0.9461
(0.0444)

0.7874
(0.1184)

0.9945

(0.0109)
0.9908

(0.0219)
0.9908

(0.0449)
0.9500

(0.0345)
0.9908

(0.0219)
0.9551

(0.0487)
0.9500
(0.0359)

ecoli4 0.8926

(0.0615)
0.9176

(0.0424)
0.8809

(0.0593)
0.7759
(0.07756)

0.7965

(0.0775)
0.8494

(0.0775)
0.8471
(0.0532)

0.8430

(0.0743)
0.9202

(0.0622)
yeast17 0.7534

(0.0611)
0.6905

(0.0386)
0.7481

(0.0713)
0.5841
(0.0698)

0.5382
(0.0225)

0.5529
(0.0359)

0.5721
(0.0699)

0.6070
(0.0509)

0.7033

(0.0547)
shuttle04 0.9965

(0.0045)
0.9828

(0.0105)
1

(0)
0.9994

(0.0008)
1

(0)
1

(0)
1

(0)
0.9994

(0.0008)
0.9967

(0.0042)
glass2 0.7609

(0.0726)
0.6128
(0.0941)

0.7112

(0.1090)
0.5541
(0.0640)

0.5324
(0.0417)

0.5479
(0.0597)

0.5200
(0.0415)

0.5892
(0.0573)

0.7334

(0.0904)
vehicle3 0.8397

(0.0079)
0.8524

(0.0169)
0.7733
(0.0255)

0.6515
(0.0401)

0.6591
(0.0212)

0.6484
(0.0232)

0.6621
(0.02117)

0.6823
(0.0300)

0.7003
(0.0267)

vehicle1 0.8587

(0.0112)
0.8468
(0.0126)

0.7738
(0.0123)

0.6579
(0.0347)

0.6810
(0.0218)

0.6942
(0.0126)

0.6574
(0.0353)

0.6719
(0.0265)

0.7298
(0.0241)

vehicle2 0.9632
(0.0134)

0.9837

(0.0072)
0.9437
(0.01880)

0.9351
(0.0133)

0.9677
(0.0097)

0.9775

(0.0106)
0.9365
(0.0129)

0.9248
(0.0243)

0.9191
(0.0242)

haberman 0.6589

(0.1713)
0.6898

(0.0427)
0.6699

(0.0276)
0.5733

(0.0748)
0.6004
(0.0323)

0.6130
(0.0318)

0.5420

(0.6780)
0.5604
(0.0231)

0.5290
(0.0265)

yeast1 0.7836
(0.0184)

0.7991

(0.0150)
0.7641
(0.0133)

0.6672
(0.0372)

0.6859
(0.0219)

0.6130
(0.0318)

0.5420
(0.0678)

0.6369
(0.0128)

0.5903
(0.0286)

glass0 0.7951
(0.0437)

0.8636

(0.0336)
0.8312
(0.0345)

0.7687
(0.0619)

0.7998
(0.0381)

0.8572

(0.0281)
0.7690
(0.0595)

0.7569
(0.0424)

0.7937
(0.0212)

iris0 1

(0)
0.998

(0.0063)
1

(0)
0.978

(0.0175)
1

(0)
1

(0)
0.972

(0.0169)
0.9880

(0.0193)
1

(0)
wisconsin 0.9746

(0.0093)
0.9735

(0.0073)
0.9741

(0.0075)
0.9455
(0.0124)

0.9611
(0.0122)

0.9672
(0.0072)

0.9416
(0.0121)

0.9249
(0.0203)

0.8054
(0.1393)

ecoli01 0.9728

(0.0140)
0.9850

(0.0091)
0.9840

(0.0105)
0.9806

(0.0107)
0.9828

(0.0063)
0.9855

(0.0097)
0.9806

(0.0107)
0.9806
(0.0107)

0.9433
(0.0300)

glass1 0.7247
(0.0363)

0.8057

(0.0340)
0.7598
(0.0490)

0.7050
(0.0358)

0.6997
(0.0478)

0.7833
(0.0274)

0.6822
(0.0320)

0.7189
(0.0586)

0.6654
(0.0356)

breast tis-
sue

0.9411
(0.0394)

0.9908
(0.0064)

0.9417
(0.0747)

0.9450
(0.0602)

0.9632
(0.0297)

0.9531
(0.0505)

0.9630
(0.0403)

0.9314
(0.0550)

0.9953

(0.0042)

Table 5: Comparison of test data AUH of Fast Boxes with other algorithms

	Introduction
	Related Works
	New Algorithms
	Exact Boxes
	Fast Boxes

	Prediction Quality
	Theoretical guarantee on performance
	Making the MIP more practical
	Discussion and Conclusion

