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Abstract—This paper proposes a hierarchical control archi-
tecture for engaging demand into providing primary frequency
response services. The proposed architecture relies on the use of
information about accumulated energy for the aggregation of de-
mand capabilities and dissagregation of demand responsibilities.
Since the accumulated energy has a distinct additive property, the
aggregation/disaggregation of demand becomes straightforward.
Additional unique features of the proposed architecture are
that it: i) includes the information of inflexible load in the
aggregated demand, ii) allows for intuitive cooperation between
load aggregators. Conditions for stability under cooperating load
aggregators are derived. Finally, simulations are carried out on
the IEEE 39-bus system to illustrate the proposed concepts of
aggregation, disaggregation and cooperation.

Index Terms—Demand aggregation, primary frequency re-
sponse, accumulated energy.

I. I NTRODUCTION

DEMAND response has been widely regarded as one of
the key enablers for accommodating high power produc-

tion by renewable resources [1]. The potential for adjusting
consumption to match the volatile power production exists on
all time scales. Of particular interest to this paper is demand
response for providing primary frequency response.

To enable demand response on the fast time scales, novel
approaches for control of flexible demand are being proposed
in the literature. The research in this field has mainly evolved
in two directions: i) methods intended for system operators
(SOs) to include demand response units in their real-time
operations [2]-[4], ii) methods intended for load serving enti-
ties (LSEs) to adequately control large number of individual
flexible units [5]-[6]. References [2], [3] set up the frequency
correction problem as an optimization problem with either
economic [2] or technical [3] objectives. In [4], a discrete-
time form of an economically optimal demand controller is
proposed. Controlling large number of demand responsive
units using mean field games has been explored for the case of
pool pumps in [5]. An approach using Markov chain model for
control of thermostatically controlled loads (TLCs) has been
reported in [6]. Decentralized response to real-time frequency
deviation is a common characteristic of all these methods. Due
to the decentralized nature of the control algorithms, SO- and
LSE-level decision making has to be carefully integrated to
avoid undesired destabilizing effects on the system frequency.

Control architectures that combine both SO- and LSE-level
decision making have been less commonly reported. In [7]
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and [8] the authors describe a hierarchical control architecture
that consists of centralized droop design at the SO-level and
of distributed scheduling of individual demand switching at
the LSE-level. This paper proposes an alternative hierarchical
control architecture that combines the participation of both
SO- and LSE-entities in providing primary frequency control
using responsive demand.

One of the key challenges for designing efficient demand
response control architecture is aggregation and disaggregation
of demand into coherent controllable units. The aggregation
is often performed using stochastic methods and by assuming
large number of adjustable loads [5], [6]. The aggregated mod-
els, thus, could show limited performance when the number of
participating responsive loads is relatively small. This scenario
is of particular importance during early adoption stages with
low demand participation. The architecture proposed in this
paper is focused on enabling simple aggregation of demand ca-
pabilities and disaggregation of demand responsibilitiesacross
heterogeneous demand units.

As demand response programs become more widespread,
sharing responsibilities between different LSEs becomes cru-
cial for guaranteeing adequate frequency response. This paper
proposes an accumulated energy-based approach to modeling
of demand responsive units that lends itself to an algorithmfor
cooperation between LSEs, and the overall hierarchical control
architecture.

A. Proposed Approach

Accumulated energy is a strong indicator of stability of
interconnected power systems [9]. Hamiltonian-based ap-
proaches have been applied to assess power system stability
in the past [10]. More recently, control of power system
components using energy has been investigated in [11]. In
this reference, power system components are represented using
accumulated energy as one of the component states. The same
approach has been applied in this paper to model electricity
demand using energy state variables.

Besides being intuitive for stability assessment, the main
attribute of accumulated energy that is heavily exploited in
this paper is its additivity. Additivity refers to the property of
energy by which accumulated energyEj of componentj is
equal to the sum of accumulated energiesE

(k)
j of all of its

subcomponentsk = 1, . . . N , i.e.

Ej =
N
∑

k=1

E
(k)
j (1)
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Equation (1) allows for straightforward combination of
accumulated energy states, while downplaying the topology
connections between different loads. This feature is extremely
useful for aggregation and disaggregation of demand capa-
bilities under one LSE. Additionally, this property provides
foundation for cooperation between different LSEs and enables
them to combine their efforts in the situations when they
cannot fulfill their responsibilities individually. To obtain better
load model accuracy, the information on the inflexible load is
included in the aggregated demand model in this paper.

The rest of the paper is organized as follows. Section II
describes an integrated inflexible and flexible load model,
establishes its representation using energy states, and finally,
presents the system model in the energy-power state space.
Section III explains aggregation and disaggregation using
energy framework. In Section IV, a method for cooperation
between LSEs is presented. Finally, Section V shows results
of numerical simulations.

II. M ODELING

Starting from the typical load representation for power
system stability studies, this section introduces an integrated
inflexible and flexible load model in a form suitable for later
use. Next, this model is converted to the accumulated energy
state space representation. Finally, the complete power system
model in accumulated energy state space is derived.

A. Integrated Inflexible and Flexible Demand Model

According to [12], at any given time any inflexible load at
some node in the grid can be represented as a composition of
constant impedance load, constant current load and constant
power load as in (2).

PILω
= PIL0

[

pil1
V 2

V 2
0

+ pil2
V

V0
+ pil3

]

(1 +KIL∆ω) (2)

In this model,pil1 , pil2 and pil3 are the ratios of constant
impedance, current and power, which satisfypil1+pil2+pil3 =
1, while PIL0

represents the nominal value of the composite
load at the particular time of interest. Load voltage level is
given by V while its nominal value is given byV0. Finally,
the sensitivity of the load to the change in frequency∆ω is
given by the coefficientKIL. Note that machine loads are not
covered by the representation (2) and will be introduced in
what follows.

Model (2) is a standard load model used in power system
dynamic studies [13] and its parameters can be estimated in
real-time [14] at the order of hundreds of milliseconds. Since
the focus of this paper is on the frequency control, the load
model from (2) is represented as

PILω
= PIL(1 +KIL∆ω) (3)

where PIL = const by assuming constant voltage level
throughout the grid. Reference [6] shows that constant voltage
assumption results in an error not higher than 2% for the
method proposed therein. This paper recognizes the existence
of such error but does not investigate its impact due to limited
space.

Flexible demand is often portrayed in the same form [8]

PFDω
= PFD(1 +KFD∆ω) (4)

where PFD is the active power consumed by the flexible
demand andKFD is the sensitivity of the flexible demand to
the frequency deviation. Both of these values are adjustable by
the corresponding LSE. The composition of the participating
flexible units could be diverse, and their actual switching
logic may vary correspondingly. Physical characteristicsof
consumption [15] will determine accuracy of achievingKFD

with many adjustable loads. Under the assumption that the
number of participating flexible units is large and that they
can be exactly controlled at any given time,KFD could take
any value fromKFD ∈ DK. Such assumption is made in this
paper.

The integrated load model is created by combining (3)
and (4) into

PILω
+ PFDω

= PL + PL (pilKIL + pfdKFD)∆ω (5)

wherePL = PIL + PFD, pil =
PIL

PL
and pfd = PFD

PL
, while

pil + pfd = 1.

B. Accumulated Energy Model of the Load

The load model given in (5) is a steady state model that does
not capture the rate of response of the load to the change in
frequency. The notion of synthetic inertia, denoted byJLsyn

∈
R

+, is introduced in this paper to assign the information on
the response rate to the load model. As the name suggests, this
inertia does not represent the physical inertia of controllable
devices. Instead, it originates from the inherit delays of the
control method used and the granularity of power steps that
can be achieved with the participating flexible demand units.
In this paper, it is assumed thatJLsyn

is constant over the
period of interest.

A group of loads unmentioned so far are machine loads
which are modeled with their physical inertia constantJLphy

.
These devices, controllable or uncontrollable, can be ag-
gregated with the loads represented using composite load
model by adding the two inertia constants together to obtain
JL = JLsyn

+ JLphy
.

Finally, the accumulated energy of the loadj is defined as

ELj
:=

1

2
JLj

ω2 (6)

which yields∆ELj
= JLj

ω0∆ω when linearized aroundω0.
From here on, small deviation notation∆ is dropped in all
expressions for simplicity. Additionally, it is assumed that all
variables are given in per units, which yieldsω0 = 1.

By noting that the first derivative of energy has the dimen-
sion of power, i.e.Ė = P , it follows from (5) and (6) that the
load model in the energy domain can be described as

ĖLj
=

∑

k∈Fn

Pfkj
− PLj

− DLj

JLj

ELj (7)

where DLj
= PLj

(piljKILj
+ pfdj

KFDj
) and Fn is the

set of all line flows meeting at nodej and accounted for as
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positive if their assigned direction is into the node and negative
otherwise.

Dynamic model (7) represents the load model in accu-
mulated energy domain parametrized by the synthetic inertia
constantJLj

, and the synthetic damping coefficientDLj
.

ParametersJLj
∈ DJ and DLj

∈ DD are adjusted by
the corresponding LSE. Also note that the assumption of
frequency sensitive nodes from [2], [16] is replaced by the
property of loads to accumulate energy.

C. Power System Model in Energy Domain

First, the generator model is introduced. The classical
generator model captures dynamics of mechanical frequency
rotation of generatori as

ω̇i =
1

JGi

(PMi
−

∑

k∈Fn

Pfik −DGi
ωi) (8)

where JGi
is the inertia of generatori, Di its damping

coefficient,PMi
its mechanical power input.

The energy model of a generator can be established in a
similar fashion as the one of the load, i.e. by substituting state
ωi with the accumulated energy of the generatorEGi

.

ĖGi
= PMi

−
∑

k∈Fn

Pfik − DGi

JGi

EGi (9)

A linearized active power model that appeared in [17], [3] is
used to represent the transmission system. This model assumes
constant voltage levels across the grid, small voltage phase
angle differences and negligible losses. Transmission lines are
represented using linearized flow variable dynamics

Ṗfnm
= Bnm(ωn − ωm) (10)

whereBnm is the susceptance of the transmission line between
nodesn andm.

Transmission line flows can be expressed in terms of
accumulated energy at the nodes as

Ṗfnm
= Bnm(

En

Jn
− Em

Jm
) (11)

Finally, the power grid is modeled as an undirected graph
whose nodes belong either toG or L. Those nodes without
generation or demand can be reduced from the grid using
Kron’s reduction [18]. Transmission lines belong to the set
T . Thus, a power grid model can be stated as

ĖGi
= PMi

−
∑

k∈Fi

Pfik − DGi

JGi

EGi
i ∈ G

ĖLj
=

∑

k∈Fj

Pfkj
− PLj

− DLj

JLj

ELj
j ∈ L

Ṗfnm
= Bnm(

En

Jn
− Em

Jm
) (n,m) ∈ T

(12)

III. A GGREGATION AND DISAGGREGATION WITHIN LSE

The aggregation and disaggregation are based on the control
architecture in Figure 1 that is to some extent implicitly
assumed in [3], [5], [6] while explicitly stated in [7], [8].In
this architecture, the LSE collects the information about load
capabilities from the individual units and combines it together.
This process is referred to asaggregation. The aggregated
information on load capabilities, denoted byJLj

andDDj
, is

communicated from the LSEs to the SO at a rate from tens of
minutes to an hour. The SO uses this information to compute
the actual damping coefficientDj for each of the nodes. This
computation can be performed using heuristics from [8] or
any other adequate analytical method. The newly obtained
DLj

coefficients are communicated to the LSEs. Assigning the
responsibilities to individual loads based on the assignedDLj

is referred to asdisaggregation. Since it is assumed that the
SO already knows fixedDGi

/JGi
of all generators, this type

of architecture ensures that droop constantsKFDj
of flexible

demand are aligned with droop constants of generator prime
movers.

Fig. 1. A hierarchical control architecture for demand response.

Aggregation:Let load at busj be composed ofN integrated
loads that are modeled as in (5), and letJ

(k)
Lj

where k =
1 . . . N denote the synthetic inertia constants of theN loads.
The synthetic inertia of the aggregated load is computed as
the sum

JLj
=

N
∑

k=1

J
(k)
Lj

(13)

Relationship (13) follows directly from energy definition (6)
and the additivity property of energy (1).

Disaggregation: Let load at busj be composed ofN
integrated loads that are modeled as in (5), and letK

(k)
FDj

wherek = 1..N denote the droop constants of theN loads
andP

(k)
FDj

be their active power operating levels. The droop
constants of the integrated loads have to satisfy the following
relationship

DLj
− PILj

KILj
=

N
∑

k=1

P
(k)
FDj

K
(k)
FDj

(14)
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Relationship (14) follows directly from energy definition (6)
and the additivity property of energy (1).

The actual values forK(k)
FDj

are computed by the corre-
sponding LSE during disaggregation to optimize either techni-
cal or economic performance of flexible demand. For example,
higher value forK(k)

FDj
can be assigned to the integrated

load that possesses higher number of participating units which
would result in better realization of the assigned damping
coefficient.

Note that an LSE could internally reevaluateK(k)
FDj

coef-
ficients with a period higher than the operating intervalT .
This ensures a level of flexibility to the changing operating
conditions. If such reevaluation does not provide expected
benefits, reevaluation through cooperation with another LSE
can be used instead, which is addressed in Section IV.

IV. COOPERATION BETWEENLSES

Since the aggregation of demand capabilities and disaggre-
gation of demand responsibilities are performed at a rate of
tens of minutes to hours, which is denoted here byT , an
emergency mechanism is needed to share the assignments
between LSEs in the case operating conditions change con-
siderably withinT . Cooperation between LSEs that exchange
accumulated energy information is a mechanism that ensures
satisfying demand behavior in response to frequency deviation.

In what follows, it is assumed that two cooperating LSEs,
A andB, are also neighboring LSEs, i.e. there exist at least
one transmission line whose one terminal nodej belongs to
LSE A and the other terminal nodek belongs to LSEB.

Cooperation: Let two neighboring LSEs,A and B, be
assigned withKFDj

andKFDk
for their respective nodes at

the beginning of an operating intervalT . Assume that LSEA
is capable of delivering onlyK ′

FDj
< KFDj

due to a sudden
lack of demand responsive units in its jurisdiction. If LSE
B reevaluates its droop coefficientK ′

FDk
by solving for new

D′
Lk

using the following relationship

D′
Lj

J ′
Lj

+
D′

Lk

JLk

+

√

D′
Lj
D′

Lk

√

J ′
Lj
JLk

= DLe
(15)

whereDLe
is computed asDLe

=
DLj

JLj

+
DLk

JLk

+

√
DLj

DLk√
JLj

JLk

then the sufficiently high dampingK ′
FDk

of the LSEB that
can compensate for the lack of performance of the LSEA is
guaranteed.

Proof: Since LSE A cannot perform according to the
assigned responsibilityKFDj

, the energies of the loadsj
and k of the two LSEs are combined into a single state
ELe

= ELj
+ELk

. Dynamic behavior of this state is described
by

ĖLe
=

∑

i∈Fj∪Fk

Pfie − (PLj
+ PLk

)− DLe

JLj

ELe (16)

whereDLe
is computed as in (15) so that the last term of (16)

satisfies

||
D′

Lj

J ′
Lj

ELj
+

D′
Lk

JLk

ELk
|| ≤

||





D′
Lj

J ′
Lj

+
D′

Lk

JLk

+ 2

√

D′
Lj
D′

Lk
ELj

ELk

ELe

√

J ′
Lj
JLk



ELe
|| ≤

||





D′
Lj

J ′
Lj

+
D′

Lk

JLk

+

√

D′
Lj
D′

Lk

√

J ′
Lj
JLk



ELe
||

(17)

A. Stability Conditions for Cooperation

Stability conditions for cooperation are based on the con-
nective stability concepts from [19]. Power system model (12)
can be represented in a connective form as

ẋ1 = A11x1 +A12x2

ẋ2 = A22x2 +A21x1

(18)

wherex2 = ELe
is the aggregated energy of LSEA andB,

and vectorx1 contains all other states of the system.
Theorem: System (18) is stable if the systemsẋ1 = A11x1,

ẋ2 = A22x2, and ṙ = Wr are stable, whereW is defined as

wij =







− λm(Gi)
2λM (Hi)

, i = j√
λM (AT

ij
Aij)λM (Hi)√

λm(Hj)
√

λm(Hi)
, i 6= j

i, j = 1, 2 (19)

and whereλm(·) andλM (·) are the minimum and maximum
eigenvalue, andHk andGk are positive semidefinite matrices
that satisfyAT

11H1 +H1A11 = −G1 andAT
22H2 +H2A22 =

−G2.
Proof: See [19] for proof.
Theorem: System (18) is stable iff its two subsystemsA11

andA22 are stable and if the following relationship holds

λm(G1)λm(H1)

λ2
M (H1)

>
4λ2

M (H2)
√

λM (AT
12A12)λM (AT

21A21)

λm(G2)λm(H2)
(20)

Proof: Condition (20) can be rewritten asw11w22 −
w12w21 > 0. Sincewij ≤ 0 for i = j andwij ≥ 0 for i 6= j,
condition (20) is necessary and sufficient to have negative
poles of matrixW , and thus, stability of system (18).

Theorem: System (18) is stable iffDLe
satisfies the follow-

ing relationship

DLe
<

JLe
K

8
√

λM (AT
12A12)λM (AT

21A21)
(21)

whereK = λm(G1)λm(H1)
λ2

M
(H1)

.
Proof: Relationship (21) follows from (20) by setting

λM (H2)
λm(H2)

= 1 and λM (H2)
λm(G2)

= 2
DLe

JLe
.

Relationship (21) can be extremely useful in practice to en-
sure that the damping coefficient obtained through cooperation
between two LSEs does not violate stability conditions of the
whole system. To successfully perform this check, SO needs
to supply constantK to the cooperating LSEs.
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V. SIMULATION RESULTS

Simulations are performed on the IEEE 39-bus system to
illustrate aggregation, disaggregation and cooperation.This
system has 10 generator and 19 load nodes. The remaining
nodes are reduced using Kron’s reduction. Parameters of
the IEEE 39-bus transmission gridBnm and the dynamic
parameters of the generatorsDGi

andJGi
are taken from [20].

Nominal mechanical power input of generatorsPMi
and

nominal load consumptionPLj
are also taken from this

reference. Frequency damping coefficient of inflexible loads
KILj

have been assigned to loads randomly in the range[0, 1]
as suggested in [12].

The nominal level of flexible demand on all consumption
nodesPFDj

is taken in a random fashion as a percentage
of total nominal loadPLj

ranging between20% − 30%, i.e.
pfdj

∈ [0.2, 0.3]. The nominal level of inflexible load on all
consumption nodesPILj

is computed asPILj
= piljPLj

where pilj = 1 − pfdj
. Synthetic inertia constantsJLj

are
randomly chosen in the range[0, 0.3] which is at least two
order of magnitudes less than the smallestJGi

.
To illustrate aggregation, disaggregation and cooperation the

attention is focused on two nodes, namely 15 and 16. Load at
bus 15 is composed of an inflexible load component, and two
controllable components which are thermostatically controlled
loads (TCLs) and pool pumps as shown in Figure 2. In the
same figure, load at bus 16 is composed of inflexible load
component and thermostatically controlled loads. It is further
assumed that bus 15 belongs to LSEA and that bus 16 belongs
to LSEB.

Fig. 2. Composition of load on nodes 15 and 16 in the IEEE 39-bussystem.

In these simulations, disturbance is simulated as a random
deviation in nominal power of inflexible load, i.e.PLj

+
U(−0.5, 0.5)MW. Figure 3(a) shows the impact of this dis-
turbance on the system frequency ifKFDj

= 0, ∀j ∈ L. This
simulation is performed to illustrate the base case, when no
flexible demand exists in the grid.

At the beginning of an operating interval, the SO will collect
the load capability parameters from the LSEs and will compute
new damping coefficientsDLj

which yield KFDj
. Relevant

parameters of the loads on these particular nodes for the
operating period of interest are given in Table I.

Figure 3(b) shows the response of the system frequency
to the same disturbance with assigned droop coefficients of

time[s]
0 10 20 30 40 50 60 70 80 90 100

fr
eq

ue
nc

y[
H

z]

59.985

59.99

59.995

60

60.005

60.01

60.015
Electrical system frequency

(a) Without flexible demand

time[s]
0 10 20 30 40 50 60 70 80 90 100

fr
eq

ue
nc

y[
H

z]

59.985

59.99

59.995

60

60.005

60.01

60.015
Electrical system frequency

(b) With flexible demand

Fig. 3. Electrical frequency response in the IEEE 39-bus system.

TABLE I
PARAMETERS OF THE LOAD ON NODES15 AND 16.

Node 15 16
JLj

0.1153 0.0288
DLj

2.3672 3.1146
KILj

0.7140 0.9604
KFDj

0.7485 0.9426
pilj 0.2545 0.2286
pfdj 0.7455 0.7714

flexible demandKFDj
for j = 15, 16 as in Table I. The

frequency deviation is much smaller when flexible demand
is engaged in its stabilization.

To illustrate disaggregation, it is assumed that the number
of pool pumps at node 15 has decreased by one half during the
operating hour. This results in 50% change of the inertia of the
aggregated demand at node 15 and in 25% decrease ofKFD15

.
The accumulated energy response is given in Figure 4(a).

As explained previously, the LSE will internally reevaluate
its droop characteristicKFD15

by readjusting the droop of the
TCLs. Figure 4(b) shows the same accumulated energy signal
after reevaluation ofKFD15

. High frequency fluctuations of
accumulated energy are smoothed out with the reevaluated
parameters.

Next, a case is considered in which LSEA cannot reevaluate
the droop coefficient for load at node 15 and instead engages in
cooperation with LSEB. In this case, LSEB will reevaluate
its droop coefficient as described earlier obtainingDL16

=
5.2955 KFD16

= 1.8020. Figure 5(a) shows the response of
the accumulated energy of the load at node 16 without the
adjustment while Figure 5(b) shows the response of the same
variable with the reevaluated coefficients. After reevaluation,
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(b) With reevaluation of droop characteristic

Fig. 4. Accumulated energy of the load at node 15 in response todecreased
performance by pool pumps.

LSE 16 is engaging more resources which results in lower
accumulated energy deviation.

Finally, the average benefit obtained through cooperation
is quantified by comparing the degradation of frequency
stabilization performance due to the reduction in flexible
demand at node 15 with the improvement obtained through
cooperation with flexible demand at node 16. Degradation
and improvement are compared for 10 different values of
flexible demand reductionK ′

FD15
ranging from0% to 100%

of KFD15
from Table I in10% increments. Both, degradation

and improvement are quantified using disparity ratio which
is computed asE(x−x′)2

E(x2) + E(y−y′)2

E(y2) , wherex = EL15
and

y = EL16
for the case with load reduction but without

cooperation. When computing degradationx′ = EL15
and

y′ = EL16
take values for the case without load reduction.

When computing improvementx′ = EL15
and y′ = EL16

take values for the case with demand cooperation.
Figure 6 shows the obtained values for degradation and

improvement. Both, degradation and improvement are in the
range between 9% and 23%. In all cases but one, the improve-
ment using cooperation is higher than the degradation faced
by the loss of responsive demand. The difference between the
two is much more significant for a lower percentage of lost
demand.

VI. CONCLUSIONS

This paper introduces an energy-based modeling approach
for aggregation and disaggregation of demand within one
LSE and a method for cooperation between two LSEs. The
additivity of accumulated energy is exploited to simplify these
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(a) Without cooperation between LSEs
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(b) With cooperation between LSEs

Fig. 5. Accumulated energy of the load at node 16 in response todecreased
performance by pool pumps.
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Fig. 6. Degradation due to flexible demand loss vs. improvement through
cooperation.

objectives. The model has been tested on the IEEE 39-bus
system. It was shown that aggregation, disaggregation and
cooperation lead to smoother frequency and accumulated en-
ergy response. A 16 to 23% improvement was obtained using
our approach and its aggregation-disaggregation-cooperation
components. Future work will further investigate imperfections
in control of demand by including more accurate models of
LSE-level control.
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