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Abstract—A model-based approach to dynamic toll pricing has

been developed to provide a systematic method for determining

optimal freeway pricing schemes. A novel approach is suggested

for alleviating congestion, which utilizes identified models of

driver behavior and traffic flow, as well as optimization of

the target density to maximize throughput. Real-time traffic

information from on-road sensors is integrated with historical

information to provide feedback and preview for the dynamic

toll price controller. The algorithm developed here provides an

opportunity to improve on existing toll policy by guaranteeing

minimum speeds for toll lane drivers, maintaining consistent

traffic flow for the other drivers, and optimizing the overall traffic

throughput.

I. INTRODUCTION

W

ITH the growth and expansion of many large
metropolitan centers in the last few decades, the

problem of traffic congestion continues to grow and vex
commuters, commercial drivers, city planners and officials,
and environmentalists worldwide. The introduction of the
automobile in the early 20th century was, indeed, a great
innovation, but for some areas, the overwhelming number
of cars on the road today results in daily traffic jams and
perpetually stressed drivers. Over 1 billion vehicles travel
on the roads today, and that number is projected to double
by 2050 [1]. Investing in public transportation infrastructure
would go far to reduce that number; however, such an effort
generally requires years of planning, significant funds, and an
underlying city geography that is conducive to public transit.
Unfortunately, driving a car is an unavoidable choice for at
least 65% of city populations, who rely on their vehicles to
get to school or work [2].

For those commuters who are forced to drive through rush
hours daily, the lost time can be a significant cost. For example,
traveling in New York City takes 50-75% longer during peak
hours, and translated into a monetary cost, traffic congestion
in NYC causes a loss of $8 billion a year. As reported in [3],
the number of hours spent in traffic jams over a 5 day period,
for the cities in France, Honolulu, San Francisco, and Los
Angeles are 35, 56, 60, and 64, respectively. For an individual
driver, each hour in traffic costs about $21 [3]. In addition to
these time-related costs, the mental cost of driving in traffic
is not insignificant. A global study by IBM indicated that
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55% of those surveyed incurred 30-60 minutes of delay due
to traffic jams, with 42% reporting increased stress levels [2].
That survey also indicated that 41% believe the issue of traffic
is worsening, despite the efforts of transportation officials and
city planners.

New approaches and solutions are required to solve, or
at least alleviate, the problem of traffic congestion. Within
the last few years, intelligent transportation systems have
been increasingly introduced and implemented in the US. For
example, real-time traffic information from cellphone signals
is being used by Google Maps to give consumers travel time
predictions and suggested routes. Dashboards and smartphone
applications like Waze now have the capability of providing
estimates of the current state of traffic. Through the works
of local transportation departments, posted signs on highways
also offer estimated travel times. For decades, toll pricing has
been utilized as a form of congestion pricing, and within the
last decade, a new form of toll pricing, one which charges a
dynamic toll based on real-time traffic conditions, has been
employed to manage traffic congestion. The focus of this
paper is a novel dynamic toll pricing scheme that alleviates
congestion and maintains an optimized traffic density during
peak hour traffic.

A dynamic toll pricing system bases toll prices on the real-
time, measured road conditions while a static pricing system
does not; the latter can consist of systems that have one set
toll price or variable toll prices depending on the time of day.
Dynamic toll pricing systems have gained popularity within
the last decade, especially in the US. The earliest dynamic toll
pricing system in the US originated in Minneapolis, MN [4],
termed MnPASS, and many other cities have followed suit and
also adopted dynamic toll pricing. These systems can be seen
in Seattle, WA, Atlanta, GA, Los Angeles, CA, and Virginia
[5]–[8]. The toll pricing strategy proposed in this paper is
designed, analyzed, and evaluated using the MnPASS traffic
data.

Since 2004, dynamic toll pricing has been implemented
on I-394 and I-35 in Minneapolis, MN during the peak
hours in the morning (6-10AM) and afternoon (3-7PM). To
determine the price charged to users of the dynamic toll
lane, denoted as the High Occupancy Toll (HOT) lane, the
MnPASS system collects data regarding traffic speeds in real-
time, using inductive loop detectors embedded into the roads.
The MnPASS system, then, estimates the maximum density
downstream of the user’s entry point and charges a toll price
(see Fig. 1). The HOT toll price changes every three minutes
and the user is charged automatically through a transponder
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Fig. 1. The current pricing plan for MnPASS.

that is leased from the MnDOT [4].
In this article, a novel approach is utilized for determining

the dynamic toll prices. Viewing the real-time traffic infor-
mation data as a sensor, and the price based on this data
as a control input, the underlying traffic congestion problem
is posed as a control problem. This control input is then
presented to a driver who can be viewed as an actuator - by
virtue of his or her decision to enter the HOT lane, the driver
affects the traffic flow. This, in turn, implies that the problem
that remains is to determine the underlying model which is a
combination of a traffic flow model and a behavioral model of
the driver. The approach that is proposed in this paper is the
design of a real-time control strategy for toll prices based on
a socio-technical model that combines traffic flow dynamics
with behavioral dynamics of a driver.

A low-order lumped parameter model of a single lane traffic
is used to capture the traffic flow dynamics and an algebraic
nonlinearity based on the logistic function [9] is used to
capture the behavioral model. The combined socio-technical
model is parameterized and validated using the MnPASS traffic
data and the MnPASS pricing strategy. Our model-based toll
price is then evaluated using MnPASS traffic flow data, in
terms of its ability to divert traffic flows from a fixed toll
lane to the HOT lane and in terms of the overall traffic flow
and traffic speeds. As is demonstrated in the sections that
follow, significant advantages result from the proposed pric-
ing algorithm. Moreover, the model-based approach not only
provides analytical guarantees but is also applicable to a wide
range of traffic problems where a sensor network is prevalent,
to provide different levels of congestion alleviation, revenue
generation, and flow optimization, based on the policy-maker’s
desired objectives.

Studies on pricing for congestion control have been exam-
ined in [11], [13] and references therein. These studies can be
categorized into two groups: analysis of time-varying pricing
based on classical economic theory where the toll price is set
to balance marginal social costs with marginal driver costs, but
assumes traffic flows to consist of point masses, and those that

employ a spatial traffic-model, which employs first-principle
based on the classical traffic model in [10]. The latter is similar
in structure to that proposed here but differ from our approach
in the determination of the control parameters, as well as its
overall analysis, which is empirical in nature. The research
conducted here, in contrast, maximizes overall traffic flow and
HOT speeds because of our analytical, model-based analysis.

In addition to the above, ref. [12] has addressed the spe-
cific problem of dynamic toll pricing in Minneapolis [12].
Coordinating with MnPASS policy-makers, they have tested
different toll pricing schemes to better model driver elasticity
and decision-making. Their approach to toll pricing differs by
offering a discrete table of prices as their pricing controller,
and is, again, more empirical than our analytical method.
The research they have conducted, however, is important in
providing us information to base our system model upon.

Details on the model of the proposed intelligent transporta-
tion system are shown in Sections II and III. Parameterization
results are shown in Section IV, and simulation results are de-
tailed in Section V. Section VI closes with overall conclusions
and future work for this project.

II. A SOCIO-TECHNICAL TRAFFIC FLOW MODEL

Fig. 2. A physical schematic of the road segment. The HOT lane is in parallel
with the GPL. No traffic flows between the two beyond are assumed to occur
the initial entry point.

The underlying traffic structure is assumed to consist of a
HOT lane and a GPL in parallel (see Fig. 2). This entire road
section will be referred to as a road segment throughout the
paper. A critical assumption is that there are no lane changes
between the HOT and GPL lanes for the segment considered.
The goal is to determine a suitable dynamic toll pricing
strategy that ensures an increase in the overall traffic flow in
the combined HOT and GPL lanes and traffic speeds close to
the speed limit in the HOT lane.

Fig. 3. A higher-level block diagram for our dynamic pricing system. The
price influences the number of drivers that go into each lane, which is
determined by the driver behavior model. The number of vehicles, then, affect
the lane densities, closing the loop.
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The procedure that we adopt to determine the overall
controller begins with a desired density in the HOT lane. Any
departure of the actual density from this value is fed into our
price controller, which is the main component of our proposed
approach. The resulting output, i.e. the toll price of the HOT
lane, enters as an input into the socio-technical model. The
latter in turn consists of both the driver behavior model, which
represents the driver’s decision of whether or not to enter
the HOT lane, and the traffic flow model that captures the
dynamics between the incoming traffic density and outgoing
traffic density of the underlying road segment. In what follows,
we describe each of the components in this overall feedback
loop, shown in Fig. 3.

A. Traffic Flow Model

Incorporating a model for traffic flow is crucial in under-
standing the underlying dynamics and developing a pricing
scheme to prevent the onset of congestion. A kinematic
model using a particle-flow analogy, denoted as the Lighthill-
Whitham-Richards (LWR) model [10], [13] is often used to
describe traffic flow. As our focus is on the dynamics when the
traffic is close to congestion where the traffic is in an unsteady
state, we do not use the LWR model or its simplifications
which, for the most part, focuses on steady characteristics
of traffic flow. Instead, we use an accumulator model that is
an aggregate, lumped-parameter model that captures the most
dominant dynamics. This model is first order, whose time
constant, ⌧ , depends on the average speed, v̄, of the traffic
stream. Qualitatively, ⌧ represents the time it takes a car to
traverse a road segment of length L.

qout,HOT (s)

qin,HOT (s)
=

1

⌧s+ 1
(1)

where ⌧ = L/v̄.
The average density, ⇢ is determined based on the current

inflow (derived from real-time sensor measurements) with the
following equation,

⇢ =

R T
0 qin(t)� qout(t)dt

L
(2)

With these, we can derive the underlying transfer function for
the HOT lane as

⇢(s)

qin(s)
=

⌧

⌧s+ 1
(3)

A similar traffic model was assumed for the fixed toll lane as
well.

In contrast to the MnPASS model, which evaluates local
densities, our system calculates the average density, ⇢, of
the road between two sensors by tracking the vehicles that
enter, qin(t), and exit, qout(t), the road segment. The number
of cars that lie in the road segment is known based on the
volume measurements from the loop detectors, and the length
of the segment is a fixed value; therefore, ⇢ is known based
on existing data, barring an offset of the initial number of

cars in the segment. This accumulator method gives a better
estimation of the road conditions inside the segment than the
MnPASS system, where only local densities over the length
of the field sensor are being measured.

B. Equilibrium Model

The price controller that we propose in this paper employs
a reference density; the rationale behind this is that density
is a direct metric of congestion and in addition provides a
convenient tool for optimizing the proposed algorithm. The
traffic flow model provides the output density from the input
flow, but furthermore, we need to determine the lane velocities
in real time. The relation between traffic density and speed
for various traffic conditions is nonlinear and complex [10]
and has been studied at length in the transportation literature.
While in general, velocity decreases with density, the underly-
ing gradient changes drastically depending on whether or not
the density exceeds a critical threshold (see Fig. 4). Using this
feature, we propose a simplified equilibrium model as [10]

v̄(⇢) =

8
><

>:

vfree�flow ⇢ < ⇢critical

a⇢+ b ⇢critical  ⇢  ⇢critical

vjam ⇢ > ⇢jam

. (4)

Fig. 4. The equilibrium relationship between speed and density.

Density and speed information from MnPASS for the year
2014 was collected and averaged over a five minute period to
obtain the equilibrium data used in Fig. 4.

C. Driver Behavior Model

Modeling driver behavior is vital in developing an effective
pricing scheme. Since the goal of this system is to direct
vehicles to desired roads in certain quantities, understanding
and quantifying the motivations of drivers is important for the
solution.

Each individual driver entering the road segment has a
choice of entering the HOT or the GPL lane. The choice is
essentially based on the lane that offers a higher utility U , and
can be captured in a commonly used logistic model [17]. We
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choose the utility function to be a linear combination of the
travel time T and toll price P , as

U = �↵T � �P + � (5)

where ↵ and � represent the weighting of travel time and
price, respectively, and � is an offset term used to represent
other unobservables. As the goal is to minimize T and P ,
the negative signs in (5) allow the problem to be cast as the
maximization of U .

The marginal utility �U of choosing the HOT lane vs. GPL
lane can therefore be represented as

�U = ↵�T � �PHOT + � (6)

where �T represents the time savings of travel in the HOT
over the GPL lane, and PHOT denotes the price of the HOT
lane (assuming that the fixed toll lane has zero tolls). The
time savings �T is determined by road segment length and
the speed of the two lanes at the entry point. The assumption
is that the drivers make an estimate of the road speeds and a
corresponding �T .

It should be noted that the driver behavior model in (5)
and (6) naturally extends to a macroscopic scale. The driver’s
discrete choice to choose the HOT lane, when extended to
model a population of drivers, becomes a logistic function
that describes the fraction of drivers that take the HOT lane,
qHOT

qin
. The aggregate driver behavior model is summarized

below, and a visual of the logistic model is displayed in Fig.
5. The input from the driver behavior model then changes the
input flow as

qin,HOT = f(�T, PHOT ) ⇤ qin (7)

where

f(�T, PHOT ) =
1

1 + e↵�T��PHOT+�
(8)

Fig. 5. The logistic model used to characterize driver behavior and determine
the HOT usage. The input to the model is the driver utility, which is a weighted
sum of the current toll price and perceived time savings.

III. MODEL-BASED PRICE CONTROL STRATEGY

With the overall socio-technical model determined as in
Section II, we now describe the model-based control strategy
for the toll price in this section, the details of which are illus-
trated in Fig. 6. This controller consists of two parts, a linear
dynamic component, and a nonlinear algebraic component.
The former is a PD-controller, while the second is a logit
function that serves as an inverse of the driver behavior model.
In addition to these two parts, a feedforward component is
added to the controller to ensure control authority. These are
described in greater detail below.

A. PD Controller

A PD controller is used to track the desired density rel-
atively quickly and to prevent large increases in the HOT
density:

u = Kpe+Kdė (9)

where the error e = ⇢ref � ⇢, and Kp and Kd denote the
proportional and derivative gains, respectively. The derivative
component reacts to changes in the system’s density, thereby
mitigating deviation from the traffic equilibrium model men-
tioned above. Moreover, the derivative (lead) term compen-
sates the lag dynamics of the accumulator model of the road
segment.

B. Feed Forward Component

A feed forward component was added to the PD controller
to provide greater control authority. Because the inverse driver
behavior function is relatively flat near the lowest values of
driver utility, a feed forward gain, Kff = a was added to
ensure equilibrium when ⇢ = ⇢ref . The input, y, to the inverse
driver behavior model is given by

y = Kpe+Kdė+Kff⇢ref . (10)

C. Inverse Driver Behavior

The purpose of the inverse driver behavior function is to
compensate for the nonlinear behavior of the driver modeled
as in section II-C. Ideally, this inverse function would yield a
perfect cancellation with the driver behavior logistic function
and reduce the system to a first order system with a variable
time constant. This inverse function has two inputs: the total
incoming flow, qin, and y, which actually is the desired flow
into the HOT lane, and an output PHOT , and is given by

PHOT =
1

�
[↵�T + � � ln(

qin
y

� 1)] (11)

IV. DETERMINATION OF PARAMETERS

With the socio-technical model as in Section II and the
Price Controller as in Sections III, we address the selection
of the controller parameters Kd, Kp, and Kff in this section.
These, in turn, will be determined on the basis of the model
parameters L, ↵, and �. We use the MnPASS data to determine
various parameters of the traffic flow model, as well as the
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Fig. 6. The inputs, subsystems, and variables of the entire system are shown in this representative block diagram. The input into the system is the desired
density in the HOT lane, and the output is the actual density. The input flow is the measured, total flow into the system.

driver behavior model in the following two sections. While
the actual measurements can be used for feedback in the real,
physical system, the two models need to be completely defined
to create a realistic simulation environment.

A. Traffic Flow Model Parameterization

In order to determine the traffic flow model, density and
speed measurements were taken from the MnPASS system. A
0.7 mile road segment was chosen, L = 0.7, which in turn,
gives us the value of the time delay,

⌧ =
0.7

v̄
. (12)

The entry and exit points of this road segment are shown in
Figure 7, marked as S77 and S37, respectively. Analysis of this
road segment was ideal due to the lack of on- or off-ramps and
the inability to switch between HOT and GPL lanes. Traffic
data from November 2013 to January 2014 was collected using
sensor measurements at S36 and averaged to determine the
density-speed relationship to use in the model.

Fig. 7. The physical map of the road segment (7a) and the schematic (7b).
The road segment chosen lies on I-35W. Black dots on 7a indicate sensor
locations. Figure 7b revels operational details concerning the location of toll
collection, restricted entrances, and toll rate signs.

Another key operational point is that of carpool users. In
most current implementations of dynamic toll pricing in the
U.S., vehicles with two or more passengers are authorized to
use the HOT lane at no cost. MnPASS allows carpool vehicles
the use of the HOT lane for free, and this consideration was
taken into account in both the parameterization of the data
and the implementation of the simulation. With respect to the
parameterization, a constant 55/45% split between carpool and

paying users was assumed in the toll lane. More exact informa-
tion can be gathered by obtaining the specific transponder log
data from MnDOT; however, since little variation in carpool
users is seen day to day, a constant percentage was chosen
for this study. The driver behavior model in (7) is therefore
changed as

qHOT = 0.45 ⇤ f(�T, PHOT ) ⇤ qin (13)

B. Driver Behavior Parameterization and Recursive Least

Squares Estimation

In order to determine the fit of the logistic driver behavior
model, volume and speed data was taken from 6am to 10am,
Monday to Friday, between November 2013 and January 2014.
Price data was obtained directly from MnPASS operators, and
the driver volumes used were taken from station S77. As the
patterns seemed to vary significantly from one weekday to the
next, a set of parameters, one set for each day, was determined.

Using MATLAB’s glmfit function, the coefficients for the
driver utility model, ↵ and �, were determined. Table 1
summarizes the results of the model fitting with the standard
deviations shown in parentheses. A value of travel time savings
metric, VOT, can be calculated from the coefficient values as

V OT =

����
�

↵

���� (14)

which represents the amount per minute of time savings that
the overall population of drivers is willing to pay.

Comparison with recommended values by MnDOT (0.2667
$/min) and USDOT (0.3817 $/min) show that the values
calculated in this study are close but consistently higher,
with the exception of Thursday’s values [14], [15]. This
pattern follows logically, since drivers opting for HOT lanes
would naturally have higher values of travel time savings,
compared to the average values provided by MnDOT and
USDOT. Improvements in the parameter fitting were seen
when categorizing results by the day of the week. The values
of � show little variation between days and were, therefore,
fixed at a constant value of -1.71781 for our model. Cases of
severe congestion did occur in the sampled time, due to heavy
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snow. These days were not included in the analysis, as the
congestion was significant enough to show degradation of the
speed in the HOT lane equal to that of the GPL lanes.

TABLE I
MEAN VALUES OF FITTED DRIVER BEHAVIOR PARAMETERS BY DAY OF

THE WEEK

Mon. Tues. Wed. Thur. Fri. Average
↵ -0.2879 -0.3409 -0.3953 -0.3710 -0.3026 -0.3340
� 0.3306 0.4182 0.3199 0.2936 0.3901 0.3550

V OT 1.148 1.227 0.8093 0.7915 1.289 1.063

C. PD Gains

Assuming that the inverse driver behavior model perfectly
cancels out the nonlinearity, the underlying relationship be-
tween ⇢ref and ⇢ is a linear dynamic system of first-order.
Therefore, one can use pole-placement methods to determine
the PD gains. The PD gains were chosen such that there
was no overshoot and settling time was 2.8 minutes. This
in turn implied that the closed-loop transfer function has a
damping ratio 1.1 and natural frequency of 1.25rad. This led
to a selection of PD gains Kd = 0.45 and Kp = 1.75. The
feed forward gain, Kff = 0.4 was chosen to corresponded
the equilibrium model.

D. Target Density Selection

With Section IV-A, IV-B, and IV-C determining the traffic
model parameters, the behavioral model parameters, and the
PD control gains, respectively, the only quantity that remains
to be determined is the desired traffic density, which is a
reference signal into the whole closed-loop. Based on the
fundamental diagram, for a given input flow and desired HOT
minimum speed, there are a variety of HOT and GPL densities
that result. For a specific choice of those two variables, the
overall output flow is maximized, and that operating point is
what is referred to as the sweet spot for our simulations. At this
point, the speed decrease to GPL is minimal, the guarantees to
the HOT users are satisfied, and the system benefit is achieved
with the maximization of overall flow.

V. RESULTS

The flow dynamics together with the driver behavior model
are specified in Section II-A, II-B and in II-C, respectively.
The parameters of this model are given by ⌧ and ↵, �, and
�. The dynamic toll price strategy is specified in Section III,
and the parameters of this strategy are given in Section IV.
We now describe the results obtained using out dynamic toll
pricing controller in this section.

A. Model Validation

Our first step in validating the price controller proposed
Section IV is the validation of the socio-technical model
described in Section II. As the MnPASS system has data
available regarding PHOT , qin,HOT , qout,HOT , and speeds,
with their price controller determining the HOT lane price,
we use their data for this validation (see Fig. 8).

The MnPASS price control algorithm is shown in Fig. 1.
Because the MnPASS toll price is determined based on both
the current density and the change in density over time, a PD
controller was chosen, without a feed-forward component or
inverse driver behavior model, to recreate the MnPASS pricing
system within our simulation environment. A variety of PD
gains were tested in order to obtain results similar to the actual,
measured data. The best match in results occurred when Kp =
0.25 and Kd = 1.3. The low proportional gain results from
the lack of a target density in the MnPASS pricing scheme.
The resulting density and total flow obtained from MnPASS
on Oct. 6, 2014 are shown in Figure 9, and compared with the
estimated quantities using our socio-technical model given by
Eqs. (3)-(13). Similar results were obtained for a range of dates
in 2014. This shows that our driver behavior model, traffic flow
model, and equilibrium model is a reasonable approximation
of the actual traffic flow.

Fig. 8. The MnPASS pricing controller was placed alongside our socio-
technical model to validate the use of our system model.

Fig. 9. The similarity of the density and speed plots of our simulated system
(blue) and the actual MnPASS system (red) validate the use of our model-
based system.

B. Results of our Model-based Pricing Controller

We now use the socio-technical model in Section II, with
parameters ↵ = �0.3026, � = 0.3901, ⇢critical = 25, ⇢jam =
80, vfree�flow = 65, and vjam = 5. With the inverse behavior
model as in eq. (11), and the control gains chosen as Kff =
0.4, Kd = 0.45 and Kp = 1.75 and a desired density of
⇢ = 30, the overall traffic-flow with the price controller was
simulated. The resulting density is shown in Figure 9a. These
results are also compared with the MnPASS controller, whose
response was simulated using the same socio-technical model
and the MnPASS pricing strategy described in Section V-A.
It can be seen that the responses are comparable. In order
to generate a more aggressive strategy that quickly returns the
HOT densities to the desired value, the PD gains were changed
to such that there was again no overshoot and the settling time
was 1.5 minutes. The resulting responses are shown in Figure
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10b that illustrate the significant improvement of our pricing
controller in comparison with that of MnPASS.

To better illustrate the performance of our controller, an
input flow that introduced congestion in the middle of the
operating period was chosen. The corresponding densities as
well as price profiles, speeds, and total flows, both for our
controller and the MnPASS controller, are shown in Figure
11. These plots especially show the significant improvement
in the increase of total flow in comparison to MnPASS. While
the prices are larger, we note that the price cap of $8 set
by MnPASS was not violated anywhere. All of these plots
corresponded to a desired density of 30 cars/mi.

Fig. 10. PID gains were chosen in 10a to match the behavior of MnPASS
and validate our system model. The gains were changed for the simulation
run in 10b to yield a more aggressive pricing scheme that was successful in
preventing congestion in the HOT lane.

Fig. 11. High input flow is introduced in the middle of the operating period
to test the systems’ ability to prevent congestion. The model-based system is
successful in keeping the HOT density low compared to MnPASS.

It is clear that instances of congestion still occur with
the MnPASS pricing model, as their density climbs past the
threshold between free-flow and congestion in 4 of the 5
graphs. Our pricing controller is targeting a density value
below the critical density, so that the traffic flow remains in the
linear, free-flow region. As a result, as is illustrated in Fig. 11,
the corresponding densities remain below the critical density,
despite the large input flow to the system.

Looking at the graphs of the toll prices, it is clear that the
more aggressive PD gains are the key factor in preventing con-
gestion. In addition, another strength of this pricing strategy
is the ability to minimize flow and speed fluctuations, which
is desirable for a better driver experience.

C. Effect of Inverse Driver Behavior Component

Simulations were run without the inverse driver behavior
component in the pricing scheme. Theoretically, this has the
effect of introducing an unknown gain into the system. The
results are shown in Figure 12, with and without the inverse
function, and it can be seen that in the latter, the tracking error
in density is much poorer when compared to the former.

We also evaluated the effect of an incorrect inverse driver
behavior model. For this purpose, we replaced the parameters
↵ and � by �↵↵ and ��� respectively, with �↵ = 5 and
�� = 2. The resulting density response is shown if Figure
13 (in red), and compared with the correct parameter values,
i.e. �↵ = 1 and �� = 1 (in blue). As these plots show, the
pricing control performance is somewhat insensitive to the
inverse driver behavior parameters. But as Figure 12 shows,
the pricing control performance is sensitive to the presence of
the inverse nonlinearity itself.

Fig. 12. While the system without the inverse driver behavior pricing
component (right) is able to keep the system from experience congestion,
it fluctuates about the target density much more than the system with the
inverse behavior component (left).

D. Comparison with Prior Research

As mentioned in the introduction, ref. [12] has examined the
MnPass strategy with changes in their pricing strategy (shown
in Table 1) in order to better understand driver elasticity and
decision-making. In particular, four different pricing strategies,
consisting of proportional control with exponential weighting
on the HOT density and proportional control on the density
difference with no weight, weighting on the HOT density, and
weighting on the GPL density. Of these, the first one was
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Fig. 13. System performance with the incorrect driver behavior parameters,
↵ and �.

implemented in our simulation studies and compared with our
proposed controller in Fig. 14.

Fig. 14. Comparison between our controller and the first alternative pricing
strategy from UMN.

E. Revenue Effects

An important component in any new toll pricing system is
effect it will have on revenue generation. Because the pro-
posed pricing strategy can be implemented within the existing
infrastructure without any modifications to the infrastructure,
any differences in revenue will result from the changes in
toll prices and toll lane users. The revenue generation was
calculated based on the number of HOT users and the toll price
at the time of entrance into the road segment. Comparisons
between the existing MnPASS system and our pricing system
indicate that the proposed system results in the same or higher
revenues for all cases. This could certainly change if the
controller gains are chosen to be less aggressive, but again,
that is a design choice that can be easily altered.

VI. CONCLUSION

A real-time dynamic toll pricing scheme has the potential to
reduce traffic congestion without the significant infrastructure
costs that other alternatives, such as road expansion and public
transportation development, require. In this paper, a dynamic
toll-pricing strategy was proposed based on a socio-technical
model that includes driver behavior model and traffic flow.

Based on measured values from the MnPASS network, the
socio-technical model was validated. The toll-pricing strategy
consisted of a nonlinearity that served as the inverse driver
behavior model, and a simple PD controller. Using data from
the actual traffic inflow from MnPASS and simulations of our
socio-technical model and the dynamic pricing controller, the
results of our toll pricing controller were obtained, and shown
to successfully reduce traffic congestion more effectively than
the current MnPASS pricing scheme. The overall approach of
using dynamic toll pricing for management of highway traffic
can be viewed as one of the important building blocks of a
Smart City [16].

Several areas of study remain in the proposed line of
inquiry. Extensions to road segments with more lanes, merges,
and traffic flow in connected segments, will all require more
careful modeling, analysis, and synthesis tools. The role of
more complex behavioral models as well as nonlinear and
distributed traffic flow models need to be carefully examined
as well.
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