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We have studied the transport properties of a large graphene double quantum dot under the influence of a
background disorder potential and a magnetic field. At low temperatures, the evolution of the charge-stability
diagram as a function of the B field is investigated up to 10 T. Our results indicate that the charging energy of the
quantum dot is reduced, and hence the effective size of the dot increases at a high magnetic field. We provide an
explanation of our results using a tight-binding model, which describes the charge redistribution in a disordered
graphene quantum dot via the formation of Landau levels and edge states. Our model suggests that the tunnel
barriers separating different electron/hole puddles in a dot become transparent at high B fields, resulting in the
charge delocalization and reduced charging energy observed experimentally.
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I. INTRODUCTION

Confining charge carriers in graphene continues to generate
interest owing to its customizable electronic properties and
compatibility with existing semiconductor device processing
[1]. Carbon atoms 12C have low atomic weight and no nuclear
spin (except for the 13C isotope), so electronic interactions,
such as spin-orbit and hyperfine couplings are expected to be
weak in graphene, leading to long electron-spin relaxation
times [2]. Over the past decade lithographically defined
graphene quantum dots (GQDs) have proved to be a useful
platform in which single electrons can be confined and
manipulated. A number of experimental advances have been
reported, such as charge detection [3], charge relaxation [4],
and electron-hole crossover [5], in graphene single quantum
dots (GSQDs) and excited states [6], tunable interdot coupling
[7], and charge pumping [8] in graphene double quantum
dots (GDQDs). More recently, graphene quantum dots on
hexagonal boron nitride (hBN) have enabled the influence of
potential and edge disorder to be studied separately [9,10].
Magnetic fields are powerful tools for unveiling the nature
of a confined Dirac fermion in GQDs. For example, the
Fock-Darwin spectrum in the few-electron regime [5] and
many-electron regime [11] as well as the Zeeman splitting
of spin states [12] in a graphene single quantum dot have
been studied. On the other hand, although it is well known
that electron transport through graphene nanostructures is
strongly affected by electron/hole puddles induced by potential
fluctuations [7,13,14], detailed experimental and theoretical
studies are lacking to address this issue in GQD transport.
In this paper, we study the effect of disorder by investigating
the transport properties of a large GDQD device at magnetic
fields in which Landau levels (LLs) are expected to form. At
a high enough B field, our results suggest that electron/hole
puddles in the dot tend to merge together, giving rise to a charge
redistribution which can be observed experimentally. Our
results are supported by tight-binding quantum simulations,
which can be used to describe the charge redistribution in a
disordered graphene quantum dot at high magnetic fields and
gives deeper insight into our experimental data.

II. COULOMB BLOCKADE MEASUREMENT ON
A GRAPHENE DOUBLE DOT AT B = 0

Double quantum dots are model systems for investigating
the dynamics of electrons in a wide range of semiconductors
[15–21]. Charge stability diagrams—obtained by measuring
the conductance as a function of the carrier density on each
quantum dot—reveal a wealth of information about charging
energy, interdot coupling, and cross-gate coupling strength,
making them an ideal way to probe charge rearrangements
in quantum dots at high magnetic fields. An atomic force
microscopy image of the double quantum dot measured in
this paper is shown in Fig. 1(a). Our device consists of
two lithographically etched (O2 plasma) graphene islands
each with a size of 200 × 250 nm2 labeled QD1 and QD2
in Fig. 1(a). They are mutually connected to each other by
a 90-nm-wide constriction and separately connected to the
source/drain leads via two 80-nm-wide constrictions, which
act as tunnel barriers. Two plunger gates PG1(2) are used
to tune the energy levels in QD1(2) whereas three side gates
(SG1, SG2, and SG3) are used to tune the tunnel barriers.
The doped-silicon backgate (BG) is used to adjust the overall
Fermi level.

The measurements were performed in a dilution refrigerator
with an electron temperature around 100 mK. In Fig. 1(b), we
show the measured differential conductance through DQDs as
a function of BG voltage (an ac excitation of Vac = 20 μV at
77 Hz from a lock-in amplifier is used) highlighting a region of
suppressed current (the so-called transport gap [22]) separating
the hole from the electron transport regime. At a backgate
voltage within the transport gap [VBG = 8.61 V, see arrow in
Fig. 1(b)] we measure the dc current through the DQD as a
function of VPG1 and VPG2 for a series of applied dc biases as
shown in Fig. 1(c) for Vb = 400 μV, (d) for Vb = 1 mV, and
(e) for Vb = 2 mV, respectively.

As expected, the current in the stability diagram evolves
from triple points into bias-dependent triangles when the
bias is increased. The horizontal and vertical measures of
the honeycomb cell �VPG1 and �VPG2 [Fig. 1(d)] give the
capacitances between gate PG1 and QD1 Cg1 ≈ e/�VPG1 =
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FIG. 1. (Color online) (a) Atomic force micrograph of the double
quantum dot device measured in this paper. (b) Measurement of
the differential conductance through the DQD for varied backgate
voltages. Data collected at Vac = 200 μV and T = 1.4 K. Current
through the DQD as a function of VPG1 and VPG2 measured in
a dilution refrigerator at T = 100 mK with applied dc biases (c)
Vb = 400 μV, (d) Vb = 1 mV, and (e) Vb = 2 mV. The position of
the triple points can be determined at low bias [see (c)], whereas at
high bias the triple points evolve into triangles [see (d) and (e)].

2.77 aF and between gate PG2 and QD2 Cg2 ≈ e/�VPG2 =
1 aF. Also the charging energies EC1 = α1 �VPG1 = 2.57 and
EC2 = α2 �VPG2 = 4.77 meV are obtained using the voltage-
energy conversion factor α1(2) = eVb/δVPG1(2) extracted from
the bias triangle as shown in Fig. 1(e). The difference in
charging energies reflects the fact that the sizes of the dots
are not equal and can be justified if the tunnel barriers defined
by local disorder potential modify the size of the GQDs [7,13].
Within this picture, electrons from the source reservoir enter
through a large localized state in QD1 (EC1 is small) to a small
localized state in QD2 (EC2 is large) and then exit through
the drain reservoir. Finally, the interdot coupling energy can
be determined from the splitting of the triangles as shown in
Fig. 1(e): ECm = α1 �V m

PG1 = 0.29 meV.

III. CHARGE STABILITY DIAGRAM IN A
PERPENDICULAR MAGNETIC FIELD

The charge distribution in the QDs can be investigated by
looking at how the charge stability diagram evolves under
the influence of the magnetic field. Figure 2(a) shows the
evolution of a region of the stability diagram, measured at T =
100 mK, VBG = 8.61 V, and Vb = −1 mV for perpendicular
magnetic fields ranging from 4 to 10 T. Note that the voltage
ranges on the x-y axes of Figs. 2(a) and 2(b) are chosen
to be the same in each panel. We have studied the stability
diagram in a wide energy range and here only focus on four

typical triple points for simplicity. The first observation is the
field-dependent change in the dimensions of the honeycomb,
which is highlighted by the dotted hexagonal outlines in
Fig. 2(a) and is most pronounced from B = 7 to B = 10 T,
indicating the variation in the capacitances Cg1 and Cg2. In
addition, the closeups of the triangle in the bottom of each
honeycomb, as shown Fig. 2(b), display a change in δVPG1(2)

and �V m
PG1(2), implying that the conversion factors α1(2) and

interdot coupling energy ECm also change with the B field.
It is worth noting that the size of the triangle varies in the
same honeycomb (i.e., B = 7 and 8 T), indicating the precise
size of the localized state can change over a small range of
gate voltage. The extracted charging energy of each dot (EC1

and EC2) and the interdot coupling energy (ECm) are shown
in Figs. 2(c) and 2(d), respectively. The QD charging energies
remain roughly unvaried (EC1 ≈ 3 and EC2 ≈ 6 meV) from
B = 4 to B = 6 T then show a decreasing tendency from
B = 7 T to higher fields. From B = 4 to B = 10 T, the
percentage change in EC2 (42%) is larger than that in EC1

(27%). By contrast, the interdot coupling energy shows a
monotonic increase with the field from 4 to 10 T. Our results
suggest that both dots increase their “effective” size at high B

fields, which reflects on the decreasing charging energies.

IV. MODEL AND SIMULATION

It is well known that the presence of charged impurities in
the SiO2 substrate [23,24] or surface ripples [25] can induce
electron-hole puddles with a size of tens of nanometers in
exfoliated graphene flakes. This aspect considerably affects
the electronic and transport properties of graphene around the
Dirac point, and as we will show, it plays a key role in our case.
To take this into account, we consider a varying background
potential V in a model QD as shown in Fig. 3(a) where V

fluctuates from positive (blue) to negative (red) passing from
V = 0 (green). If V varies slowly, in each region of a large dot
the energy bands will approximately correspond to the shifted
energy bands of two-dimensional graphene as represented in
Fig. 3(b) for zero (left panel) and high (right panel) magnetic
fields. At B = 0 T, a gap is introduced to include the quantum
confinement effects due to the dot. This gap progressively
reduces at the high B field along with the formation of Landau
levels. Depending on the backgate and background potentials,
the Fermi energy EF (here set to 0) and Dirac point can have
locally different relative positions as indicated by the dashed
lines in the left panel of Fig. 3(b). The sign and strength of
V determine the nature (electron or hole) of the puddles and
their DOS. We first consider the case of B = 0. For the V �
0 (V � 0) regions, the Fermi energy corresponds to level 1
(5) in Fig. 3(b). As the level is far above (below) the charge
neutrality point, it gives rise to the electron (hole) puddles
with high DOS as shown in Fig. 3(c). In the region where
V < 0 (V > 0), the Fermi energy corresponds to level 2 (4)
and results in electron (hole) puddles with low DOS. In the
region around V = 0 corresponding to the energy gap, the
DOS is very low or 0. These regions [the green region in
Fig. 3(c)] separate the puddles and can make the transport
diffusive [26].

In the presence of high magnetic fields, due to the formation
of LLs, part of the levels around the gap tends to the 0th
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FIG. 2. (Color online) (a) The evolution of the charge-stability diagram (taken at T = 100 mK, VBG = 8.61 V, and Vb = −1 mV) under
the influence of a perpendicular magnetic field from 4 to 10 T. (b) Closeup of the triangle in the lowest position of each panel as highlighted
by the dashed square in the leftmost panel of (a). Note that the voltage ranges on the x-y axes of (a) and (b) are chosen to be the same in each
panel. (c) The charging energies of the QDs as a function of the B field. (d) The interdot coupling energy as a function of the B field. Note that
in order to consider the distortion of the triangle at certain B fields (e.g., B = 7 and 9 T), we use the right tip and the left tip of each triangle to
doubly define the shape of the triangle. We take the average of both fittings (meaning the triangle shape determined by the left tip and the right
tip) to extract the data points, and the error bar is determined by the difference between the two fittings.

Landau level, thus reducing the gap. The other part rises, thus
approaching the higher LLs as shown in the right panel of
Fig. 3(b) where also the dispersive magnetic edge states are
represented. In the low-field regime, the LLs are far from being
fully established, and the DOS in the dot is low. However,
the edge channels start developing with opposite chirality for
electron and hole puddles as indicated by arrows in Fig. 3(d).
At the high magnetic field, the LL0 is well developed with
the consequent closing of the band gap. Therefore, in the V =
0 region the DOS is expected to increase and result in the
development of nonchiral channels connecting the puddles as
shown in the yellow region in Fig. 3(e). At the same time, the
other LLs start developing together with the chiral magnetic
edge channels. In this regime, the DOS decreases in the bulk
of the puddles whereas it increases at their edges. Electron
transport through the dot is not confined in a particular puddle
but can be delocalized in the dot through flowing in both the
chiral edge channels (red or blue arrows) and the nonchiral
channels (yellow region).

In order to validate this picture, we performed numerical
simulations of a QD with a radius of R = 47.5 nm and a
background potential consisting of two regions with V >

0 (81 meV) and V < 0 (−66 meV), which determine the
presence of a hole puddle and an electron puddle as shown
in Fig. 4(a). Note that in order to reduce the computational
burden, we choose to simulate a dot that is smaller than the

real ones and with a simplified background potential. However,
the result we got is representative of a larger dot with more
complicated background potential. The dot is described by
a first-neighbor tight-binding Hamiltonian with a single pz

orbital per atom and coupling parameter −2.7 eV. For more
details on the Green’s function formalism adopted for the
simulations, refer to Ref. [27]. The calculated DOS of the
dot is shown in Figs. 4(b)–4(f) in arbitrary units. As expected,
at low B (0 and 0.8 T) the DOS is low where V = 0 and higher
for larger |V |. As B increases (2.8 T), the DOS decreases a
little in the center of the electron/hole puddles, and it increases
along the edge due to the progressive developing of magnetic
edge states [Fig. 4(d)]. Note the presence of a very high DOS
region at the border of the dot. They correspond to zigzag
edge sections where very localized states appear [28]. At a
higher B field, we observe the presence of high DOS in the
V = 0 region, which corresponds to the LL0, and the rise of
edge states around the dot. The higher the field is, the larger
the DOS is in the V = 0 and edge regions as can be seen for
B � 4.4 T in Figs. 4(e) and 4(f).

The simulated background spectral current distribution
(which corresponds to the spatial distribution of the conductive
channels) [27] in the dot is shown in Figs. 4(g)–4(j). At the low
magnetic field (B � 0.8 T) the current is mainly concentrated
in the high |V | regions, and the V = 0 region seems to act as
a barrier between the two puddles. At a slightly higher field
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FIG. 3. (Color online) (a) Example of potential distribution in
a large disordered quantum dot. (b) Left panel: Schematic band
structure of a GQD in zero magnetic field. Right panel: in a high
magnetic field. The red lines denote the electronlike levels, and the
blue lines denote the holelike levels. The black solid lines indicate the
Dirac conelike dispersion. (c)–(e) Expected density of state (DOS)
distribution in the dot at zero field, low magnetic field, and high
magnetic field, respectively.

(B = 2.8 T) the current starts tending to the V = 0 region
due to the progressive closing of the energy gap. At high
fields (B � 4.4 T), we observe the current flowing along the
chiral magnetic edge states of the dot and along the nonchiral
V = 0 region where the gap is now closed. In this regime, the
current is delocalized in the dot, and a charge rearrangement
can be seen compared to the case at low B fields. Note
that the more fractured the disorder potential is (meaning
more existing electron/hole puddles), the more pronounced
the charge delocalization effect will be at high fields.

V. DISCUSSION

As the backgate voltage (VBG = 8.61 V) where all the
measurements were carried out is near the charge neutrality
point, it is expected the background potential fluctuations will
play a role and give rise to electron-hole puddles formed in the
QDs [24,29]. In this situation, our model can be readily adapted
to explain the data. Due to the closing of the energy gap at high
enough magnetic fields, at the V = 0 region, the DOS is high
and develops nonchiral channels which connect the puddles
as sketched in Fig. 3(e). Hence, the current can flow through
the puddles via crossing the high DOS nonchiral channels at
the interface, thus making electrons no longer confined in a
particular puddle but delocalized in a larger puddle, resulting
in a smaller charging energy. Here we point out that the field
has to be high enough for the LLs and edge states to be fully
developed to close the energy gap. The threshold B field
for this to happen in a GSQD with a relatively smaller size
(50-nm diameter) is around 10 T [5]. As a result, the change in
charging energies in our case is most pronounced from B = 6
to B = 10 T for QD1 and from B = 7 to B = 10 T for QD2
as shown in Fig. 2(c). The threshold B field for QD2 is higher
owing to its larger charging energy (smaller puddle) in which
the magnetic length �B = √

�/eB has to be comparable or

FIG. 4. (Color online) (a) Potential distribution in a quantum dot
with R = 47.5 nm. The black line in the potential profile indicates
the region where the potential is V = 0. (b)–(f) Calculated local
DOS in the dot at different magnetic fields. (g)–(j) Calculated current
distribution in the dot at different magnetic fields.

even smaller than the puddle size. The magnetic length for
B = 7 T is around 9 nm, implying the size of the puddle in the
dot is around (or more than) twice the critical magnetic length,
in good agreement with the puddle size (20 nm) measured in
graphene [23]. In addition, we observed the change in EC2

from B = 4 to B = 10 T is larger than that in EC1. This is
expected since EC1 is smaller than EC2, indicating electrons
tunnel through a larger localized state in QD1 and a smaller
localized state in QD2. In other words, the disorder potential
in QD2 is more fractured than that in QD1. Therefore, at a high
B field the charge delocalization effect is more pronounced in
QD2 than that in QD1, giving rise to the larger B-dependent
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charging energy in QD2. Here we note that the GQD has
to be large for the substrate disorder to play an important
role, which may be the reason that the decreasing charging
energy with the B field is not observed in other relatively
smaller GQDs with large edge-to-bulk ratios [3,5] or GQDs
on hBN [10] where substrate disorder is less important. The
increasing interdot coupling energy may be also understood as
the charges rearranging from the center of the puddles to the
edge of the dot [see Figs. 4(g)–4(j)]. This scenario depends
on the progressively formed edge state with increasing B

field and can be observed in the whole range of the B field
[Fig. 2(d)].

A more recent study of graphene nanoribbons (GNRs)
on the hBN substrate has indicated that the localized states
may also extend into the leads of the device, giving rise to
smaller charging energies than expected from the geometry
of GNRs alone [30]. However, two conditions are crucial for
this effect to be seen. One is the substrate disorder has to
be much weaker than the edge disorder, and the other is the
edge-to-bulk ratio of the device has to be large enough for the
edge to play an important role. Transport in GQDs on hBN
is dominated by the edge roughness for QDs with diameters
less than 100 nm [9]. Each condition is met by their relatively
small GNR (30 nm × 30 nm) on hBN, thus the edge disorder
is strong enough to localize the electron wave function along
the edge to the leads. On the contrary, our large dot (and the
tunnel barrier GNR) with a smaller edge-to-bulk ratio should
diminish the influence of the rough edges on overall transport,
meaning localization along the edge still happens, but transport
is dominated by bulk contributions. Therefore, we argue that
the charge redistribution (based on substrate disorder) in our
QDs is the main factor that leads to a variation in the effective
dots’ area and contributes to the decreasing charging energies
in magnetic fields.

The effect of disorder can be also seen in Fig. 5 where
a stability diagram measured in different cool downs of the
device at B fields (a) 3.2 T, (b) 3.8 T, and (c) 4.4 T is presented.
The triangle shape first distorts at B = 3.2 T, then splits
into two separated ones [Fig. 5(b)], and then moves further
apart and forms an additional row of triangles [Fig. 5(c)].
We attribute this newly appearing triangle to the formation
of a localized state in a magnetic field, which is capacitively
coupled to the original dots [31,32]. A schematic is shown
in Figs. 5(d) and 5(e) to address such a scenario. When a
localized state is formed in a magnetic field, while the gate
voltage is swept, it can add or subtract charges discretely to
the parasitic dot, thus altering the entire environment abruptly
and unexpectedly. The fact that the splitting occurs on both
gate spaces suggests the localized state can affect two dots
in a similar way, implying its location is in the central GNR
[Fig. 5(d)]. The new dot acts as a gate which will shift the triple
points in the charge-stability diagram, consequently, leading

FIG. 5. (Color online) The charge-stability diagram measured at
VBG = 9 V and Vb = 1 mV in (a) B = 3.2 T, (b) B = 3.8 T, and
(c) B = 4.4 T showing a formation of an additional dot under the
influence of a magnetic field and strongly coupled to the original
dots. (d) Graphic illustration of an effect of a localized state formed
in magnetic fields. (e) Same as (d) but with a charge added into the
localized state. It capacitively couples to the original dots and forces
the DQD to reconstruct its wave function.

to an additional row of triangles being added adjacent to the
original ones.

VI. SUMMARY

To summarize, we have fabricated and studied the magneto-
transport properties of a large GDQD device. In different cool
downs, we observed a honeycomb pattern which is typical of
charge-stability diagrams for a DQD system. We studied the
evolution of the charge-stability diagram under the influence
of a B field up to 10 T. The charging energy and the interdot
coupling energy show different dependences with the B field,
suggesting the size of both dots become larger in a high field.
Our interpretation is supported by numerical simulations in
which we show the confined charges in the puddles of GQDs
can be redistributed from the bulk to the edge through the
formation of LLs and edge states. At a high enough B field, due
to the closing of the energy gap, electrons are delocalized via
crossing the nonchiral channels connecting different puddles,
resulting in a smaller charging energy.
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