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Abstract: We experimentally realized the Harper Hamiltonian with charge neutral, ultracold
atoms in optical lattices using laser-assisted tunneling and a potential energy gradient. The
energy spectrum of this Hamiltonian is the fractal Hofstadter butterfly.
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Systems of charged particles in magnetic fields have led to many discoveries in science such as the integer [1] and
fractional quantum Hall effects [2] and have become important paradigms of quantum many-body physics. Gener-
alizations have led to the study of topological insulators, initially in condensed matter [3] but also more recently in
photonic systems [4, 5]. We have proposed and implemented a scheme which realizes the Harper Hamiltonian [6], a
lattice model for charged particles in magnetic fields, whose energy spectrum is the fractal Hofstadter butterfly [7].

We experimentally realize this Hamiltonian with ultracold, charge neutral bosonic atoms of 87Rb in a two-
dimensional optical lattice by creating an artificial gauge field using laser-assisted tunneling and a potential energy
gradient provided by gravity [8]. A schematic of our setup is shown in Fig. 1 (a),(b) and (c). The laser-assisted tunnel-
ing process is characterized by studying the expansion of the atoms in the lattice as shown in Fig. 1 (d).

(d) 

Fig. 1. (a) Laser-assisted tunneling in the lowest band of a tilted lattice with an energy offset ∆ be-
tween neighboring sites and two-photon Rabi frequency Ω in energy units. (b) Experimental geom-
etry to generate uniform magnetic fields using a pair of laser beams and a potential energy gradient.
Tunneling along the x-direction with amplitude K imprints a spatially varying phase φm,n with site
indices (m,n). (c) A schematic depicting the position-dependent phases of the tunneling process. (d)
In situ cloud width as a function of Raman detuning δω after an expansion of 500 ms. The line is a
Lorentzian fit to the experimental data centered at 1133 Hz, consistent with the gravitational offset
between sites. Pictures (of size 135×116 µm) show typical column densities on and off resonance.

In a uniform lattice, atoms are free to tunnel. However, in the presence of a uniform energy offset between neighbor-
ing lattice sites, tunneling along the offset direction is suppressed. Applying a pair of laser beams that are frequency



detuned to the offset induces Raman transitions which re-establish tunneling and create the Harper Hamiltonian,

H =−∑
m,n

(
Ke−iφm,n â†

m+1,nâm,n + Jâ†
m,n+1âm,n +H.c.

)
, (1)

where â†
m,n (âm,n) is the creation (annihilation) operator of a particle at lattice site (m,n) and φm,n = δk · Rm,n =

mφx + nφy is a spatially varying phase, where the energy offset is in the x-direction. For our particular experimental
setup, the magnitude of the tunneling amplitudes in terms of the bare tunneling amplitudes Jx,y, the energy offset ∆,
and the two-photon Rabi frequency in energy units Ω can be written K = JxJ1(2Ω/∆) and J = JyJ0(2Ω/∆), where
Jn(x) are Bessel functions of the first kind of order n. The experimentally determined atomic cloud width qualitatively
agrees with the Bessel function behavior as shown in Fig. 2 (a). We can also suppress nearest-neighbor tunneling while
inducing next-nearest-neighbor tunneling with the appropriate laser detuning as shown in Fig. 2 (b).

(a) (b) 

Fig. 2. (a) In situ cloud width expansion as a function of resonant Raman laser intensity shows the
laser-assisted tunneling rate K along the tilt direction (blue circles) and the tunneling rate J along
the transverse direction (red squares). Data taken at lattice depths of 9Er and hold time of 1500
ms. Inset: Theoretical prediction for the tunneling rates K and J in terms of Bessel functions. (b)
Next-nearest-neighbor tunneling induced and observed. The center is at 2∆ (compare to Fig. 1 (d)).

Furthermore, this scheme can be extended to realize spin-orbit coupling and the spin Hall effect for neutral atoms
in optical lattices by modifying the motion of atoms in a spin-dependent way by laser recoil and Zeeman shifts due to
magnetic field gradients [9]. One major advantage of our scheme is that it does not rely on near-resonant laser light to
couple different spin states. Our work is a step towards studying novel topological phenomena with ultracold atoms.
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