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Abstract

Higher prevalence of helminth infections in H. pylori infected children was suggested to

potentially lower the life-time risk for gastric adenocarcinoma. In rodent models, helminth co-

infection does not reduce Helicobacter-induced inflammation but delays progression of pre-

malignant gastric lesions. Because gastric cancer in INS-GAS mice is promoted by intestinal

microflora, the impact of Heligmosomoides polygyrus co-infection on H. pylori-associated gastric

lesions and microflora were evaluated. Male INS-GAS mice co-infected with H. pylori and H.

polygyrus for 5 months were assessed for gastrointestinal lesions, inflammation-related mRNA

expression, FoxP3+ cells, epithelial proliferation, and gastric colonization with H. pylori and

Altered Schaedler Flora. Despite similar gastric inflammation and high levels of proinflammatory

mRNA, helminth co-infection increased FoxP3+ cells in the corpus and reduced H. pylori-

associated gastric atrophy (p<0.04), dysplasia (p<0.02) and prevented H. pylori-induced changes

in the gastric flora (p<0.05). This is the first evidence of helminth infection reducing H. pylori-

induced gastric lesions while inhibiting changes in gastric flora, consistent with prior observations

that gastric colonization with enteric microbiota accelerated gastric lesions in INS-GAS mice.
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Identifying how helminths reduce gastric premalignant lesions and impact bacterial colonization

of the H. pylori infected stomach could lead to new treatment strategies to inhibit progression

from chronic gastritis to cancer in humans.
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1. Introduction

Chronic Helicobacter pylori-induced gastritis in humans can progress to gastric atrophy,

intestinal metaplasia and dysplasia with increased risk for gastric adenocarcinoma [1].

Epidemiologic evidence in humans and data from rodent models support that gastric

carcinogenesis is multifactorial, influenced by host genetics [2], hormones [3], H. pylori

virulence properties [4], environmental co-factors [5, 6] and co-infections with enterohepatic

Helicobacters [7, 8] or helminths [9]. Higher prevalence of helminth infections in H. pylori

infected children was suggested to potentially lower the life-time risk for gastric

adenocarcinoma [9], with serologic evidence that life-long exposure through adulthood to a

variety of parasites impacts inflammatory responses to H. pylori [10]. Experimental data

from rodent models further support this hypothesis: gastric atrophy was reduced in H. felis

and Heligmosomoides polygyrus co-infected C57BL/6 mice [11] and in H. pylori and Brugia

pahangi co-infected gerbils [12].

Notably in rodent models, helminth co-infection does not reduce Helicobacter-induced

inflammation but does delay progression of pre-malignant lesions, suggesting these lesions

are suppressed by an alternative mechanism not directly related to severity of the

inflammatory response. Evidence from human patients [13, 14] supports that gastric cancer

risk may be promoted by enteric microbiota colonizing the gastric epithelium as a sequela to

H. pylori-induced gastric atrophy and hypochlorhydria. Recent results from rodent models

reinforce the potential importance of non-H. pylori bacteria in accelerating gastric pathology

[15][16]. Transgenic INS-GAS mice, particularly males [17-19], develop hypergastrinemia,

gastric hyperplasia of the foveolar and glandular epithelium, loss of chief and parietal cells

(hypochlorhydric atrophy) and severe dysplasia of gastric glands that can invade through the

muscularis mucosa of the corpus. Lesion progression was delayed by months in gnotobiotic

INS-GAS mice monoassociated with H. pylori compared to INS-GAS mice that commonly

develop intraepithelial neoplasia [20]when colonized with H. pylori and complex (normal)

enteric microbiota [15]. Additional experiments demonstrated that gnotobiotic INS-GAS

colonized with H. pylori and a restricted, select set of 3 members of Altered Schaedler Flora

(ASF 356 Clostridium sp., ASF 361 Lactobacillus sp., ASF 519 Bacteroides sp.), developed

gastritis and premalignant gastric lesions equivalent to H. pylori infected INS-GAS mice

with complex microflora (e.g. specific pathogen free mice)[16]. These results support prior

findings that chronic oral administration of proton pump inhibitors to achieve gastric

hypochlorhydria in H. pylori-infected gerbils promoted the progression of atrophic corpus

gastritis to adenocarcinoma [21, 22].
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These studies in rodents and observations that gastric cancer patients were found to be

colonized with bacteria from 5 other bacterial phyla in addition to H. pylori [23], suggest

colonization efficiency, rather than pathogenic potential, of specific lower bowel microflora

is an important contributor to gastric cancer development. Because H. polygyrus prevented

gastric atrophy in C57BL/6 mice co-infected with H. felis [11] and promoted levels of

probiotic-type bacteria in the proximal intestine of mice [24], we assessed potential changes

in gastric bacterial colonization in H. pylori and H. polygyrus co-infected male INS-GAS

mice at 5 months post H. pylori infection when gastric atrophy in this model is well

established.

2. Materials and methods

2.1. Infection models

2.1.1. Mouse model—Male, transgenic INS-GAS mice on a FVB/N background (Tg

(Ins1-GAS) 1Sbr) [25] were produced by in-house breeding and maintained specific

pathogen-free (SPF) of exogenous murine viruses, pathogenic bacteria (including

Helicobacter) and ecto- and endoparasites. Mice were housed in an Association for

Assessment and Accreditation of Laboratory Animal Care-accredited facility under

environmental conditions of a 12:12 light / dark cycle, temperature maintenance at 20 ± 1°C

and relative humidity range of 30-70%. Mice were group housed in microisolator caging on

hardwood bedding and provided reverse osmosis water and pelleted diet (ProLab 2000,

Purina Mills, St. Louis, MO) ad libitum. Animal use was approved by the MIT Committee

on Animal Care.

2.1.2. Experimental infection with Heligmosomoides polygyrus—H. polygyrus

were cultivated and prepared for dosing as previously described [26]. At 6 weeks of age, 23

male INS-GAS mice were orally dosed with 200 third stage (L3) H. polygyrus larvae in 200

μl. At 9 and 14 days post infection, mice were treated orally with 172 mg/kg of pyrantel

pamoate (Apothecary Products. Minneapolis, MN) in 200 μl to eliminate adult parasites

from the intestine. Mice were re-infected with 200 L3 larvae 1 week and 4 months following

the first pyrantel pamoate dosing to mimic chronic exposure to helminths. Persistent

infection with H. polygyrus was confirmed by elevated serum IgE levels at 2, 3 and 4

months post infection (mpi), observation of adult worms at necropsy, and histologic

evidence of multiple life stages in the duodenum.

2.1.3. Experimental infection with Helicobacter pylori—At 10 weeks of age, 10 of

the H. polygyrus infected and 13 naïve male, INS-GAS mice were orally gavaged with 1 ×

108 colony forming units of H. pylori SS1 in 200 μl every other day for a total of 3 doses.

Controls included 9 non-dosed, uninfected mice and 13 mice infected with H. polygyrus

alone. Persistent infection with H. pylori was confirmed by quantitative PCR (qPCR) of

gastric tissues [8].

2.2. Necropsy

Mice were euthanized with carbon dioxide and necropsied at 5 mpi with H. pylori except for

3 H. pylori and H. polygyrus co-infected mice that were evaluated at 4 mpi to evaluate
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progression of pathology and infection with H. pylori and H. polygyrus. The stomach was

incised along the greater curvature and individual linear gastric strips from lesser curvature

of the gastric cardia into the proximal duodenum were collected. These were either fixed in

formalin or were flash-frozen in liquid nitrogen and subsequently stored at -80°C pending

RNA and DNA extraction to quantify mRNA expression and colonization levels of H. pylori

and 8 ASF using qPCR. Tissues fixed in 10% buffered formalin were paraffin embedded

and 5 μm sections were processed routinely for histology and immunohistochemistry.

2.2.1. Lesion scoring—Tissue sections were scored for gastric lesions using previously

published criteria [6] by a board certified veterinary pathologist (S.M.) blinded to sample

identity. Briefly, pathology subfeatures of the gastric corpus, including inflammation (extent

of inflammatory infiltrates into the mucosa and submucosa), epithelial defects (degeneration

of the surface epithelium and underlying glands), mucous metaplasia, hyalinosis, epithelial

hyperplasia (elongation of gastric glands lined by foveolar and glandular lining cells),

pseudopyloric metaplasia (abnormal mucosa resembling pyloric antrum in glandular

phenotype and mucin expression, analogous to findings in H. pylori infected humans),

oxyntic gland atrophy (loss of chief and parietal cells) and dysplasia (based on a

combination of the extent of glandular architectural distortion and degree of cellular atypia)

were evaluated and graded on an ascending scale from 0 to 4. For all categories, an

increment of 0.5 was used in some instances when the degree of histological changes was

considered to fall between two grades represented by ordinal values. Dysplastic / neoplastic

changes were graded as low (score= 1), moderate (score= 2), high (score=3, non-invasive

high grade dysplasia, carcinoma in situ), or invasive neoplasms (score of 3.5 or 4). A score

of 3.5 represented intramucosal carcinoma with invasion into lamina propria or muscularis

mucosa and a score of 4 was assigned to submucosal carcinoma or beyond. Both invasive

and non-invasive high grade dysplasia/gastrointraepithelial neoplasia- type (GIN) lesions

were considered to be gastric cancers similar to that described in human literature [27, 28].

Differentiation of truly invasive glands from glandular herniation or pseudoinvasion into the

submucosa in the murine gastrointestinal tract can be problematic and the guidelines

established by Boivin et. al. [20] were specifically followed in this study for histological

evaluation of the stomach. Excluding mucous metaplasia and hyalinosis which can occur

independent of H. pylori infections, the scores for all other sub-feature categories were

totaled to represent a gastric histopathologic activity index (GHAI) with a maximum

possible score of 24 [6].

2.2.2. Immunohistochemistry—Immunohistochemistry was performed to phenotype

Ki67+ and FoxP3+ cells in the gastric mucosa of 5 to 7 INS-GAS mice from each infection

or control group at 5 mpi using previously described methods for antigen retrieval, blocking

steps and counterstaining [29]. Formalin-fixed gastric sections were stained for the

regulatory T cell marker FoxP3 using the FJK-16S antibody (eBiosciences, San Diego, CA)

and nuclear cell proliferation marker Ki67 using mouse anti-human antibody (#550609 BD

Biosciences), with color development using the #K3954 Dako Art kit (Dako, Carpinteria,

CA) per instructions. For assessment of epithelial cell proliferation lining the gastric glands,

Ki67 labeling indices were calculated (using a 40× microscope objective lens) by the

number of positively stained nuclei per distinct linear gastric gland averaged over 10 well-
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oriented glands in the gastric corpus. At the same magnification, cells expressing FoxP3+ in

the gastric corpus were counted and averaged over 10 representative fields of the gastric

mucosa and submucosa. Nuclear labeling was considered specific for regulatory T cells,

whereas granular cytoplasmic staining of oxyntic cells, if any, was considered as nonspecific

background staining.

2.3. mRNA expression levels of cytokines and iNOS

mRNA expression levels in gastric sections were measured by qPCR as previously

described [15]. Total RNA from flash-frozen gastric tissue was extracted with Trizol reagent

(Invitrogen, Carlsbad, CA) and cDNA synthesized from 5 μg of total RNA using the High

Capacity cDNA Archive kit (Applied Biosystems). mRNA levels for IL-10, TGFβ, IL-17A,

IL-17F, IL-1β, TNFα, IFNγ, iNOS, and GAPDH (endogenous control) were quantified

using TaqMan gene expression assays (Applied Biosystems, Foster City, CA) in the 7500

FAST Sequence Detection System. mRNA levels were normalized to GAPDH expression

with baseline comparisons made to uninfected mice using the ΔΔCT method (User Bulletin

#2, Applied Biosystems) as previously described [15].

2.4 Colonization levels of H. pylori and Altered Schaedler Flora

DNA was extracted from the stomach using the High Pure PCR Template Preparation Kit

(Roche Molecular Biochemicals, Indianapolis, IN). As previously published, samples were

probed with 18S rRNA-based primers for quantifying mouse DNA (Applied Biosystems)

and with H. pylori DNA-specific primers and probe based on the H. pylori ureB gene [8].

ASF copy numbers were measured using SyBr-based qPCR using the 7500 Fast Sequence

Detection System (Applied Biosystems) [30, 31]. Plasmid DNA containing the 16S rDNA

of each of the 8 ASF species was used to generate standard curves of six 10-fold dilutions,

ranging from 106 to 10 copies. Subsequently, the bacterial DNA quantity was converted into

copy number of each ASF genome based on the number of 16S rRNA gene copies. ASF

copy numbers were then normalized to μg of mouse chromosomal DNA.

2.5 ELISA for serum IgE response to H. polygyrus

Five randomly selected mice from each experimental group were bled at 2, 3 and 4 months

post H. polygyrus dosing to monitor serum IgE levels in response to helminth infection as

previously described [32]. The ELISA plates were coated with rat anti-mouse antibody to

IgE (BD Biosciences, Franklin Lakes NJ), incubated with diluted sera, and IgE detected

with biotin-conjugated rat anti-mouse IgE (BD Biosciences) and peroxidase-conjugated

streptavidin (Invitrogen). Optical density values developed with O-phenylenediamine at 492

nm were converted to ng/ml of IgE by comparison with a standard curve of purified IgE

(BD Biosciences) by linear regression analysis, and are expressed as the mean concentration

for each group of mice ± standard deviation.

2.6 Statistical analysis

Except for gastric lesion scores, all other data analyzed statistically were from mice

necropsied at a time point equivalent to 5 mpi with H. pylori. Gastric lesion scores were

combined from mice necropsied at both 4 and 5 mpi because scores were statistically
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equivalent. Data analysis for GHAI, subfeature lesion scores, Ki67 and FoxP3

immunohistochemistry were compared using the Mann-Whitney nonparametric test. The

Fishers exact test was used to evaluate the incidence and odds ratio of developing GIN.

Cytokine and iNOS mRNA expression levels and log-transformed qPCR colonization data

for H. pylori and ASF were evaluated using the Student t test. Statistical analysis was

performed using GraphPad Prism 5.0 (GraphPad Software, Inc., La Jolla, CA). Results were

considered significant at p<0.05.

3. Results

3.1. Heligmosomoides polygyrus infection caused persistent inflammatory responses

INS-GAS mice were infected with L3 stage H. polygyrus, treated with an anthelminthic and

orally redosed with larvae two additional times. Multiple life stages of H. polygyrus were

observed grossly at necropsy (adult worms) and in histologic sections of the duodenum

(degenerate larvae and adults) (not shown). The majority of H. polygyrus infected mice

developed duodenitis ranging from mild neutrophilic infiltration to severe mural-serosal,

pyogranulomatous lesions, consisting of neutrophilic and mononuclear inflammation in

response to degenerate and necrotic nematodes in the wall of the small intestine. As

additional evidence of chronic immune stimulation from H. polygyrus, the total mean ±

standard deviation of serum IgE levels in H. polygyrus infected mice were 166 ± 82 ng/ml,

179 ± 82 ng/ml in H. pylori and H. polygyrus coinfected mice, compared to significantly

lower levels in mice infected with H. pylori alone (19 ± 28 ng/ml) (p<0.002).

3.2. Co-infection with Heligmosomoides polygyrus reduced premalignant and malignant
gastric lesions in Helicobacter pylori infected INS-GAS mice

Control, uninfected INS-GAS mice or mice infected with H. polygyrus alone had similar

gastric histopathologic activity indices (median and range GHAI of 8 (6.5-9.5) for controls;

8.5 (6-10.5) for H. polygyrus alone) with low to moderate severity scores for subfeatures of

gastritis, epithelial defects, foveolar hyperplasia, glandular atrophy, pseudopyloric

metaplasia and dysplasia (Fig. 1A-F, 2A-H). In the absence of H. pylori infection, lesions

consisted mainly of foveolar hyperplasia (Fig. 1C, 2B) and early dysplasia (Fig. 1F, 2B) that

were attributable to hypergastrinemia as previously reported [15, 19].

Compared to controls, INS-GAS mice mono-infected with H. pylori developed gastritis that

was most severe in the corpus (Fig. 1A, 2C). H. pylori infected mice had higher GHAI

(median and range GHAI of 16 (14-18) compared to uninfected controls (8 (6.5-9.5);

p<0.0001) attributable to significantly greater inflammation, epithelial defects, hyperplasia,

atrophy, metaplasia and dysplasia (Fig. 2A-F) (p<0.0002). INS-GAS mice infected with H.

pylori had significant distortion of normal gastric architecture with cystic mucous metaplasia

of glands in the corpus (Fig. 2C-D), epithelial defects, hyperplasia, oxyntic atrophy,

pseudopyloric metaplasia and dysplasia, accompanied by edema and mild inflammatory

infiltrates in the submucosa (Fig. 2C-F). High grade dysplastic glands frequently contained

necrotic, apoptotic cellular debris (Fig. 2E) and in some instances exhibited budding nests of

invasive cells in the lamina propria consistent with the diagnosis of intramucosal carcinoma

(dysplasia score of 3.5). Occasionally, one or more dysplastic glandular units were seen
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either partially of fully extending vertically down into the submucosa. Close examination

confirmed the presence of a discernible peripheral muscularis mucosa and so these lesions

were considered as herniated glands or pseudoinvasion, a frequent finding in mouse GI

tracts which must be differentiated on the basis of true invasion [20] (Fig. 2F). Notably, 8 of

12 male INS-GAS mice infected with H. pylori alone developed non-invasive neoplasms

and 2 of 12 mice developed invasion of dysplastic glands into the lamina propria, fulfilling

the definition of intramucosal carcinomas (Fig. 2E).

Compared to mice mono-infected with H. pylori, INS-GAS mice co-infected with H. pylori

and H. polygyrus had similar degrees of inflammation, epithelial defects, hyperplasia and

pseudopyloric metaplasia (Fig. 2A-E). Immunolabeling for Ki67, a marker of epithelial cell

proliferation, supported lesion scoring of hematoxylin and eosin-stained sections that H.

pylori infection resulted in significant epithelial hyperplasia (p<0.004) that was not reduced

by H. polygyrus co-infection (Fig. 3A). Notably however, gastric atrophy (p<0.04) and

dysplasia (p<0.02) were reduced by H. polygyrus co-infection (Fig. 1D, 1F and 2H). Non-

invasive high grade dysplasia was evident in only 4 of 10 co-infected mice and none had

developed invasive neoplasms (intramucosal carcinoma or submucosal carcinoma) (Fig. 1F).

Although herniation of dysplastic glands was noted in mice infected with H. pylori and in

mice co-infected with H. polygyrus, the extent of herniation and degree of cytological atypia

were greater in the H. pylori infected mice. The odds ratio for developing GIN in mice

mono-infected with H. pylori was 11.7 (p<0.03: 95% CI 1.5-89.2) compared to mice co-

infected with H. pylori and H. polygyrus.

3.3. FoxP3+ cells were elevated in number in the gastric lamina propria of INS-GAS mice
co-infected with H. pylori and H. polygyrus

Immunohistochemistry labeling for the regulatory T cell marker FoxP3 demonstrated that

the gastric tissues from H. pylori infected INS-GAS mice contained significantly elevated

numbers of FoxP3+ regulatory T cells compared to uninfected controls or mice infected with

H. polygyrus alone (p<0.01)(Fig. 6B). Gastric tissues from INS-GAS mice co-infected with

H. pylori and H. polygyrus contained statistically higher numbers of FoxP3+ regulatory T

cells than mice mono-infected with H. pylori (p<0.03).

3.4. Cytokine and iNOS mRNA responses to H. pylori were unaffected by co-infection with
H. polygyrus

Mice mono-infected with H. pylori developed robust (15 to 100+ fold) mRNA expression

levels in the gastric corpus for proinflammatory IFN-γ, IL-17F, IL-17A, TNFα, and iNOS

(all p<0.0001)(Table 1). Mice co-infected with H. polygyrus and H. pylori developed

similar, elevated levels of proinflammatory gene expression that were equivalent to levels

observed in mice infected with H. pylori alone. Proinflammatory IL-1β and anti-

inflammatory TGFβ and IL-10 mRNA expression levels were statistically elevated by H.

pylori and H. pylori / H. polygyrus co-infection (p<0.05) but were orders of magnitude

lower than the expression levels of the pro-inflammatory genes. IL-13 expression was also

assessed but mRNA levels were at background levels. The duodenitis noted in H. polygyrus

challenged mice did not alter expression of proinflammatory genes in the corpus as mRNA
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levels were similar between mice infected with H. polygyrus alone and uninfected control

mice.

By qPCR assay, gastric colonization of H. pylori was not detected in 2 of 12 mice dosed

with H. pylori alone (Fig. 4) which is attributable to gastrin-associated gastritis that is

further promoted by H. pylori infection. Gastric lesions in these mice were similar to the

other mice mono-infected with H. pylori: therefore, data on these mice were included in the

5 mpi analysis. Gastric colonization levels of H. pylori were similar in the remaining H.

pylori infected mice irrespective of co-infection with H. polygyrus. Seven of 8 ASF species

were detected by qPCR in gastric samples; the extremely oxygen-sensitive ASF 492, which

clusters taxonomically with Eubacterium plexicaudatum [33] was undetectable in all

samples. H. pylori infection promoted gastric colonization levels of 4 of the 7 ASF species

(ASF 356 Clostridium sp., ASF 361 Lactobacillus sp., ASF 457 Mucispirillum schaedleri,

ASF 500 Clostridium sp.) by approximately 1 log (p<0.02), whereas H. polygyrus co-

infection prevented increased gastric colonization with 3 of these same ASF (ASF 356, ASF

457 and ASF 500) (p<0.05). Colonization levels observed in H. pylori and H. polygyrus co-

infected mice were comparable to uninfected control mice (Fig. 4). Colonization of ASF 360

Lactobacillus sp., ASF 502 Clostridium sp. and ASF 519 Bacteroides sp. were at levels

comparable to the other detectable ASF but their colonization levels were unaffected by

either H. pylori or H. polygyrus infection.

4. Discussion

As previously reported, H. pylori infection in male INS-GAS mice caused gastritis, foveolar

hyperplasia, gastric atrophy, pseudopyloric metaplasia and progression of chronic gastritis to

invasive gastrointraepithelial neoplasia (GIN) [17, 19]. GIN was first described for lower

bowel carcinomas in rodents [20] and has histologic features compatible with gastric

adenocarcinoma in humans [34]. The increase in gastric colonization with ASF in H. pylori

infected INS-GAS mice supports the hypothesis that lower bowel microflora may contribute

to gastric carcinogenesis in humans. H. polygyrus co-infection modulated both of these

features; gastric atrophy, dysplasia and the incidence of invasive GIN were reduced and

colonization resistance of the stomach to ASF was maintained.

Dysplasia leads to non-invasive and invasive neoplasms. GIN is equivalent to high grade

dysplasia. The results from the current study demonstrate that H. polygyrus infection

reduced gastric atrophy and dysplasia, and in particular, reduced the extent of dysplastic

glands invading through the muscularis mucosa into the lamina propria. The odds ratio for

developing GIN in mice infected with H. pylori alone was significantly elevated compared

to mice co-infected with H. pylori and H. polygyrus. Consistent with prior data on helminth

and Helicobacter co-infection in mice [11] and in gerbils [12], H. polygyrus co-infection did

not reduce gastric inflammation. Thus, in three rodent models, helminthiasis reduced

Helicobacter-associated gastric atrophy without reduction in gastric inflammation per se,

supporting the hypothesis that H. pylori-associated premalignant gastric lesions are

prevented, at least in part, by an alternative mechanism not directly related to severity of

gastric inflammation.
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Although ASF have historically been used to colonize germfree mice with a defined flora to

establish normal gut physiology and to establish commercially-reared mice under SPF

conditions, phylogenetic classification of these 8 anaerobes based on 16SrRNA taxonomy

[33] and spatial distribution within the mouse gastrointestinal tract [30] are relatively recent.

Little is known about the long-term impact on gut physiology or pathogenic potential of the

8 member species of ASF. Acknowledging that gastric colonization with various other

bacterial species may have increased or decreased secondary to H. pylori or H. polygyrus

infection, ASF were used in this study to monitor microbial population shifts in gastric

bacteria as we have previously demonstrated altered population dynamics in the lower

bowel after infection with H. trogontum in C57BL/6 IL-10-/- mice [35] and in outbred Swiss

mice infected with H. hepaticus [31]. The increase in gastric colonization with ASF in H.

pylori infected INS-GAS mice supports the hypothesis that lower bowel microflora may

contribute to gastric carcinogenesis in humans. The potential role for enteric bacteria not

typically associated with gastric disease to promote H. pylori-associated gastritis and gastric

cancer is also supported by our previous observations. Although H. pylori as a mono-

infection caused gastritis in gnotobiotic INS-GAS mice, lesions were less severe in

comparison to H. pylori infected SPF INS-GAS mice with a complex enteric microbiota

under otherwise similar experimental conditions [15]. We also recently demonstrated that

gnotobiotic INS-GAS mice colonized with just 3 members of ASF replicated the promotion

of neoplastic lesions by diverse intestinal flora in the H. pylori INS-GAS mouse model [16].

In this current study, 4 ASF species colonized the H. pylori infected stomach at significantly

higher levels and suggests that parietal cell loss from chronic inflammation and subsequent

increase in gastric pH enables a variety of enteric bacteria to colonize the hypochlorhydric

stomach, as shown in H. pylori infected INS-GAS mice in which members of the

Bacteroidetes phyla were reduced and Firmicutes phyla were increased in the stomach

compared to uninfected INS-GAS mice [15]. Similarly, gastric bacterial overgrowth occurs

in mice with genetic or chemically induced hypochlorhydria [36] and chronic dosing of

proton pump inhibitors that increase gastric pH in H. pylori infected gerbils promoted the

progression of atrophic corpus gastritis to adenocarcinoma [21, 22]. Opportunistic bacteria

could further drive inflammatory responses in the stomach, accelerating atrophy and

dysplasia by means of mutagenic properties or virulence factors that otherwise impair DNA

repair systems and thus contribute to carcinogenesis [37, 38]. Indeed, human studies

profiling the gastric microbiota in H. pylori infected and uninfected subjects have

demonstrated a wide diversity of bacterial phylotypes in the stomach [39, 40]. A small

number of gastric cancer patients were found to be colonized with low numbers of H. pylori

and significantly, bacteria from 5 other bacterial phyla [23]. The significance of these initial

observations warrants further epidemiologic studies in humans and in animal models such as

INS-GAS mice where genetic and environmental variability inherent in human subjects can

be minimized.

Notably ASF 361 (Lactobacillus sp.) colonized the stomach of H. pylori infected and H.

polygyrus co-infected mice at higher levels than control mice. Others have shown that H.

polygyrus infection in C57BL/6 mice increased the abundance of Lactobacillaceae in the

ileum [24]. In combination with hypochlorhydria known to develop in INS-GAS mice [19,
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25], increased ASF 361 colonization in the stomach may in part be attributable to the

relative oxygen resistance of ASF 361 compared to the other obligate anaerobic ASF [30].

Gastric colonization with 3 of 4 ASF were not increased in helminth co-infected mice,

coincident with elevated numbers of regulatory T cells and less gastric atrophy and

dysplasia. These findings evoke a putative mechanism involving helminth-mediated,

regulatory T cell preservation of parietal cell mass and maintenance of colonization

resistance of the acidic stomach to lower bowel microflora.

The natural niche for H. polygyrus is the duodenum of the mouse, but its impact on host

physiology and immune responses are systemic. H. polygyrus infection increases

permeability of the colonic mucosal barrier [41], induces regulatory T cells [42] and the

helminth is known to be immunosuppressive in a variety of inflammation models [11, 32,

43-45] that clearly point to a mechanism involving immune regulation [46]. H. polygyrus

stimulates innate [44, 47] as well as cell-mediated and humoral immune responses [41]. The

H. polygyrus re-infection protocol used in this study is designed to maintain a Th2-biased

immune response but also models chronic exposure of children to helminths who have

received periodic anthelminthic therapy. This reinfection with H. polygyrus may also have

contributed to duodenitis in response to degenerate H. polygyrus larvae and adult worms. As

this lesion was observed in H. polygyrus infected mice irrespective of H. pylori co-infection

or severity of gastritis, the significance may be limited except the same lesion may develop

in children living in low socioeconomic conditions where parasitism constitutes a significant

morbidity in addition to endemic H. pylori infection. Alternatively, INS-GAS mice infected

with H. pylori or co-infected with H. polygyrus developed similar, but very robust IL-17,

IFNγ, TNFα and iNOS responses in gastric tissues with low expression of anti-

inflammatory TGFβ and IL-10 responses and minimal IL-13 expression, suggesting

concurrent duodenitis may have muted the anticipated TH2-like cytokine response to

helminths, particularly given the length of co-infection in the current experiment.

The robust Th2-associated inflammatory response and the differentiation of IL-10

producing, FoxP3+ regulatory T cells [42] and regulatory dendritic cells [48] that result from

acute H. polygyrus infection are evolutionarily important for expulsion of the parasite from

the host or alternatively, for the parasite to establish persistent infection. Compared to low

numbers of cells expressing the regulatory T cell marker FoxP3 in uninfected controls and

mice infected with H. polygyrus alone, FoxP3+ cell numbers were increased in the gastric

mucosa and submucosa of H. pylori infected INS-GAS mice and were highest in H. pylori

and H. polygyrus co-infected mice. This suggests that H. polygyrus promoted regulatory T

cell development in lymph nodes which were then recruited to the inflamed stomach and

appear to have preserved parietal cell function and maintained acidic gastric pH. In

autoimmune mice [49], regulatory T cells suppressed production of inflammatory cytokines

in the stomach and prevented parietal cell loss through release of chemokines which

regulated effector T cell trafficking into the stomach.

These results support that H. pylori-associated gastric atrophy allow opportunistic

colonization of the achlorhydric human stomach with lower bowel microflora and that

ongoing gastritis and progression of premalignant lesions may occur despite clearance of H.

pylori infection when gastric atrophy is irreversible [22]. Our previous studies illustrated the
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importance of enteric colonization in promoting H. pylori-associated gastric cancer in

several INS-GAS mouse models [15][16]. In addition, we reported experimental evidence

for this concept when INS-GAS mice underwent antibiotic eradication of H. pylori, and

likely other microbiota that may have colonized the atrophic gastric epithelium, had reduced

gastric cancer risk in a time-dependent manner [27, 50]. Rodent models of Helicobacter and

helminth co-infection have reproduced epidemiologic observations of lower life-time risk

for gastric adenocarcinoma in H. pylori infected humans living under heavy environmental

exposure to parasites, particularly in young children who commonly acquire H. pylori and

helminths concurrently [9]. Identifying how helminths impact bacterial colonization of the

H. pylori infected stomach through immune modulation or other mechanisms could lead to

new treatment strategies to reduce malignant sequelae from chronic gastritis in humans.
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Fig. 1.
Median scores for gastric inflammation, epithelial defects, epithelial (foveolar/glandular

hyperplasia), gastric atrophy, pseudopyloric metaplasia and dysplasia. At 5 months post

infection (mpi) with H. pylori (Hp)(n=12), median scores for all features were significantly

higher than controls (n=9) or mice infected with H. polygyrus (Hpoly) (n=13) alone.

Compared to Hp infected mice, gastric atrophy and dysplasia were significantly less severe

in H. pylori and H. polygyrus co-infected mice (HpHpoly) and the incidence of GIN was

lower (n=10).
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Fig. 2.
A-H. (A) Representative hematoxylin and eosin stained image of the gastric corpus from a

control, uninfected male INS-GAS mouse necropsied at a time equivalent to 5 months post

infection (mpi) for H. pylori. Bar = 400 μM. (B) Gastric corpus from a male INS-GAS

mouse infected with H. polygyrus 6 mpi, equivalent to 5 mpi for H. pylori. The extent of

epithelial hyperplasia and oxyntic loss was low to moderate with sparse inflammation and

minimal dysplasia and is similar to the uninfected control male INS-GAS mice in Panel A.

Bar = 400 μM. (C-E) Representative low and high power magnification of hematoxylin and

eosin stained images of the gastric corpus from a male INS-GAS mouse 5 mpi with H.

pylori. In the low magnification image (C) (Bar = 400 μM), there is severe diffuse

pathomorphological alterations in the corpus characterized by significant distortion of

normal gastric glandular columnar architecture with numerous cystic, dilated glands,
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prominent foveolar and glandular epithelial hyperplasia, metaplasia, oxyntic loss or atrophy,

with mild to moderate inflammation in the mucosa and submucosa. This lesion has high

grade dysplasia with rare invasive glands in the lamina propria consistent with

gastrointestinal intramucosal carcinoma as well as partially herniated glands (lined by

peripheral muscularis mucosa) in the submucosa. A high magnification focus of the

proximal corpus as shown in (D) (Bar = 75 μM) revealing loss of glandular columnar

orientation with arborizing, dysplastic and ectatic atypical glands containing intraluminal

cellular ghosts against a background of distinct stromal inflammation. (E) is a higher

magnification image (Bar = 40 μM) showing dysplastic glands with cellular atypia, necrosis

and apoptosis of cells that are sloughing into the lumen, loss of basal lining and invasion of

dysplastic epithelial cells into the lamina propria, thus fulfilling the histological criteria for

gastrointestinal intramucosal carcinoma. A high magnification image (F) (Bar = 75 μM) of

the proximal corpus from a male INS-GAS mouse 5 mpi with H. pylori showing herniation

of a group of dysplastic gastric glands through the muscularis mucosa into the submucosa in

a region of submucosal inflammation. (G) Proximal corpus from a male INS-GAS mouse 5

mpi with H. pylori and H. polygyrus at low magnification (Bar = 400 μM). Inflammation

and hyperplasia remain significant but there is a slight reduction in the overall severity of

epithelial distortion/defects, glandular metaplasia, oxyntic atrophy and extent of dysplasia as

compared to the age-matched H. pylori monoinfected INS-GAS as shown in (C). (H) Higher

magnification image from (G) depicting an area of glandular metaplasia, dysplastic and

ectatic glands with intraluminal cellular debris but absence of lamina propria invasion (Bar =

75 μM).
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Fig. 3.
The gastric corpus from 5 to 7 mice per group were labeled by immunohistochemistry to

enumerate Ki67 (A) and FoxP3 positive cells (B). Compared to baseline values from

uninfected control INS-GAS mice, (A) the mean (± St. Dev.) Ki67 labeling index, reflecting

epithelial (foveolar/glandular) hyperplasia, was significantly higher in mice infected with H.

pylori (Hp). The number of Ki67+ cells was similarly high in mice co-infected with H.

pylori and H. polygyrus (HpHpoly). (B). the mean (± St. Dev.) FoxP3 labeling index,

reflecting regulatory T cells, was significantly higher in mice infected with H. pylori (Hp).
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Fig. 4.
Geometric means for gastric colonization of H. pylori and ASF by quantitative PCR (qPCR).

H. polygyrus co-infection (HpHpoly) had minimal impact on H. pylori colonization. Gastric

colonization levels of 4 ASF were increased in H. pylori infected mice (Hp) and helminth

co-infection prevented increased colonization of 3 of these ASF.
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Table 1

Quantitative PCR for mRNA expression in gastric tissues at 5 months post H. pylori infection: Ranked by

fold-change in response to H. pylori infection (Mean ± StDev.).

Infection Status

Control H. pylori H. pylori & H. polygyrus H. polygyrus

IL-17F 0 ± 2.2 112 ± 1.5* 87 ± 1.4* -0.6 ± 1.7

IFNγ 0 ± 2.0 105 ± 1.8* 126 ± 2.1* -0.3 ± 1.7

IL-17A 0 ± 1.3 28 ± 1.4* 29 ± 1.3* 0.3 ± 1.3

TNFα 0 ± 1.3 18 ± 1.6* 16 ± 0.2* 0.01 ± 1.4

iNOS 0 ± 1.3 15 ± 2.2* 15 ± 1.8* -0.1 ± 1.5

TGFβ 0 ± 1.3 3.3 ± 1.2** 3.6 ± 1.1** 0.1 ± 1.4

IL-1β 0 ± 1.5 1.4 ± 1.5** 1.1 ± 1.4** -0.2 ± 1.4

IL-10 0 ± 1.2 1.2 ± 1.3** 1.1 ± 1.2** 0.01 ± 1.3

IL-13 0 ± 2.1 -0.3 ± 0.3 -0.1 ± 1.6 0.6 ± 0.1

*
p<0.0001;

**
p<0.05 compared to controls.
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