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We propose an electromagnetically tunable thermal diode based on a two-phase multiferroic composite.
Analytical and full numerical calculations for a prototypical heterojunction composed of iron on barium titanate
in the tetragonal phase demonstrate a strong heat rectification effect that can be controlled externally by a
moderate electric field. This finding is important for thermally based information processing and sensing and can
also be integrated in (spin) electronic circuits for heat management and recycling.
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I. INTRODUCTION

A diode, i.e., a device that controls the electrical current
flow direction, is an integral part of everyday electronics.
The sonic counterpart governs the propagation of mechanical
vibrations and has wide-ranging applications in acoustics,
medical sensing, and heat management. Acoustic (sound
waves) diodes were recently demonstrated [1,2]. Thermal
diodes are more challenging, however. Even though heat
and sound are of phononic nature, the frequency range of
the latter is typically in the range of kilohertz to gigahertz
(hypersound). Heat, on the other hand, is mediated by a broad
spectrum of terahertz vibrations. Controlling heat diodes is
therefore more delicate, but on the plus side the relevant scale
for material structuring is the nanometer, therefore allowing
us, as shown below, to exploit the marked achievements
of nanotechnology in tuning the material compositions and
the associated electric, magnetic, and optical properties.
Applications are diverse. For instance, in spintronics it was
shown that a thermal gradient may generate a direction-
dependent spin current that can be utilized for information
handling [3]. Such thermal magnetic diodes would add there-
fore an essential element towards thermally based spintronic
circuits.

Generally, substantial research has been devoted in recent
years to phononic-based diodes [4–8]. Our aim here is to
add a different facet, namely, the external control of thermal
diodes via electric and/or magnetic fields. In view of an
experimental implementation we consider a well-tested system
composed of a two-phase multiferroic (MF), i.e., a ferroelectric
(FE) structure interfacially coupled to a ferromagnet (FM).
The interfacial coupling changes the transmission and con-
version of magnetic excitations into ferroelectric ones. The
thermal energy in the proposed multiferroic thermal diode
is carried by elementary excitations of electric polarization
and magnetization (rather than by vibrational excitation in a
conventional thermal diode), both of which are susceptible
to external electric or magnetic fields. As shown below,
the performance of the thermal diode is then controllable

electromagnetically. Multiferroics, in general, are intensively
investigated in view of a variety of applications in electron-
ics and sensing [9–18]. Thus, the current study augments
these applications with the possibility of a controlled heat
recycling.

II. MULTIFERROIC THERMAL DIODE

The physics of a thermal diode is a resonance phenomenon
[8] relying on the overlapping of the temperature-dependent
power spectra of thermal excitations (mediated by polarization,
magnetization, and other types of excitations) of the two
different diode segments. In addition, the dependence of
frequency on the oscillation amplitude, i.e., the nonlinear
nature of excitations, is a key factor. A perfect thermal
conductance hints at power spectra overlapping. Our aim here
is to demonstrate that thermal bias applied on the edges of a
MF thermal diode generates a heat flux that can be rectified
and controlled by temperature, electric field, and interface ME
coupling. To this end, we assume that the FM part of the
thermal diode is a normal ferromagnetic metal (e.g., Fe). As
a prototypical FE we employ BaTiO3. For this experimentally
realized composite an interfacial magnetoelectric coupling
[14,19,20] was demonstrated. The ferroelectric dynamics
of BaTiO3 is captured by the Ginzburg-Landau-Devonshire
(GLD) potential [21] valid at temperatures ∼280−400 K
(tetragonal phase) in which case the polarization switches
bidirectionally. In the spirit of a coarse-grained approach, the
FE order parameter is discretized into N cells (also called
sites), each with a size of 1 nm [22]. The coarse-grained
polarization at site n is referred by pn. In the tetragonal phase,
realized also at room temperature, we have one component
(Ising-type) polarization vector �pn = (0,0,pz

n), n = 1, . . . ,N

(here n is the site number) entering the ferroelectric free-
energy functional [21]. In the context of a thermal diode
an important fact is that, by applying an external electric
field, the temperature range of the tetragonal phase can be
extended [23,24]. Taking the general cubic paraelectric phase
as a reference, we performed numerical calculations which
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FIG. 1. (Color online) Full simulations of the BaTiO3 phase
diagram based on the eight-order temperature-dependent potential
[23].

turned out to be in line with the experimentally determined
phase diagram [23]. The result of our calculations is shown
in Fig. 1. As we see by applying an electric field with an
amplitude E = 100 MV/m, the lower limit of the tetragonal
phase is reduced from T = 280 K to T = 200 K, while the
upper limit of the tetragonal phase exceeds T = 500 K.

For FM we employ the well-established classical Heisen-
berg model to describe transversal excitations of the coupled
(coarse-grained) magnetic moment �Mn at site n. Experiments
done for different materials [25] show the dominant role of
magnons for the thermal heat conductance at relatively high
temperatures T > 20 K. The relevance of magnons to thermal
heat conductance was also confirmed by the spin Seebeck
effect [26]. The multiferroic interaction between the interfacial
FE cell (with pN ) and the adjacent FM cell (with Mz

N+1) is de-
scribed by the PT -invariant term VME,m = −gm(pNMz

N+1)m,
the form and the origin of which we discussed at length
recently and contrasted with experimental findings [27–34].
Here we account for the linear (VME,1) and quadratic (VME,2)
terms (for low-energy excitations, higher-order terms are less
relevant to the effects studied here). gm is the magnetoelectric
coupling constant. The total Hamiltonian of the composite
reads H = Hp + Hs + VME, where Hp = ∑N

n=1[ 1
2 ( dpn

dt
)2 −

αEF

2 p2
n + βEF

4 p4
n + 1

2 (pn+1 − pn)2 − Epn] is the FE Hamil-

tonian and HS = ∑M
k=N+1[−J �Mk

�Mk+1 − D(Mz
k )2 − BMz

k ]
is the FM Hamiltonian. Unless otherwise stated, we use
dimensionless units (d.u.). For values of all parameters
in conventional units as used experimentally, we refer to
the Appendix. The effect of the applied thermal bias can
be described by a stochastic field added to the effective
electric field in the time-dependent GLD equation [35].
The microscopic mechanism for the emergence of noise
in FE is based on phonons. Thermally activated phonons
lead to electric dipole vibrations that can be captured by
a random electric field. Experimentally, thermally activated
polarization switches at much lower field strengths than
predicted by GLD phenomenology [36] (without including
noise). The equations of motion for the polarization pn

read [34]

dpn

dt
= qn,

dqn

dt
= αFEpn − βFEp3

n − (2pn − pn+1 − pn−1) + E

+ g1M
z
1δnN + 2g2pn

(
Mz

1

)2
δnN − γnqnδ1n

+ δ1nξn, n = 1, . . . ,N. (1)

Here αFE, βFE are the kinetic parameters of the GLD potential,
E is the amplitude of the external electric field, g1M

z
1δnN +

2g2pn(Mz
1)2

δnN is the contribution from the ME coupling, and
the last two terms in (1) describe the influence of the thermal
bias applied on the edges of the FE chain. The correlation
function of the random noise ξn is related to the kinetic constant
γn and the thermal energy kBT via the Einstein relation

〈ξm(t)ξm(t ′)〉 = 2γmTmδ(t − t ′), m = 1, . . . ,N. (2)

The magnetization dynamics of the FM part is governed
by a set of coupled polarization-dependent LLG equations as
follows:

d �Mk

dt
= − 1

1 + α2
k

�Mk × ( �Beff
k + αk

�Mk × �Beff
k

)
. (3)

Here αk = αδkM and �Beff
k are the total effective (electric

polarization-dependent) magnetic field acting on the kth
magnetic moment k ∈ [N + 1,M],

�Beff
k =�izB + J ( �Mk−1 + �Mk+1) + �iz2DMz

k

+ �izg1pNδk N+1 + �iz2g2p
2
NMz

kδk N+1 + δkM �ηk. (4)

�iz is a unit vector along the magnetization direction of the
undistorted FM which we choose as the z direction. The
effective magnetic field [Eq. (4)] contains a deterministic
contribution from the external magnetic field �izB and the
contributions from exchange J ( �Mk−1 + �Mk+1) and magnetic
anisotropy �iz2DMz

k . Due to its interfacial nature the magne-
toelectric coupling �izg1pNδk N+1 + �iz2g2p

2
NMz

kδk N+1 acts on
only the interfacial FM and FE cells. The random magnetic
field �ηk enters the dynamic of only the edge cells (thermal bias
is applied at the end of the FM chain), while the heat prop-
agation through the structure is evaluated self-consistently.
The random magnetic field �ηk is quantified via the correlation
function

〈
ηi

k(t)ηj

k (t ′)
〉 = 2αkTkδij δ(t − t ′). (5)

Here i and j define the Cartesian components of the random
magnetic field, k numbers the cell, and Tk is the cell-dependent
local temperature. αk is the dimensionless Gilbert damping
constant. Values of the FM and FE parameters used in the
calculations are given in Table I in the Appendix. Following the
continuity equation for the local energy and the equipartition
theorem, the heat current and the temperature profile can be
evaluated self-consistently [8]. In particular, the expression for
the heat current in the FE part reads JH

k = −〈ṗk(pk+1 − pk)〉.
The time derivative of the polarization ṗk plays the role
of a canonical momentum. In the FE part the local (site-
dependent) temperature follows from its relation to the average
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TABLE I. Parameters of an unstrained bulk BaTiO3 single crystal
[30,46] and bulk bcc Fe [31].

Parameter SI units Dimensional unit (d.u.)

Bulk BaTiO3 single crystal

P0 0.265 C/m2 pn = Pn/P0

α1 2.770 × 107 V m/C αFE = α1
κ

≈ 0.213

α2 1.7 × 108 Vm5/C3 βFE = α2P 2
0

κ
≈ 0.0918

γν 2.5 × 10−5 V m s/C γm = γνω0
κ

≈ 0.192
aFE 1.02 × 10−9 m
κ 1.3 × 108 V m/C 1
E parameter (V/m) E → 1

κP0
E ≈ 3.4 × 107E

T parameter (K) T → kB

κP 2
0 a3

FE
T ≈ 1.4 × 10−3T

J joules/s J → 1
κP 2

0 ω0a3
FE

J ≈ 108J

Bulk bcc Fe

MS 1.71 × 106 A/m �sk = �Mk/MS = (�Sk/S)
γ 1.76 × 1011 (T s)−1

aFM 1.0 × 10−9 m
μS = MSa

3
FM 1.71 × 10−21 J/T

αFM 1.0

K1 2.0 × 106 J/m3 D = γ a3
FMK1

ω0μS
= 0.206

A 2.1 × 10−11 J/m J = γ aFMA

ω0μS
= 2.16

B parameter (T) B → γ

ω0
B ≈ 0.17B

T parameter (K) T → kBγ

ω0μS
T ≈ 1.4 × 10−3T

J joules/s J → γ

ω2
0μS

J ≈ 108J

local kinetic energy [8], which in our scaled units implies

Tk = ( dpk

dt
)
2
. We note that here average means the long-time

average, which in numerical simulations is implemented as
the ensemble average. We derive the expression for the local
heat current in the FM part by using the Heisenberg equation
of motion ∂hk,k+1

∂t
= i[HS,hk,k+1]. Here HS = −J

∑
k

�Mk ·
�Mk+1 − D

∑
k (Mz

k )2 − B
∑

k Mz
k is the Hamiltonian of the

system, and hk,k+1 = −J �Mk · �Mk+1 − D(Mz
k )2 − BMz

k is the
local Hamiltonian. After straightforward calculations the heat
current in the FM part is obtained as

JH
k = i[hk+1,k,hk,k−1]

= 2DJ
(
Mx

k+1M
y

k Mz
k − Mx

k M
y

k+1M
z
k

)

+ DB
(
M

y

k Mx
k+1 − Mx

k M
y

k+1

)

− J 2
(
Mx

k−1M
y

k Mz
k+1 − Mx

k−1M
y

k+1M
z
k

)

− J 2
(
Mx

k+1M
y

k−1M
z
k − Mx

k M
y

k−1M
z
k+1

)

− J 2
(
Mx

k M
y

k+1M
z
k−1 − Mx

k+1M
y

k Mz
k−1

)
. (6)

The equilibrium temperature Tk is evaluated self-consistently

via the relation M
‖
k = L(

�Mk · �Beff
k

Tk
), where L(· · · ) is the Langevin

function and M
‖
k is the component of the magnetization vector

parallel to the effective field �Beff
k .

III. INTERFACE EFFECT AND HEAT RECTIFICATION

An important element of the thermal diode is the interface
thermal resistance (ITR), usually referred to as the asymmetric

Kapitza resistance [8] as it quantifies the asymmetry in
interfacial resistance. We will consider the cases in which
the hot thermal bath is applied to the FE part TFE > TFM and
to the FM part TFE < TFM. Inverting the sign of the thermal
bias for a constant temperature difference �T =| TFE − TFM |
drastically changes the heat flux J+ �= J− and the resistance
R+ = �T/J+, R− = �T/J−. The ratio between the two
different resistances R+/R− measures the rectification effect.
The rectification effect of the MF diode stems from the
overlapping of the spectra of the FE and FM subsystems.
The frequency of the linear excitations in FM ωFM is set by
the anisotropy constant ≈2D [34]. The applied electric field
substantially modifies the frequency of linear excitations in the
FE part, ωFE. Basically, the electric field shifts the minimum
of the GLD potential derived from the relation ∂pHp = 0. In
the limit of weak coupling between the dipoles, FE frequency

takes the form ωFE(E) = {4αFE cos2[cos−1( 3|E|
2αFE

√
3βFE

αFE )/3] −
αFE}1/2. So the correction in the FE frequency �ωFE =
ωFE(E) − ωFE(0) is even in the electric field (for more details
we refer to the Appendix). Therefore, the heat current is
symmetric with respect to the change of the electric field’s
sign E → −E. On the other hand, maximal heat conductance
occurs when FM and FE frequencies ωFM ≈ ωFE(0) + �ωFE

match. Thus, the electric field can be utilized to enhance
the heat current. From the frequency-matching condition
and for the parameters listed in Table I in the Appendix,
we obtain an estimation of the optimum electric field as

|E| = | 2αFE

3

√
αFE

3βFE cos[ 3
2 cos−1( 4D2−αFE

2αFE )]| = 0.1 (d.u.). In con-

ventional units this corresponds to an electric field of E =
3.4 × 104 V/cm. Increasing the electric field strength results
in a mismatch of FE and FM spectra and hence a decrease
of the heat current. This analytical estimation is confirmed by
full numerical calculations as well (Fig. 3 below). Interface ME
coupling leads to a small shift between analytically estimated
and numerically calculated values of the optimum electric
field. However, we see a prominent maximum in the heat
current for optimal electric field.

IV. TEMPERATURE EFFECTS ON MF DIODE

We implemented full numerical simulations for a MF
thermal diode consisting of 50 dipolar and 50 magnetic cells.
Calculations are also done for a larger system (not shown)
up to 500 dipolar and 500 magnetic cells, and we did not
observe significant size effects. Of special interest is the
rectification effect. We present the edge temperatures in the
following form: T1 = T0 + TS�, TM = T0 − TS�, where M

is the total number of sites. Thus, the difference between the
edges temperatures is T1 − TM = 2TS�. Inverting the thermal
bias simply means � → −�. The heat current as a function of
� for different values of T0 is shown in Fig. 2(a). We observe
that at larger temperature T0 the asymmetry becomes stronger.
The uniform heat flux through the system [see Fig. 2(b)]
affirms that the system is in the nonequilibrium steady state.
On the other hand, due to the different heat capacities of the FE
and FM systems and the different heat exchange rates with the
environment, the temperatures formed self-consistently in the
FE and FM parts are different. In the case of an applied positive
thermal bias the heat flux J+ = 0.8 d.u., while for a negative
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FIG. 2. (Color online) (a) Diode heat current under different edge
temperatures. The multiferroic diode includes 50 FE cells (from 1 to
50) and 50 FM cells (from 51 to 100). In dimensional units, the applied
electric and magnetic fields are E = 1.74 d.u. and B = 0.0 d.u., and
FE-FM coupling coefficients are g1 = g2 = −1 d.u. Other employed
parameters and reduced unit coefficients are tabulated in Table I in
the Appendix. (b) Heat current profile for forward temperature bias
(� = 1.4), reverse temperature bias (� = −1.4), and T0 = 400 K.
(c) Temperature profiles for forward temperature bias (� = 1.4) and
reverse temperature bias (� = −1.4), T0 = 400 K. In both cases
temperature formed in the FE part corresponds to the tetragonal phase.

thermal bias the flux reaches J− = 2.5 d.u. and therefore
R−/R+ < 1. This rectification is also characterized by distinct
temperature profiles for opposite thermal differences [see
Fig. 2(c)].

V. ELECTRIC FIELD EFFECT ON THE MF DIODE

The heat current as a function of � is displayed in Fig. 3. We
note that the change of the sign of � corresponds to the inverted
thermal bias. In addition, we consider different amplitudes of
the applied electric field in order to see whether an electric field
may enhance the heat rectification effect. As shown in Fig. 3(a)
the rectification effect becomes stronger upon increasing the
electric field strength. However, the role of the electric field is
not trivial. As shown in the inset, there is an optimum electric
field for which the asymmetry of the diode is maximal. The
optimal value E ≈ 0.75 d.u. corresponds to the frequency-
matching condition ωFM ≈ ωFE(0) + �ωFE and is quite close
to the analytical value that we estimated above without
interface ME coupling. Further increasing the electric field
destroys the spectra-matching condition and reduces the heat
current. Magnetic field B, however, monotonically decreases
the heat flux, as shown in Fig. 3(b). This is due to the fact that
the stronger the magnetic field is, the stiffer the magnetization
is in the FM part, which suppresses the energy transport.
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FIG. 3. (Color online) (a) Heat current vs the biased temperature
difference in the MF diode for different values of electric field E.
The MF diode includes 50 FE cells (from 1 to 50) and 50 FM cells
(from 51 to 100). FE-FM coupling coefficients are g1 = g2 = −1 d.u.
Other employed parameters are tabulated in Table I in the Appendix.
The inset shows the dependence of heat current on electric field for
� = ±0.6. (b) The same as in (a), but for magnetic field. The electric
field increases the heat current, reaching a maximum at the optimal
electric field. In contrast, the magnetic field decreases the heat current.

VI. INTERFACIAL ME COUPLING EFFECTS
ON THE MF DIODE

Figure 4 shows the heat current as a function of the
interfacial ME coupling constant (g = g1 = g2 d.u.) for for-
ward and reverse biases, respectively. Without magnetoelectric
coupling the heat current across the MF diode diminishes.
In the range of g = [−1,0] d.u. the rectifying effect is
magnified monotonically when increasing g from 0 to −1,
and the maximum rectifying effect (asymmetry) is achieved
at g = −1 d.u., which is the value we have used in all other
simulations. Surprisingly, a different picture emerges in the
positive range of g = [0,0.8] d.u., where a large coupling
strength near 0.8 d.u. deteriorates the heat current in both
directions. The optimal transport and rectification are achieved
at an intermediate strength of g around 0.4 d.u. This distinct
response upon the sign change of the coupling constant can be
traced back to the fact that such a change influences the ground
state of the polarization and the magnetization configurations
of the MF diode system. For a different sign of the coupling
constant, slightly different configurations correspond to the
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FIG. 4. (Color online) Heat current in the MF diode vs FE-FM
coupling coefficients (g = g1 = g2 d.u.) for forward and reverse
temperature biases. The MF diode includes 50 FE cells (from 1 to 50)
and 50 FM cells (from 51 to 100). The applied electric and magnetic
fields are E = 0.4 d.u. and B = 0.0 d.u. Other employed parameters
are tabulated in Table I in the Appendix.

ground state with a minimal energy. For the explicit form of the
interface coupling term V = −g(PNMz

1) − g(PNMz
1)2 we find

that the positive coupling constant g > 0 favors large values
of the magnetization component Mz

1 . Aligning the magnetic
moment along the z axis naturally decreases the current, which
is consistent with the picture in the inset of Fig. 3(b). In the
case of a negative g < 0 the situation is different. A small Mz

1
means larger transversal components, and this enhances the
current.

In summary, we proposed and demonstrated a thermal diode
based on a two-phase multiferroic composite. The heat transfer
through it can be rectified and controlled by a thermal bias and
an electromagnetic field. In particular, the external electric
field applied to the ferroelectric part of the multiferroic thermal
diode can substantially enhance the heat conductance and the
rectification. On the other hand, we found that an applied
magnetic field decreases the heat current. We demonstrated
and discussed how the interfacial magnetoelectric coupling
influences the thermal diode operation in a dynamical way.
In view of contemporary advances in engineering composite
multiferroic structures, the present findings are potentially
interesting for applications, such as elements in thermal
switches and thermal memories [33] and thermal management
via multifunctional caloric materials [37].

APPENDIX

1. Definitions of the dimensionless units

The total energy of the ferroelectric subsystem HP as a
function of the coarse-grained polarization Pn and correspond-
ing equations of motion read HP = ∑N

n=1
α0
2 Ṗ 2

n − α1
2 P 2

n +
α2
4 P 4

n + κ
2 (Pn+1 − Pn)2 − EPn and α0P̈n = α1Pn − α2P

3
n −

κ[−(Pn+1 − Pn) + (Pn − Pn−1)] + E. These equations are
normalized by introducing pn = Pn/P0, E → E/kP0. Di-
viding both parts by κ leads to the new reduced time

t ′2 = t2/(κ/α0) or t ′ = ω0t , where ω0 =
√

κ
α0

. Finally, we

obtain the equation for the polarization dynamics in fully

dimensionless units for n �= N [see Eq. (1)] with αFE = α1/κ ,
βFE = α2P

2
0 /κ .

2. Time scales

The frequency of oscillations associated with the mode-
plasma frequency ω0 is higher than the inverse relaxation time
α1/γν [38] (see Table I). The overdamped case yields the
Landau-Khalatnikov equation [39] employed for modeling
the polarization hysteresis [22,38]). An overview of the
real parameters and their dimensionless counterparts for the
ferroelectric subsystem is given in Table I. The time scale
within the present calculations is set by the frequency ω0,
which is related to the mode-plasma frequency or the fast
oscillations (also known as “eigendisplacements” or Slater
modes [30]) of the Ti atom in BaTiO3. Ab initio calculations
for BaTiO3 [40] yield Slater = 1519 cm−1 = 286 × 1012 s−1;
the experimental values differ slightly at T = 300 K, yielding
Slater = 1628 cm−1, as given in Ref. [41]. Finally, one
can also estimate the mode-plasma frequency as [42] ω0 =
Z∗

Tie
√

1
mT iε0a

3
0
, where Z∗

Ti = 7, given in Ref. [21], is the Born

effective charge and mT i = 47.9 amu = 79.5 × 10−27 kg. For
a displacement of several angstroms, ω0 ≈ 100 × 1012 s−1.
In our numerical calculations the dimensionless time scales,
however, with the prefactor of ω0/(2π ); therefore, we arrive
at the approximate value of ∼1012 Hz.

3. Parameters of the FM part

For the FM part we employ the Landau-Lifshitz-Gilbert
equation of motion [43,44] [(see Eq. (3)]. Bulk parameters
for Fe are the anisotropy strength K1 ≈ 5.0 × 104 J/m3 given
in Ref. [31] and the saturation magnetization MS = 1.7 ×
106 A/m given in Ref. [31]. The Larmor (precessional)
frequency in the local anisotropy field scales as ωprec/(2π ) =
γ 2K1/(MS) ≈ 8 × 109 Hz, and the frequency associated
with the relaxation scales as ωrel/(2π ) = αFMωprec/(2π ) ≈
0.08 × 109 Hz. The autocorrelation functions of the ther-
mal fields in the FE and FM parts in standard units are
given as 〈ξk(t)ξk(t ′)〉 = 2kBγν

a3
FE

Tkδ(t − t ′) and 〈ηi
k(t)ηj

k (t ′)〉 =
2kBαFM

γMSa3
FM

TkδkMδij δ(t − t ′), where Tk is the site-dependent local

temperature in degrees Kelvin.

4. Shift of ferroelectric frequency

We consider one unit cell in the FE Hamiltonian:
HP = 1

2 ṗ2 − αFE

2 p2 + βFE

4 p4 − Ep. Equilibrium properties
are given by the condition ∂Hp = 0. After solving the

cubic equation, we obtain p
(0)
1 = 2√

3

√
αFE

βFE cos ( θ
3 ), p

(0)
2 =

2√
3

√
αFE

βFE cos ( θ
3 + 2π

3 ), and p
(0)
3 = 2√

3

√
αFE

βFE cos ( θ
3 + 4π

3 ). Here

θ = arccos ( 3E
2αFE

√
3βFE

αFE ), and the minimum of the energy reads

H (p(0)
1,2(E)) = − (αFE)2

4βFE ±
√

αFE

βFE E. As we can see, if E > 0,

then the minimum of the energy corresponds to the solution
p

(0)
1 (E), while if E < 0, then the energy minimum corresponds

to the solution p
(0)
2 (E). Taking into account the fact that the

134424-5



L. CHOTORLISHVILI et al. PHYSICAL REVIEW B 92, 134424 (2015)

system is even in the electric field, we express the minimum
of the energy in the form valid for both the E > 0 and E < 0

cases: H (p(0)
1,2(E)) = − (αFE)2

4βFE −
√

αFE

βFE |E|.
In order to evaluate the dependence of the FE frequency on

the applied external electric field we expand the Hamiltonian
Hp in the vicinity of the equilibrium points. In the equation
of motion governed by the linearized Hamiltonian p̈ =
−(−αFE + 3βFEp2

0)p + E enters the electric-field-dependent
frequency: ω2

p(E) = (−αFE + 3βFEp2
0). Considering the small

electric field E in the first-order approximation from p
(0)
1,2,3,

we obtain ωp(E > 0) =
√

2αFE + 3E
2αFE

√
βFE

2 , ωp(E < 0) =
√

2αFE − 3E
2αFE

√
βFE

2 , and ωp(E = 0) =
√

2αFE. The FE fre-
quency shift due to the applied weak electric field reads

�ωp(E) = ωp(E) − ωp(0) ≈ 3|E|
2αFE

√
βFE

2 . As we can see, the
frequency shift is even in the electric field. On the other hand,
the FM frequency is equal to ωD = 2D. The matching con-
dition between the frequencies (ωD = ωp + �ωp) defines the
optimum electric field relevant to the maximal conductance:

|E| = | 2αFE

3

√
αFE

3βFE cos[ 3
2 cos−1( 4D2−αFE

2αFE )]|.
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