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Velocity estimation via registration-guided least-squares inversion

Hyoungsu Baek1, Henri Calandra2, and Laurent Demanet1

ABSTRACT

Least-squares (LS) acoustic-waveform inversion often
suffers from a very narrow basin of attraction near the global
minimum. To mitigate this problem, we evaluated an itera-
tive inversion scheme in which the notion of proximity of
two traces is not the usual LS distance, but instead it involves
registration as in image processing. Observed data were
matched to predicted waveforms via piecewise-polynomial
warpings, obtained by solving a nonconvex optimization
problem in a multiscale fashion from low to high fre-
quencies. This multiscale process required defining low-
frequency augmented signals to seed the frequency sweep
at zero frequency. Custom adjoint sources were then defined
from the warped waveforms. The new method, referred to
as registration-guided least-squares, was successfully ap-
plied to a few scenarios of model velocity estimation in
the transmission setting. We determined that the new method
can converge to the correct model in situations in which con-
ventional LS inversion suffers from cycle skipping and con-
verges to a spurious model.

INTRODUCTION

Waveform inversion (WI) via nonlinear least-squares (LS) min-
imization (Tarantola and Valette, 1982) is effectivewhen the starting
model is accurate (Virieux and Operto, 2009), but otherwise it suf-
fers from stalled convergence to spurious local minima due to the
oscillatory nature of the data and nonlinearity. The presence of local
minima in seismic inversion was clearly demonstrated with the so-
called Camembert example (Gauthier et al., 1986). To prevent con-
vergence to a local minimum, frequency sweeps in full-waveform
inversion (FWI) are proposed by many authors, including Bunks
et al. (1995) and Pratt (1999), and consist in fitting data from
low to high frequencies. However, the lack of low-frequency data,

or their corruption by noise, often hinders this frequency sweep ap-
proach. Accurate initial models are typically found using traveltime
tomography (TT) (Bregman et al., 1989; Pratt and Goulty, 1991;
Prieux et al., 2013), which are then improved upon by WI. Instead
of taking two separate steps for inversion, there have also been ef-
forts to combine TT and WI to exploit the advantages of both meth-
ods: the convexity of TT and the high resolution of WI (Luo and
Schuster, 1991). Gee and Jordan (1992) also take advantage of ro-
bust traveltime information rather than sensitive amplitude in the
seismogram. Fichtner et al. (2008) propose an objective functional
that minimizes envelope and phase misfits using the time-frequency
representation of traces with the flexibility of emphasizing phase
first and then envelope misfits later. Bozdağ et al. (2011) show that
FWI using misfits defined with instantaneous phase and envelope
reduces the nonlinearity of waveform modeling. In the same line of
research, an objective functional defined by the energy in the cross-
correlation of observed and predicted data is proposed and studied
by Van Leeuwen and Mulder (2010), although an analysis of their
method is provided by Baek and Demanet (2013).
In this paper, we propose a method that implicitly extracts phase

information by solving auxiliary seismogram registration subpro-
blems. The resulting method recovers the velocity model in some
transmission scenarios, without traveltime picking, and even when
the data only contain high frequencies. We formulate the registration
problem with piecewise polynomials that can be found from the com-
parison of nonlinearly transformed waveforms such as envelopes.
Away to incorporate this new kinematic information into WI is to

replace the adjoint source that appears in the model update, nor-
mally the difference u − d between the predicted data u and ob-
served data d, by a geometrically meaningful quantity that does
not suffer from cycle skipping. The motivation for correcting the
adjoint source is that the phases of d are in general off by more
than one wave period in comparison to those of u. In contrast,
we define fractionally warped data ~d so that their phases match
those of the prediction u to within a small fraction of a period. This
concept will of course be given a precise definition in the sequel. We
demonstrate through numerical inversion examples that LS misfit
optimization with the warped data can have a much enlarged basin
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of attraction. We refer to our method as registration-guided least-
squares (RGLS) inversion.
The necessity of extracting shifts or warping in many applica-

tions has given rise to many schemes under different names. For
example, ideas related to registration include traveltime delay based
on crosscorrelations (Luo and Schuster, 1991), image registration
using optimal transport (Haker and Tannenbaum, 2001), curve
registration (Ramsay and Li, 1998), registration using local similar-
ities (Fomel and Jin, 2009; Fomel and van der Baan, 2010), and
dynamic time warping for speech pattern matching (Sakoe and
Chiba, 1978). Finding traveltime discrepancies between two traces
is not a trivial problem, especially for multiple waves with different
traveltime discrepancies. Maggi et al. (2009), for example, develop
an automated algorithm to select time windows to extract time shifts
from isolated waves with iterative tomographic inversion in mind.
Liner and Clapp (2004) point out that trace alignment is not a mere
translation but a time warping, and they use a global optimization
algorithm used in amino acid alignment for seismic trace processing
and interpretation. Hale (2013) further improves a different dy-
namic programming method developed for speech recognition with
proper constraints, recovering time shifts that are a few times larger
than a period/wavelength in a stable and robust manner. Kennett and
Fichtner (2012) define a generalized mapping between traces, intro-
ducing transfer operators that map seismograms in a similar way to
our piecewise polynomial mapping.
To find the best warping between an observed trace d and the cor-

responding predicted trace u, we formulate and solve an optimization
problem that, not unlike FWI, is itself nonconvex. The highly oscil-
latory nature of the traces is also what makes seismogram registration
nontrivial. We show that the nonconvexity of the matching problem is
tractable and can be handled by a continuation strategy, where the
match is realized scale-by-scale in a careful, iterative fashion. The
traces d and u seldom contain useful low frequencies in exploration
seismology, so the seeding problem of this multiscale iteration is as
much an issue here as in classical FWI. We propose to solve this
problem by introducing nonlinearly transformed signals which, by
construction, contain low-frequency components. We refer to these
convenient, nonphysical nonlinearly transformed signals as low-fre-
quency augmented (LFA) signals. The LFA transformation can be
thought of as an ad-hoc preprocessing of the traces so as to create
low frequencies, yet maintain much of the information at high
frequencies. Subsequently, seismogram registration is realized
through the match of the LFA of d to the LFA of u by a warping
function of limited complexity, such as a piecewise polynomial.
This paper is part of the community’s broad effort to enlarge the

basin of attraction of FWI by replacing LS by other objective func-
tions, or by directly modifying the adjoint source, as in Luo and
Schuster (1991), Gee and Jordan (1992), Fichtner et al. (2008),
Van Leeuwen and Mulder (2010), and Shah et al. (2010). To the
best of our knowledge, however, no studies have yet proposed to
modify the adjoint source by replacing observed data with time-
warped predicted data for this purpose. Moreover, we illustrate
the benefits of considering piecewise polynomials (as an alternative
to dynamic warping, for instance) to define mappings between dif-
ferent images or traces. Finally, the idea of transforming traces to
generate low frequencies (including 0–5 Hz) seems to have been
mostly overlooked by the community. The work of Shin and Ha
(2008) and Shin and Cha (2009) is an important exception, where
the LFA is realized by a decaying exponential, but we are unaware

that the type of nonlinearity that we consider in this paper had been
previously used for the purpose of frequency augmentation.
The paper is organized as follows: We start by explaining the mo-

tivation behind modifying the adjoint source to the adjoint state equa-
tion. We then detail trace a registration method. Seismogram
registration at the trace level is demonstrated with synthetic noisy
and noiseless data. The RGLS inversion method is then tested in sev-
eral transmission cases, with Gaussian high-/low-velocity models and
a smoothed Marmousi model. We show that the LS and RGLS meth-
ods significantly differ in behavior. We finish by discussing the limits
of the proposed method as well as comparisons with other similar
methods for inversion and registration. In a nutshell, seismogram
registration requires comparable traces, which explains why we con-
sider transmission rather than reflection examples in this paper.

GUIDED LEAST-SQUARES WITH A MODIFIED
ADJOINT SOURCE

FWI, in its standard form, tries to minimize the LS misfit:

J½m� ¼ 1

2

X
s;r

Z
jSs;rusðx; tÞ − dsðxr; tÞj2dt; (1)

where mðxÞ denotes the squared slowness and Ss;r is a sampling
operator; predicted and observed data at a shot s and at a receiver
xr are denoted by us ¼ F s½m�, and ds, respectively. For notational
simplicity, the subscripts s and r are omitted whenever it does not
cause confusion. Moreover, the sampling operator Ss;r is omitted
when the predicted data Ss;rus are compared with the corresponding
observed data ds; the residual Ss;rusðx; tÞ − dsðxr; tÞmay be written
as u − d. In this paper, the forward operator F s½m� maps a squared
slowness m to data usðxr; tÞ through the acoustic wave equation:

m
∂2us
∂t2

¼ Δus þ fsðx; tÞ; (2)

where fsðx; tÞ is a source term. The adjoint-state method generates
the gradient of J½m�:

δJ
δm

½m� ¼ −
X
s

Z
qsðx; tÞ

∂2us
∂t2

ðx; tÞdt; (3)

where the adjoint field qs is propagated backward in time from the
receiver positions in the medium m using the data residual as the
right-hand side (Plessix, 2006).
It is well known that the nonconvexity of J½m� is particularly pro-

nounced when the data are oscillatory. More specifically, when the
time difference between corresponding arrivals in Ss;rus and ds is
larger than a half period, the steepest descent direction of the data
misfit may result in increasing those time differences, consequently
increasing the model error but still decreasing the misfit error. To
guide the iterations in a better direction, we propose to change the
residual Ss;rus − ds in the adjoint wave equation by replacing ds by
a version of Ss;rus transported “part of the way” toward ds. We
denote these virtual, transported data by ~ds and refer to them as
fractionally warped data. The rationale behind ~ds is that its arrivals
can now be less than a half period apart from those in Ss;rus.
To generate a good candidate of fractionally warped data, we pro-

pose to find piecewise cubic polynomials pðtÞ and AðtÞ so as to

R80 Baek et al.

D
ow

nl
oa

de
d 

10
/3

0/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



have a good match dsðtÞ ≈ AðtÞSs;rusðpðtÞÞ, then we define frac-
tionally warped data as

~dsðtÞ ¼ ½AðtÞ�αSs;rusðð1 − αÞtþ αpðtÞÞ (4)

with some very small 0 < α ≪ 1. When parameter α is close to 1,
~dsðtÞ are located near the observed data dsðtÞ; such ~ds, which are far
away from the predicted data Ss;rusðtÞ, result in cycle skipping.
Hence, a small α close to 0 is used to define ~dðtÞ. A generic
way to find a proper α seems to be αTd < 1∕2Tp; i.e.,
α < Tp∕2Td, where Td and Tp are the largest traveltime discrep-
ancy in a shot and the wave period, respectively.
Let us remark that it is the prediction that is transported toward

the observed data, and not the other way around. A definition of ~ds
in place of Ss;rus and a large α ≃ 1 are also possible, but we believe
that this choice would be inferior. The substitution of ds by ~ds is
illustrated in Figure 1. The underlying assumption of our proposed
method is that the observed data ds are a warped version of the cor-
responding predicted data Ss;rus. However, we are aware that there
are cases in which such an assumption does not hold; different back-
ground velocity models result in not only warping waves in time but
also the appearance or the disappearance of waves. The limitations
are commented on in the discussion section.
We can now write the RGLS method as the following two-level

local optimization problem: Assume thatmk−1 is known from the pre-
vious iteration; then obtainmk from one gradient step for the LSmisfit:

Jk½m� ¼ 1

2

X
s;r

Z
jSs;rusðx; t;mÞ − ~dsðxr; t;mk−1Þj2dt; (5)

where

~dsðxr; t;mk−1Þ ≔ AαðtÞSs;rusðx; ð1 − αÞtþ αpðtÞ;mk−1Þ; (6)

and the warping parameters are optimal in the sense that

ðpðtÞ; AðtÞÞ ¼ argminWLFA½p; A�; (7)

where the objective function WLFA is defined in the next section. The
expression of WLFA only involves mk−1, not m; hence, Jk½m� only
depends on m via usðx; t;mÞ. The gradient of Jk½m� is obtained in
a standard fashion via the adjoint-state method, as mentioned earlier,
as the migration operator applied to the adjoint source Ss;rus − ~ds.
Notice that our update consisting of the migrated image of

Ss;rus − ~ds can be interpreted either as a modified gradient for
the objective functional 1 or the gradient for the modified objective
functional 5. In either case, it is clear that these updates are not ex-
pected to be gradients of any single objective function — hence the
term local optimization.
The introduction of fractionally warped data and a modified ad-

joint source change a conventional LS inversion algorithm slightly
by adding a registration step before the backward modeling step.
The registration step is highly parallelizable and can be sped up ex-
ploiting data redundancy; a detailed cost analysis is given in the Dis-
cussion section. The overall computational cost for the RGLSmethod
is slightly higher than that of the LS method, by a few percentage in
our parallelized implementation. An RGLS inversion algorithm is
presented in the next section after we state the subproblem of RGLS
inversion, i.e., the seismogram registration problem.

SEISMOGRAM REGISTRATION

The warping pðtÞ, the amplitude AðtÞ, and the value of α are
chosen so that fractionally warped data ~dðtÞ have a similar shape
to that of the prediction uðtÞ but phase discrepancies smaller than
half of a wave period. To find pðtÞ and AðtÞ, we propose a noncon-
vex optimization scheme similar to image registration (Glasbey and
Mardia, 1998; Zitová and Flusser, 2003). The proposed FWI
method therefore transfers a part of nonconvexity, which results
from the large traveltime discrepancies, to the registration problem
at the trace level.

Statement of the optimization problem

To find AðtÞ and pðtÞ we propose to solve the following LS min-
imization problem for each trace: Find pðtÞ and AðtÞ piecewise cu-
bics that minimize

W½p; A� ¼ 1

2

Z
jdðtÞ − AðtÞuðpðtÞÞj2dtþ λ

2

Z
jpðtÞ − tj2dt;

(8)

where λ is a weighting parameter for a regularization term that en-
forces pðtÞ to stay as a one-to-one mapping. The letterW stands for
warping.
This registration problem is nonconvex and suffers from the same

cycle-skipping phenomenon as conventional LS FWI does, due to
the oscillatory nature of the predicted and observed data. Simulated
annealing (Kirkpatrick, 1984) or other Monte Carlo methods
(Wenzel and Hamacher, 1999) for global optimization could be per-
formed, but they are not tried in this paper. Instead, the minimiza-
tion is carried out in a multiscale fashion by restricting the data dðtÞ
and their prediction AðtÞuðpðtÞÞ to a slowly growing subset of
frequencies, from the zero frequency to successively higher
frequencies, as in frequency-domain FWI (Plessix, 2009). However,
the observed data d usually have small energy in the low-frequency
band and may be corrupted by noise. To start the sweep at zero
frequency, we use modified traces DðtÞ and UðtÞ, manufactured
to contain low frequencies, instead of dðtÞ and uðtÞ. We call

Figure 1. Replacement of observed data with fractionally warped
data. (a) Fractionally warped trace that is a mapped (transported
slightly) version of the given predicted data toward the observed
data. We call the new traces fractionally warped data. (b) Compari-
son of observed and predicted traces. (c) Comparison of fractionally
warped and predicted traces.
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DðtÞ and UðtÞ LFA signals. Hence, optimization problem 8 be-
comes: Find pðtÞ and AðtÞ piecewise cubics that minimize

WLFA½p; A� ¼
1

2

Z
jDðtÞ − AðtÞUðpðtÞÞj2dt

þ λ

2

Z
jpðtÞ − tj2dt: (9)

We point out that registration with the observed and predicted
data uðtÞ; dðtÞ instead of their LFA versions UðtÞ; DðtÞ fails to re-
cover the correct time shifts. Frequency sweeping from low
frequencies around 0 Hz using appropriate LFA transformations
seems to be crucial for successful registration and inversion. Here
are three reasonable possibilities for defining an LFA signal, UðtÞ,
from a band-limited signal uðtÞ:

Uh ¼ uðtÞ þ juðtÞ þ iðHuÞðtÞj; (10a)

Us ¼ u2ðtÞ; (10b)

Ua ¼ juðtÞj; (10c)

where i is
ffiffiffiffiffiffi
−1

p
and H is the Hilbert transform, defined in the fre-

quency domain as ĤuðωÞ ¼ −i sgnðωÞûðωÞ (Benedetto, 1997),
where sgnð·Þ is the sign function.
The Hilbert transform completes any real signal with an imagi-

nary part, so that uþ iHu is an “analytic” signal in the sense
of having no negative frequency component. The amplitudeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðtÞ þ ðHuðtÞÞ2

p
has the interpretation of an envelope for the

signal uþ iHu. The Hilbert transform is a classical tool in signal
processing; it is typically used for demodulation in seismic inver-
sion (Bozdağ et al., 2011).
All three LFA transformations generate strong low-frequency

signals as shown in Figure 2, enabling the frequency sweep from

zero frequency. Our comparison of three LFA transformations
shows that Uh is a particularly good LFA transformation in terms
of frequency content, convergence of frequency sweeping, and
registration errors.
The piecewise cubic polynomials pðtÞ and AðtÞ can be written as

pðtÞ¼
Xn
k¼1

ρkϕkðtÞ¼ ½ϕ1ðtÞ ϕ2ðtÞ : : : ϕnðtÞ�½ρ1 ρ2 : : : ρn �T

(11)

and

AðtÞ¼
Xn
k¼1

θkϕkðtÞ¼ ½ϕ1ðtÞ ϕ2ðtÞ : : : ϕnðtÞ�½θ1 θ2 : : : θn �T;

(12)

respectively. The superscript T denotes “transposed.” Global
basis functions with compact support in multiple subintervals are
denoted by ϕkðtÞ; k ¼ 1; 2; 3; : : : ; n, and both pðtÞ and AðtÞ are rep-
resented in each subinterval as a cubic. The errors in the approxi-
mation of smooth functions with the piecewise cubic polynomials
are proportional to Oðh4Þ, and those of linear interpolations are
Oðh2Þ, where h is the length of a subinterval. The number of global
basis functions is proportional to the recording length of traces and
the complexity of mapping functions. This paper does not address
the problem in which the spline nodes could also be determined
by optimization. The column vectors ½ρ1; ρ2; : : : ; ρn�T and
½θ1; θ2; : : : ; θn�T are denoted by ρ and θ, respectively. Their com-
ponents are the 2n parameters to be determined per trace.
The gradient and the Hessian matrix of WLFA in problem 9 with

respect to ρ and θ can be found analytically; e.g.,

∂WLFA

∂ρi
¼

Z
½D − AUðpÞ�½−AU 0ðpÞϕi�

þ λðp − tÞϕidt; (13)

ðHρÞij ¼
∂2WLFA

∂ρi∂ρj

¼
Z

½½AU 0ðpÞ�2

− ½D − AUðpÞ�½AU 0 0ðpÞ�
þ λ�ϕiϕjdt; (14)

where U 0ðÞ and U 0 0ðÞ are the first- and second-
order derivatives of U. Similar expressions can
be derived for the gradient and Hessian with re-
spect to the coefficients of AðtÞ. The integrals are
computed approximately using the trapezoidal
rule as a quadrature.

Optimization strategy and algorithm
for seismogram registration

We detail a way to resolve the nonconvexity
issue of the optimization problem in expres-
sions 8 or 9 for seismogram registration in Algo-
rithm 1.
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Figure 2. Spectra of signals transformed via LFA transformations 10a–10c: (a) uðtÞ and
its envelope UeðtÞ ¼ juðtÞ þ iHðuÞðtÞj, (b) comparison of a wavelet uðtÞ and its LFA
transformation UhðtÞ obtained using the Hilbert transform in equation 10a, (c) compari-
son of spectra of the wavelet uðtÞ and of the envelope signal UeðtÞ, (d) comparison of
spectra of the wavelet uðtÞ and of the LFA signal UhðtÞ, (e) comparison of spectra of the
wavelet uðtÞ and of the LFA signal UsðtÞ ¼ u2ðtÞ, and (f) comparison of spectra of the
wavelet uðtÞ and of the LFA signal UaðtÞ ¼ juðtÞj. The blue solid (red dashed) lines in
(c–f), respectively, correspond to spectra of the wavelet uðtÞ (of the LFA signals).
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The collection of discrete frequencies from 0 to ωi is denoted by
Ωi ¼ ½0;ωi�. We create M such sets, Ω1;Ω2; : : : ;ΩM , where Ω1 ⊂
Ω2 ⊂ : : : ⊂ ΩM and ω1 < ω2 < : : : < ωM . Below, LPFkð·Þ de-
notes the application of a low-pass filter with passband
Ωk ¼ ½0;ωk�. At the kth outer iteration step, both LFA traces D
andU are low-pass filtered to the frequency range ω ∈ Ωk, resulting
in the LFA signals Dk and Uk. We let WLFA;k represent the expres-
sion WLFA with Dk and Uk instead of D and U. The maximum fre-
quency ωM in the outer loop is set to a frequency below the central
frequency of the source signature used to generate data.

Computational aspect of registration and modification
to LS inversion

Registering every trace can be time consuming because the com-
putational cost is proportional to the number of shots, receivers, and
samples per trace. A more detailed cost analysis of seismogram regis-
tration is found below in the Discussion section. The problem being
highly parallelizable, traces in shots can be registered independently;
our implementation of the registration step is parallelized over shots.
As the grid size of a computational domain gets larger, the extra com-
putational cost for the registration step gets smaller compared to that
of forward/backward modeling steps. Moreover, the registration step
can be sped up by tuning the parameters in the registration algorithm,
exploiting data redundancy. For example, skipping registrations in
some traces and interpolating piecewise polynomials can be done,
and the frequency sweeping range can be customized. Hence, the
seismogram registration step in our implementation takes less time
than a forward/backward modeling step.
The introduction of fractionally warped data for a modified ad-

joint source requires solving a nonconvex optimization problem
every iteration. It may give the impression that RGLS inversion in-
cluding seismogram registration is unwieldy. However, Algorithm 2
is a minor modification of the conventional LS inversion algorithm
from the point of view of complexity. The new steps for the RGLS
method are marked with underlines; the steps are highly paralleliz-
able and inexpensive compared to the forward/backward modeling
steps. As a result, our implementation of the RGLS method takes
slightly longer than the conventional LS method.

Examples of registration of synthetic traces

Here, we demonstrate the registration capability of nonconvex
optimization using the nonlinear formulation 10a.
The underlying assumption of the registration idea is that two

traces can be mapped via piecewise cubic polynomials. The mapping
function pðtÞ is also enforced to remain one-to-one thanks to the pen-
alty term kpðtÞ − tk2 in objective functional 8. If a true mapping does
not satisfy these conditions, the solution is not guaranteed. However,
the following numerical examples show that our registration method
is robust and works well, even when some of the conditions are not
met. Our first example demonstrates the capability of registration
when the mapping is smooth and can be well-approximated by piece-
wise cubic polynomials. The second example shows that the fre-
quency sweeping scheme makes registration insensitive to random
noise in the data. The third example is more challenging in that
the waveforms are quite different and one of them is not a transported
version of one trace, contrary to our assumption.
Our first example shows the registration of two noiseless syn-

thetic traces containing many reflected waves. One of the two
traces is obtained from a numerical experiment with the Marmousi
velocity model. The other trace is the result of applying a warping
map p∶t ↦ tþ 0.15 exp ð−8ðt∕Tc − 1Þ2Þ, where Tc is half the re-
cording time. Unless otherwise stated, registration is performed
from zero frequency with the LFA signal Uh in equation 10a.
Figure 3b shows a good registration match.
For the second example, we test seismogram registration with noisy

synthetic data. A synthetic trace is obtained from a numerical experi-
ment with the Marmousi model and is used as reference data. The
trace is then transported using the same function as used in example
1 to generate predicted data. Two independent realizations of Gaus-
sian white noise with mean 0 and standard deviation 0.05 are, respec-
tively, added to the two traces. This noise level is about 35% of the
original traces in the root-mean-square (rms) sense. Figure 4 shows
excellent registration results in the presence of strong noise.
The third example uses two traces obtained from numerical experi-

ments with two distinct velocity models. An observed trace is ob-
tained from the Marmousi velocity model VMarmousiðx; zÞ, and we
use a different velocity model Vpredðx; zÞ ¼ VMarmousiðx; zÞ − 0.15z
for the predicted trace. Due to the reduction in velocity, the predicted

Algorithm 1 Seismogram registration.

Input: traces uðtÞ and dðtÞ
Initialize: pðtÞ ¼ t, AðtÞ ¼ 1

LFA: DðtÞ←LFAðdðtÞÞ; UðtÞ←LFAðuðtÞÞ
for k ¼ 1; 2; :::;M

Filter: DkðtÞ←LPFkðDðtÞÞ; UkðtÞ←LPFkðUðtÞÞ
while not converged do

Compute: ∂WLFA;k

∂ρ ; ∂WLFA;k

∂θ , and the HessiansHρ,Hθ of the functional
WLFA;k.

Newton step: ρ←ρ −H−1
ρ

∂WLFA;k

∂ρ , θ←θ −H−1
θ

∂WLFA;k

∂θ
end while

end for

Output: pðtÞ, AðtÞ

Algorithm 2 RGLS inversion algorithm.

Input: initial model m0 and observed data dðxr; tÞ
for i ¼ 0; 1; 2; :::; N − 1 do

Forward modeling: obtain uðx; t;miÞ for the velocity model mi

Seismogram registration: find AðtÞ, pðtÞ from uðxr; t;miÞ and
dðxr; tÞ
Fractionally warped data: ~d←½AðtÞ�αuðð1 − αÞtþ αpðtÞÞ
Backward modeling: obtain qðx; tÞ by backpropagating
uðxr; t;miÞ − ~d

Imaging condition: δm ¼ −∫ qðx; tÞ ∂2u
∂t2 ðx; t;miÞdt

Model updating: miþ1 ¼ mi − βδm

end for

Output: mN
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data lag behind the observed data up to a few wave periods in the
coda. A good, though not perfect, agreement is observed between
the observed trace and the transported trace as shown in Figure 5.
For the three numerical examples above, sweeping up to half of

the central (dominant) frequency suffices for convergence. Most
kinematic discrepancies between the observed data and the pre-
dicted data are fixed after sweeping up to 5 Hz, where central
frequencies of the traces are above 15 Hz. The signals in the above
examples have a recording time of about 4 s with the sampling
period about 1 ms, resulting in about 4000 samples per trace.
For signals of such length, four subintervals are enough for the
piecewise polynomials pðtÞ and AðtÞ in equations 11 and 12.
Although the above three examples demonstrate robust registra-

tion with reasonable accuracy in the presence of strong random
noise and in the case of different waveforms, there are cases where
registration gives wrong results, i.e., shifting waveforms in the
wrong direction. This scenario often happens when the number

of waves differs in the two traces. Another case would be strong
noise with energy in the sweeping frequency band.

NUMERICAL EXAMPLES OF FULL-WAVEFORM
INVERSION

In this section, we demonstrate the potential of RGLS optimiza-
tion for WI in transmission settings with synthetic velocity models.
Specifically, we compare convergence of the RGLS method quan-
titatively with that of the LS method through examples 1–3 in Ta-
ble 1. We point out that both RGLS and LS inversion are done in the
time domain without a frequency sweeping. The frequency sweep-
ings from zero frequency are performed in seismogram registration,
as explained in the previous section. The first two examples involve
models with a Gaussian lens, and the third example involves a
smoothed Marmousi model. We plot (1) true versus converged
velocity models, (2) data misfit versus iteration count for both
LS and RGLS, and (3) rms values of VT − Vk for some examples,
where VT is the true velocity model and Vk is the kth step velocity
model. By data misfit, we mean the LS misfit in expression 1.
The acoustic wave equation is discretized with a fourth-order ac-

curacy finite difference scheme in space. For the time discretization,
the explicit second-order leap-frog scheme is used. Perfectly matched
layers surround the computational domain (Berenger, 1994).

Inversion example 1: Gaussian lens

Example 1 compares the performance of RGLS and LS optimi-
zation using the velocity model VH and VL plotted in Figure 6a
and 6d. The initial models are homogeneous at V initðx; zÞ ¼
5100; 6000 m∕s, i.e., without any a priori knowledge about the true
models. These true and initial velocity models are chosen to result in
traveltime discrepancies that are as large as 3.4 (4.5) wave periods
in rays starting from the center of the left boundary to the opposite
side, passing through the center of model VHðVLÞ, respectively.
The computational domain is 2500 × 2500 m; the grid size is

501 × 501 with a distance of 5 m between grid points along both
directions. The total number of shots used for computing the update
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Figure 3. Registration example 1: (a) observed (blue) and predicted
(red) traces before registration. A synthetic trace is generated using
the Marmousi velocity model and the other trace is created by warp-
ing with a known mapping. The black arrows indicate correspond-
ing waves. (b) Two traces after registration. The predicted trace
(red) is mapped to the observed trace (blue).
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Figure 4. Registration example 2: matching noisy synthetic traces.
(a) Observed (blue) and predicted (red) traces before mapping. A
synthetic trace is generated using the Marmousi velocity model,
and the other trace is created by applying a known mapping.
The black arrows in the top figure connect corresponding peaks.
(b) Two traces after the predicted trace (red) is mapped to the ob-
served trace (blue).
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Figure 5. Registration example 3: matching traces with different
amplitudes and phases from the Marmousi model and a modified
Marmousi model. (a) Observed (blue) and predicted (red) trace. The
black arrows indicate corresponding waves. (b) Two traces after
registration. The predicted (red) trace is transported toward the ob-
served (blue) trace, and its amplitude is decreased.
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is 196 with the distance between sources 50 m. For any source on
one of four sides, we consider a fine sampling of 750 receivers with
spacing 10 m on the other three sides as marked with magenta tri-
angles in Figure 6a. A Ricker wavelet with center frequency 50 Hz
is used as an acoustic source.

High-velocity Gaussian lens

The RGLS method correctly updates the model velocity by in-
creasing it near the center. The updates of the RGLS method (100
iterations) are free of artifacts, and the velocity models look very
close to the true models. See Figure 6c. However, the LS method
converges to a wrong model as shown in Figure 6c. In particular, the

velocity at the center of the converged model is around 3500 m∕s,
which is much lower than the initial velocity 5100 m∕s and the true
velocity 6200 m∕s. However, notice that the four corners seem to be
updated properly. There is no cycle skipping there: Predicted data
with short travel times are within a half of a period from correspond-
ing observed data around the corners.

Table 1. Velocity models and data types for inversion
examples. Reference velocity models VH , VL, and VR are
VH�x;z� � 5200� 900 exp�−j�x;z� − �1250;1250�j2∕106�,
VL�x;z� � 5500 − 900 exp�−j�x;z� − �1250;1250�j2∕106�, and
VR�x;z� � 5000� 900 exp�−j�x;z� − �1250;1250�j2∕106�,
respectively.

Example Reference model Initial model

Example 1
VH 5100 m∕s
VL 6000 m∕s

Example 2 VR þ noise 5100 m∕s
Example 3 Marmousi V init ¼ 1500þ 0.5z m∕s

a)

d) e) f)

b) c)

Figure 6. Inversion example 1: plots of velocity models: (a) true model with sources and receivers marked in white and magenta, respectively,
(b) converged model of RGLS optimization, (c) converged model of LS optimization. The white asterisks and magenta triangles in (a) mark the
location of a few sources and receivers, respectively. Inversion example 2: plots of velocity models: (d) true model, (e) converged model of
RGLS optimization, and (f) converged model of LS optimization.
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Figure 7. Inversion example 1: convergence of model (velocity)
rms error Vk − V true (a) and data misfit J (b). Inversion example
2: convergence of model (velocity) rms error Vk − V true (c) and data
misfit J (d).
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The changes in data misfit and model rms error over iteration are
compared in Figure 7a and 7b. The RGLS method temporarily in-
creases the data misfit, but it decreases the model rms error, as
the predicted data correctly move toward the observed data during
the first 20–30 iterations. For the LS method, however, the data misfit
decreases but the model velocity error increases gradually, as shown
in Figure 7b.

Low-velocity Gaussian lens

As in the high-velocity Gaussian lens case, the RGLS recovers
the true model much better than the LS method as shown in Fig-
ure 6e and 6f. The LS method updates parts of the domain near the
boundary correctly as well as the corners, as shown in Figure 6f.
Interestingly, 100 more iterations result in a much better velocity
model with large errors only at the center. The area of the error zone
at the center gets smaller as the iterations proceed. Quantitatively,
both data and model errors are reduced by both the RGLS and LS
methods as shown Figure 7c and 7d. However, RGLS is much
faster; LS updates the model in a slow, piecemeal way from the
boundary inward.

Inversion example 2: Noisy Gaussian lens

We test the RGLS method with a more complicated true velocity
model shown in Figure 8a. The true velocity model in this example
contains noise generated by convolution of a Gaussian kernel with
an array of normally distributed random numbers as well as the
high-velocity Gaussian lens. Other configurations are the same as
in the high-velocity Gaussian lens of the previous example: the
initial model, the source and receiver locations, the acoustic source,
and the grid size.
The medium-scale details of the model are successfully recov-

ered by RGLS optimization as shown in Figure 8b. The data misfit
and model rms error are shown in Figure 9. RGLS optimization
stalls the data misfit after 63 iterations: The inversion then switches
from RGLS to LS. Note that the LS method is close to the special
case α ¼ 1 in the construction of fractionally warped data, hence the
late-game switch to LS is more of a parameter adjustment than an
ad-hoc fix. Switching to LS is safe because observed data are now
within a fraction of a wavelength of predicted data. Using a velocity
model with stronger randomness would make the RGLS method

fail because the observed data would contain many refracted waves
that the predicted data do not contain.

Inversion example 3: Smoothed Marmousi

A more realistic velocity model is used to demonstrate the RGLS
method: a smoothed Marmousi model. The physical dimension of
the velocity model is 9096 × 2976 m, which is discretized into
380 × 125 grid points with spacing 24 m in both directions. The
simulation consists of 75 shots with 120-m spacing between the
sources; the positions of some sources are marked with white as-
terisks in Figure 10b. The number of receivers is 616 receivers in
total per shot with 24-m spacing, and some of them are marked with
magenta triangles in Figure 10b, 376 receivers at z ¼ 2952 m, and
120 receivers at x ¼ 48 and 9072 m each. The data are sampled at
the receivers for 6 s with a time step size of 1 ms. The Ricker wave-
let with peak frequency 10 Hz is used as a source. The initial model
has linearly increasing velocity from 1500 m∕s near the surface to
3000 m∕s at the bottom. A smoothed Marmousi model shown in
Figure 10a is used to generate observed data. Initial traveltime dis-
crepancies at the bottom receivers are around 2.7–5.3 wave periods.
A converged velocity model using the RGLS method is plotted in

Figure 10c, showing recovered features of the true model. As in-
version switches from RGLS to LS in the previous example 2,
LS inversion followed 96 RGLS iterations. For the RGLS method,
both the model rms error and data misfit decrease by an order and
two orders of magnitude, respectively. A hump is also observed in
the data misfit plot of the RGLS method as in the previous exam-
ples. The LS method, however, could not recover the background

a) b) c)

Figure 8. Inversion example 2: Plots of velocity models of (a) true model, (b) of converged model of RGLS optimization, and (c) of converged
model of LS optimization.
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Figure 9. Inversion example 2: convergence of model (velocity)
rms error Vk − V true (a) and data misfit J (b).
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velocity model, not to mention most reflectors of the true model as
shown in Figure 10d.

DISCUSSION

Our registration method is similar to Hale’s dynamic warping
with strain constraints (Hale, 2013; Ma and Hale, 2013) in that both
solve the LS misfit nonconvex optimization problem for the warp-
ings. Both methods assume that one of two corresponding traces
can be mapped with a smooth warping function. One advantage
of our method over Hale’s is that it handles amplitude changes
as well as time shifts. A second advantage is that thanks to the fre-
quency sweeping, smoothing traces or shifts is not necessary in the
presence of random noise. Our method, however, seems to be more
expensive due to the frequency sweeping and the Hilbert transform.
The computational complexity of the seismogram registration per
trace is OðnkðNt log Nt þ nin2NtÞÞ for the number of samples
Nt, where nk, n, and ni are the number of frequency sweeping steps,
global basis functions and Newton iterations, respectively. The
number of frequency sweeping steps is nk ¼ ðfpTfÞ∕m, where
fp, Tf , and m are the peak frequency, final recording time, and in-
crement in frequency index. Because most cases have a larger nin2

than log Nt, the complexity per shot can be simplified further to
Oðnknin2nrNtÞ, where nr is the number of receivers. For a fixed
number of receivers nr the computational cost for forward/
backward modeling with an explicit finite-difference method
OðNxNzNtÞ gets more expensive than that of the registration
Oðnknin2nrNtÞ as the grid size, NxNz gets larger. Although our
warping algorithm has not yet been extended to 2D or 3D sections
of the data set, it is a reasonable direction for future research.
We compare our RGLS method with three related methods: cor-

relation-based TT (Luo and Schuster, 1991; Tromp et al., 2005), WI
(Tarantola and Valette, 1982; Bunks et al., 1995), and phase/envelope
(PE) misfit inversion (Fichtner et al., 2008; Bozdağ et al., 2011). For a
more complete treatment of each method, we refer the reader to these
references. Comprehensive comparisons among three methods, i.e.,

TT, WI, and PE, are well documented in Bozdağ et al. (2011). The
RGLS method does not need phase isolation as in the TT method
because the whole waveform is used to implicitly determine travel-
time discrepancies or phase difference. Thanks to the frequency
sweeping in seismogram registration, traveltime differences larger
than a half-period can be recovered and cycle skipping can be over-
come as in TT.WI and PE do not need phase isolation either, but they
suffer from cycle-skipping problems that can be avoided by inversion
of long-period waves first, followed by short-period waves. In our
study, successful registration of data with Gaussian random noise
is demonstrated and we expect that the updates are only moderately
affected by noise in the data because the adjoint sources u − ~d are
made of only synthetic noise-free data, u and ~d.
A drawback of our RGLS method is that observed and synthetic

data must be comparable, i.e., can be paired; this assumption can be
broken even in both the transmission and the reflection settings.
This assumption is shared by both TT and PE, but not by WI.
We found that adapting registration ideas to WI in the reflection
setting is particularly challenging. Modeled data are closer to
matching observed data kinematically in the reflection case than
in the transmission case because the LS gradient updates produce
ad-hoc reflectors in the wrong locations to balance the wrong
medium. As a result, traveltime discrepancies no longer seem to
be the dominant effect to correct. We attempted to use the alternat-
ing update methods proposed by Clément et al. (2001) and Xu et al.
(2012) to deal with reflection data, but without much success.
It seems natural to extend the idea of LFA to :

JLFA½m�¼ 1

2

X
s;r

Z
jSs;rLFAfusgðx;tÞ−LFAfdsgðxr;tÞj2dt:

(15)

Because LFAfusgðx; tÞ has low-frequency components near zero,
the frequency sweeping can be done with the following equivalent
form in the frequency domain:

a) b)

c) d)

Figure 10. Inversion example 3: Plots of velocity models of (a) true model, (b) of initial model with sources and receivers marked in white and
magenta, (c) of converged model of RGLS optimization, and (d) of converged model of LS optimization. The white asterisks and magenta
inverted triangles in (b) indicate sources on the top and receivers at three sides, respectively.
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JLFA½m�¼1

2

X
s;r

Z
ω 0

0

jSs;rLFAfusgðx;ωÞ−LFAfdsgðxr;ωÞj2dω;

(16)

where ω 0 can be much smaller than frequencies available at the data
ds. A study of this new objective function is under way.
Last, we point out that the “fractional” character of the warping

used to generate the adjoint source in this paper is in the same spirit
as a solution proposed in Sava and Biondi (2004), where image
perturbations in the image domain are replaced by their linearized
version to mitigate lack-of-convexity issues beyond the Born
approximation. Similar suggestions of updates are also proposed
in recent work by Fei and Williamson (2010) and Albertin
(2011). Those updates are generated from residuals, which are ob-
tained by taking differences between an image and its infinitesi-
mally modified version for the same reason we take the
modified adjoint source instead of the conventional one.

CONCLUSIONS

We present RGLS as a way to mitigate the cycle-skipping prob-
lem in FWI, thereby extending the basin of attraction to the global
minimizer. The successful application of the RGLS method to seis-
mic inversion problems is demonstrated in the transmission setting,
where the conventional LS method often converges to a wrong
model. The proposed method substitutes a transported version of
the prediction, referred to as fractionally warped data, for the ob-
served data in the conventional LS misfit residual. To generate
transported data, mappings in the form of piecewise polynomials
are found through a nonconvex optimization formulation. The non-
convex optimization problem is tackled in a multiscale manner sim-
ilar to frequency sweep/continuation in frequency domain FWI. To
create the low frequencies that may be absent in data, LFA signals
are proposed and demonstrated to provide a satisfying alternative to
the raw seismograms for the registration step. A method using the
envelope property of the Hilbert transform is proposed for this LFA
transformation. Three inversion examples using seismogram regis-
tration and the RGLS method show that the proposed method de-
creases model errors monotonically while it allows the data misfit to
increase temporarily prior to eventual convergence.
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