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ABSTRACT

The problem of two highly conducting, finite length streams in relative motion,
stressed by a transverse electric or longitudinal magnetic field is examined in
detail. The system may be mathematically described by two second order coupled
hyperbolic partial differential equations. Four classes of flow exist (1) sub-
capillary, (2) supercapillary co-streaming, (3) supercapillary counter-streaming,
and (4) subcapillary-supercapillary flow. Causal boundary conditions are distinct
for each class.. ...

The behavior of the infinitely long system is examined from the dispersion
relation and the Bers-Briggs stability criterion. The eigenvalue problem is
formulated for class (1), (3) and (4) flows (no eigenvalues exist for class (2) flow)
and the complex eigenfrequencies are. computed. Experiments on each of these systems
are performed and good agreement is obtained between theory and experiment. In
addition, the eigenfunctions are.computed and.agree.with the observed trajectories
of the streams. Physical.explanations are.given for.the instabilities observed for
each class of flow. Complex.eigenfrequencies for the specific cases of counter-
streaming electron beams and an extended region klystron are presented to point out
the analogy which exists between a degenerate form of the magnetically coupled surface
waves and electron beams.
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CHAPTER 1

INTRODUCTION
Background

The field of continuum electromechanics is an area of current interest.
Magnetohydrodynamics, in particular, has received much recent attention.
In this work, the model of a magnetic field interacting with a conducting
fluid is of interest. However, the interactions of electric fields with fluids
have received comparatively little attention. Those areas in electrohydro-
dynamics which are of interest include dynamical effects of free charges
entrained in fluids and induced effects due to free charges and polarization.
Often, problems are encountered in both electrohydrbdynamics and magnetohydro-
dynamics which are similar. This fact will be exploited in the work presented
bhere.

The wave picture provides a useful means of deécribing the dynamics of
continuous media. For example, a fluid interface stressed by an electric
field can be conveniently described in this manner. Similarly, Alfven waves are
essential to the Shearing motions of a conducfiﬁéagluid in a magnetic fieid. The
usual starting point for studying complicated wave motions is to first consider
the medium at rest. One then proceeds to investigate the effect of fluid
convecéion on the dynamical behaviour. This thesis is devoted to a detailed
consideration of a class of such phenomena, namely the interaction of two
streams of conducting fluid by means of an electric or magnetic field. Quite
often the effect of :elative motion is to prodﬁce instability. Exambles of
Streaming instabilities are found in fluid mechanics (Kelvin-Helmholtz instability),

electron dynamics and plasma physics.
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One of the difficulties common to almost all streaming instabilities
1s the complicated model that is required to adequately describe the dynamics.
For example, the Kelvin-Helmholtz instability, which arises from the
relative motion of adjacent layers of fluid,’can be modeled by an inviscid
fluid, but gives a naive plcture of real fluid dynamics. Experiments
involving counterstreaming electron beams are complicated by the presence
of a background plasma and are currently the subject of research.

The continuum electromechanical situations considered here can be modeled
by a relatively simple theory which provides good agreement with experiment.
The electrohydrodynamic model consists of two highly conducting streams in
‘relative motion and coupled by an electric field. Electrical coupling
eliminates the difficulty encountered in modeling two real fluids in physical
contact. An analogous situation exists in magnetohydrodynamics, in which the
electric field is replaced by a mégnetic field. Here, the coupling is
Produced by a magnetic field trapped between two perfectly conducting fluid
Streams. These situations complement each other and both will be considered
here in the same context.

Although this thesis is devoted to a detailed consideration of this seemingly
small class of phenomena, yet the implications of the results arelbroad. Waves
are considered to be propagating in the direction of streaming (the longitudinal
direction). In general, the imposition of transverse boundar}es produces an
infinite set of mﬁdes of propagation; To solve for these modes, with both

longitudinal and transverse boundaries imposed, is an immense problem. The
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conventional techniqué is to assume that wavelengths of interest (in

the longitudinal direction) are short compared to the length of the
system, so that the effect of longitudinal boundaries is small. Quite
often, and in all of the cases examined in this thesis, the long waﬁes
are the most significant and play a more important role in determining
the dynamics than higher order transverse modes. For this reason, the
effects of longitudinal boundgries will be carefully considered. It is
possible then to‘ptovide a complete picture of the system dynamics. The
correct model for the longitudinal boundary conditions can be
unambiguously specified. This is not possible in general, since boundary

conditions consistent with causality may not be clearly defined.

Related Topics

The equations of an electron beam are the same as the degenerate
form of the magnetically coupled surface waves considered here. The
Problem of counter-streaming electron beams has been experimentally
studied by Kofoid27to test the theory of Bohm and Grossa. With longitudinal
boundaries, standing waves of longitudinal plasma electron oscillations
Were produced. These results are as yet not completely explained.
Chandraaekharlooffers an introduction to the classical Kelvin-Helmholtz
instabilities. Some recent work has been done on the effect of electric and
magnetic fields. Special cases of ;he hydromagnetic version have been
conaidered:by Fejer16,Michae137,Northrop42,Alterman3,and Sen44. The only

work done on the electrohydrodynamic Kelvin—Helmholtz instability is by Lyon32
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who derived the dispersion relation for two Streaming dielectric fluids

(in contact) stressed by an electric field.

Preview

Because the area of surface-wave electromechanics has not received wide
attention, it is well to review tﬁg recent work of Melcher34 on the study
of the basic field-coupled surface waves. This work really serves as the
starting point in this study of two stream field-coupled systems. Chapter 2
will briefly review the basic waves, particularly the highly conducting field-
coupled models. Only these two basiq wave types will be considered throughout
the thesis. In addition, attention will be focused almost exclusively on
the long-wave model and the kink modes of the streams.

In Chapter 3, the two-stream equations of motion are derived. The selection
of proper boundary conditions is discussed and the ﬁarious flow configurations
classified. The infinite system behavior for each is discussed from the
dispersion relation and the stability determined by the Bers—Briggchriterion.
Both electric and magnetic coupling are considered. The remainder of the
thesis will be devoted to studying each of these classes in detail with the
effect of longitudinal boundaries included. Experiments are performed for
three of the classes and compared with theory.

Chapter 4 is devoted to subcapillary flow, and to supercapillary co-
Streaming flow. The eigenvalue problem is solved and an experiment consisting
of two springs in an electric field.is described. This experiment allows for the
calibration of the field coupling parameters to provide for a quantitative
comparison with later experiments. The supercapillary co-streaming class

is then discussed.
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Chapter 5 is a study of counterstreaming jets. The éigenvalue problem
1s formulated for the two modes of symmetry and analytical expressions for
special cases derived. The eigenvalue equation is solved numerically for
the complex eigenfiequencies as a function ongfst;m parameters., ‘

In order to better understand the nature of the counter-streaming
instability, a degenerate counter-streaming jet problem is formuléted and
solved for the eigenfrequencies and the eigenfunétions. Comparisons are
then made with the elect;ic and the magnetic field'coupled cases. Physical
arguments‘are given to explain the static instabilities observed. To obtain
a more physical picture of the dynamics, the linear transient response 1is
computed fﬁrvan initial pulse hndér both stable.an& unstable conditions.
Finally, the problem of counter-streaming electron beams is consiQered and
the complex eigenfrequencies computed.

An experiment for the electric field coupled counter—stre#ming jets
is described in Chapter 6. Thévcomplex eigenfrequency for the lowest mode
is measgred and tﬁe results are compared with-theory.

| Chapter 7iis a theoretical énalysis ofKClass 4, or stream—structurev‘
interactions. The eigénvalue equation is formulated and solved numerically
for the complex eiéenfrequencies in both the electric and magnetic field cases.
The eigenfunctions are computed and discussed. As in the case of counter-
Streaming jets, the degenerate stream—struéture problem is formulated
and solved for the eigenfrequencies and compared with the electric and

magnetic field cases. A physical arguﬁent is given to exﬁlain the observed
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overstability. Finally, the example of an electron beam-cavity device
(klystron) is considered, the eigenfrequencies computed and compared with
the magnetic field case.

In Chapter 8, experiments are described which quantitatively verify

the electric field coupled stream-structure model of the previous

chapter.
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CHAPTER 2
ONE STREAM INTERACTIONS

2.1 Introduction

This chapte; will be primarily concerned with the effects of electric and
magnetic field coupling to a highly conducting, moving, deformable mechanical
body. The structure will be modeled very simply to emphasize the electromechanical
coupling effects. Part of the matgrial to be presented in this chapter has been
developed by J.R. Melcher+, whose active interest in the area of continuum
electromechanics has provided the background and incentive for this thesis. It is

worthwhile to review part of it here to provide the foundation for a discussion of

' two stream phenomena in subsequent chapters.

The various types of field coupled surface interactions will be reviewed to
place the scope of the present work 1n-perspective. The linearized equations of
motion for the highly conducting models will be derived and dispersion relations
discussed. The infinite system stability will be considered by means of a recently
developed stability criterion due to Bers and Briggs?’gln order to determine the
existance of eigénvalue problems, the method of characteristics will be introduced
and apprdpriate boundary conditioﬁs established for the two possible flow
conditions. The eigenvalue problems will be solved and an example will be
given to show that under certain circumstances, boundaries can prodﬁce
instabilities. The long wave nonlinear equations of motion will be derived and
the nonlinear transient reponse foranelectric field coupled system presented.
Finally, thé equation of motion for the longitudinal oscillations of a cold electron
beam will be presénted and the close analogy between parallel field magnetically

coupled sufface waves and longitudinal waves in an electron beam discussed.

tFor an introduction to the subject of electromechanical surface wavéé, the
reader is encouraged to read J.R. Melcher Field-Coupled Surface Waves, M.I.T.
Press, 1963.




The various types of fiéld coupled surface waves have been classified by
Melcher* as being due to either electric or magnetic fields interacting with
surface charges or surface currents. The charges and currents may be either
free or bound, so that polarizablé and magnetizable media as well as conducting
media are included in the classification. This classification is i1llustrated in
Fig. 2.1; the nomenclature is that’used by Melcher.

In the EH1f interaction, a transverse electfic field is coupled to free
charges residing on the sqrface of the media. This imblies a sufficiently high
electrical conductivity so that the relaxation time e/q is small compared to the
time scale of the pfoblem. In this limit, the surface charges are completely
mobile and no electric field exists in the bulk of the material. The electrical
traction exerted on the surface is destabilizing in character, in that a small
upward displacement of the interface increases the electric field, exerting an
increase in the upward traction.

The EHlp model is similar to the free chafée model except that the surface
charges are bound polarization charges. An eiectric>fie1d exists in the media,
but if the pressure is suitably redefined, it has been shown*+ that the
mechanical’equations of mofion are uncoupled from the field equations except at
the interface. Since the surface charge is proportional to the discontinuity
in normal electric field, the polarization surface charge density is weaker than
the free charge density for the same conditions, resulting in similar but we#ker
coupling.

The EH2 configuratien couples a tangential eleétric field to a dieléétf;c
media. Although the equilibrium electric field is the same on each s?de of
the interféce, there is a traction exerted on the iﬂterface‘due to the dis-

continuity in polarization. This surface traction can be modeled as a surface

tSee Reference 34, Chapter 3.
ttSee Reference 34, p. 23.
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polarization current, called tbe Korteweg current, interacting with an electric
field in mueh the same way as Au?erian currents interact with magnetic fields in
magnetic systems. The perturbation electric traction is.stabilizing. - Again the
meehanical and elettrical equationsldecouple.

The MH2f system couples a tangential magnetic field to a highly conducting
media. In this case the currents are aesumed to reside on the surface, which puts
a lower bound on conductivity as in the EH1f mc}c_lel. Here, however, the diffusion
time for the magnetic field (ot curtents) into the bplk of the material must be
long compared to the time scale of the model. The surface tractibn is stablizing
in character by contrast with the EH1f model.

The MH1 model couples a transverse yagnetic field to a magnetic media. This
systeﬁ is enalogous to the EHlp perpendicular field polarization charge case,
and we may consider the surface interaction te be between the transverse magnetic
field and bound magnetic charges. The surface ttaction is destabilizing as in
the EHlp model and the equations describing the two systems are identical.

Finally the MH2a case may be modeled by using Amperian currents flowing on
the surface of the magnetic media interacting with a parallel magnetic field.
Comparison with the EH2 model shows them to be duals, not only in their eonfigura-
tion, but the describing equations and surface tractions are identical in form.

These six basic wave types have been studied by Melche1+and otherﬁ a%g g%l
of the models except the MH1 have been verified experimentally. The problem
of considering all of the two stream interactions for each of the six field
coupled mo&els would indeed be a major task. Some progress has been made on

the effect of a magnetic field on the classical’Kelvin-Helmholtz instability.+

tSee Chandrasekhar for a general discussion of the Kelvin-Helmholtz instability.
Reference 10, Chapter 11.

Tﬂdumu3hcmmus3mdﬂ




=21~

Chandrasekha%ohas considered the case of an incompressible fluid with a dis-
continuity across the interface in density and velocity but not in maFnetic field.
Some»of the restrictions have been remeved more recently by Michael, Northrop,
Alterman? and Se:? Lyogzhas considered the electric field Kelvin-Helmholtz
instability to the extent of deriving dispersion relations for the case where
no free charge is present. |

If the fluid-fluid interface is replaced by two fluid streams coupled bj an
electric or magnetic field, much of the original character of the Kelvinm Helmholtz
interaction is preserved The advantage gained is that simple nondegenerate models
can be formulated which can be solved exactly with both transverse and longitudinal
boundaries imposed, shedding light on the nature of the KelvimHelmholtz
instability, the role of electric and magnetic field coupling, and the effect of
boundaries. Quantitative experimental verification of the electric field coupled
case will be demonstrated to validate the use ef these models. The present work
will be restricted to a detailed description of the two stream EH1f and the
antidual MH2f models. Let us begin, then, with a derivation of the linearized

one stream equations of motion.

2.2 Electromechanical Equations

The model of a highly conducting planar fluid surface stressed by a
transverse electric field or a longitudinal magnetic field was shown in Fig. 2.1.
The equations of motion have been derived by Melcher+ » but because of their use
in considering two stream interactions they wiil be‘derived here. The model
assumes the fluid to be incompressible, homogeneous, and nonviscous.

The fluid eduations of motion may be written
vV =0 (2.1a)

p[g—f' x (VeO)V] +vp = F (2.1b)

tSee Reference 34, Chapter 2.
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where f is the body force density.
Since fluid motions are very slow on the time scale of electromagnetic wave
propagation, the usual magnetohydrodynamic and electrohydrodynamic approximations

will be made. For the quasistatic electric field model, magnetic fields are

unimportant and we may write,

VXE=0 . (2.2a)

v . eoE =P (2.2b)
- P

v . Jf +'SE- =0 (2.2¢)

For quasistatic magnetic field pProcesses, the displacement current may be ignored

in Ampere's Law and the equations become

Vo uOH a2 0 (2.3a)

Vx§=@ (2.3b)

v . 3} =0 (2.3¢)
- augﬁ

VxE=-—2 (2.3d)

2.2.1 Surface conditions
An interface between two fluids is physically a surface that is always

‘composed of the same particles. If F(xl,xz,x3;t) = 0 is the equation which

defines the position of this surface, then %% = 0 is the equation of motion of
the surface, or in an Eulerian description,

F | = |

¢ T VVF =0 | (2.4)

From (2.4) the equation for the unit normal may be obtained. Since this vector

depends only on thé orientation of the surface and not on dynamical considerations

~

N is purely a function of F. We may write, then

A= VF

-IVFl (2.5)
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An important consequence of (2.4) and (2.5) is
NI CACO R ACO R R (2.6)
i.e., the normal velocity is continuous across the interface.
The remaining boundary conditions a;e shown in Table 2.1 and are found by

integrating the bulk equations, (2.1) to (2.3), across an interface.

 Table 2.1 Boundary Conditions on a Material Surface

% ~ Mechanical Electrical
a-[Vl=0 Electric nx[E]=0
1 n [p] - a-[T] =0 B+ [eE] = o,
s Magnetic n + [WH] =0
n x [H] = Rf
n x [E] = (Ven)[uil]

where [Q] = Q(z) - Q(l).
In integrating the momentum equation (2.15), it is convenient to consider

the body force f as derived from the divergence of a stress tensor. We may write,
then+
| ¢ - laB (2.7)

a axB

The quantity TaB includes the Maxwell stress tensor and stresses of mechanical
origin. The writer has foundAit useful for physical understanding of the behavior
of streaming interactions to take the point of view that electric and magnetic
fields exert tractions on suffaces with the #urface'charges or currents that set
up the fields of secondary importance. In this way, the electrical traction plays

a role similar to mechanical pressure. The Maxwell stress tensor may be written

TRepeated subscripts connotes summation.
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1
Electric T =€c¢kEE, -=68 eFEE
aB a B 2 "aR Y y- (2.8)
1

Magnetic TuB = uHaHB -3 GaBuHYHY

1 a=8

where [ =
GB 0 G#B

The only surface traction of mechanical origin which will be considered in
what follows is due to surface tension, which may be written

LI 1,1
Tea = 84 T[R1 + R2] (2.9)

where R1 and R2 are the radii of curvature of two orthogonal curves lying in the

interface.

2.3 The EH1f Planar Jet (free surface charge-electric field model)

The equations derived in the previous section will now be applied to the

problem of a highly conducting f1u1d+ jet stressed by a transverse electric field
(Fig. 2.2). Gravitational effects will be ignored as will variations in the
direction normal to the plane of the paper. The analysis will be further
restricted to small perturbatiéns from an equilibrium configuration, so that the

equations of motion may be linearized. Equations (2.1) to (2.5) become

Mechanical v-V=0
(3 3V -
o, (at +V, axl) +9% =0 (2.10)
Electrical VxE=0
V.E=0 - (2.11)

Since the electrical and mechanical equations are independent, the coupling

takes place at the interface. Taking the curl of the momentum equation

t"Highly conducting” here means that the relaxation time e/o‘for free charge to
the surface of a conductor is short compared to the shortest characteristic time
of the phenomena being considered.
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Physically this equation states that the,vorticity of any fluid element is time
invariant. If the fluid jet exits the nozzle irrotationally, then VxV = 0. In
this case the mechanical and the electrical equations of motion independently

satisfy the Laplace equation

or V'E=0 (2.12)

If wavelike solutions are assumed, the variables may be written

j(wt-kxl)

_Q(xl.xz.t) = Reta(xz)e ]

The solutions to (2.12) may then be written

2 ¥
(f5-6%) () =0 (2.13)
dx2 E1

N, N
From the solution of (2.13) for V2 and El’ the remaining variables may be

obtained from (2.10) and (2.11). For the three regions of Fig. 2.2 the solutions

are
n
Region I E,(x,) = A, sinh k(b-x,) + B, sinh k(x.,-A/2)
Segon 2 1'%2 1 2 1 2
n ‘
E2(x2) = - j[—A1 cosh k(b-xz) + B1 cosh k(xz-A/Z)]
N
Region II Vz(xz) = A2 sinh k(A/Z-xz) + B2 sinh k(x2+A/2)
4" .
Vl(xz) = - j[-A2 cosh k(xz-A/Z) + B2 cosh k(xz-A/Z)]
~ py(wrV k)
p(xz) = - j ———7:———{-A2 cosh k(xZ-A/Z) + B2 cosh k(x2+A/2)]
N .
Region»IIIx El(xz) = A3 sinh k(b+x2) + 33 sinh k(—A/Z—xz)

4"
Ez(xz) = - j[A3 cosh‘k(b+x2) - B,

cosh k(—xz—A/Z)]
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The eqﬁation of an interface is simply
F(xl,xz,t) = xz-E(xl,t) f 0

from which we obtain the normal vector using (2.5)

$o_3 3¢
. 12 i1 axl

n = —— (2.15a)
, 3 7

or to linear terms,

vio-f 2% (2.15b)

(= )

L

The linearized equation of motion of the interface from (2.4) may be written

W&y 2% Ly .o

at o Bxl 2
N
where V2 1s evaluated at the equilibrium position of the interface. Since
j(wt-kxl) : *
E(xl,t) = Re[Eoe ] we have

n, .

v, = j(wpvok)ao (2.16)
The electrical boundary conditions are obtained from n x [E] = 0 at each surface.
Expanding and linearizing (Eo is the equilibrium electric field)

-2 g _E =0
X, ‘o

1 1
so that at the boundaries:
v
E,(3b) =0
n, -
fI(A/Z) = - jkEosol : (2.17)
El(-A(2) = jkEo 502

Substituting (2.14) into (2.17) and (2.16) the arbitrary constants in terms of

the interface displacements 501 and 502 are
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A = -jkEoEol A = -j(m—Vok)Eoz A = JKE EAEA
1  sinh k(b-4/2) 2 sinh kA 3~ sinh k(b-4/2)
(2.18)
J(w-V k)E
= = # -
By=0 ' B, sinh kA By=0

The problem of determining the dispersion equation is now reduced to obtaining
two relations involving 501 and 502. Thése are obtained from the ttansverse

momentum boundary condition at each interface.

2
~ A gy
PR =T —5 4Ty [o, + T22|
9%, A/2 A/2
| , (2.19)
and n A 9 52
PP =T 2Ty oy - Tyl my
9%y ~A/2 ~A/2
From the Maxwell stress tensor,
Ty1 = €E1Ey
1,2 2
Tyy = 7 €olEy = Ej]

To linear terms the shear traction T21n1 is negligible, and the normal traction

becomes

vl o2
T22n2 N3 EO[Eo + ZEOEZ]

The équilibrium electric traction on thegsurfaces of the jet is accounted for by

a2 reduction of equilibrium pressure in the jet from the surrounding environment
1 2

by an amount 2 eoEo.

Substituting (2.14) and (2.18) into (2 19% and simplifying,

n3 € E 2k? coth k(b-2/2) (w~VOk)2
(w—Vok) coth kA - 0, + . 501=- sinh KA %02
- ) n3 € EA coth k(b-4/2)] (¥ )
(w—VOk) coth kA - . + o J 502 = ;IEﬁ_EK— 501

(2.20)
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From (2.20) and Fig. 2.1 it is evident that the X, plane is a plane of symmetry.
If we define the symmetric and antisymmetric modes as £, = + £, = £, (2.20)
A

becomes

3. ¢ E k% coth k(b-8/2)]| [coth(d) S
2 k™T [K) 2
(v k)% = |5 - - z200 s (2.21)
o o tanh'E— A

The consequences of this dispersion equation will be discussed after a similar

relation is derived for the magnetic field coupled model.

2.4 The MH2f Planar Jet (free surface current-magnetic field model)
The analysis for the MH2f interaction is similar to the EH1f case just
considered if the electrical boundary conditions are appropriately modified. In

: 4"
particular (2.14) to (2.16) and (2.19) are unchanged if we simply replace E; by

1

") n ")
H, and E, by H

1'
The electrical boundary condition is ﬁ-[ﬁ] = 0, applied at each surface.

Expanding and linearizing, :

- ;

- ai -
By =By ox =0

where Ho is the equilibrium magnetic field at the boundaries then, /7
L7
Hz(ib) =0
N
H,(8/2) = + jkH_E

n
H,(-4/2) = - JkH €,

This changes the sign of the arbitrary constants A1 and A3, the others remaining

unchanged. From the Maxwell stress tensor

Ty1 = ¥HH,y
1 22
Tyy = 7 €olHy —H ]

To1™
Tyony

peerereC—————eeeiraitees e . & 4w . S NPT TP
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In contrast to the electric field case, the equilibrium magnetic traction increases
the static pressure inside the jet above the ambient value. Qua}itatively speaking,
one copld state that transvers; electric fields pull while longitudinal magnetic
fields push on a highly conducting surface, but these facts are as much connected
with the constraints imposed on the fields as with the type of field.

Making fhe necessary substitutions into €2.19) the following dispersion

«

relation is obtaine@

| [ k4]
2 |w3r uoﬂikz Goth k(b-a/2) | |Oth [ |8 (2.22)
(w-V k)* = [2= 4 ' ka| ® :
o o L tanh'E— A

2.5 The Dispersion Equations

It is evident that the symmetric and antisymmetric modes for each configuration
are of the same form, except for the term tanh kA/2, which depends only on the ratio
of jet thickness to perturbation wavelength. For %A >> 1, (short wave limit) the
S and A‘modes become identical and the interfaces of the jet becomé uncoupled in.
their motion. The jet, then is effectively infinitely thick.

If the thickness A is made much smaller than w#vélengths of 1nteres;,
tanh %A ———*'%A and the interfaces couple strongly.. The right hand side of the
above dispersion equations becomes much largef for the antisymmetric mode
(commonly called kink mode) than the symmetric (or sausage) mode. The symmetric
mode is highly dispersive, even without electric or magnetic field coupling. ‘An
investigation of the modes on a thin sheet of fluid without field coupling has
been carried out by G.I. Taylorso.

On physical grounds, one would expect that the-kink mode should exhibitfy
much larger deflections than the sausage mode, since for a thin jet, the largest
defledtion'which the latter mode can experience before being pinched off is A/2.

It is quite advantageous from the observational point of view to allow the

deflections to become large. Whether linear theory can predict the proper
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behavior for deflections larger than A/2 remains to be seen. Experiments and
nonlinear analysis indicate that the important measure qf nonlinearity is
[£/b-A/2] and that deflections considerably larger than A/2 can be predicted by
linear theory. As a result our main concern will be with the antisymmetric mode.

If the wavelengths of interest are much longer than the transverse plate
spacing (more precisely k(b-A/2)<<1) then the dispersion relations (2.21) and (2.22)

take on a simple form.

EH1f (m—Vok)z - v,Z:k2 - m:
(2.23)
2 2, 2 2 ' :
‘EH2f (w—Vok) = Vtk + mh
where
2 2
v - 2T .- ZEoEo(b-A/Z) . ZuOHO(b-A/Z)
t pd ’ e ~pA » Yy pA

Without an applied field the jet behaves as a vibrating string travelling with a
velocity Vo' To examine the effects of field coupling the dispersion relations
(2.23) are plotted in Fig. 2.3. At high frequencies, the effect of the field coupl-
ing is weak and becomes negligible as w — = independent of the type of field
coupling or the jet velocity. The wavelength at high frequencies is‘short and
the surface tension restoring force, proportional to the curvature of the jet is
strong and dominates the traction exerted by the field. As the frequency is
reduced, the electrical traction is unaltered, but the restring force becomes
weaker, and the effect of the field becomes important.

For EH1f subcapillary systems (V°<Vt) the wavelength is real for all real

frequencies, indicating a propagating wave response if the system cap be excited

in the sinusoidal steady state. For decreasing wave number, a critical value

1s reached at which the frequency becomes complex, indicating an instability

(the type of instability will be determined in the next sectioﬁ). The growth
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rate of this instability increases to a maximum Yalue of w, as k — 0.

The EH1f supercapillary case, Fig. 2.3b, also exhibits an 1nstability at
the same wavelength and has the same maximum growth rate as for subcapillary flow,
kbut an important difference is that if a steady state exists, the system exhibits
a spatial growth or decay for frequencies below w = w . Whether the system
exhibits spatial amplification or evanescence (decay) will also be taken up in the
next section. The”nature of the instability should be gvident; siﬁce the eleétric
traction is destabilizing in character, if the wavelength becomes too large, the
mechanical force is no longer able to provide a sufficient force to restorei
equiiibrium.

The MH2f subcapillary flow mode also exhibits either spatial growth or decay

for low frequency; the supercapillary case, however shows only propagating
behavior. No instabilities are present. This fact is also clear since the
magnetic traction exerts a stabilizing force on the jet. We should now try
to specify more precisely the type of instability and to distinguish between
spatial growth and decay mentioned above.

2.6 The Bers Brigpgs Criterion for Infinite sttem Stability

While this thesis is primarily concerned with electromechanical streaming

Instabilities with finite longitudinal dimensions, it is useful, although
certainly not necessary, to have knowledge about the limiting case when the
boundaries are removed to infinity. Mathematical criteria have been developed
which enable one to distinguish absolute and convective instabilities, evanes-
cent waves, and the direction of sign#l flow in proﬁagating waves. The pfoof

~will be omitted, only the procedure and physical interprg;atiop wi11 be,discussed.+

TFor a clear brief description of the criteria, the reader is encouraged to read
A. Bers, R.J. Briggs "Criteria for Determining Absolute Instabilities and Distin-
guishing Between Amplifying and Evanescent Waves", QPR #7! RLE,MIT, October 15,
1963 pp. 122-130. For a more complete treatment, see Briggs Electron Stream
Interaction with Plasmas, MIT Press, 1964.

———

o P i et o
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Consider a linear, time invariant system, uniform in the spatial dimension x.

3 (wt-kx) are assumed, the solution is described by the

If solutions of the form e
resulting dispe;sion relation D(w,k) = 0 where w,k are in general complex. The
problem then is to determine the meéning of the various dispersion equation
solutions. The procedure consists of two parts: (1) the complex frequencies are
computed from D(w,k) for values of k along the real k axis. Those frequencies
having a negative imaginary part represent, in principle, potentially unstable
waves. Let the most negative value be wige This represents the maximum possible
growth rate the system can have;

The second part of the procedure cqnsists in plotting the complex k loci for
complex frequencies w = w, + jwi, w. istfixed_and wg is increased fr;m a'point‘
. below W, to zero. The behavior of thebsystem at the frequency Qr is determined
by the behavior of the k loci. The frequency w. is then incremented and wg
varied as before. In this way the system behavior is determined for all w..
The interpretation of the loeci is as foilows: for large —Wy s the k.values repfesenf
waves decaying away from some finite source, so that those.k's lying below the kr
axis are waves existing to tﬁe right of the s;urce, those above, to the left
of the source. As 0y is increased to zero, the k's will also move. For k's
originating beloﬁ the kr axis, if a k locus remains below the kr axis when’
w, = 0 it ‘remains a decaying or evanescgnt wave; 1f it lies on'the axis, it is
a purely propagating wave to the right, and if it crosses the axis, it becomes
an amplifying wave or convective instability. TFor k's originafiné above the
kr axis, the same statement is valid, but now they represent waves to the left
of the source. Wﬁether k's from the same side of the kr axis join and split,
or cross the kr axis and return is not important.

The one situation which has not been mentiehed is the merging of a k from

above and one from below and splitting apart, forming a saddle point in the




complex k plane. This behavior is characteristic of an absolute instability. The
imaginary part of the frequency is the temporal growth rate; if the real part of
the saddle frequency is zero, the instability is said to be a static instability;
otherwise it is én over stability; The saddle wave number describes the spatial
character of the instability. |

As an illustration of the procedure, the dispersion relations for the EH1f
and MH2f single jet will be examinéd for stability. There are four plots to be
considered, since the jet may be subcapillary or supercapillary.

Applying the Bers-Briggs criterion, three appropriate values of w., have been
selected and the k loci plotted in Fig. 2.4. From symmetry the plots for ipr
are identical. From Fig. 2.4a the subcapillary electric field coupled jet is
statically unstable at infinite wavelength. This should be expected on physical
grounds, since for k = 0, the surface tension provides no restoring force and hence
the slightest electric field makes the éystem unstable.

If however the jet is moving with a velocity V°>Vt, then while the displacement
of a particle on the jet will grow exponentially in time in the reference frame of
the jet, in the laboratory frame there will be a spatial growth or convective
instability, as observed in Fig. 2.4b.

Contrasting the transverse electric field systems, which are destabilizing
inbcharacter, longitudinal magnetic(fields are stabilizing, exerting a restoring
traction on the jet. If the wavelength is sufficiently long, the magnetic
restoring force effectively overpowers the wave to produce evanescent waves for
subéapillary flow. If the jet is supercapillary hoﬁever, (Fig. 2.4d) the
evanescent wave will appear as a prdpagating wave in the laboratory frame.

It might be pointed out that for subcapillary flow there exists a

saddle point, but it occurs at w = ;h d Vi - Vg s S0 that the system is purely
. . t

propagating. This is the natural frequency at which the infinite system would
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resonate if excited.

2.6.1 Physical interpretation

A physical argument for the Bers-Briggs criterion may help to clarify'the
situation. Consider that the system is driven in a small region of space at a
complex frequency with a lgrge temporal growth rate. If this growth rate is larger
than the growth rate of any absolute instabilities of the system, then all waves
must decay away from the source. This meanstthat the k loci below the kr axis
represent waves to the right of the source, those k's above the axis represent waves
to the left of the source. If the source growth rate is reduced to zero without
the system exhibiting any absélute instabilities, then the system can be driven
in the sinusoidal steady state. Since the identity of each k locus has been
maintaiﬁed, the final poéitions corresponding to w = w, + jo determineé whether
the system is convectively unstable, propagating, or evanescent, by the values
of ki' ‘

If the system exhibits an absolute instability, the saddle.point may be
interpreted as taking place when a wave to the right and a wave to the 1eftvof the
source assume the same k value. When this happens, the source may be removed and
the waves joined smoothly to form a natural mode of the system. If this occurs

for wi<0, the natural mode is unsﬁable.

2.7 The Method of Characteristics

The method of charaéteristics is a very powerful mathematical tool for
propagating systems since it answers two fundamental questions: (1) what type of
boundary conditions does one;ha&e a right to impose on a system and insure
that the solutioné be valid as time progresses and (2) what is the transient
behavior, for either a linear or nonlinear system, to an arbitrary initiallor

driven input. In particular, once the question of boundary conditions has been
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settled, one may wish to investigate the stability of the model in a situation
where it might be quite diffiéult or impossible to handle analytically. What
will be said below is not intended to be a general discussion of the method of
characteristics, but rather an application to the problem at hand.

Consider the second order paftial differential equation

2, .2 2
a2l e s v 2Ly

(2.24)
ax ot

where A, B, C, D may be functions of x,t,E,:%i—-gf but not higher derivatives,
1

and we pose the following question: do there exist solution curves in the x,t
plane such that the partial differential equation may be reduced to the solution
of ordinary differential equations. Such lines are called characteristic lines.

To examine this, factor the left hand side of (2.24)
9 L) ] 9 :
Clart+e 3xllr+8 3le=D (2.25)

where 8, and g, are for the moment assumed to be real functions and define a

dummy variable u equal to one of the factors

E14 13

u = 3t + ) ox (2.26)

The right hand side of (2.26) can be written as an exact differential if'g2 = %%

so that we may write

_3E . B3 dx _ di
“=3% * 3 at T (2.27)

The quantity g, defines a family of lines in the x,t plane and will be designated
2

the physical or type I characteristics. Integrating

: +
x = I gy dt + C; \ (2.28)

Specifying the constant C;, then determines which one of the family of type I

characteristics is being considered.
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Equation (2.27) may also be integrated, using the restriction imposed by (2.28)

along CT ~ (2.29)

+
E = f udt + CII

In general (2.28) and (2.29) must be solved simultaneously.
While we have focused our attention on the second factor of (2.26) it is clear
that either factor exhibits the same behavior, so that there are two families of

type I characteristics and correspondingly two families of type II characteristics.

Summarizing,
+ + +
X = J 2% dat + CI £ = I‘udt + CII along CI
X = f g, dt + CI u = J D/C dt + CII along CI

The solution has thus formally been obtained; although not in a very suitable
analytic form, it is quite amenable to numerical calculation.

Returning to (2.24), if g, and g, are real, then (gl-gz)2 > 0, or in terms of
the original coefficients

B2 - 4AC > 0

The reverse procedure can also be demonstrated. This is the inequality commonly
written which must be satisfied to guarantee that real characteristics exist.

2.7.1 Causality and Specification of Boundary Conditions

If the functions 8, and g, are functions of x and t only, the problem
simplifies substantially, for then the type I characteristics can be found
directly, and hence the type II characteristics. If we anticipate the derivation
of the long wave nonlinear equﬁtion of motion in section 2.10 (equation 2.37)

the above equations become very simble.

+ E _ + +
x (Vo + Vt)t + CI b=2/2 J udt + CII along CI
x=(V - V)t + C. w=w |1 L - L 1de+Co
o t’ I e J(1- —E& )l 1+ —5 o I1
_ b-a/2 b-A/2

along CI
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@{a where Vl(t) = Vo.
! The type I charaqteristics are simply two families of straight lines in the x,t
} - plane and‘can be constructed independently of the type II characteristics.
If one carries out-the necessary integrations of (2.30), what kind of
X boundary éonditions are required to uniquely specify the problem will become
! apparent. Let the type I characeristics be as shown in Fig. 2.5. The type II
equations will be approximately integrated, assuming the time interval dt : At
, and the integrand may be approximated as the average of the values at the ends
of the chatactetistic line segment. Along the C; characteristic we may write

; | 5-(9]):_%/5-@- ~ %[u(C) + u(B)]At

and along the C;-characteristic u(C) - u(A) x %{f(c) + £(A)]At

1 _ 1
2
]

. . where £(P) = wz [——
€ | [1- 20

b~A/2
These equations may be solved numerically to obtain £(C) and u(C). It is assumed

that ¢ and u are known along the axis t = 0; in other words, two initial conditions

( are required to start the sélution° Note that in orde: to have causal solutions
one must integrate forward in time. It is clear that the values of the variables
at C are completely determined from a knowledge of the variables at A and B. The
{ trianglg ABC is commonly calleﬂ the domain of dependence for point C and is
bounded by the characteristic lines Passing through C going backward in time.
Sipce the solution is generatéd by integrating along characteristic lines, a

given point, séy A, can affect all points in space at a later time which lie

‘,,‘

within the characteristic lines passing through A. Such region is called the

range of influence of point A.

One might get the feeling that thevcharacteristic lines are related to the

Propagation of pulses in a system. Such is in fact a valid interpretation.
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FIGURE 2.6 GRAPHICAL REPRESENTATION OF THE EIGENVALUE
EQUATTON FOR THE EXAMPLE OF AN ACTTIVE BOUNDARY .
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In Fig. 2.5 a pulse originating at point A will spread out affecting all poiﬁts
lying within the characteristic lines passing through A for increasing time

and continuing until a boundary is reached. The pulse thus propagates both
upstream and downstream, typical of subcapillary flow (V°<Vt). If on the other
hand VO>Vt (supercapillary flow), the pulse at A spreads out as before, but this
region of influence lies downstream of the original point A. The information at

point A has thus been swept downstream and has no means of returning to point A

~except possibly by means of the external constraints, which shall now be considered.

Consider in Fig. 2.5b that we wish to find the solution at point F (x = L) at
which a boundary exists (point D having been specified). Because of the boundary,

no solution exists for x > L. From (2.38),‘along the C; characteristic
1
E(F) - £(D") x-z'[u(F) + u(d')]At

but there is no corresponding equation for the C; characteristic. In order to have
a unique solution, either £(F) or u(F) (or some combination) must be specified. Only’
one such specification is allowed, else the problem be over determined. Therefore
one boundary condition is required at x = L. If we now consider the solution at
point H, it is evident that the same argument is valid as for F, and again one
boundary condition is requifed. One can state quite generally that for subcapillary
flow the necessary and sufficient boundary conditions are one conditionvat each
end of the system.

For supercapillary flow the situation is quite different. To compute the
éolution at point F on the boundaty x = L from points D and E is straight
forward and follqws in the same way as the calculation for point 6: Since F

is then determined, no boundary conditions may be imposed at x = L. Finally

consider the solution for point H. This point cannot be reached by any
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characteristic lines originating along the x axis between 0<x<L. This means poiﬁt
H ﬁust be specified. We may conclude therefore that for supercapillary flow the
necessary and sufficient boundary condition$ are specified with two upstream and
none downs t: ream.,

2.8 The Eipgenvalue Problem

In the previous section the stability of the infinite system was discussed,
and from the remarks made concerning boundary conditions, a subcapillary jet
possesses boundary conditions at two points in space and hence represents an eigen-
value problem. From the long wave linearized equations for the electric and

magnetic field coupled systems,

Electric Magnetic
2 2 2 2
3 3N 238, 2 3 335, _ 23 2
(GGe* Y 52) 6=V, 2+ ut (Ge+v, 5%) &= Ve T3 - Wk
9K ox
(2.31)

Assuming solutions of the form £(x,t) = Reé(x)ejmt, the equation in k is second

order and has the solution

. -jklx -jkzx
E(x) = Ae + Be
) R -kl -jk,L
For rigid ends, E(0) = £(L) = 0 so that e =e
The only solution is k1 = k2 + 2%1 (2.32)

If (2.32) is combined with the dispersion equation, we obtain a single equation

involving w and L.

Electric Magnetic
2 2.2 2,.2 2 2 2 2 2
2 (Vt Vo) a2 me(vt - V) 2 (Vt - V) o w (Ve = V)
wo= 2 ) - > 0 = 5 @ + ;
v v v v
t t t t
(2.33)

It is clear from (2.33) that the end conditions exert a stabilizing effect on
the eleétric system. In the limit as L — @, we obtain the saddle frequency

mentioned earlier. As L is decreased for fixed electric field, each mode becomes
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stable in turn for

w L
e
= nw
2 2
Ve = Y%

and the lowest mode (n = 1) is the most difficult one to stabilize. The effect of
boundaries on the magnetic coupled jet is to raise the»resonant frequency above the
saddle frequency; the system isrstable.'

These results could have been predicted on physical grounds. If the field is
turned off both electric and magnetic jets degenerate to the same mechanical system.
As field is applied, since the electric traction acts in the direction of displace-
ment, it bpposes the spring restoring force, effectively making it a weaker spring,
and the resonant frequency is decreased. The wavelength of course is unaffe;ted,
since the ends are fixed. The opposite effect takes place for magnetic coupling,
the traction aids the spring tension, effectively stiffening the spring, and the
resonant frequency is increased.

One might wonder 1f the effect of boundaries is always stabilizing in nature;
ie, is it possible that boundaries could produce instabilities where none existed
or increase the growth rate of an instability above the saddle point growth rate?
A simple example helps to answer this questionm.

2.9 Example of a Destabilizing Boundary

Consider a vibrating string with one end_tied down and the other end given
a displacement E(2) = A %i (0). 1In other words, the slope of the fixed end is
deflected and used to fix the position of the opposite end. The constant A is

a measure of the gain of the feedback loop. The equation of motion is simply

2’ o2 2%
a:z t sz

and the solutions are é(x) = B1 cos kx + 32 sin kx
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sin k% _ ./ (2.34)

k2
Equation (2.34) is plotted graphically in Fig. 2.6 for k real and k imaginary.

Applying the boundary conditions, B1 = 0 and

For A/2 < l, there is at least one intefsection point indicating these modes to be
stable, but we should expect to find an infinite set of eigen modes. The answer
is that higher modes have complex k,with one uﬁstable, since w = + Vtk from the
dispersion relétion. For A/2 > 1, even the iowast mode is unstable, since k is
imaginary.

To show that solutions of (2.34) exist for complex k, let k% = B+ja. Equation

(2.34) then splits into the real and imaginary parts

Sigﬁ cosha = A/L (a) and cosg S1BE _ 4/ (2.35)
sinha a
Consider the higher modes, so that B and a are large. For large a, — e /a

is large and cos B ¥ (n + %On. Then from (2.35a),

sin(n + %)'n

G A
(n +l)1r S AR
2

or

a ~ 1ln[(2m + %9w %ﬂ and n = 2m

The argument may be extended for Ak< 0 as well, so that the system is unstable
for any real value of A. Since there is a saddle point which is not unstable
without boundaries, we have a case where the saddle point growth rate is exceeded
by growth rates found with boundaries.

To preview the results of later chapters when the effects of pass#ye
boundaries on two stream systemé will be considered, the author has found no instances
of temporal growtﬁ rates larger than the saddle point growth rate, provided an |
unstable saddle point exists. This is not to suggest that passive boundaries

cannot produce an absolute instability; indeed examples will be given where a
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convective instability in the infinite system is transformed into an over-

stability when the system is of finite length.

2.10 The Nonlinear Long Wave Jet

We would like at this time to go back and take up the question of how large
displacements can become for a valid linear theory, and to considef what effects
nonlinearities have on the dynamics. To derive meaningful expressions for the.two
dimensional model is untractable; but if the analysis is restricted to the lowest
transverse eigen mode, it is possible to obtain useful quasi-one-dimensional
equations. 1In ﬁhis limit the perturbation wavelength is long compared to all
transverse dimensions, so that variations in the x1 direction are sméll compared
to variations in the transverse (xz) direction.

The derivation is somewhat simplified if we take advantage of the symmetry
discussed earlier. Only the nonlinear long wave equation of motion for the
antisymmetric mode will be derived. The results for the symmetric mode indicate
that the system is not hyperbolic and the method of characteristics is not
applicable for the nonlinear transient response.

Since the twoAinterfaces move inAunison for the antisymmetric mode, the
transverse velocity is independent of the transverse cbordinate for long waves.
In addition we should expect that the transverse electric field be independent
of the transverse coordinate because of the very gradual slope of the interface.
The longitudinal field component is small compared to the transverse component.
We shall assume therefore,

| v, #V,(xy)
E, # E,(x,)
and ‘ E n,

IE—]'I << 1, ln—-| << 1

2
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The equation of motion may be conveniently derived by using the integral form of
(1.1) and (1.2), which may be written
3 av + Ven dA = 0
ot e Py
cv (o}
and ‘
g—t[ oTav + § o7 (T -) d +§ pida =3( Tonda
‘ cv CS Cs cs
The control volume to be used is fixed in space. Carrying out the integration of
{ x
2

= > control
volume

the continuity equation

+5x,) - vl(’xl))

0 = o (V) (xy+éx,

or V. is independent of x

1 1°

Next consider the normal component of momentum equation, using the assumption

on the normal velocity.

' 8V2 a2
pA le T + pAVl[VZ(x1+6x1) - Vz(xl)] = 2T ;:% 6x1 +([T21]n1+[T22]n2)6x1
1

The factor 2T arises because the surface tension of each interface makes an equal
contribution. Using the equation of motion of an interface, (2.4 ), the above

equation may be rewritten

2
2T
(—+v —) £==
9x) PA 3x

[:N

-1-5 [Ty, In; + [T,,1n,} ©(2.36)

l—'N

The transverse electric field component may be found simply in the long wave
limit if the field region is viewed as a pair 6f capacitor plates one of which

is slightly deformable. The field is then
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b
vV = - f E2 dx2
AJ2+E
or _
E, = = upper field region
2 b A
-~ 5 -£
2
and

E2 = -——%e——- lower field region
2

The normal electric traction [T22]n2 becomes

1 2 [ 1 1 1
[Typlny =5 €V B 2T A .2
b- 35 -8)° (b= 5 +6) 3E 2
. 2 2 1+ |52
x
1
' 3E
Since the slope of the interface is assumed very small lax l<<1 and may be ignored.
1 .

The shear traction [T21]n1 is clearly of no consequence in the problem. Equation

(2.37) then becomes

2
3 * Y gxl 5 - Ve aaggb-A/z)+ oy [(1_ 1; 2 . lg )2]
X b-4/2 b=-4/2
2 N
2¢ V
where as before V2 = 2T and W= —
t pA A3
pd(b- 3)

We observe that the on1y non1inear term is the field coupling. The velocity
Vl(t) is really a Aecoupled variable and would be specified in the problem. From
(2.37) it is gvident that for 3:575 — ;, the field coupling term can be quite
large and exert a strong destabilizing force on the system. If (2.37) is

linearized, then

. 2 2
3 5 _y23%¢ 2
(—3t + V) a3 ) & Ve T3+ ] | (2.38)
1 3x1

As an example, a transient solution will be computed for both the linear

and nonlinear cases to show the nonlinear effects.
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It should be pointed out that a nonlinear analysis for the highly conducting
magnetic field coupled case follows the same development as above, the only
modification is replace:wi by - mﬁ in (2.37) and (2.38).+

2,10.1 Transient solution

Equations (2.37) and (2.38) were programmed to obtain the transient buildup

using the method of characteristics described above. The jet velocity was chosen
w, (b-4/2)
VO/Vt =3, A sizable electric field was applied C———W;———-
t
convective instability, and the jet was sinusoidally driven at the upstream end of

= 1) to accentuate the

the jet. The solution was continued until the jet collided with the rigid plate.

£ l
boa/2 <4 the

dynamics is predicted by linear theory. As the disturbance propagates and amplifies,

Comparing the linear and nonlinear solutions shown in Fig. 2.7, for

only the crest of the wave is enhanced by the:nonlineerity. It may seem surprising
that such large displacements are predicted ccrrectly by a linear theory which assumes
the displecement to be small compared to the jet thickness and to all wavelengths
of interest, but observations of a jet excited in the kink mode experimentally
bear this out.

If the magnetic antidual of (2.37) is_computed for both the linear and non-
linear equation of motion, virtually no differences are observed since the magnetic

MH2f single jet system 1s stable, the only nonlinear effect is to flatten out

£ _,1
b-a/2 ~ 4°

2.11 Electron Beam Analogy to MH2f Surface Waves

the peaks for amplitudes

It is well to point out that the tecﬁniques employed in studying electro-
mechanical surface waves and the resulting equatione of motion are not restrictec
to that area. An interesting analogy exists between the free surface current
magnetic field coupled surface wave and the longitudinal oscillations of an
electton beam. In fact the cold electron beam in ideal geometry is a special case

of the MH2f model, and the results described in this chapter and those to follow

tSee reference 34, p.53
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FIGURE 2.7 TRANSIENT BUILDUP OF AN ELECTRIC FIELD COUPLED JET
THE JET IS SINUSOIDALLY DRIVEN AT x= 0 .

SHOWING NON-LINEAR EFFECTS.
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@“% are applicable to the analogous electron beam problem. The equation of

5 motion for a cold electron beam of infinite extent travelling with a velocity V°

\ may be written30
2
3 9 - .2
(a: + Vo ax) u mpu

where u is the longitudinal perturbation velocity of the electrons and mp is the

ep . .
plasma frequency, given by ms = ;EQ . Comparing this equation with the magnetic
; o
| form of (2.38)
{ .
! 3 32 223% 2,
o (SE Vo 3;) E=Ve 3" w, &

We observe they are identical in form if the surface tension is suppressed. However,

T

setting Vt = 0 eliminates the subcapillary region, so that only suﬁercapillary

flow is meaningful. The above analogy will be shown to be valid for two streaming

electron beams as well.

Some of the standard techniques used in electron beam ﬁheory will not be used
in this thesis, such as coupling of modes and small signal power theorems. The
reason siﬁply is that they are not applicable'or of little value when considering
3 the coupling of complex waves, which is ‘the csse for most of the electric field
coupled systems. For this reason the author has abandoned the techniques of
Ti obtaining approximate analytical answers for the magnetic systems in favor of
ﬁ’ exact numerical values for both electric and ﬁagnetic systems. Where the
| mathematics is tractable, however, analyticaliexpressions will be given whenever

»;) possible.
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CHAPTER 3

TWO STREAM INTERACTIONS FOR THE
INFINITE SYSTEM

3.1 Introduction

In the previous chapter the interaction of a fluid jet with rigid boun&aries
by means of an electric or magnetic fieid was considered. It was found that two
distinct flow regimes existed: supercapillary%and subcapillary. For subcapillary
flow, surface waves propagate both upstream and downstream, and physically meaning-
ful boundary conditions are imposed, one eech.at the upstream and dowhstream end qf
the jet. A consequence of this fact is_that an infinite discrete set of eigen-

frequencies and eigenvalues (wavenumbers) exist for this systenh This is by

cohtrast:with the supercapiilary flow regime in which both waves propagate in the

direction of flow. This means that two boundary conditions are imposed at the up-
stream end of the jet and that an eigenvalue ﬁroblem does not exist.

We would now like to take up‘questions as to what basicslly different flow
regimes exist when two jets in relativejmotion are allowed to be coupled by an
electric or magnetic field, and what are the ﬁroperties of each regime? 1In order
to ahswer these questions the equations of motion will be derived using the long
wave model to eliminate the transverse dependence from the problem. Later in
the chapter the equations will be rederived without this restriction. The main
effect of not assuming long waves is that the coupling between the jets is re&uced
as the ﬁavelength of the disturbance is‘decreased.

The different flow regimes will be classified making use of the theory of

. characteristics again, to determine the conditions necessary for causal solutions.

It will be;shpwn that there are four basically different flow regimes: (1) sub-

capillary jets,(2) supercapillary jets - co-streaming, (3) supercapillary jets -

counter-streaming, (4) one jet supercapillary, one jet subcapillary. Cases
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1, 3, and 4 pose an eigenvalue problem; case 2 does not. The dispersion félations
of each case will be derived and stability studied using the Bers-Briggs criterion.
As mentioned in the previous chapter, only the highly conducting elec;ric field
and magnetic field surface wave models will be discussed in detail. A small effort
at considering the two stream polarization in;eractions and the corresponding
magnetization interactions indicates the mutual Interaction between the two jets
to be quite a small effect,especially for thiﬁ jets. To the author's knowledge,
no experiments have been done on even the single jet polarization interaction. .
Experiments on any of the magnetically coupled jets at the present time are not
feasible. The remainder of the work to follow will be devoted exclusively to the
behavior of two stream highly conducting jets coupled by an electric or magnetic
field. In addition, because of the much large; interactions bossible, the analysis

will for the most part be restricted to an investigation of the kink modés on the

‘jets, i.e. with both interfaces of a jet moving essentially in phase.

3.2 The Long Wave Equations of Motion

The long wave model for the two stream FH1f and MH2f interaction is shown in
Fig. 3.1. Only the equations for the FH1f system will be derived, since the
MH2f equations of motion are obtained by replacing E2 by - H2 in the field

coupling terms. The basic equations and assumptions are the same as in the

v single jet problem.

The E field under the long wave assumption may be computed simply as:

Region I Region II A Region III
e (2) Yy 3T
E2 = A E2 = E2 = (3.1)
b-a = >~ E,l 2a -A+§2—E3 b-a - 2 + 54

The voltages Vl’ V2,'V3 will be adjustedbso that the equilibrium field in each

region is EO; and (3.1) then bgcoues
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- FIGURE 3.1 LONG WAVE MODEL OF A TWO-STREAM FIELD
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FIGURE 3.2 CHARACTERISTIC CURVES IN THE x,t PLANE
FOR A TWO-STREAM SYSTEM
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L @ o % 3 5%
2 ) 2 £t 2 t,
1- 1+ 1+ :
b-a-A 2a-A b-a-'A
2 2
(3.2)

If we restrict our attention to the kink modes, £~ £ iy £, and
E_ x £3 x 54, the jets behave essentially like elastic membranes, each having

a surface tension 2T. The equations of motion are:

2 2 2 %, (1) )
P1ALGE + Vo1 o, by = 2T 2 t Ty T - Ty,
s | (3.3)
Ao +v 292 _op azg_ s, @ g
P81%¢ 02 3x - 2 2 22 22
1 Bxl

where the jets are allowed to have different surface tensions and densities.
Equation (3.3) is valid for both the EH1f and MH2f systems. The Maxwell

stress Tzz.is given simply by

1 2
Tys = 7 &Fy
so that
1) _ (2 _1 _ .2 1 _ 1
Tyo Tyo 7 =7 5oE, g, 2 EE 2
(1- ) (1- —)
A 2a-A
b-a-
2
@ _ ., (3 _1_ .2 1 ) 1
T22 T2 7 =72 %5 £,¢_ 2 £
A= ez OF Y
) b-a- E

Since our analysis will be limited to small amplitudes, the above equations
may be linearized and combined with Equation 3.3 to yield the following second

order set of equations.
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2 9°E
: 3 3 2 + n 2 __ 12
¢ ot t ot ax ST Ve 272 ey 4T T2 %, &
1 (3.4)
2
2 3¢k
) 3 2 - _n 2 1 2
! =4V, —] £ -V -Sw E =-=° g
‘ ot o2 3x1 t2 3x12 2 e, - 2 e, +
where
| | 2T 2e E> bta- 32
’ \'4 = —-—1’—2- s W = —L— , N = —2
£1,2 1,227 o1, (2a-8)p, ,A b-a- 2
, . i (wt-kx,)
If solutions of the form E(xl,t) = Re{te } are assumed, we obtain
i directly the following dispersion relation.
2 2.2 .n 2 22 0,201 2 2
[(m—Volk) - thk + 2 well[(m-Vozk) Vtzk + 2 mez] 4 welmez 0 (3.5)

Equation (3.4) is in essence two coupled wave equations, the coupling being

provided by the zeroth derivative term. The self coupling term we have seen

before and may be thought of as representing a distributed spring of negative
spring constant attached between each jet and its adjacent boundaries, assuming
the boundaries to be fixed in space. If one of the boundaries (jet) is free to
move, however, then an additional spring term appears, which is the mutual coupl-
ing term.

We observe in comparing the self and mufual coupling terms of a given jgt
that the ratio is simply n, which depends only on the transverse geometry. If
the spacing between jets and between jet and boundary are the same, and if
A << a, then n = 2. This is physically reasonable since if jet 1 (say) is giveﬁ
a small positive displacement, the field is enhanced above the jet and

diminished below the jet, by an equal amount, while if jet 2 is given the

same small displacement, the effect on jet 1 is produced by the change in

the field région between the jets only. This is not to suggest that the self
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coupling term is always ﬁore important than the mutual term. It will be éhéén‘
in Chapter 5, in fact, that in the case of counter-streaming supercapillary jets
the mutual term can produce an absolute instability in spite of the fact that
the self coupling term (in the MH2f configuration) produces a stabilizing effect
on the jets.

Probably the most judicious way of class;fying the flow regimes ié by the
specification of the boundary conditions. The boundary conditions cannot be
specified arbitrarily, as shown in the previous chapter, but must satisfy causality.
The method of characteristic§ is appropriate for handling the systems to be
considered here, since they are hyperbolic in character and possess real
characteristics. The type of boundary conditions that may be imposed, then, is
uniquely determined.

3.3 Two Stream Boundary Conditions: Classification of Flow Regimes

In Chapter 2 the method of characteristics was introduced and it was shown
that for solutions to advance forward in time, the proper specification of boundary
conditions was detgrmined by the direction of the characteristié lines Vo i;Vt.
These lines were independent of the field coupling. If two jets of arbitrary
flow velocity are field codpled it is not immediately clear that the mutual
coupling does not alter these lines. If (3.4) are split into first order equations

as in Chapter 2 we have:

3t Vor * th) 'g';]”;l - v

[%E S th) i?:':5.1“1 - “’:1 76 7" “’21 3 ) 3.7)
5 + Voo + Vtz) =6, = Uy

3+ ¢ Vo2 = Vtz)g_x]"z B "’22 36 =" “’:2 3 31
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The physical (type I) characteristic lines are evidently

dx + dx . +
it = V01 + Vt along C1 at =V 02 Vt along C2
1 . 2
dx - dx -
qc = Vol th along C1 ac = \) 02 Vt2 along C2
and the type II characteristics become:

dg dg

1 _ + 2 _ +
&t - Y along C1 & Y along C2
du 13 du 12
L. 2hy _22 - —2.,2m. 1
e T Ulz b =371 alemsc & Ye,l2 82 =71 alemg G,

The type I characteristics might look as shown in Fig. 3.2. In order to begin the
computation moving forward in time, it is necessary to specify 2 initial conditions
on each jet, say £ and u, and we wish to compute point C. If the increments are

made sufficiently small we may replace the differentials by differences and we

get:
£,(C) - &, (B) ::%tu (€) + u (B)]at
2 n[E1(© oY W] [e:zco + £, (4)
uy (€) - u (&) ¥ { l. 5 _]- > I 5 Jae
£,(C) - £,(B") ¥ [u (©) + uy(B")]at | (3.8)
F; © '+t L] 5 + g @an
u, (€) - u,(A") ¥ w I_ 5 J 5 5 At
From (3.8) the &'s and u's may be found by solving the system of 4 coupled linear

equations.

Since the A's and B's are arbitrary points along the t = 0 line, this method
is valid for any interior point‘C at a time t = At. To continue one step '
further in time, the C's now become the new A's and B's and new C's are computed
for t =v2At, and so on. Once a boundary is reached however, the above process

must be modified. Consider the calculation of point F. Equation (3.8) becomes;
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PR TS

£, (F) = £ (B) = 5 [u (F) + u (B)]at

u, (F) = u (D) = wﬁl (7 L6 (®) + 0] - £ [6,(® + £, 1]

£, (F) = £,(0") = 3 [u,(F) + uy(D') 1At

—

We observe two facts: first the equation corresponding to the C; line is absent,

since the C2 line segment has degenerated to a point. This means that to have a
unique solution it is necessary to specify one boundary condition for jet 2‘at
x = L. Secondly, since 51 and u, are now completely determined at point F, no

boundary conditions may be specified alqng x = L, or else the variables would be

overspecified. Finally consider a point H, (which lies along x = 0). Both C;

and C1 line segments have degenerated to points, and the jet 1 variables are

undetermined so that two boundary conditions must be specified on Jet 1 at x = 0.

Along the C2 characteristic we may write

2 re,m + 6] - £ 15 ) + £ G}
2

uZ(H) - uz(G') = W

Since the C; characteristic does not produce a condition, one jet 2 variable is

unspecified and 1 boundary condition must be specified at x = 0. With points F

and H determined, the computation can proceed without difficulty for later time.

While the selection of characteristic lines was specific, to illustrate
the procedure, namely Vol > Vt and V02 < Vt’ the same technique holds regardless
of the flow conditions. The specifications of boundary conditions for the various
flow conditions is shown in Table 3.1. The method of characteristics is more
powerful than illustrated: the type 1 characteristics need not be straight |
lines, so that the method applies to nonlinear problems as well. Further,
while the ;oupling between the jets‘was proportional to the jet displacement,

the results are unchanged for first derivative coupling in space or time.
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QJ% since the type I characteristics are unchanged. Other flow conditions may(be
placed in one of the four classes specified, by suitable symmetry arguments,

as seen in Fig. 3.3.

TABLE 3.1
Class Flow Conditions No. Boundary Con&itions
Jet 1 Jet 2
x=0 x=L x=0 =x=L
I |V°1|<VT1, |v02|<vT2 1 1 1 1
II V°1 > VTI, V°2 > VT2 2 0 2 0
III V01 > VTI, V°2<— VT2 2 0 0 2
Iv Vi le, |v02|<vT2 2 0 1 1

It should also be evident that the above arguments are independent of whether the

coupling is to an electric or to a magnetic field.

%% With appropriate boundary conditions formulated, the dynamics of field coupled
two jet systems, may be solved. These éonstitute the main body of this thesis.
Class I and classII systems will be discussed in the next chapter, class III,\counter-

streaming jets, in Chapters 5 and 6, and class IV systems in Chapters 7 and 8. It

1s usually not possible to draw general conclusions about the dynamics of these
systems in an actual physical situation of finite length without actually solving
?@) the boundary value problem. Nevertheless, useful information concerning the
behavior of a system can be obtained from a discussion of the infinite system.

In the sections to follow, a brief discussion of the dispersion relations and

stability for the infinite system using the Bers-Briggs criterion will be made.

3.4 Dispersion Relations and Stability for the Infinite System

In order to simplify the discussion we shall consider only the case of
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simllar jets, so that

\Y =V, =V and 0w =w =W
t t t
1 9 ey e, e

and (3.5) simplifies, for electric field coupling, to

- a2 w2 oMo oy og2 a0l '

[ (w Mlk) k° + 2][(m M,k) k- + 2] ;=0 (3.10)
kV, Viio
Vt

The dispersion relation for magnetic coupling may be obtained simply by replacing

where w = m/me, k = Zr—-and M1,2 =

~

2 2

wy by - in (3.5).

L = _ =2 _ =2 _ Mo - =2 _ -2 _n, 1 _

, | [G-mB? -8 - NG -Mp -k - -g=0 (3.11)
_ _ kVt

where now -w = w/mh and k = —.

A simple device for plotting higher order dispersion relations is to plot

the uncoupled dispersion relations, which are simply quadratic expressions in k,w

for the systems considered here. The coupled dispersion relations will be
altered apprecfaﬁly only in regions where the curves intersect in the complex

w plane for real k or for complex k for real w. These regions must be examined
in detail, but the remaining regions are simply determined from the uncoupled
curves. In the material to follow the uncouéled and exact dispersion relations
A are plotted to bring out the effect of the mutual coupling.

3.4.1 Class 1 - Subcapillary Jets

Flectric Field Coupling: Two similar subcapillary jets will always have an

éﬁ intersection point as shown in Fig. 3.4a, independent of the flow velocities.
The mutual coupling splits the curves effectively into two subcapillary jets,

both having the same fiow velocity but different surface tensions. We observe

that there are no spatially growing waves for real frequencies. Also for large
wavenumbers the frequency is real indicating the system is stable for short

wavelengths. As the wavenumber is reduced two of the frequencies merge and become
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complex indicating a potential instability and as k is reduced fufther, tﬁélgécond
pair of frequencies also merge and become complex. This behavior is characteristic
of a single subcapillary electric field coupled jet, which in Chapter 2 ﬁas shown
to be absolutely unstable. We might expect then that in the absence of boundaries
the s&stem should exhibit two absolute instabilities, one being ﬁore unstablg than
the other. Indeed, if we examine the stability for the infinite system using the
Bers-Briggs criterion, Fig. 3.5, we find two statically unstable saddle points:

The corresponding wavenumbers are iméginary, indicating growth in space as weiilrﬂ
These natural modes, if one can speak of natural modes of an infinite system, do
not exhibif wavelike‘chatacter, either spatial or temporal.

Magnetic Field Coupling: By contrast with electric field coupling, the magnetic

field case features the coupling of two systems which by themselves exhibit a
cutoff frequency below which the waves are evanescent. The splitting of the
intersection point results in the formation of two curves which have similar
appearance but have cutoff frequencies above and below the uncoupled value. As
the frequency is reduced from some high value, the waves initially are all
propagating, then two become evanescent and as the frequency is reduced further,

all four waves become evanescent. The system exhibits no instabilities.

3.4.2 Class II - Supercapillary Jets: Co-streaming

Electric Field: If two supercapillary co-streaming jets are allowed to

couple, there are two ways in which the dispersion curves can couple, shown in
Fig. 3.6. 1If V;I/Vt>V02/Vt+2 there is no coupling'éxcept at zero frequency.
The coupled dispersion curves retain esséntially the original character as

the uncoupled jeté; i.e. both jets are convecti?ely unstable at low frequencies,
propagating at high frequencies. Because oé the coupling at zero frequency,

the spatial growth rates are split, one greater and one less than the uncoupled
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FIGURE 3.6 DISPERSION CURVES FOR CLASS II FLOW: ELECTRIC FIELD COUPLING.
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growth rate. The real part of the frequency is the same for both of the growing

! and decaying waves. This has been designated class IIa in Fig. 3.3.
If Vol/vt < V°2/Vt + 2 however, there is a crossing in the real w,k plane.
The result is to produce effectively two supercapillary jets of the same flow
velocity but different surface tensiom The effectively different surface tensions
- result in two different cutoff frequencies for propagating waves. As the
frequency is reduced, two waves become complex exhibiting a convective instability
{ and below the lower cutoff frequency, all four waves become complex. The Bers-
[ Briggs stability plot in Fig. 3.8 confirms the convectively unstable behavior.
{ The essential behavior of both class IIa and IIb are similar.
Magnetic Field: If the co-streaming jets are magnétically coupled there
again exists two subclasses of flow, but as ohserved in Fig. 3.7, the behavior

is quite different for the two cases. For Vol/vt > voz/vt + 2 (class IIa), the

jets have neafly the same velocity and ghe effect of coupling is shown in Fig.
3.7b. Since there are no complex frequencieslfor‘teal k, the system is stable.
Tye dispersion curves, by analogy to the single stream magnetically coupled case,
exhibit purely propagating wave behavior;

The case of two supercapillary streams having much different flow velocities
;f (Vollvt'> V°2/Vt + 2) is of some interest., From Fig. 3.7d there exists a band

of wavelengths for which the systém exhibits instability, and a band frequencies

for which the wavenumbers are complex, suggesting convective unstable behavior.
The Bers-Briggs stability plots shown in Fig. 3.8b verify the pass band amplifica-
tion region. This system constrasts the electric field convective instabilities
previously considered since in the electric field case the unstable region is

at laW’freQuencies.
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3.4.3 Class III Supercapillary Jets: Counter-Streaming

Electric Coupling: If two counter-streaming jets are coupled as in Fig. 3.9b

it might appear that there is little coupling between the two jets, except for
complex frequency near w, = 0. This low frequency coupling behavior was also
observed for weak coupling co-streaming jets, the effect there was to effect a
splitting in the spatial growth from the single jet zero frequency value but the
general behavior is unchanged. If we should draw the same conciusion in the
present case, however, our conclusion would be entirely false. It is true that
if the system were excited at any reel frequency w, the two jets would e*hibit
littlé’mutual interaction, but we are assuming tﬁat the experiment can be pef-
formed, i.e. there are no absolute instebilities.

Because of the unusual character of the dispersion curves, one must exercise
care in attempting to predict stability on the basis of these curves alone. A
test of the infinite system stability in Fig. 3.10a, shows the presencevof two
saddle points, a static instebility of large growth rate and a mild exponential
spatial character and a weaker overstabilitj occurring with a large spatial
grewth and long wavelength. The static instability is quite insensitive
to flow velocity; however if the velocities of the two jets are equal but opposite,
the growth rate of the overstability vanishes and the natural mode is purely
oscillatory. The wavenumber becomes imaginary. The electric field coupled
counter-streaming jets are convectively unstable as well for low frequencies.

Magnetic Coupling: If the counter-streaming jets are magnetically coupled

the dispersion curves couple as shown in Fig. 3.9d. There is a band of ﬁave-

lengths for which the system is unstable, and a band of frequencies for which‘

the wavenumber is complex. Although convectively unstable systems also often

exhibit this prcperty one must again be careful. From the stability plot in

o o w—r 3 . L
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FIGURE 3.9 DISPERSION CURVES FOR CLASS III FLOW. THE MUTUAL COUPLING HAS BEEN
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Fig. 3.10b the system exhibits evanescence in the region where there is cbmplex

k for real w. In addition there is a saddle point showing a mild overstability.

- The spatial character is wavelike and weakly exponential. If the velocities are

made equal, the instability becomes static and the exponential part of the
spatial character disappears. |

It may seem strange that two supercapillary streams, each of which is stable,
can couple to produce an absdlute instability, but such is the case. Comparing
the electric and magnetic field cases, one observes that both exhibit the same
general behavior, although the details are different. It will be shown in Chapter
5 when counter-streaming jets are considered in detail, that the mutual coupling
term is extremely important in determining system stability,

3.4.4 Class IV - Subcapi11ary-Supercap111agz Streams

Electric Coupling: As in the case of co-streaming supercapillary’jets, there
are tﬁo subregions of flow. 1In Fig. 3.11b, in which Vol/Vt > VoZ/vt + 2, the jets
exhibit strong coupling only near zero frequency. This system is quite unique
in that it involves the coupling of a convectively unstable jet and an absolutely
unstable jet. The result from the Bers-Briggs criterion verify that both types
of instability éxisf when fhe jets are coupled, as‘in Fig. 3.12a.

/V_, then

02" 't

there exist two regions of wavenumbers in which the frequency is complex: the

If the jets are more nearly in synéhronism such that Vollvt <V

usual long wave region characteristic of a subcapillary jet, and a second region
at slightly shorter wavelengths. By inspection of the dispersion curve it is
not immediately eyidéht what tybe of instability the latter region exhibits.

The stability plét in Fig. 3;12b shows a static instability as expected and
convective:instability as well. Thus the two subregions both exhibit the

same general'chafacter as seen in the class II subregions. It might séem that

the convectively unstable behavior is inconsequential in the presence of an
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absolute instability, but it is not difficult to imagine that the finite leﬁétﬁ
system could provide the stabilizing mechanism to suppress the absolute instability
and provide the feedback mechanism to transform the convective instability into

an overstability. This behavior not only can occur but has been experimentally
verified, as will be explained more fully in the discussion on class IV systems

of finite length.

Magnetic Coupling: As in the electric field coupling there are again two sub-

regions (Fig. 3.13). The subregionvvollvt < VoZ/Vt + 2 (class IVa) retains the
character of the individual jets, namely a purely propagating jet and an evan-
escent (at low frequencies) jet. For V°1/Vt > V°2/Vt + 2, the dispersion curve
appears quite interesting. For a band of wavenumbers, the frequency is complex
indicating unstable behavior. There is also a band of frequencies for whicﬁ

the wavenumber is complex. This system ig in fact, somewhat analogous to

the class IIb regime discussed earlier. A difference here is that in addition
to the convective instability the system also exhibits evanescence. The stability
plot is shown in Fig. 3.14. >We shall find later, however, that the presence of -
boundaries produces a sharp discrimination between the co-streaming case, which
retains its convectively unstable character and poséesses no natural modes, and

the present case, in which boundaries dictate the existence of eigenvalues.

The presence of a downstream passive boundary is sufficient to turn a convectively

unstable system into an overstability.

3.5 Propagation with Arbitrary Wavelength

Before concluding the chapter, a word shquldnbe said concefning the limita-
tion imposed by the long wave model: The dispersion relations will now be
rederived and coupling examined as a function of wavelength. As in the previous

development, only the electric field coupled equations will be derived.
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We shall use as a starting point the Laplace Equation for both the field

and fluid regions and the irrotationality of the field and fluid variables:

Field Equations Fluid Equations
52E 32g 32y 32y
1 1 - 2 2
: + = 0 + —= = 0
[ 5 2 3 2 ax2 5 2
S| 9% 1 *2
3E 3E v v
T e = O T e = O (3.12)
2 1 2 1
3V v
2 ) 3
plae + Y, 3x1] + ax, 0

These equations were discussed in Chapter 2 and need no further explanation. If
| | | v JCut-kx)
wavelike solutions are assumed of the form q(xl,xz,t) = Re[q(xz)e ]

2

where q is any field vériable, the solution to the field equation of (3.12) is

n
Region 1. El(l) = A1 sinh k(b-xz) + B1 sinh k(xz—a—AIZ)

(2 _
E —-j[A1 cosh k(b—xz) - B, cosh k(xz-arAIZ)]

2 1
"
Region 3. E1(3) = A3 sinh k(a—A/Z-xz) + B3 sinh k(x2+a-A/2)
~ (3)
E2 =-j[A3 cosh k(a—A/Z-xz) B3 cosh k(x2+a-A/2)]
n
Region 5. EI(S) = A5 sinh k(x2+b) + 35 sinh k(a+A/2+x)
a
£, - J[Ag cosh k(xy+b) + B cosh k(a+d/2H0)]

and in the field region

n
Region 2. V2<2) = A2 sinh k(a+A/2-x2) + B2 sinh k(xz-a+A/2)

a 'w\il(z)a-j[Az cosh k(a+d/2-x,) - B, cosh k(x,-a+4/2)]

N(é) p(w—Volk) '
P == [A2 cosh k(a+A/2-x2) - B, cosh k(x,-a+2/2)]
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~
Region 4. V2<4) = A4 sinh k(a+A/2+x2) + B, sinh k(a-A/24x

4 2)

v @) |
= j[A4 cosh k(a+A/2+x2) + B

1
" p(w-V __k)

4 cosh k(a—A/2+x2)]

[A4 cosh (a+A/2+x2) + Ba'cosh k(a-A/2+x2)]

Since there are five coupled regions, ten boundary conditions are required.
In addition, the displacement amplitude of each interface is unknown, making a
total of 14 constraints. Because each boundary is highly conducting, nxE=0
at each interface yields six relations, the equation of motion of each interface
(g% = 0) four more, and the transverse momentum boundary condition the final four
conditions.

If the field boundary conditions at each of the six surfaces and the equation
of motion of each of the four fluid interfaces are applied, the A and B
coefficients defined above may be evaluated as a linear combination of the surface

displacement amplitude.

JjkE £
0’1l
A1 = 51 B1 = 0
2 SA 2 SA
jkE & JkE &
A3 - so 3 B3 - So 2
2 2
A - j(w—dek)£3 s . _'](mr‘l’(_"zlzc)gl+
4 SA 4 SA
JjkE € ‘
0’4
Ay = — , B, 0

1
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YA
%f” where
Sl = ginh k(b-a-A/2)
t | s, = sinh k(2a-8)
! SA = ginh kA
|
| a4
i  From Chapter 2, the momentum boundary condition is: [p = T > + nTzzﬂ.
. 9x
? In order to evaluate the momentum boundary conditions it is necessary to
‘ compute the stress of electrical origin acting on each interface. Since
[ E 2 0 at each interface, there can be no shear traction to first order
tangential
; terms, so that
,\ L, g2
[ T22 2 eoEo + € E E (xz) to linear terms.
Applying the momentum equation at each interface and substituting the A's
) and B's from above the following set of coupled equatiomsis obtained:
&) v 0 T, % E2k2 (v )
2 2,2 2 2,2 :
(w=V .k) e BTk (w-V .k) e Ek .
ol 33X _ oo - 1 o -
= ket o, 1% s, 1t TS, & (b)
2 2,2 2,2
C(w=V k)T e E°k (w=V_.k) e E°k
- D 2y P 22 (e)
A 2 A 2
2 2.2 2 '
(w=V_.k) ¢ E°k (w=V_,.k)
T p p T 4 ] 3
A 1 A
(3.12)

where T, = tanh kA, T, = tanh k(b-a-A/2), T, = tanh k(2a-4).

1
From inspection of (3.12) above, it is clear that the forces exerted

on an interface come about either because of the motion of that interface

(self coupling terms) or because of motion of the adjacent interfaces (mutual

coupling terms). This 1is a result of the fact that the fluid regions are field
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free and the field in one region is effectively screened from another.

Equations (3.12) may be combined to yield the following dispersion relation.

2 2.2 2 2.2 4
(m-Volk) 3T eoEok (uhVolk) 3T eoEok (wFVblk)
! T -k p + p T It T -k p + p T 1 - 2
A 1 A 2 SA
2 2,2 2 2.2 4
(w-vozk) 3 I EOEOk . (u’-vozk) 3 l EOEOk (m—Vozk)
{[ T -k o] + [0} T2 I T -k o) + p T 1 - 2 }
A A 1 SA
e E2k2 2 (u-v k)2 e Ek% (oY k)2 e E22
_( oo ) [ ol _ k3 1_+ 00 ¢ o2 _ k3 E_+ °0 1.9
P Sy Ty PP Ty Ts e Ty T (313

This dispersiqn relation as it stands is not very useful. In order to make
the analysis more tractable, we will assume, on physical grounds, the jets to
be thin compared to’the other transverse dimensions; i.e. %; <€ 1 and E%; << 1.
This assumption allows one to think of each jet as composed of a symmetric and
antisymmetric mode as in the single jet case. If the jet is thin, then, we would
expect that the two interfaces would move in phase (kink mode) or in opposition
(sausage mode) with about the same amplitude.

. Kink Modes: If we add (3.12a) to (3.12b) and (3.12c¢) to (3.12d) and make

the approximation that £ iy £ N £, and £_ Iy &y ~ £,» (3.13) becomes

22 2 2

e Ek e Ek

2 A 3T 0o 1 1 0 0
-V K TS -k =+ [+ =1}e, = ——— €

ol 2 P 20 T1 T2 + 2082 (3.14)

2.2 2 2

Ek e Ek

2.8 .37, %% 1 .1 _foo
{V 0" T 5 - k7 -+ =50 ['rl""rz”g- 265, Ey

Sausage Modes: If (3.12a) and (3.12c) are subtracted from (3.12b) and
i n
(3.12d) respectively, and the approximation E+ " 52 iy El and &_ v £3 o 54

is made, we get
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2 2.2 2,2
(w-Volk) _ 3T, e Ek '[l_.+.l_]}€ ) R .
TA/2 p 2p T1 T2 + 2952 -
, (3.15)
2 2.2 2,2
(w-V k) _ 3T, e Ek L, 1_]} ) e E k .
TA/Z o] 2p T1 T2 - 2pS2 +

The above approximation is not a long wave assumption, but rather a statement
that the two fluid boundaries of a given jet are much more strongly iﬁfluenced by
each other than by the rigid plates or the other jet. If the mutual coupling terms
are suppressed in (3.14) the equations decouple and become the dispersion relation
for a single jet (2.21).

To simplify (3.14) and (3.15) further, chsider the asymptotic behavior
at short and long wavelength. Since there are two transverse dimensions, there
are several possible limiting cases. For very short waves, kA >> 1 and as in the
case of a single jet, the two surfaces of the jet decouple from each other and of
course decouple from the other transverse boundaries. Frém (3.14) and (3.15)
it is evident that the mutual coupling becomes exponentially important as the waves
become long. For short waves the coupling approaches zero and each jet behaves
independent of the other.

Long Wave Approximation: Since the interest here is to study the interaction

of one stream on another, the long wave region is especially important. If the
approximation is then made that the wavelengths of interest are long compared
to all transverse dimensions, then the hyperbolic functions in (3.14) and (3.15)

can be replaced by their argument apd we obtain
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f

, 2 2
w'n w
Kink modes [(w-Volk)2 - kzvi + _§_15+ = EE £
wzn wz (3.16)
2 2,2 e - e
[rVgph)™ = KV, +571e =5 &,
: 2 2
2 wn 2 w 2
2 _ 22 kA Vel kAt Ye kA
Sausage modes [(o-V k)7 - k Ve G + > G ) le, =5 GO &
2 .22 kA’ “’ﬁ“ K, 2 ‘“Z kA, 2 o
[V k)" = KV D) .+ = G 1 =5 G g
2 - 34
here v2 2 22 2 2% o Mo
t pA’ e pA(2a-h) b A ¢
The equations for the sausage and kink modes are similar in form except for the

2
factor é?% appearing in the force terms of the sausage mode. Since now kA << 1

the forces are small. Equations (3.16) and (3.17) are the same as (3.4) if a
wavelike solution is assumed. There are thus two points of view which one can
take in deriving the equations of motion. One can postulate a long wave model
and solve the considerably simplified field equation. It might be mentioned
that the nonlinear equations are available from (3.3). Alternately the lineaf
two dimensional model ﬁay be solved exactly and regions of interest examined.
In this light the long wave limit is simply the first term in an infinite

expansion of the transverse eigenmodes. In either case the long wave kink modes

will be the subject of interest for the remainder of this thesis.
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CHAPTER 4
CO-STREAMING SUBCAPILLARI AND SUPERCAPILLARY FLOW

In the previous chapter it was found that the varioﬁs two stream flow regimes
could be divided into four classes. Two of these regimes, co-streaming super-
capillary jets and two subcapillary jets, will be presently investigated. It was
shown that for two subcapillary jets; causal solutions are obtained only when one
boundary condition is applied at each end of each jet. This is the same conclusion
that would have been reached if the jets were uncoupled. In fact, it was shown
that for spring-type coupling (characterized by either electric or magnetic field
coupling) the coupling plays no role in the specification of boundary conditions.
For supercapillary co-streaming jets two boundary conditions are appropriate at the
upstream end of the jets.

Boundary conditions at more than one point in space imply that the system

possesses eigenvalues. If both jets have the same flow velocity, the system splits

into two symmetry modes, each mode possessing dynamies similar to that of a single

jet of the same flow velocity but different coupling co-efficients. The special
cases of two stationary jets and two supercapillary jets of the same flow velocity
are studied here. Experiments which support the model for the former case will
be discussed.

We shall use as a starting point the lopg wave quasi-one-dimensional model of

two streaming similar jets, equation (3.4).

) 2 2 297 2 n “’2
¥ Vora Ve 2 %21 0i"" 28 (4.1)
2 2
Y 34 _y23__ 21 =
Gt Vo250 ~ Ve 2wl T m e g
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If we now set V°1 = V°2 = Vo, we observe that both equations of (4.1) are ideﬁtical
if 52 = % 51. These then are general solutions and represent the symmetry modes of

the system. The + sign will be called the symmetric mode while the - sign refers

to the antisymmetric mode (hereafter for convenience the S and A modes reépectively)

and are shown in Fig. 4.1. Equation (4.1) becomes

2 2
3 3 3 _y225 _ 2ml .
[(at + Vo 3x) Vt axz Ye T2 ] ES 0 (4.2)

A
When the symmetry modes are being discussed together, the upper sign will refer to
the S mode. We recognize that this equation is of the same fo:m as (2.38) for a
single jet between rigid plates, with the modification that the coupling co-
efficient is altered, bécoming larger for the S mode and smallér for thg A .mode
than in the single jet case. This type of behavior is quite common in lumped
parameter systems in which two identical components (two oscillators, for example)
are coupled together, producing symmetry modes whose behavior lies on either side
of that of one component by itself.

Since the equations of motion decouple into two secﬁnd-order systems, all of
the techniques described in Chapter 2 are valid. In particular, there are two -
distinct flow regimes, Vo < Vt (subcapillary flow) and VO > Vt (supercapillary flow).
The dispersion relation corresponding to (4.2), (assuming solutions of the form

ej(wt—kx)) is given by:
2_ 22 2nel_
(w—Vok) Vtk + w, 0 (4.3)

and is of the same form as the one stream interaction of Chapter 2. We observe

that at point a of Fig. 2.3, the two values of w merge as k is varied. Solving

(4.3) for W,
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w=vkt A2 - 20t
o t e 2

so that at the cutoff frequency the radical must vanish, or

€

Kk =-2 /Nt
a Vv 2

(ag

and

For values of k below thiscritical value the frequency becomes complex. From the
discussion of the previous chapter, for subcapillary flow the system exhibits a
static instability. Sincé the k values are the same at the saddle point, solving

(4.3) for k

k = /2v2 (v vz) 2 -'J—/ (v '2:) (4.4)

2 2
VoVt
we obtained at the saddle point,

- - / _u2 jy2 Nl
W jme (1 Vo/Vt) >

and

./1-v§ /vi .
We observe that the symmetric mode is more unstable than the antisymmetric mode.

The effect of jet velocit& on the saddle point is interesting. At zero
velocity the system is at maximum instability and the wave number is zero
(infinite wavelength.) As the velocity is raised to Vt, the temporal growth rate
is decreased to zero but the spatial growth rate is increased to infinity as Vo

approaches Vt.

For Vo > Vt, the Bers-Briggs plots exhibit a convective instability for the
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2, ntl

range of frequencies 0<w:'< wevo V(I-Vilvo) 5 - The maximum spatial groﬁth

Vt
rate occurs at zero frequency and is given by

jwe -
kmax =
2

o

o[

4

(o}

As the jet velocity is decreased to Vt’ the spatial growth rate becomes infinite.
The point Vo = Vt then physically represents a transition at which spatial growth

1s transformed into temporal Erowth.

4.1 Boundary Conditions for Identical Jets .

We may take advantage of the symmetry of the system to state that the boundary
conditions must apply in the same way for each jet; i.e. for subcapillary jets, one
boundary condition is applied at each end of each jet, while for supercapillary flow
two boundary conditions are applied at the upstream end of the jet.

The solution of (4.2) may be written:

Jut -jklx -jkzx

E=e [Ale +A2e ]

Applying the B.C. for subcapillary flow that E(o,t) = £(L,t) = 0 we obtain the

following determinantal equation

1 1 Al 0
-jk,L -jk.L -
e 1 e 2 A2 0
‘ -jle -jkzL
For a nontrivial solution, the determinant must vanish, or e = e
2nm v ’
This meays that kl = k2 + 1 (4.5)

Combining (4.5) with the dispersion relation yields the eigenfrequencies and

eigenvalues. Inserting (4.5) into (4.4) we have




|
xg . 2 wV w +w

2 2. 2 nz]
T o) e 2
ED = ( ) -
L 2 2 2 .2
; / Vo_vt Vo Vt
Solving for wzz
2 2 a2ty [ (RvDy @Y 2 nl, (4.6)
w o' 't t oL e 2 '

At zero electric field the resonant frequency is given simply by

2 2
= Vt-Vo o
Y Vt L

As the'electric field is increased, the resonant frequency is decreased to zero at

[ the critical field value given by
nil
Yec 2 @y (4.7)

We observe that the fundamental mode is the first to go unstable and that the

symmetric mode becomes unstable at a lower critical field than the antisymmetric
mode. The complex eigenfrequencies are plotted in Fig. 4.2, where w and L have

been normalized to

- Vt _ Lwe
w= :r' and L=
e /VZ_VZ /VZ_VZ
t o t o
and (4.6) becomes
-2 2
w o= &5 n:l (4.8)

4.2 The Two Spring Experiment

In order to test out the theory bresented in the previous sections, an
experiment was devised to simulate two identical jets of zero velocity making use
of weak‘springs (having approximately the same linear density although a consid-

erably higher tension than the surface tension of liquid jets). This experiment
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“sappLE

FIGURE 4.2 COMPLEX EIGEN FREQUENCIES VERSUS NORMALIZED
LENGTH FOR ELECTRIC FIELD COUPLED SUBCAPILLARY JETS.
ONLY THE TWO LOWEST SYMMETRIC AND ANTISYMMETRIC MODES
ARE SHOWN.
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serves the additional purpose of providing a quantitative evaluation of the ééﬁpling
parameters.to be used in the experiments of later chapters. Two springs of the

same spring constant and mass were stretched to the same tension between horizontal
rigid supports. Rigid rods were placed on either side in order to establish
electrical equilibrium. A d.c. voltage was then applied to the springs‘and plates.
By carefully adjusting the outer plates, it was possible to establish electrical
equilibrium using a single voltage source. The positions of the springs were

5 detected by means of phototubes placed above the springs; the springs were illumi-
nated from below by a single small but intense source of light. The phototubes were
calibrated and it was found that the voltage output versus spring displacement was

3 linear over the useful range of the phototube (about 75% of the cathode length or

3 cm.) which allowed for a maximum peak to peak spring amplitude of about 1.0 cm.

before the output waveform would be sharply clipped.

The question of whether spfings can be used to provide verification for a
pianar model is well taken. What will be shown below, in fact, is the the dynamics
are predicted properly, but to provide ﬁuantitativelagreement,that sglf and mutal
coupling co-efficients must be measured experimentally. Since the two-spring

experiment can be performed quite accurately, this experiment will be used to

dynamically measure these co-efficients for the experiments to be described in this
and later chapters.

The theoretical model used to predict the experimental behavior, is strictly
speaking, incorrect. The effect of gravity cannot be ignored, even though the
springs are stretched in the horizontal plane. Sincé the springs were stretched
only slightly the sag in the springs is appreciable. To eliminate this, each
spring was supported by fine insulating strings at several points along its 1ength

to make the springs line up horizontally with the plates. The support strings,
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) however, introduced a restoring force given by -pnrzg/zg since then a sprihg acts
!as a continuum of pendulums as well as a vibrating string.
If this term is included into the eéuations of motion, (4.1), we get, after

|

|

l setting V.. =V _ =0
(

ol o2
2
2 2 2 w
[az-viaz-w§§+“’1]£1--—§£2
ot ox
2 (4.9)
2 2 2 w
3 _y23 _ _ 2n_ 1xg - - &
-V 7 w2t 11§ 2 &1
9x ax
It is evident that the pendulum correction term does not affect the symmetry of the

vsystem. The dispersion relation for these modes then becomes

i e

2 _vA? . 2r‘—*1-"—"2&--0 (4.10)
@ t Ye 72 2 '

2 nl 2
2 = y2 (Om _ 2 T g
Wt = vy (D) wy 5+ (4.11)

—_— i o

The most accurate dynamical measurement which can be made on the springs
1s that of the resonant frequency. From (4.6) we observe that wzm-wi(ntl); a
plot of the frequency squared vs. voltage squared should yield two straight lines
of negative slope. The experimental data is shown on Fig. 4.3 and is seen to
( » follow the predicted behavior. At high voltage the equilibrium positions of the
springs were displaced which account for the deviation of the curve from a
straight line. It might be mentioned in passing that the Q of a spring is high
(0(10 )). As a result the resonant frequency is sharp, so sharp in fact that
drift in the oscillator and voltage supply and the errdr in reading the frequency

from the oscillator dial become the limiting factors in determining the resonant

frequency.

From Fig. 4.3, we may determine the values of the coupling parameters Wy and n-
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From (4.11)

2 2
b 3
f2=vi“—5-w§"—1 12+ET§ (4.12)
4L (2m)
.2 ntl
Setting we/2n = AV, the slopes of the curves become A -
If the slopes are defined as Ss and Sa then
ss/sa+1
n=357/s -1 1.765
s'"a
and
2Ss cps
_— ’01
n+l 101 kV

These may be compared to the theoretical values for the experiment

bta- %A
n = A = 1.915
b-a- <
2
2n pA(2a-A) kv

One should not expect these theoretical values of n and A based on a planar jet
theory to agree with experimental values, since the geometry here is considerablyb
different.

From the above discussion, the inclusion of the péndulum term had no effeét
on the_determination of the coupling parameters Wy and‘n. This is not to say
that it can be ignored, however. If f2 is plotted vs nz, for example, with no
electric field, it is found that the experimental data does in fact lie on a
straight line but not passing through the origin, verifying (4.12). The pendulum
effect will becomg important in spring-jet intéractions, discussed in Chapter 8.
4.3 Co-Streaming Supercapillary Jet;:

IfAthe two jets have Vo > Vt the dynamics are entirely changed. In this case,

the jets can exhibit spatial growth but not temporal growth, since disturbances
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which would tend to grow on the jet are swept downstream faster than they would
propagate upstream. The solution of (4.2) may be written

v -jk.x -jk.x :
£ = Re {ejmt (4, e L A, e 2 1} (4.13)

Since there are no absolute instabilities, the system may be excited in the-
sinusoidal steady state. If we now impose the boundary conditions
g‘l(ost) = 0 EZ(O,t) = (0

351

K(O,t) = fea

jut 2 -
% (o,t) 0

If (ﬁ.4) is used to eliminate k, and k2, there are two forms of the solution

1
depending on whether the driving frequency is above the cutoff frequency (k's real)

or below the cutoff frequency (k's‘complex). Then
sinBgx sinBAx j(wt-Box)

¢]
£, = Re{— + e
1 2 |8 By _
sinB.x  sing x| j(wt-B_x)
0 S A o
E, = Re{- + e : } w>w
2 2 | 8g By _ a
sinhB.x sinhB8,x | j(wt-B x) ' '
[E] S A o
£, = Re{=~ + e ] (4.14)
1 2 | 8 By |
[sinhB_.x sinhB,x| j(wt-8 x)
gy = Refy |t e ’
. S A
where
on
B =
o 2 .2
Vo Ve
and
2,2 _ 2 _ g2, 2 ntl
. WV = (V) - V)w,
S VZ VZ
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As can be seen, the symmetric and antisymmetric modes are equally excited at

x = 0. For w < w5 however, the S mode exhibits a larger spatial growth and
for lérge x the system has the appearance of the symmétric mode only. This has
been observed expérimentally.

4.4 Physical Inte:pretatign of S and A Mode Instabilities

The cause of the S and A mode instabilities can be explained by a simple
physical picture. Suppose in Fig. 4.1 that jet 1 is displaced upward from
equilibrium while jet 2 is fixed. Then the electric field in region 1 is increased,

in region 2 decreased and the net traction on jet 1 is given by T='%E°[E§1)2—E§2)2]

or —~ -
S 1 ) 1 " ot L
2 oo 51 51 2 ~vo (2a-4A) 2001
1"( A ) (1+ Za—A)
b-a- 5 _

|

to linear terms. This is the traction on a single jet between rigid plates. If
jet 2 moves downward the same amount that jet no. 1 moves up (S mode) then the

electric field in region 2 is decreased further and the electrical traction

bgcomes B ]
Lol g2 1 ) 1 " 28oE ni
S 2 oo El 2 251 2 v 2a -A 2 1
1-( A) 1+(23"A)

Similarly if Ez = 51 (A mode) the field in region 2 is unperturbed and the

traction is - T
. 2

2 1 n 26oEo n-1

oo £1 2 v 2a-A 2

51

b —

b-a- %

If each field region is of equal width, n = 2 and
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%
]

Cl

‘Q»‘ i/t = ﬂfl = 1.5
’ rA/r = n—;l- = 0.5

This represents a sizable change in the electric traction on a jet. Since this
term is responsible for the destabilization of the jets,'whether subcapillary or

supercapillary, the symmetric mode will be more unstable, the antisymmetric less

e

unstable, than the single jet between rigid plates.

4.5 Mapgnetic Field Coupling

The previous sections have been devoted to electric field coupling primarily

because the effects are physically more interesting and the theory can be compared
with experiment. Much of what has already been said can be equally well applied
to magnetic field coupling. Since the magnetic field equations can be derived

simply by replacing mz by -mﬁ (4.1) becomes

i 2 2 o 13
2,y 342_232 2w, 25
} (G + Vo1 30) -~ Ve o tu g Ty 3
2 2 £
5 .. 332 232 2 _2f1

(5 * o2 o Ve 2 h 218y = 3 (4.15)

letting V and V , = V_ we obtain
ol o2 o

[(%;""Vo'a—x'] -V T3ty 5l =0 (4.16)

: and the dispersion relation becomes

2 2 2 ntl
2

[m-Vok]z - v - =0 A | (4.17)

We observe that the equations are similar to the single jet case so that there
1s evanescence for subcapillary flow and purely propagating waves for super-

Py capillary flow. The cutoff frequencies for subcapillary flow is given by:
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2
;, v
) o \/nil - o
f_ Yoo TL 4 V3 1-5

: Vt

~and the corresponding wavenumber is

Since what has been said about the single magnetic field coupled stream and
}3 the co-streaming electric field coupled jets carries over to the present case,

it requires no further discussion.
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CHAPTER 5
COUNTER-STREAMING JETS

As pointed out in Chapter 1, the problem of counter-streaming flow arises
in several areas of research. The well known Kelvin-Helmholtz instability in
fluid mechanics is an example ‘that occurs when two incompressible fluid§ are in
relative motion. In electronics the problem of counter-streaming electron beams
is being investigated and in solid state plasma research counter-streaming flow‘
of holes and electrons is at least the subject of speculation. In this chapter,
the dynamics of two counter-streaming supercapillary jets will be considered. In
all the situations of which the author is aware, counter-streaming flow leads to
absolute instabilities. It will be shown later that for spring-type coupling
the mechanism fot instability is the counter-streaming convected momentum.

The dispersion relations and stability will be discussed using the Bers~
Briggs criterion. Since the instabilities are long wave, we should expect the
gffect of longitudinal boundaries to exert a large influence on the stability
of the system. The boundary éalue problem is formulated for the particular

case of equal but opposite flow velocities. This choice leads to symmetric

and antisymmetric modes (the symmetry here is different from that discussed in

the previous chapter) and the complex eigenfrequencies and the corréspohding
eigenfunctions computed. It is found that boundaries do indeed play # large
role in prediéting the stability of the system. Because the problem is of
current interest, the eigenfrequencies for longitudinal oscillations of counter-
streaming electron beams are also presented.

To show the'dynamic behavior and development of an instability, the me;hod
of characteristics has been used to compute the transient response for both

stable and unstable conditions.
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The starting point will again be the long wave model equations derived
in Chapter 3.
In order to simplify the analysis, we shall restrict ourselves to the case

Vol = - V02 = Vo in order to take advantage of the symmetry of the system,

‘and (3.4),becomes

2 2 w “mz
3 S A 23" & _e
(Ge+%m) -V 2 21T T &
5 (5.1)
2 2
2 2 wn w
3y Lyl __ e _e
(G- %5 -~ % 2 205777 &
x
We observe that if Ey= :51,1(5,1) reduces to the single equation
| 2 2 a2 m:n wz
(Gr+v ) - v oz T 2 1R =2 g Cxn. (5.2)

These represent the symmetry modes of‘the system, designated the symmetric mode
for Ez(x) = - 51(-x) and antisymmetric mode, Ez(x) = El(—x), (hereafter the S
and A modes respectively). As observed in Figure 5.1, the symmetry is about

the drigin in contrast with the longituéinal axis symmetry of co-streaming jets

discussed in the previous chapter. Since two boundary conditions are to be

specified at x = - L for jet 1 and two at x = L for jet 2, the boundary‘conditions'

also satisfy the symmetry condition. ' . St

The dispersion relation corresponding to (5.1) is:

. 2 4
2_,22 . 2n 22 %" Y _
[(m—Vok) Vek® + wg 2][(w+V°k) - kT + = ] 7 0

or in powers of k,

4 22 4 n2-1

(Vg - Vz)k4 + kz[m:n(v - V )— 2w (V +V )]+ w +w wg +m = = 0

(5.3)
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We observe that the dispersion equation is biquadratic in both w and k; cﬁié
is a consequence of the two flow speeds being equal. The character of the
dispersion relation is similar to Fig. 3.9. There appears to be little
interaction of the two streams except near zero frequency.

From a sketch of complex w for real k shown below, the w values ére at
first purely real, join,and branch out in the complex w plane as k is increased
from - to 0, Point a represents a joining of two waves on the same jet. As k
is decreased further, a second joining occurs, at w, = 0 and the.roots become
pure imaginary at k = 0. <This.second splitting is a result of strong coupling

between the waves of one jet and those on the other near zero frequency,v The

~locus for k > 0 1s the same as shown with the arrows reversed. Point a

represents the maximum real frequency at which instability can occur, while

wg = - j we¢ ﬂ%l represents the maximum possible rate of growth of instability

for the system.
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From the Bers-Briggs stability plot at right, the saddle point frequeﬂtyv
corresponds to this maximum growth rate. The instability is s;atic and the
corresponding ks = ). To observe the effect of differént jet vtlocity, compare
this sketch with Fig. 3.10&. Because the instability wavelength is infinite,
we would expect longitudinal boundaries to have a significant effect on the
s;#bility of the system. Wé observe further thét #s the voltage is decreased
to zero the :emporal growth is reduced to zero, but t;; systeﬁAis‘étatically
unstable for any value of applied field. This should be expected since there
is no‘stabilizing force for long waves.

If two counter-streaming jets are stressed by a small E field no instability

is observed experimentally; the stabilization must come, therefbre, from the

boundaries.

5.1 The Eigenvalue Problem, Elsctricggigld Coup}iﬁg

Since boundary conditions must be imposed at two different poinfs in space
the system possesses eigenmodes. This system is peculiar; howevef, in that
each jet is free to move at its downstream end. Furthermo:e,Atwo couhter-
sfreaming jets 1s an example of a system.e;ch:component of which does not posséss
eigenvalues but when combined leads to gigenvqlues. ’
| To determine the natural modes of the system, each jet will be assumed to

enter the interaction region unexcited.. The boundary conditions are

£ (-L,t) = Ey(L,e) = 0

&, 38,
-5;—(-L,t) = 3% (L,t) -.'VO

(5.4)

Because the boundary conditions involve both El and 52 at different points in
space,‘theisolution of the determinantal equation appears difficult.

However, since this eéuation satisfies the symmetric and antisymmetric mode

X
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requirements of p.101 the symmetric and antisymmetric modes exist for the‘Bounded

problem. This results in splitting the determinantal equation into two second

order sets of two boundary condition equations. | |
From (5.1), assuming a solution E(x,t) = Re{é(x)ejmt}, we have

- fk,x -jkzx'. ik

£ (x,t) = Re{[B, e +B,e 3 ] Jut)

where the k's are determined from the biquadratic dispersion relation, (5.3).

The solution for jet 2 is obtained'fromi(s.l)

2

e 2 2 nw

- -2 a." 24" ___e,: Jut

£, (x,t) Re{ = [Go+ vV o v, 272 1€, (x)e }
e X

e

To obtain the solutions in simpler form, 51 and 52 may be written as a lihear

‘combination of odd and even functions of x.

El(x) = A16 1(x) + A26 1(x) + A36e2(x) + Aaéoz(x)

42 dE. (x)
: - __ 2 g_ 2 1
and £, (%) ¥ o (v V) 5o 2 + }El(x) 2 (23uV ) (5.5)
e Ye
+
where
Gél’z(x) = cos Bl’zx cosh a . zx - j sin 8 X sinh ul’zx
Gol,z(x) = cos Bl'zx sinh “I,Zx - j sin Bl,zx cosh °1,2x
and k), =Bt
This is a consequence of the biquadratic dependence of k on w.
' - - A S
Applying the symmetry conditions £z(x)-'= + 51(-x) (o) mode we get
' El(x) f A1[6e1§x) + Pléol(x)]'+ A3[6e2(x) + P26°2(x)]
where ‘ (5.6)
2 2,2 2 2 ntl
: o +ky 50 = VD) +u, "5

1,2 24V k; 5
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Substituting the boundary conditions (5.4) into (5.6), the following eigehvalue

equation is obtained:

e [T, 8 1 (=8 ) (LYI[=Tp8 o (LI+5, (L) 1k, [=T 8 ) ()48 3 (LI VIT 85 (L)=8 5 (L) 1=0

(5.7)
This equation combined with the dispersion relation yields an expression
A(m,Vo,Vt,me,n,L) = 0 which in principle can be solved to obtain the complex eigen-

frequencies as a function of the parameters of the system. If we restrict our

' analysis for the moment to investigating only imaginary eigenfrequencies then (5.7)

can be reduced to an equation of purely real quantities. Froﬁithe dispersion ;

relation, the k values are either real or imaginary, divided into three subregions.

Region III Region II Region I :
| — -
e 2 e 2
4 imaginary roots 2 imaginary roots 4 imaginary roots
2 real roots
k=_-|_-_ja:l,_tja2 k-ija,itﬁ k=ija1,ija2
Regions I and III Ge(L) — cosh aL
GO(L) — sinh alL
"and (5.7) becomes
ul[rl-T(ulL)][-PgT(uzL) + 1]-a2[P1T(01L) + 1][P2-T(a2L)] =0 (5.8)
where '
T(x) = tanh x
and
2 2 2 2 2 nt
W + %,2 (Vo ~ Vt) = Ve 21
r = 2 — <
1,2 _ 2Vomiu1,2
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Region II 601 + ~ j sin BL GOZ(L) -+ sinh(al)
602 + cos BL GeZ(L) -+ cosh (aL)
.and (5.7) reduces to
I "
B[?— cosBL - sinBL][—PzT(aL)+1]-a[~3- sinfL + cosBL][FZ-T(aL)] =0 (5.9)
where
2 2.2 2 2 ntl 2, 2.2 2. 2 ntl
ro- g fifB (V-V)-u, =5 d T - wi+a” (V =V -u, =5
1 2V w,B 2 2V w,a
oi ol

These limiting cases provide a check on the general solution found by
solving (5.7) using the dispersion relation (5.4). The results are shown in
Fig. 5.2. The numerical techniques used are described in the next section.

For very small fields, all modes represgnt decay, the decay rate — « as

w, — 0. For very large values of w,» the modes which are unstable approach

two asymptotic values, the more unstable of which is the saddle point predicted
by the Bers-Briggs cfiterion. The asymptotic}behavior at‘strong field (or large
length) and weak field seems physical and in agreement with the Bers-Briggs
criterion.

However, there are several facts which mnnot be predicted from the dispersion
relation alone. The lowest S and A mode eigenfrequencies are purely imagiﬁary;
the A mode remains a decay mode, while the S Qode becpmes unstable as weL/V°
is increased and finally apprpaches the saddle point: The second and higher
S and A modes, are of different charactgr. These are dynamic modes (wr#O)
untiliweL/VO reaches a critical value for each mode at which w . becomes
zero and the modes represent pure éxponential growth or decay. Modes A2,

S3, A4, etc. are particularly interesting, sincé they represent overstabilities,

1.e. sinusoidal variations with exponential growth, in time. It is also
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interesting that only half of the modes are unstable; the others represent‘uﬁder—
damping in the lumped parameter sense until a critical value of meL/V° is reached,
when each mode becomes overdamped. Mode Al is always overdamped.

Since the S1 mode is the most unstable and becomes unstable fgr the smallest
value of weL/VO, it is this mode which will dominate the transient‘behavior of the
system. At the point of impending instability for this mode, w = 0 and the
constraint on the parameter values may be calculated from (5.8) and the dispersion
relation. From (5.3) at n = 0, |

2 2

2 2 4 2 2.2 2 4 n"=-1 _
(Vo Vt) k' + k me(V Vt) + w, “4 = 0
'Solving for k,
: w
K=2tj—e— /0L
Sy
o t

Therefore

e
a
2,1 2 :
‘ / v2+v'2:

From (5.8) Pl and F2 Become indeterminate at w = 0, but if the limit is used as

o

wy -+ 0, then, Fl and F2 are of the order 1/mi and wy respectively so that FZ may
be ignored. This simplification yields
w L w L ‘
tanh [/ L —E—) cann [/ B2 —2— - /12 (5.10)
2 2 2 2
VoVt Vo Ve
w L

. » e '
Equation (5.10) is plotted in Fig. 5.3 as —=—= vs. a/b, the ratio of jet
| A
spacing to plate spacing. For parameter values iying above the curve, the
system is unstable, below the curve stable. With regard to the transverse
dependence, the system is in the most stable condition when a/b + 0, or the

external plates are far apart (but within the limitation of the long wave
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model). Bringing the external plates sufficiently close to the jets can hav; a
large effect in destabilizing the jets. This may be explained intuitively on
the basis that a small displacement on a jet will lead to a large change in the
electric traction .

The role of surface tension is also clear from Fig. 5.3. As long as the jet
velocity is nof approximately equal to the capillary velocity, the point of impen&-
ing stability is practically independent of surface tension. This is 1ntgresting
since for a single jet between parallel rigid plates, the réle of surface tension
was to determine the cutoff frequency between propagating and spatially growing
waves. It might be thought that the static instability considered here 1is somé- '
how related. Such is not the case, however. It will be shown later that for jets
sufficiently supercapillary, the surface tension has little effect on the
dynamics, and that the counter-streaming convected momentum term and thel
mutual coupling term in the equations of motion are the cause of the instability.

The eigenfunctions for the point pf impending instability are easily

calculated. From (5.8), for w, — 0, and the value of T above,

El(x) = A sinh @, x + B cosh a,X

and Ez(x) = - El(-x) = A sinh a,x - B cosh a,x

Applying the boundary conditions at x = - L for 51

0 = - A sinh L + B cosh aZL

|

0= alA cosh ulL - uzB sinh aZL

The above equations yield (5.10) and
sinh ao,L

B/A = cosh azL
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so that
. sinhalx coshazx
El(x) = Eo{ sinhalL + coshazL }
(5.11)
Cu sinha,x cosha,.x
E () = £ { =m0 - ——2 ’
2 o sinhulL coshazL
where
'n-1 +1
we 2 me 2
al = e ———— N az =
/v /N

The open—-endedness of the jets is clearly evident in (5.11), and contrasts
the displacement of the fundamental mode of the two spring system. The plot of
(5.11) 1s essentially the same as that shown in Fig. 5.3(a) and Figs. (5.6) and
(5.7). It is interesting that the point of instability of the counfer-streaming
jets and the fundamental S mode of two spfings are roughly the same if the temsion
velocity is replaced by the jet vélocity.

5.1.1 Numerical Computation

The solution of (5.8) to yield the.complex eigenfrequencies as a function
of the parameters, while it can be done formally, requires the use of a computer
to arrivé at useful solutions. The d;fficulty, which is a generél one for
eigenvalue problemg, lies in not having explicit expressions for the wave
numbers from the dispersion relation to substitute into the determinantal
equation. In the pre#ent case explicit expressions can be obtained without much
difficulty, but the resulting analytical expression is of little use.

An 1iteration technique was developed to autoﬁaticaliy compute the
complex eigenfrequency curves once the computation was properly started. The
algorithm is a two dimensional Newton-Raphson ‘iteration method, in which the

complex frequency 1s considered as two independent variables.
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The computation proceéds as follows: the parameter values and the complex
frequency is initially assumed and the wavenumbers computed. The complex boundary
conditions determinantal function (the left hand side of (5.8)) is then evaluated.
For eigenfrequencies this determinant is identically zero, but in general it is
not. The real and imaginary parts of the frequency are subsequently incremented
and the four partial derivatives 3A_ ,/dw

r,i’ r,l
new complex frequency is determined by following the slope of the intersection

evaluated numerically. From these a

curve of the Ar and Ai surfaces to the frequency at which the curve intersects

the w, VS. w, plane. Mathematically this may be written:

A (w_,w,) oA _(w_,uw,)
r r’i rr’i
Ar(wr,mi) + a”r Gmr + amf Gmi = 0
(5.12)
3, (w_,w,) dw, (w_,w,)
it i’ d
Ai(mr,wi) + ™ Gmr + ™ Gwr 0
T r
Solving for the new value of the complex frequency,
I , 34
e Bu, % r
new i b o
w_ =W - L wtE -1
r r J 34, i i J 34
s, —> =L 5
i Bw ow i
i r
where 34 3A
r r
Bwr awi
J =
aAi aAi
er 3m1

The iteration is continued untii‘a convergence test is satisfied or a preset
number of interations exceeded and that particular computation terminated. Once
a convergence has been achieved, a parameter (usually the normalized length) is

incremented, the starting value for the next computation automatically computed
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using a three point extrapolation'formuia and the process continued until a branch
of the eigen-frequency curve is completed or a non-convergence occuréé This
technique has several advantages: (1) it is a simple technique conceptually and
easy to program and debug (2) the convergence is very fapid in most cases. Once
an eigenfrequency has been computed, the starting value for subsequent éalculations
1s usually close and convergence to 5 digits is achieved within 3 iterations (3)
computing time is short (4) the metho& is completely general in that:the roots
of any differentiable function can be found.

The principle disadvantage is that>the convergence is a strong function of
the starting value and an initial trial and error period is necessary to find the
first eigenfrequency of each branch.

The important parameters of the system are Vo’ Wy s and L; by suitable scaling

Lo
a-m/we and L=—%

v
o

the number of parameters may be reduced and the determinantal equation becomes
ACw, Vt/Vo, n, L) = 0. The effect of Vt/vo and n are small, so that ; xf;(f)
is the functional dependence desired.’

5.1.2 Eigenfunctions

The eigenfunctions for L = 3 and 9 have been computed for the first three
symmetric and antisymmetric modes for several values of time and are shown in
Fig.'5.4 and 5.5. The symmetry and stability are apparent. The eigenfrequency
for the fundamental modes is purely imaginary; representing static instability

for the symmetric mode and decay for the antisymmetric mode. The trajectories
' S

s

exhibit no shift in phase for increasing time, typical of a standing wave
pattern. From the physical argument given in Chapter 4 con;erning‘the¢stabiiity
of the symmetric and antisymmetric modes for co-streaming jets, we may explain

why the S1 mode is stable and the Al mode unstable.
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5.1.3 Physical Argument

Consider the S1 mode at time T = 0 (T here is nondimensional time; it is the
time required for a jet traveling with velocity Vo to travel a distance of one
unit in Fig. 5.4 or 1/6 of the total length of the jet). The electric field
between the plate and each jet has increased from its equilibrium value while
between the jets the field has decreased. Each particle of the jet experiences
a transverse electric force tending to accelerate it towards the adjacent plate
while it is being convected along. Surface ténsion is not an important mechanism
in determining the eigenfrequencies or eigenfunctions of counter-streaming jets.
Its main importance is to serve as a lower bound on the jet velocity for which the
characteristics go downstream for each jet. As a result the trajectory would lonk

like that shown in Fig. 5.4 for T, = 0.5. The situation is now no different from

2
before,.except now the electric traction is even stronger and the jet departure
from equilibrium increases. The process continues and the jets exhibit exponen-
tial growth in time. It should Se apparent to the reader that if the initial
deflection of the jets was inward, the same argument applies and the jets will pull
together. For planar jets, which way the jetn can g0 unstable is equally likely.
It might appenr at first that a single jet between parallel plates is also
absolutely unstable, since if it were given the trajectory of, say, the right
moving jet at time T = 0, the electric traction is such as to deflect each.
particle in the jet further. A short time later, the particles which were in
the jet at time T = 0 have indeed been convected along and experienced a larger
deflection. However, new particles have been‘injected into the stream and
since the externnl plates are rigid, these particles see an equilibrium electric

field and are not deflected. The result is that the original disturbance

is swept downstream out of the interaction region and equilibrium is restored.
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The essential ingredient for absolute instability of counter-streaming jets
is that there be a means of returning the downstream disturbance to a point upstream
in order that the distﬁrbance may be sustained. In this case the feedback is
internal, returning on the opposite jet. Whether or not the S1 mode is unstable
will depend on the length of time a particle remains in the interaction region
(&L/Vo) and on the électric traction the particle experiences (Mme) so that

Lw Lw

intuitively the important measure of stability is —vg . The quantity —VE' may be
o o

thought of as a ratio of the tramsit time to the E folding time for instability.
Lw

It is interesting that _Vg x 1l is the condition for impending instability of
counter-streaming jets. °

If we apply the above argument to the lowest antisymmetric mode in Fig. 5.4,
the traction on most of the jet is such as to pull the jet back toward equilibrium.
This process is slowed down by the fact that the incoming particles receive a short
destabilizing pull because of the overshoot near the exit of the other jet. A
short time later the jet has the trajectory shown in Fig. 5.4 for T = 0.5. The
electrical traction has become weaker, but still stabilizing in character. As
in the case of the symmetric mode, 1f the initial displacement were inward the
situation is unaltered and the jets are stable.

It is more difficult to predict the stability of the higher modes, because
of their more complicated trajectories. Further, in Fig. 5.4 for the A2 mode,
we observe the first example of an eigenfunction presenting an overstability
and whose phase is not constant but progresses downstream on each jet, giving
the system the character of traveling waves instead of the common standing wave
behavior. The velocity of the zero crossings appears tb be about one unit in

length per one unit in time, which is just the velocity of the jet. The same

is true for the S2, A3, and S3 for L = 3. This does not appear to be true,
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b

however, for the modes at L = 9, shown in Fig. 5.5. Comparing Fig. 5.4 with
5.5, we may observe that the slopes of the eigenfunctions are not appreciably
altered by a large change in L, indicating that the eigenfunctions are fairly
insensitive to parameters.

5.1.4 Transient Behavior by the Method of Characteristics

While a complete knowledge of the_gigenmodes is sufficient to determine the
dynamical behavior of the system, it does not leave the reader with a very clear
physical picture of the transient behavior to some arbitrary initial distrubance.
To provide this picture and to verify that the eigenmodes (at least the lowest
mode) are indeed correct, the differential equations, (5.1) were programmed using

i the method of characteristics. The bouﬂdary conditions postulated that the jets

| enter the interaction region unexcited. Jet 1 was given an initial distrubance;

'frj

jet 2 was initially unexcited. The resqlting‘transient is shown in Fig. 5.6 and
5.7 for two values of electric field very close to but on either side of the point
of impending instability, marked points A and B in Fig. 5.3.

The initial disturbance propagates downstream and grows spatially in so doing,
i11lustrating the convectively unstable character of the jets. As it propagates it
exerts a traction on jet 2 pulling it away from equilibrium (T = 5). At the end
of 10 units of time, the initial disturbance has been swept out of the interaction
region and the shape of the fundamental symmetric mode begins to appear. As
time progresses, the displacement grows in time and the S1 mode dominates
completely. Since point A is so close to the point of impending‘instability,
the growth rate is quite slow. |

In Fig. 5.7, the same conditions were used with the exception that the
electric field was reduced slightly to jus: below the instability point. The

initial transient up to T = 10 is the same as in Fig. 5.6. However, the electric
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traction is not quite large enough to allow particles originating at the nozzle

of jet 1 to grow to sufficient amplitude to exert sufficient traction on the
returning jet to sustain the disturbance, and the disturbance decays slowly in
itime. In both cases the initial transient was swept away and the system settled
down after a brief period to the fundamental symmetric mode. If sufficient electric
field is applied to the system so that the A2 mode is also unstable and the same
initial and boundary conditions applied, indeed it is found that after a short
transient in which the initial disturbance is swept downstream, the system settles
down to a combination of the two unstable modes, but since the S1 mode is more
unstable, this mode dominates the behavior of the system.

5.2 Magnetic Field Coupling

As mentioned earlier the magnetic field and electric fielﬁ coupled systems
are closely analogous, the principle difference being the perturbation magnetic
field behaves like a distributed spring of positive, constant, the electric field
of negative spring constant. This shows up in the equation of motion simply as a
replacement of m: by —mﬁ. This change however, has had a dramatic effect on the
dynamics of all the systems considered so far. A principle exception was the
~ class III systems which exhibited absolute instability for both electric and
magnetic field coupling. An essential difference between the two systems is
that the electric field coupled jet is naturally convectively unstable and
should enhance any tendency of the counter-streaming flow to produce absolute
instability, whereas the magnetic field coupled jet would not. The effect of
boundaries on the counter-streaming electric field case was stabilizing. We
shall now consider the finite length magnetic field coupled system.

The dispersion relation, from (5.3) is essentially that shown in Fig. 3.9d.

The Bers-Briggs stability plot shows that the system is statically unstable,
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| the saddle point wavenumber is real, contrasting the electric field case which
is imaginary. One might expect that if the longitudinal boundaries were more
than a few wavelengths apart that they would not play an important role in
determiﬁing the étability of the system. This is misleading, however, since

the saddle point wavelength depends on the applied magnetic field, approaching
infinity as the field tends to zero. The longitudinal boundaries aga;n should
be expected to play an important role in the dynamics of the system. Tw§ other
saddle points exist, for real frequencies and infinite wavelength, but since

w, = 0 for both, these represent oscillatory natural modes. The physical inter-
pretation of these natural modes‘is that if the system were plucked, the jets

would resonate at either of these frequencies with every point along the jet in

phase and the same amplitude, since k = 0, assuming no other natural modes were
excited. The reason for two resonant frequencies is clear since the jets can
resonate in either a symmetric or antisymmetric manner. In any case the system
possesses an unstable natural mode and hence is the one to be considered.
5.2.1 Cogglex Eigenfrequencies

The boundary conditions equation is formulated in the same way as for
electric field coupling and (5.7) is valid if'w: i1s replaced by -mﬁ in the
expression for rl,z.

The complex eigenfrequencies are plotted vs. Lwh/V° in Fig. 5.8. As in
‘the electric field case, for small magnetic field, all modes are decay modes,
the decay rate — = as o > 0. For large Lmh/V° the unstable modes asymptoticali§ '
approach the saddle point frequéncy. The lowest S and A modes are static modes.
) By constrast with the electric field coupling here the S and A modes héve
nearly the samé eigenfrequency. As the magnetic field is increased each ﬁode

] in turn becomes unstable whereas only half the electric modes were unstable.

Also no overstabilities are observed for the higher modes, since w, > 0 as
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'wr * 0. As in the electric field case the fundamental mode will dominate the dynamics,
being the most unstable and becoming unstable for the smallest value of th/Vo.

! Here, however, both S and A modes must be considered.

At the point of impending instability, @ = 0, and carrying out an analysis

similar to the derivation of (5.10), we obtain

; | WL w1
! n . - -
? tan [([ 2 —B ) e/l . [n-L
2 2 n+1
VZ_VZ /VZ_VZ
ot ' ' o t -
; symmetric mode
w L O w L
tan [ n;l h 1 tan [./nEI h ] = - n+i
| P | 2 2 =
v-o-v _ V- -v
ot ot

antisymmetric mode (5.13)'

These are plotted in Fig, 5.9. The general trend is similar to that for electric
field coupling, but here transverse boundaries have an important effect in
detérmining whether the S or A mode will be the first to go unstable as the

magnetic field is increased. The effect of the transverse plate spacing is

opposite to the e1ectr1c field case. Since the magnetic field is inherently
stabilizing, bringing the plates in close to jets will impede any destabilizing

mechanism.

5.2.2 Eigenfunctions
The eigenfupctions may be found an§1ytica11y for the point of impending

instability as in the development of (5.11).
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The equations are

sinle cosBzx
800 = ¢ { stng.L * cos B, L
. sinle cosBzx
£y (x) = % { sing L - cosB, L } § mode
cosle s;nszx . )
§1(x) = %o { cosg, L + sfﬁng } (5.14)
R . éoSle sinBzx
Ez(x) = Eo { cosBlL - sinBzL A mode
_ n-1 ’ n+l
‘ “wWT2 “hwW72
where Bl = » B, =

:’N
N

<i;]

<

TN

viy 2_
o o

Because of the sinusoidal dependanéé, the eigenfunctions are strongiy affected
by the transverse spacing.

In Fig. 5.10, the eigenfunctions for L =4 are plotted for the first three
modes as a function of time. Because of the spatial oscillatory character of the
trajectofies it is more difficult to predict the stability of the mode than in
the electric field case.

5.2.3 Transient Behavior

The equﬁtions of motion (5.1) wefe_programmed for magnetic field coupling
‘in exactly the same way as for the elgcgric field case for pointé C and D of
Fig. 5.9. These results are shown in Figs. 5.11 and 5.12. The initial
disturbance on jet 1 is swept downstream and one can observe the push exefted
by jet 2 as it 1s‘swept along. As the downstream section of jet 1 moves
below the equilibrium it starts to pulllon jet 2, giving it an initial down-

ward deflection. As it moves to the left it is given an upward push by jet
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FIGURE 5.12 TRANSIENT SOLUTTON STMULAR TO FIGURE 5.11 WITH THE MAGNETIC FIFELD SLICHTLY REDUCED,
POTNT D IS SHOWN [N FIGURE 5.9
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1 due to its trajectory now lying above the axis. Jet 2 now overshoots,the‘axis
and is given a final push back by the external plate, resulting in the trajectory
for T = 5. The fundamental symmetric mode has already begun to take shape. As
time progresses the higher modes propagate away and the system settles down into
the S1 mode and this case begins to exhibit temporal growth. 1In Fig. 5.12 the
magnetic field is slightly less than that required for instability and after an
initial transient settles down to the S1 mode and slowly decays in time. The
trajectory agrees with the analytical expression shown in (5.14). A similar
analysis,performed at different value of n so that the antisyﬁmetric mode would
be the first mode of instability,showed in fact a similar initial transieng the
system settling down into the Al mode and slowly growing or décaying in time

depending on the magnitude of the magnetic field.

5.3 The Case of Counter-Streaming Degenerate Jets

It has been mentioned earlier that the cqnvegtion and mutual coupling terms
in the equations of motion are responsible for the instability of counter-
streaming jets for both electric and magnetic field coupling. One might suspect
this to be true on the basis that much of the stability behavior of the two
systems 1is quite similar, in spite of the fact that the dynamics of class I and
class II syétems are entirely d;fferent for electric and magnetic field coupliqg.
fo show the importance of convection and mutual coupling a little more clearly
let us postulate a hypothetical system in which the surface temsion is zero
and the self co;pling term negligible (this last restriction is unphysical).

The equations of motion reduce to
] : 9 3 2 ‘9’5
a Gt R T 6
' 2
(3 232 %o
2

T ) S22 73 & .19
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where ”3/2 can represent either the electric or magnetic mutual coupling.
The dispersion relation is

4

.2 2 4 4
w - 2w Vsk + Vok

4
- w°/4 =0

and is the plotted in Fig. 5.13a. Solving for k,

k (5.18)
Yo
We can immediately see that a saddle point exists at w_ = - § — , k = 0
; s yoo 8

indicating the existence of a static instability of zero wavenumber. Since
the value is independent of the sign of mi the saddle point is the same for both
electric and magnetic field coupling. |
5.3.1 Eigenfreguencies and Impending Instability

The boundary condition equation is»simply (5.7) with Vc and n set to zero
in the expression for r1,2' The eigenfrequengies which are imaginary are plotted
in Fig. 5.14 and are the same for both electric and magnetic coupling, except
for an interchange of symmetric and antisymmetric modes. The complex branches
of the eigenfrequencies are not shown. ‘The system exhibits static instability
for all modes. The point of impending instability may be obtained from (5.10)
or (5.14) by setting n = Vt = 0, ‘

Electric S Mode or Magnetic A Mode

tan aL tanh aL = 1 or aL

.93755 mode 1

al. ¥ (n + %9w,n = 1,2 higher modes’

Electric A Mode or Magnetic Mode

tan oL tanh oL = - 1 or aL = 2,34705 mode 1. (5.18)

aL ¥ (n + %)n,n = 1,2 higher modes
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(a) DISPERSION CURVE
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(b) STABILITY PLOT

FIGURE 5.13 DISPERSION CURVE AND STABILITY PLOT FOR DEGENERATE

COUNTER-STREAMTNG JETS, SHOWING THE STATIC INSTABILITY AT
INFINITE WAVELENGTH, '
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where ' al, =

(Care must be taken in setting n = 0 to preserve the proper sign). The eigen-

functions at the point of impending instability can be obtained from(5.1D and(5.15).

Electric Coupling Magnetic Coupling
S Mod 51(*) =1 {sin ax cosh ax} El(x) - 1l jcos ax _ sinh ox
e Eo 2 ‘sin aL cosh aL Eo 2 ‘cos aL.  sinh alL
E2(x') =1 {sin ax _ cosh ax} Ez(x) =.l{ cos ax sinh ax}
Eo 2 'sin oL cosh aL 50 cos alLL.  sinh alL
A Mod El(x) o 1 [cos ax + sinh ax} El(x) =1 {sin ax cosh ux}
‘ e Eo 2 ‘'cos aL  sinh oL go 2 ‘sin aL cosh oL
EZ(x) - 1 rcos ax sinh ax fgﬁx) - l{ sin ax cosh ax}
Eo 2 'cos aL.  sinh aL Eo sin aL cosh aL

(5.19)

These eigenfunctions are plotted in Fig. 5.15.

5.3.2 Eigenfunctions and Physical Explanation

Examination of these stationary eigenfunctions will shed some light on the role
the convected momentum andmutual coupling terms play. Consider in Fig. 5.15a that
the lower jet (jet 2) has the deflection shown and a particle from the upper jet
(jet 1) enters the interaction region. It will be deflected upward due to the
reduced electric traction in the field region bétween the jets. The net tracﬁion
exerted on jet lisupward but tends to zero as the particle progresses to the exit
pPlane. Since there is no time variation of the trajectory, the particle will follow

the path shown in Fig. 5.15a. Note there is no traction on a jet because of its

own displacement from the assumption of the model.
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The question of instability then is, can the deflection of jet 1 caused by

the assumed deflection of jet 2 be sufficient to produce a displacement of jet 1

as large or larger than that assumed? This will depend on the value of Lo

o/Vo .
If the electric S mode and magnetic A mode are compared, although the symmetry

1s opposite, the traction exerted by jet 2 on jet 1 is the same for both systems.
This is because‘a compression of the magnetic field lines resulting in an upward
push, is equivalent to an extension of the electric field lines, which results in
an upward pull on jet 1. Both systems then have the same eigenfunction (but opposite

symmetry) and the same Lmo/ for instability.

\'J
o

Jet 1 for the electric A mode in Fig. 5.15b shows an initial downward traction

due to the upward deflection of jet 2, followed by an upward traction as a particle

travels downstream. The effect of the convected momentum is evident, since the -

particle continues its downward deflection for a considerable distance downstream

before it is turned around by the upward force exerted by jet 2. Because jet 1

.experiences first a downward force and then an upward force, we might intuitively

expect that a larger qu/v would be required for instability. Indeed, the value

o
of L““o/v 1s about 2.5 times that for the symmetric mode. The antiduality between

the magn:tic S mode and the elgcttic A mode is evident.

Finally if the eigenfrequencies and eigenfunctions of the degenerate problem
are compared with the original electric and magnetic fieldqcoupled problems, we can
learn somethihg about the role of the self coupling term in the instapility. From
the results of Chapter 2 concerning the single jet intetactiogs between rigid walls,
electric self coupling resulted in a convective instaﬁility for long waves, the
short wavelength cutoff depending on the surface tension. Since the present
ingtability is definitely long wave, surface tension should not play an important

role in the behavior of the system. The result is that in the degenerate electric

S mode, given the same jet 2 trajectory, jet 1 would now experience a considerably
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larger upward force, producing a larger displacement, and hence a larger traction
on jet 2. Self coupling aids the mutual coupling and requires a smaller Lwo/v |
for instability; Comparing the eigenfrequencies for the two cases shows that zhis
is in fact true.

For the electric A mode, however, the self term interferes with the mutual
coupling term. Consider the same jet 2 deflection in Fig. 5.15b as before. Jet 1
will now achieve a larger downward deflection than before. At the point jet 2
changes sign, for example, the net traction on jet 1 is downward. The result is
that jet 1 will have little or no upward deflection at the exit, and jet 2 will
experience little initial traction and hence cannot sustain thé given trajectory.

Indeed the self term so effectively interferes that the lowest electric A mode is

quite stable for all values of Lmo/V .
' o
The magnetic systems are not so strongly affected by the self coupling term,

?#gincé the single jet behavior exhibits only propagating waves. From the magnetic S

mode in Fig. 5.15c, the self term of jet 1 produces a downward traction, resulting
in a larger overshoot thén before. This causes a larger initial downward displace-
ment of jet 2 and hence reinforces the instability as is, in fact, observed. The
self coupling term for the magnetic A mode cleariy interferes with the mutal
coupling term, making it less unstable. The higher modes may be similarly explained

but are more difficult because of the more complex trajectory.

5.4 Counter Streaming Electron Beams

As a matter of interest, the eigenfrequencies for coupled counter streaming
electron beams with longitudinai oscillations is shown in Fig. 5.16. As mentioned
earlier, electrosﬁatic oscillations 6n an electron beam model as the magnetic
surfacevwave if the surfaqe tension 1s suppressed and the rigid plates are moved

to infinity (n =-1). As can be observed the system exhibits only static
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instabilities and the results are quite similar to the degenerate magnetic field
case.

This problem has been investigated experimentally by Kofoid,27 who in fact
did observe absolute instabilities. However the instabilities were not static
instabilitlies as predicted in our model, but rather standing waves at a frequency
of the order of the plasma frequency. Kofoid found that the oscillations are a
strong function of the background plasma, so that another ingredient is necessary
in the model. Gerwin and Nelson20 in studying the theoretical aspects of this
problem, have computed the statically unstable eigenfrequgncies for the model
assumed here and the results are the same as the upper half plane of Fig. 5.16a

and b, except for the factor Y2 which enters from the definition of mp.
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CHAPTER 6
COUNTER-STREAMING ELECTRIC FIELD COUPLED JET EXPERIMENT

6.1 Introduction

In order to verify the theoretical results of the previous chapter, aﬁ
experiment was constructed to measure complex eigenfrequencies for the electric
field coupled model. A brief discussion of experimental detail will be given and
the experimental results discussed. Experimental agreement with the theoretical
model of the previous chapter has been obtained for the fundamental symmetric mode,

the only mode which could be investigated.

6.2 Experimental Description

The experiment was constructed using the same apparatus as in the two-spring
experiment, simply replacing the springs by jets for counter—stfeaming flow. The
length between nozzles and the transverse spacings were carefully kept the same as
for the springs so that the calibration of the electrical coupling parameters
performed in Chapte; 4 was valid. The jets and springs were the same diameter.
The external plates were bent to the same vertical curvature as the jets. A con-
siderable amount of care is required to align the jets parallel and to provide the
proper spacing while at the same time insuring that the jets have the same elevation.
The external plate alignment is also critical since a slight unbalance in electric
traction produces a large deflection and shifts the equilibrium. This is especially
serious since an equilibrium shift and the fundamental symmetric mode eigenfunction
have similar spatial dependence. With the jets properly aligned, it is possible
to position the plates so that the equilibrium i§ not disturbed by a large electric
field, using a single voltage source.

It ﬁight be mentioned that because the plates and jets are non-planar, the

relative polafity of the electric field in the field regions is important. This is
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because a jet is now influenced by the non-adjacent plate. In all 6f the experiments
described, the voltage of the elements was of alternate polarity. This minimized

the effect of the non-adjacent plate and secondly allows the use of a single

power supply.

Because one jet is required to be at high voltage, two electrically isblated,
closed loop systems were used. The loop consisted of a pump, filter, ovérhead
tank, nozzle, collector, and return tank. A simple overflow device in the overhead
supply tanks insured constant level for the jets. A single double shaft motor with
insulating drive belt and pulleys was sufficient to provide electrical isolation
for the two centrifugal pumps. At the highest voltages used (about 15 kv) leakage
current from the power supply to the whole appar#tué was maintained beloﬁ 0.1 ma.
This 1is important since corona discharge and other sources of leakage currents have
a degrading effect on the quality of the jets. |

A few words are in order concerning the formation of 1 meter long laminar jets.
Everyone has observed the breaking up of a water jet into droplets when a faucet is
slowly turned on, due to the surface tension of the jet tending to constrict the
jet. A planar jet should not exhibit this instability, since there is no transverse
curvature. A finite width planar jet, however, exhibits a sharp pulling in of the -
outer edges and it is extremely difficult to produce a jet that remains planar for
any appreciable length. Planar jets have been studied by G. I. Taylor,50 but jets
such as those described are unsuitable for our purposes.

This natural pinch mode instability of a circular jet has been observed to be
convective, and its electric field dependence studied by Melcher,34 who has shown
that the spatial growth rate of the m = 0 mode increases with electric fields and
competes very well with the kink (m = 1) mode for a cylindrical jet for even a large

electric field. Since only small displacements are required for the sausage mode
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to be nonlinear and effectively make the jet unsuitable for kink mode measurements,
it 1s essential that the sausage mode be suppressed. Mechanical vibrations, unsteady
flow, vorticity and acoustical noise are all fine sources of excitétion of the
Ssausage mode. An early experiment by Rayleigh29 showed that by transmitting the
mechanical vibrations set up by a Pinched off jet hitting the collecting container
back to the nozzle that the jet broke into oscillation and was absolutely unstable.
This effect was observed quite frequently and it was necessary to shock mount the
nozzle and collector separately to destroy the natural feedback paths in the
supporting structure. The whole apparatus was also shock mounted to minimize build-
ing noise and the motor and pump assembly separately shock mounted; Eﬁéh‘of these
modifications improved the quality of tﬁe jets.

To improve flow conditions, the overhead supply tanks were provided with large
sponges which served two purposes: (1) to filter out fine air bubbles which do not
convect sufficiently fast to the surface to be removed and (2) to act as a damper to
settle the flow. These were quite effective. Finally the lead;In hose must be of
smooth wall and free of any kinks and the nozzle was especially constructed to
Provide smooth entrance flow. With all these inovatiqns it was possible to obtain a
jet of about 80 cm. useful length with some unsteadiness but not reproducibility.
The final touch was a result of adding glycerine to the water in about equal
proportion. This has little effect on conductivity and demsity but a large effect
on viscosity. Since the wavelength of instability for the sausage mode is at least
an order of magnitude less than for the kink modes to be investigated the addition
of viscosity should preferentially damp the sausage mode. The effect of large
viscosity on the transverse wave motion of jets has been studied by Middleman and
Javis38. A sufficient amount of glycerine was added to produce quiet jets 1 meter

long in the absence of electric field.
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(\4@ 6.3 Results
| In addition to the coupling parameters the other constants of the system were
measured, and the experimental coefficients used to compute the low mode eigen-
frequencies as a function of Lwe/v . Since the lowest mode is static (wr = 0),
the measurement of this eigenfrequ:ncy consisted in measuring the decay rate. A
small d.c. voltage was impressed on the normally grounded plate to:aeflect the
jets, with a large d.c. voltage on. With the jets deflected, the plate was grounded
and the decay transient recorded. The results are shown in Fig. 6.1, and the
theoretical results are seen to be in agreement with the experiment.

For low appliéd voltage, the decay transient is'quite rapid and a bit difficult
to interpret. In order to measure the fundamental mode unambiguously it is assumed
that all higher modes have damped before the usable portion of the decay curve has

been reached. This was near the end of the transient but before the transient

3 became noise limited. As the voltage is increased, the decay curves are more

accurate, but near the point of instability the jets become quite noisy and the

signals of poor quality. Because of the jet breakup at the highest voltages, the
planar model is no longer valid and the experimental data is not in agreement with
the theoretical value. |

The second mode should be of some inferest, since it has a real component bf
the frequency. At low voltages it decays, but for sufficiently high voltages the
ﬁode becomes overstable. It would not be possible to experimentally measure the
overstability with the existing system because of the fundamental mode instability'
at lower field. The 2nd mode decay is greater than the fundamental for the same
voltage and is therefore more difficult to measure. At the higher voltages where
2nd mode decay rates are feasible, the n = 0 mode noise was too great to permit

.jq& useful measurements.
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FIGURE 6.1 FUNDAMENTAL SYMMETRIC MODE DECAY RATE VERSUS VOLTAGE FOR
ELECTRIC FIELD COUPLED COUNTER-STREAMING JETS.
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In conclusion the experimental eigenfrequencigs of two circular counter-
streaming, electric field coupled jets agree with theoretical values when the
ekperimentally determined values of the system parameters are used in the
‘analysis. It might be mentioned that the jet velocity is about 30 times the

capillary velocity and since the important system parameter is vi/vi compared to

unity, the effect of surface tension is completely negligible.

™.

LR
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CHAPTER 7
! . : STREAM-STRUCTURE INSTABILITIES
' 7.1 Summary
The eigenvalue equations are formulated for a special case of the class IV

systems, namely the interaction of a supercapillafy jet with a stationary structure.
The complex eigenfrequencies are numerically computed for both electric field and
magnetic field coupling. The electric field coupling produces the expected
statically unstable behavior characteristic of the structure‘by itself stressed by
an electric field. In addition, it exhibits overstable behavior at smaller weL/v

o

than required for static instability. These overstabilities are found only for

" modes higher than the fundamental and for jet velocities greater than the natural

wave vélocity on the structure. The fundamental mode exhibits electrical damping.
The computed eigenfunctions show that the structure resonates essentially in its
natural modes of oscillation, the jet exhibits its characteristic convective
instabllity,'and there is a delicate interplay between the jet and the structure.

- The magnetic field coupled system also exhibits overstability for the higher
modes, damping for the fundamental and for thé same range of parameters as iﬁ the
elect;ic field case. The asympto;ic'behavior for both types of field coupling for
large we,hL/V is predicted by the Bers~Briggs stability criterion for the infinite
system. 0

To examine the common features of electric and magnetic field coupled stream~
structure interactions, the degenerate jet-structure model is examined and compared
with the former systems. Physical arguments are given to explain the overstabilities
for the higher modes, damping of the fundamental, and the dependence on the ratio

of spring tension to jet velocity.

|
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7.2 Introduction

The last main topic, and perhaps the most interesting one from the standpoint
of physical realizability, possible practical usefulness, and variety of inter-
actions, 1is the investigaéion of the class IV systems described in Chapter 3 for
bthe infinite system; The attention will be given to the special case in which the
subcapillary stream is stationary and hence can be modeled by a mechanical
structure; This class of interactions in the (mathematically) related area of
electron beamé has achieved a considerable degree of sophistication, and such
devices as the traveling wave amplifier and the backward wave oscillator are common
hardware to the mi;rowave engineer. Because of the similarity between the surface
wave stream-structure discussed here and the electron beam-cavity devices (extended
region klystron) system, the former devices will occasionaly be referred to as
surface wave klystrons. While the behavior is understood qualitatively, it is
enly recently that effort has been made to analytically compute the complex eigen-
frequencies for a stream-structure device 7’29 of finite length. Experiments on

the electric field coupled spring-jet system will be described in the next chapter

and the quantitative agreement with theory discussed.

7.3 The Eigenvalue Probleh

Let us again return to the long wave equations of motion, (3.4)

2
2 2 nw
5 232, 2 2 _Meie 12
Ge * Vo1 53) & ~ Ve ) 8777 4+ 2 Ye15-
3 5 2 2 3% ““’22 1 2
et Vo233 B~ Vo ax25— STy T T3 uaaby

Since the structure is stationary, V°1 = Vo, V02 = 0, and assuming solutions

of the form ej(wt—kx)
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Equation(7.2)is the dispersion relation for stream-structure systems and is a
general fourth degree polynomial in both‘; and k. There do not appear to be any

useful special cases and since the model does not possess symmetry, it is necessary

to determine the solutions numerically. As a guide in computing the complex eigen-
*&%3 frequencies, it is useful to start with the uncoupled eigenfrequencies of the
{Jﬁll structure. Hereafter, the structure will be assumed to be a spring.

Recalling the results of Chapter 3, the class IV systems could be divided into
two regions depending on the number of crossings of the uncoupled dispersion relation
curves. Class IVa represented the case where the jet was slightly supercapillary.
The electric field case exhibited a convective instability and static instability
characteristic of the uncoupled elements. The magnetic system exhibited propagating
wave and evanescent wave behavior, also characteristic of the uncoupled interactionms.
Class IVb systems (jet very supercapillary), on the other hand, showed the same

general behavior for electric field coupling, but exhibited a convective instability |

for magnetic field.coupling for a band of frequencies as well as the usual propagating

and evanescent behavior.
We should now like to consider how these systems behave with boundaries imposed.
ﬂ?&@ The system to be considered is a supercapillary jet which enters the interaction

region unexcited, and a stationary jet (structure) fixed at the ends.
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‘?"'&‘-\ p’fj; The boundary conditions are:
i
3E,
§p(0,t) = 5n (0st) = 0
and §_(o,t) = £_(L,t) = 0
. jwt Vo -
. From (7.1) assuming E+(x,t) - Re[E+(x)e ] and setting x = TOX
- - e
2 2 A
4, o4 __n
[Qu+ -es5-D¢ £,
x d; 2
(7.3)
2 nG, . -
d—-
x
The solution to this 4th order equation may be written
f
i B %
[ §_(x) = I Be
: i=]1
a - 4 -J-k-i;
and E,(x) = I Q,B,e (7.4)
v + {=] g

-2 16,
whareQi--—Z'{wwlki =

If the boundary conditions are evaluated, the following determinantal equation is

obtained
1 1 1 1 Bl
-3k, L =Jk, L =kl  -jk,L
e 1 e 2 e 3 e 4 B2
Q 9 QG Q By | " ° 7.3
k,Q kaQ, kqyQ, k,Q, B,
L 11 3 104
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‘ﬂp@ By manipulating (7.4), a somewhat simpler expression results,
[ o A GgkL :kkT-k% (2 + % + 6, Gl et k) |
= M ::;:::i; {w? + —Zi + 6, (egky e ke k) | (7.6)
g | MR E:Z::i; {w? + % + 6 (e gk kb k) } = 0

Equation‘(7.6), combined'ﬁith the dispersion:reiaéion, (7.2) forms the eigenvalue
4 equation to be solved. This combined equation (formally speaking) is a function
’ of ;;'E, and the system parameters. A4s in the case of counter-streaming jets, the
i computational procedure will be to assume'f and';, compute the k values from (7.2),
éwfg and evaluate (7.6), and by a suitable iteration process, vary'; until (7.6) is
I satisfied. The w thus computed is the normalized complex eigenfrequency and the
cortespondingli values the normalized eigenvalues. The details of this procedure

~are the same as described in Sec. 5.1.1.

The eigenfrequencies for two similar jets, one stationary, the other with a

Ve

velocity V ; » are shown in Fig. 7.1. This is on the edge between the class IVa
and b regions. To interpret the curves, it is useful to compare the eigenfrequencies

for the uncoupled case, namely a single spring between rigid plates. The deter-

minantal equation reduces simply to k = f% and the eigenvalue equation becomes
L
' 2 :
/ mZ - Gltgg) -1 (7.7
I .

The real part of the eigenfrequencies shown in Fig. 7.1 are essentially those of

the spring alone (compare Figs. 4.2 and 7.1). 1In addition, the point of instability
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313 ©

l_ FIGURE 7.1 COMPLEX EIGENFREQUENCY VS. NORMALIZED LENGTH FOR
i; AN ELECTRIC FIELD COUPLED SURFACE WAVE KLYSTRON .
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for the first mode is very nearly that for a spring coupled to rigid walls. The
effect of the coupling is to produce electrical damping of the spring. Above the
instability‘point the growth rate also agrees quite well with the uncoupled case
and approaches the same asymptotic limit. The decay branch, howéver, exhibits an
increased decay rate.

The effe;t of coupling on mode 2, however, is quite significant. Mode 2
exhibits overstability for a wide range of'f, and becomes unstable (theoretically)
as soon as the slightest electric field is applied. As L is increased, the
normalized growth rate Increases to quite a large value until the real part of the.
eigenfrequency becomes zero and the cufve splits into two statically unstable modes.
The deviation from the uncoupled eigenfrequency case becomes larger with increasing

L. The overstable behavior of mode 2 is exhibited by higher modes as well although

not shown in Fig. 7.1.

7.3.1 Eigenfunctions

The eigenfunctions may be computed using (7.4) and (7.5). If we assume

B1 # 0 for the moment, then the ratios of the coefficients to B1 may be computed

from
B [~ 7 B T
IR
1 1 1 B -1
1
By
1
B4
% k% kG| | g =k
_ - L . - —

Since B1 is arbitrary, it may be set equal to the determinant of t@e coefficient
matrix of (7.8). This allows the B's to be written in a symmetric form and the

restrictionvthat Bl # 0 can be removed. Manipulating (7.8), we get
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=
[

(k3-k4)(k3-k2)(k4-k2){A+G1(k3k4+k3k2+k4k2)}

B, = (ka-ka)(k4-k1)(k3—k1){A#Gl(k3k4+k1k3+k1k4)} (7.9)

=]
"

3 (kz-k4)(k2-k1)(ka-kl){A+G1(k4k2+k4k1+k2k1)}

B, = (k3-k2)(k3-k1)(kz-kl){A+G1(k3k2+k3k1+k2k1)}

nG

2’+-—Eg and the bar (-) has been omitted from the k's and w. From (7.4)

where A = o
the spatial dependence of the eigenfunctions can be calculated and finally the

eigenfunctions follow from

£(x,t) = Re{&(x)ejwt}

The eigenfunctions for L = 1.75, of Fig. 7.1 are displayed in Fig. 7.2. The
fundamental mode for both the growth and decay branches exhibit the behavior of the
uncoupled jet and spring. The relative phasing is as expected, since a downward
deflection of the spring weakens the field in the midregion and produces an upward
traction on the jet. The phase amplitude of the spring is very slightly shifted

downstream. The spring eigenfunction of mode 2 is also the same as in the uncoupled

case. For x <'% the traction on the jet is downward; for'g <x <'E » upward.
But a certain length is required for the jet to reverse its direction of motion and
cross the axis. The amplitude grows fairly rapidly since the self and mutual coupling
terms are reinforcing.

For small.f, the spring behaves as in the uncoupled case and the jet trajectory.
may conveniently be thoﬁghﬁ of as determined by the behavior of the spring. As L

1s increased (by increasing the length, for example) the jet and spring have a

longer time to interact and the jet deflections increase to a point where the jet

 can exert an influence on the motion of the spring, shown in Fig. 7.3.
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One might intuitively expect that the jet velocity would play an important
role in the dynamics of the system. If the jet and spring are again assumed to
be similar, but the jet velocity is increased (or perhaps better, Vt reduced since
w and L are scaled to Vo), the resulting eigenfrequencies are shown in Fig. 7.4.
The general behavior is similar to Fig. 7.1. The curves are shifted to smaller
L because of the reduced tension of the spring. This implies é lower value of
electric field required for fundamental mode instability. The system exhibits
overstability for higher modes»and damping of the fundamentél as previously
described. Eigenfunctions plotted for thié system do not exhibit essentially
different behavior than shown in Figs. 7.2 and 7.3.

Thg magnetic field coupled system eigenfrequencies for the same parameters
as in the case just mentioned are shown in Fig. 715 for the lowest three modes.
The real parts of the eigenfrequencies are typical of a magnetically coupled spring.
The imaginary parts exhibit the same decay of the fundamental mode and growth of
higher modes as for electric field coupling. It is interesting that each higher
mode exhibits a peak growth rate, the 2nd mode for L = 2.6 and the 3rd mode for
L x 3.9. The maximum growtﬁ rates are about equal. This implies an optimum length
i1f one wished to design an oscillator using a particular mode (neglecting the adverse
effects of other modes). That such a peak should occur is reasonable if one recalls
from Chapter 3 that no absolute instabili;ies exist in the infinite system.

The eigenfunctions for L= 1.75 are shown for the three lowest modes in
Fig. 7.6. The same spring-like behavior is observed as in the electric field case,
but the jet is more wavelike. Recall that the magnetic self coupling term is
stabilizing so that the field coupled jet by itself exhibits purely propagating

waves in contrast to the electric field coupling case.

O b it g T
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FIGURE 7.4 COMPLEX EIGENFREQUENCY VS. NORMALIZED LENGTH FOR
AN ELECTRIC FIELD COUPLED SURFACE WAVE KLYSTRON: EFFECT OF
PARAMETERS.
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7.4 The Degenerate Stream—-Structure Model

It is evident from the previous discussion of electric and magnetic field

Stream-structure interactions that the electric and magnetic systems have many
common features. The same conclusion was reached in Chapter 5 in the diecussion

of counter-streaming jets, where it was found that the mutual coupling and
convective terms were of primary importance, with the surface tension unimportant,
and the self coupling term either enhanced (electric field) or depressed (magnetic
field) instabilities. It is worthwhile to speculate if the dynamical terme'in the
equations of motion play the same role in the pPresent case.‘

Let us postulate here that the jet is without surface tension and that the
self coupling field terms are unimportant. This is equivalent to setting
th(or G) and n to zero in (7.1) and (7.2). Unfortunately, this degeneracy still
does not permit an appreciable simplification in the dispersion or eigenvalue
equations, and one must continue to use numerical solutions. The complex eigen-
frequencies for a jet traveling with a velocity three times the Structure wave
velocity is shown in Fig. 7.7. Comparing with Figs. 7.4 and 7.5 for thebelectric
and magnetic field cases respectively, we observe that the curve appears to be a
hybrid of the two cases. -

The system exhibits both static instability e;d overstabilities similar to the
case with electric field coupling. Since the self coupling term is absent however,
the point of static instability is shifted to a larger value of Ly o/V . Below
this value the first mode is stable, and the higher modes overstable,ocharactetistic '
of both electric and magnetic field coupling. In addition, these highef modes
exhibit peakes in growth rate. We may conclude, as in the case of counter-streaming
jets, that the mutual coupling term is of fundamental importance.

With the surface tension suppressed the jet 1s supercapillary for all flow

velocities and one wonders if the general behavior of this system is unaltered as
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the flow velocity (or tension of the spring) is varied. A particular case of

interest is the point where the flow velocity and spring tension velocity are equal.

One might suspeét that in these circumstances the spring and jet should couple

strongly and expect instabilities to be large. The results are shown in Fig. 7.8.

Comparing with Fig. 7.8, we observe first that the point of static instability has

been shifted to higher Lmo/V as one might expect if the spring is under incfeased
o

tension. Secondly and more significantly, perhaps, is that the higher modes are

damped until a large value of Lmo/ is reached. It appears then that if the jet

v
o

velocity is comparable to the spring tension velocity, it is difficult to produce

instability. If one could achieve large Lwo/ and somehow suppress the fundamental

\'f
e]

mode instability, then larger growth rates could be achieved.

7.5 Physical Description of Class IV Overstability

In the foregoing sections detailed eigenfrequency curves were presented for
several cases and the results briefly discussed. One might wonder.if there is a
simply physical argument which might be given to explain the mechanism of over-
stability as there was for the case of counter-streaming jets. In fact, there is.
The argument must be modified from that used for the counter-streaming jets,
however, since the instability is dynamical in character.

Consider in the spring jet electric field coupled system that the spring is
vibrating in its second natural mode of oscillation, with the displacement given by
sin(wt + %)sin 2%5 - To simplify the physical argument we shall consider a sampling
of small pieces of fluid and investigate two effects: The traction exerted and the
power delivered by the spring to the jet in the left half region, and the traction
exerted and power &elivered by the jef to the spring in the right half region. An

essential ingredient in the analysis is that the power supplied by the spring to the

jet in the left half region is more than offset by the power supplied by the jet to
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L
'gﬂ%

the spring in the right half region. The net power transfer must be from the jet

to the spring since the spring is a passive element and cannot supply time average
power. A second essential ingredient for oscillation is that even if the jet
supplies net power to the spring, the mechanism must be present for the spring to
! feedback some of this power to the upstream section of the jet to sustain the
oscillations. Otherwise we have an amplifier and not an oscillator. To simplify '
the discuséion, surface tension on the jet will be ignored and the only force
i acting oﬁ the pieces of fluid to be studied are due to the mﬁtual coupling.

It will be assumed for the convenience of the argument that the jet velocity
/ is twice the wave velocity on the spring, or alternatively, the transit time of the
[ jet 1s half the period of oscillation. It is necessary to consider only two

elements of fluid, labeled elements A and B of the sketch below.

¥

L - C
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v’ Element A enters the interaction region unexcited at t = 0 when the spring

( is about half amplitude. As time advances, the spring exerts a strong traction on
| A; as A travels to the right and the spring amplitude increases toward its peak
value. At wt ='% » the spring is at peak amplitude and A is directly opposite the
peak, but now deflected downward slightly 1/4 the distance downstream from the
nozzle. As wt increases to % s the downward traction on A is still strong and A
deflects even further due to the downward acceleration. Therspring has exerted a

large traction on A, but supplied only a modest amount of kinetic energy because

e —

of the small transverse jet velocity.
[ If we now focus ouf attention on the downstream half, the deflection of the
spring is downward (at half amplitude) at wt =-% , but is rising. The mutual

coupling term provides an upward traction on the spring, but the important efféct

'1% is the upward force exerted by the element on the spring during the entire time

until it exits the interaction!region. Further this upward force occurs when the

[ spring is at near maximum velocity, so that the kinetic energy transferred is large,
| much larger than that delivered to the element by the spring during the lst quarter
cycle. This shows then that element A at least satisfies both requirements for
overstability, having been excited Py the spring during the 1lst quarter cycle and
delivering net kinetic‘energy to the spring. It is necessary, however, to show

that other fluid elements do not degrade the overstable effect of element A.

Consider element B which enters the interaction region at wt ='% . The left

half of the spring is at half amplitude and traveling downward. At wt = é% , the
spring 1is at the equilibrium and exerts no traction on the fluid element. The net
deflection of B at uwt = 2% is slightly downward during the next %'interval, the

mutual traction is upward and essentially restores B to the equilibrium position.

The net effect is that B arrives at the midplane virtually unexcited. Between
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§-< wt < é% the traction exerted on the spring by the jet is very weak. The

spring on the other hand exerts a strong downward force on the jet although there

is little power transfer. Finally, for'é% < wt < é% » the jet 1is now mpving down-

ward, as is the spring and the spring transfers some kinetic energy back to the
jet. The net result of element B is that the spring loses a modest amoﬁnt of
energy to the jet.

If we consider another entering element at wt =‘%, the situation is symmetrical
to that for fluid element B, with the jet and spring rotated 180° about its axis.
The result is the same as for fluid element B, large amounts of kinetic energy are
transfered from the jet to the spring. For elements which enter midway between
elements A and B,say, or B and C, there is a modest power gain by the spring. If

we make a qualitative sketch of kinetic energy versus entrance time for fluid

elements, the results would look like that shown below.

K. E.

| 1 [

T »  wt
/4 /2 \\3“/::

Time average power is then transferred from the jet to the spring.
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If the same argument is used for the case Vo =V it is concluded that there

£
is little or no power transferred, and for VD < Vt, the spring delivers power to
the jet. Since the spfing 1s a passive element, the conclusion is that ;he mode
is damped. The argument may be extended to the‘third or higher modes without
conceﬁtual difficulty, although the details Secome involved.

In all of the modes higher than the first, the mechanism for instability
depended on the spring exciting the jet upstream and the jet in turn transferring
net power back to the spring. The fundamental mode is peculiar, however, since
each point on the spring has essentially the same phase, and no feedback mechanism

is available.

The Exﬁended Region Klystron : As a final example which may be of some interest,

consider an electron beam streaming through a microwave cavity. This may be
modeled as a special case of the magnetically coupled spring-jet system, in the
same way that the counter-streaming electron beam case could be considered.
Such a device 1s called a klystron for short length, or an éxtended region
kiystton 1f the device is iong. In any case it is a simple matter to compute
the complex eigenfrequencies as a function of length, as shown in Fig. 7.9.

The giganf:aquency curves are very similar to Fig. 7.5 for the magnetically
coupled surface wave case. The characteristic fundamental mode damping and
higher mode overstability is evident. These latter modes also exhibit peak

growth rates as in the magnetically coupled case.
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@%ﬁﬁ | CHAPTER 8
( SPRING JET EXPERIMENT
8.1 Introduction
( Iﬁ the previous chapter the theoretical framework for a membrame interactihg
with a supercapillary jet was established. The results of Chapter 3 suggested that,
for the electric field coupled system of infinite length, both cﬁnvective and non-
convective instabilities exist. The appearance of longitudinal boundariés had the
[ . effect ofvshifting the imaginary part of the eigenfrequency so that the fundamental
mode decayed in time while the 2nd mode became overstable. We would like to find
|' out whether in fact it is experiméntally possible to produce unstable oscillations
at electric fields below the critical field for the static fundamental mode insta-

bility.

Q 4 8.2 Experimental Description

As mgntioned in the discussion of the two spring experiment, the stationary

[ jet model is physically realized by a spring under small tension. The same

! apparétus was used as in eérlier experiments, the deformable elements here are a

‘ spring and a jet, supported in the horizontal plane to minimize gravitational

: effects, which would produce a non-uniform jet velocity and a ﬁon—uniform spring
ténsion. This presents a difficulty since a jet is concave downward, a spring

i concave upward. Iﬁ was found that the vertical separation was too great for a

Planar model to be valid. To correct this, the spring was supported by fine

insulating strings at a sufficient number of stations to give the spring the same

[ curvature as the jet. The external plates also had the same curvature. The

spacing of the strings was also kept'small compared to wavelengths of interest (the

shortesﬁ wavelength is the fourth mode of the spring, 44 cm.) so that the effect of

the support strings could be modeled by a continuum of pendulums. For convenience

the jet was electrically grounded, the spring then was allowed to be at high voltage.
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To detect the existance of absolute instabilities, the d.c. voltage is
increased from zero until either an instability or electrical breakdown occurs. At
low voltages, tﬁe spring and jet are effectively uncoupled, disturbances on the
spring appear as standing wave oscillations which very slowly decay in time, while
jet disturbances appear as pulses traveling downstream at about the jet velocity.
As the voltage is increased, the spring and jet begin to couple. The oscillation
frequencies of the spring are not affected significantly by the presence of the
electric field; the damping, however, is significantly altered. The fundagental
mode decays more rapidly while higher modes decay more slowly. Disturbances on the
jet exhibit spatial growth for longer waves (characteristic of a single jet inter-
acting with rigid plates).

As the voltage is increéqedkfhrther, a critical electrié field is reached when
the spring-jet system spontaneously breaks into oscillation and the amp litudes
increase slowly with time, building up to such an amplitude that the spring and jet
collide, terminating the experiment. The trajectory of the spring is unmistakably
the third mode. The jet, however, exhibits a traveling wave behavior with an
exponential envelope which grows in time at the same rate as the spring. The
critical‘voltage is reproducible. If this voltage is exceeded by a modest amount,
the temporal growth rate is increased, but the spatial character of the system is
unchanged; Further increase of the voltage results in other modes becoming unstable,
first the 4th mode, then others. The spring-jet system is now tightly coupled, the
unstable modes grow, beating against each other, until non-linear effects couple

the modes and can even tend to limit the amp 11 tude. ‘This last effect is not under-

stood.

8.3 Results

The frequency of the third mode of instability is 7.1 cps, which is a bit high

for visual observation of the phase relationships between the spring and jet. The
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physical arrangement of the experiment makes taking photographs quite difficule.
As a result, a second appafétus was constructed (simplier in design) and the spring,
jet, and plates mounted in a vertical plane to eliminate the curvature difficulties
explained earlier. The transverse spacing was increased and the longitudinal
dimension shortened. Because of the large transverse spacing, the instability
voltage is correspondingly increased and it was necessary to perform the experiment
in an atmosphere of Freon or sulfurhexafluoride to prevent corona and breakdown. As
the voltage is raised to the critical point, the system becomes unstable as before,
but now the first unstable mode is the second mﬁde as shown in Fig. 8.1. ‘This
photograph was taken with a shutter speed adjusted to the period of oscillation to
show the amplitude envelope.

High speed motion pictures+ were taken to observe the phase relationships of
the spring and jet during an oscillation and to observe the oscillation buildup. A
sequence of four frames one sixth of a cycle apart in time are shown in Fig. 8.2a.
The second natural mode of the spring and the convective instability character of
the jet at the same frequency as the spring are apparent. The relationship of the
jet deformation to that of the spring lends support to the pPhysical arguments of the
previous chapter concerning the mechanism for overstability.

Tp the best of the author's knowledge, this is the first stream-structure device
which couples a convecting fluid exhibiting amplifying waves in the uncoupled state

to a passive propagating structure to produce overstabilities. The complex eigen-

- frequencies were computed for the experimental conditions and for the time sequence

shown in ?ig. 8.2a. The theoretical eigenfunctions pfovide an excellent picture of

the dynamics, as can be seen by a comparison with the photographs. The non-linear

tThese mbtion pictures were taken by Educational Serviées, Inc.,,
for use in the film "Electromechanical Waves and Instabilities"

National Science Foundation under the supervision of the Nation
Electrical Engineering Films. :

>Watertown, Mass.,
» Sponsored by the
al Committee on
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FIGURE 8.1 TIME EXPOSURE FOR ONE PERIOD OF OSCILLATION
DURING BUTLDUP OF ELECTRIC FIELD COUPLED STREAMING OVER-
STABILITY. SPRING (LEFT) AND JET (RIGHT) ARE RESONATING
AT THE SECOND ETIGENFREQUENCY.
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HIGH SPEED PHOTOGRAPHS OF A KELVIN-HELMHOLTZ OR STREAMING OVERSTABILITY

FIGURE 8.2a
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displacement of the Jet is evident in (d) of Fig. 8.2a, and exhibits the same

behavior as the single jet nonlinear transient.

The complex eigenfrequencies using the experimental parameters are shown in
Fig. 8.3a and b. According to theory, the fundamental mode should be increasingly

damped until a critical Lme/v is reached and static instability sets in. All of
o

the higher modes computed are overstable, however, even for the lowest values of

Lu’e/v - From Fig. 8.3a the second and third mode eigenfrequency curves lose their

o
spring-like character for large Lme/V - As can be seen, the growth rates for the

o
higher modes, particularly the second mode can be quite large. If a means were

available to suppress the fundamental mode (perhaps by constraining the midpoint‘of
the spring), large growth rates are possible at low frequency. Such a device could
be of practical use.

In order to determine the dynamics of the system quantitatively, the fifst four
complex resonant frequencies were measured as a function of applied voltage. The
real part of the frequency was measured by applying a small alternating voltage to

the previously grounded plate adjacent to the spring and the frequency for maximum

amplitude displacement was determined. This voltage was then removéd and the

subsequent decay transient recorded. The decay constants were obtained from a
semilog plot of the envelope measurements for the recordings, and are plotted in
Fig. 8.4 a to d for the first four modes. The theoretical growth and decay rates

from Fig. 8.3b are shown as the curves marked SJP. The trend of the results appears

to be correct although the quantitative disagreement is much too large to be

explained by experimental error of the measurements. bAs can be observed the scatter
of the data is quite small except for mode 4, The difficulty in obtaining good
results here lies in the competing effects of mode 3 which modulates the envelope.

Attempts to suppress or impede the third mode were unsuccessful since in so doing

the 4th mode decay was also disturbed.
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(Vs /Vo)=.0009172
(Vyy 7 Vo )= 63199

p /P, = 59797
n  =1765
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n
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-25

FIGURE 8.3a COMPLEX EIGENFREQUENCY VS. NORMALIZED LENGTH FOR
EXPERIMENTAL CONDITTIONS SHOWING THE THREE LOWEST MODES. SEE
FTGURE 8,3b FOR AN EXPANDED VIEW OF THE ENCLOSED RECTANGLE.
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The agreement of the SJP curves with experiment is quite good if an allowance
is made for a zero voltage shift. The solid unmarked 1ines in Fig. 8.4 are the
SJP curves shifted down an amount equal to the zero voltage shift for each mode.
This means there must exist another mechanism which has a strong effect on damping

rate; this matter will be discussed in Sec. 8.5.

8.4 The Pendulum Effect

Before discussing this discrepancy, let us consider the real part of the
eigenfrequencies. The theoretical values of the real part of the resonant
frequencies at zero voltage should be exact multiples of the fundamental if we
ignore the effect of the support strings on the springs. This, however, was not
observed, as seen in Fig. 8.5 (recall that resonant frequency measurements are
accurate to *t .01 cps, so that the deviation from a straight line in Fig. 8.5 is
significant).

Let us postulate then, as in Chapter 4, thét in addition to the spring behaving
as a vibrating string, it also experiences a continuum gravitational restoring force
through the support strings holding the spring. The restoring force on a section
of spring of unit length is simply given by —pnrzgll . The dispersion relation derived

in Chapter 4 for two springs, simply becomes

2 22 2 _ ar‘g _
W = VKT + w] —52 0 (8.1)

Since the ends of the spring are fixed, k = B% and the functional dependence of
the frequency on mode number becomes

£2 = an’+b , (8.2)

The parameters a and b were calculated from the data and (8.2) drawn as the solid
curve of Fig. 8.5. The data is predicted quite well by an equation of the form of

(8.2).
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FIGURE 8.5 FREQUENCY VS MODE NUMBER
FOR ZERO VOLTAGE
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To determine the effect of the Support strings on the growth and decay rates,
the complex eigenfrequencies were recomputed with the pendulum term omitted; the
results are the curves marked SJ in Fig. 8.4a to d. The pendulum term has little
effect at low vnltages, but as the voltage is raised its effect becomes more
pronounced, especially for the lower modes. The effect of adding the support
strings is to shift the system toward a position of neutral equllibrium for all the
modes considered. This appears intuitively reasonable since the natural frequency
of the pendulum is considerably smaller than the lowest mode of the system and

would interfere with all the eigenfrequencies.

8.5 Losses

Let us now return to the question of loss mechanisms mentioned previously to
explain the disparity between theory and experiment in the decay and growth rates.
If the zero voltage shift is plotted versus the real part of the resonant frequency,
as in Fig. 8.6, the damping mechanism is seen to be a linear function of frequency,

and from the agreement between theory and experiment, is not a function of voltage.

8.5.1 Air drag

There are several poséible mechanisms for mechanical damping; one which appears
likely and is amenable to calculation is air drag. Suppose the oscillatory motion
of the spring is modeled by a stationary cylindrical rod in a uniform velocity (V )
air stream moving at 1/2 the maximum transverse velocity of the springef If the
Reynolds number of the flow is sufficiently low, then the drag coeffic1ent is quite

closely given by: T

-

1The factor of 2 is included here for space and time averaging. For the Reynolds
numbers of interest, the drag force is nearly proportional to V2 .

ttRouse, Elementary Mechanics of Fluids, Wiley and Soms, p. 247,
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A pV 2r
<, X C/Re R, = Reynolds number =
C = constant
A = projected area = 2r&
u = viscosity

_ 2
where the drag force FD = CDApVOIZ

Under these conditions, the drag force is proportional to velocity. The equation

of motion for a spring with air drag may then be written:

2 2
p'nrz _3__§_ = T a—‘i - p.".rzg/ E-Y _aﬁ
atZ ax2 '3 at

where y is the damping constant in newt.-sec/m>

The resonant frequencies are given by:

2 2
we s v ) I mny
2 - 2. 2 ' 2
2pTr 2pTr pTIL
For small damping,
- __ _ X =
wy v zp“rz 27X A mass/length of spring

The drag force in terms of flow quantities is:

2
\'A
Cu 0o
FD 2tV p ., Zrs pair 2
o air
so that
- Cu
Y5 % 4x

We see that under the assumed conditions the mechanical decay constant is

independent of frequency. However, the empirical data of Rouse indicates that, for
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the Reynolds numbers of the gxperiﬁent (0(102)), C is in reality C = C(Re). Using
the values of CD tabulated corresponding to the four measured modes, the damping
constants are computed as shown in Fig. 8.6. Air drag, then appears to be the
predominant mechanical loss mechanism. The slope of the curve of Fig. 8.7 is

characteristic of drag force nearly pProportional to the square of the velocity.

8.6 Other Results

Before concluding the chapter, it is worthwhile-to point out the results of
two recent experiments by Herba22 using the same apparatus previously described.
The first was the measurement of growth and decay rates with ﬁhe spring tension
increased to Vts/V° ~ l. The effect of this increased tension was to suppress
the second and third mode instability and require a considerably larger voltage
to produce the fourth and fifth mode overstabilities. Theoretical calculations
using his experimentally measured parameters showed no overstabilities.for the
range of voltages considered, but a numerical sensitivity test of the parameters
indicated that in the neighborhood of unity the parameter Vts/vo had a strong
effect on growth and decéy rate. A reduction was made in this parameter (but
within the experimental error of the measurement) and the observed over-
stabilities were predicted. This lends support to the physical arguments of
the previous chapter concerning the dependence of overstability on vts/vo'

The second experiment consisted in driving the jet in the sinusoidal steady
state at a voltage below the start oscillation point. The measurements were made
on the fundamental mode. For fixed voltage and fixed amplitude of excitation, the
frequency of excitation was varied through the resonant frequency and the displace-
ments of the springiand jet recorded. .The jet amplitude remained constant except
in a small band near the resonant frequency when the amplitude dropped to a

minimum at the resonant frequency. The spring amplitude was small and relatively
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constant except near the resonant frequency when the amplitude rose sharply. The
relative phase between the jet and spring changed Qery rapidly by 180° as the
frequency was increased through the resonant frequency. The frequency band for
Phase reversal was smaller than the amplitude bandwidth. This behavior is common
in lumped parameter circuits.

The second mode was also investigated, but the Q of the system was so high
that the structure of the resonance could not be measured. A conclusion is
inescapable, however. The amplitude of both the spring and jet increased markedly
at resonance, in contrast to the fundamental mode. The explanation is proposed
that the second mode is actually overstébié.ﬁﬁt is>limited to very small amplitude
by the mechanical loss mechanisms, notably air drag. Since this is a nonlinear
process, the effect of driving the unstable mode would be for the system to settle

to a new operating point with a larger amplitude for both jet and spring.
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CHAPTER 9

CONCLUSION AND SUGGESTIONS

This work has been devofed to the intensive study of two fluid streams
in relati#e motion, coupled by an electric or magnetic field. The author
has not pursued the usual prd;edure of ignoring end effects and only
examining the stability of the eigenmodes produced by the imposition of
boundaries transverse to the direction of flow, by means of the dispersion
relation. Such a procedure is valid provided the wavelengths of importance
are short compared to the length of the device. Often, however, the stab-
ility is determined more by the long waves than the higher order transverse
modes, and end conditions become of primary concern. This has been true in
all of the cases investigated. The various flow regimes have been have been
exahined with catéful atténtioﬁ to the‘effects of 16ngitudina1 boundaries.
Experiments have been performed which verify this procedure, so that a
complete picture of the'system dynamics is possible.

In addition to this work expanding the area of knowledge of two-stream
elect:omechanical surface waves, the results shed light on the nature of two-
stream interactions generally. An important advantage of the problems studied
hére is that the models are free of the difficulties usually encountered in
other areas.

This work is by no means cbmplete; quite the contrary, it serves as an
introduction to fhe general problem.of the effects of longitudinal boundary
conditions which are consistent with céusality. For example, the problem
of two-stream sausage modes, while practically perhaps not as interesting

as the kink modes, has yet to be formulated.
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There are several suggestions which the author would like to propose
concerning future research. The question of whether stream-structure inter-
actions,such as described in Chapters 7 and 8, could be put to practical use
is intriguing. Possible uses might be energy conversion from flowing fluid
energy to electrical power, or as devices such as low frequency oscillators
and amplifiers.

The problem of éontinuum feedback control is just now receiving attention.

35’36and Crowley12 has been concerned with the control of a

Work by Melcher
liquid interface and a flﬁid jet by means of field coupling. The implications
of continuum feedback control are immense; one such application is the control
of thermonuclear machines. Since many instabilitieslobserved in plasmas are
Kelvin-Helmholtz in character, the electromechanical models described here
provide an exdéllent medium for studying the processes of coﬁtinuum feedback
control.

It was shown briefly that analogies exist between field coupled surface
wéves and electron beams. Electron beam devices have reached a fairly degree
of sophistication, but are not well understood analytically in the sense
described here. It appears that both of the areas would benefit if the analo-
gies were exploited.

In chapter 2 the nonlinear transient problem for a single jet was invest-
igated. Experiments have not been done to correlate the theory;, and no work
has been done to consider the noﬁ-long—wave case. The nonlinear dynamics of
the spring-jet experiments are apparant from observations of the Iafge ampli-

tude motions of a single mode, the eigenmode mixing observed between two

unstable modgs, and the nonlinéar damping. This negds further study.
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The large area of elecﬁromechanical stream-structure interactions is
virtually‘unexplored. The only structure studied here was a spring fixed at
the ends. Simply changing the terminations can have a large effect on the
system dynamics. When one imagines the number of both continuum and lumped
parameter elements which can be used as a structure, the list is large indeed.
If more than one stream is considered, the use of structures as space filters
provides yet more interesting configurationms.

As a final suggestion, it might be remarked that the equilibrium field
for all cases studied was constant. The effect of using a low frequency
electric field coupling to produce parametric oscillations is now under study
by Devitt. The problem of an alternating field on a single fluid jet has not

been studied, and the application to two streams appears exciting indeed.
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