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Abstract—Process variations are a major concern in today’s
chip design since they can significantly degrade chip perfor-
mance. To predict such degradation, existing circuit and MEMS
simulators rely on Monte Carlo algorithms, which are typically
too slow. Therefore, novel fast stochastic simulators are highly
desired. This paper first reviews our recently developed stochastic
testing simulator that can achieve speedup factors of hundreds to
thousands over Monte Carlo. Then, we develop a fast hierarchical
stochastic spectral simulator to simulate a complex circuit or
system consisting of several blocks. We further present a fast
simulation approach based on anchored ANOVA (analysis of
variance) for some design problems with many process variations.
This approach can reduce the simulation cost and can identify
which variation sources have strong impacts on the circuit’s
performance. The simulation results of some circuit and MEMS
examples are reported to show the effectiveness of our simulator.

I. I NTRODUCTION

As the device size shrinks to the sub-micro and nano-meter
scale, process variations have led to significant degradation
of chip performance and yield [1], [2]. Therefore, efficient
stochastic simulators are highly desired to facilitate variation-
aware chip design. Existing circuit and MEMS simulators use
Monte Carlo [3], [4] for stochastic simulation. Despite itsease
of implementation, Monte Carlo requires a huge number of
repeated simulations due to its slow convergence rate, very
often leading to prohibitively long computation times.

Stochastic spectral methods [5]–[9] are promising alterna-
tive techniques. In fact, they have shown significant speedup
over Monte Carlo in many engineering fields. The key idea is
to represent the stochastic solution as a linear combination
of some basis functions such as polynomial chaos [10] or
generalized polynomial chaos [8], which then can be computed
by stochastic Galerkin [5] or stochastic collocation [11]–[13]
techniques. Such techniques have been successfully applied
to simulate the uncertainties in VLSI interconnects [14]–[17],
electromagnetic and microwave devices [18]–[20], nonlinear
circuits [21]–[24] and MEMS devices [25]–[27].

An efficient stochastic testing simulator has been proposed
to simulate integrated circuits [28]–[30]. This simulatoris a
hybrid version of the stochastic collocation and the stochastic
Galerkin methods. Similar to stochastic Galerkin, stochastic
testing sets up a coupled deterministic equation to directly

compute the stochastic solution. However, the resulting cou-
pled equation can be solved very efficiently with decoupling
and adaptive time stepping inside the solver. This algorithm
has been successfully integrated into a SPICE-type programto
perform various (e.g., DC, AC, transient and periodic steady-
state) simulation for integrated circuits with both Gaussian and
non-Gaussian uncertainties. It can also be easily extendedto
simulate MEMS designs (c.f. Section II). In this paper we will
present two recent advancements based on this formulation.

First, Section III will present a hierarchical uncertainty
quantification method based on stochastic testing. Hierarchical
simulators can be very useful for the statistical verification
of a complex electronic system and for multi-domain chip
design (such as MEMS-IC co-design). In this simulation flow,
we first decompose a complex system into several blocks and
use stochastic spectral methods to simulate each block. Then,
each block is treated as a random parameter in the higher-
level system, which can be again simulated efficiently using
stochastic spectral methods. This approach can be hundredsof
times faster than the hierarchical Monte Carlo method in [31].

Second, in Section IV we will present an approach to im-
prove the efficiency of stochastic spectral methods when simu-
lating circuits with many random parameters. It is known that
spectral methods can be affected by the curse of dimensional-
ity. In this paper, we utilize adaptive anchored ANOVA [32]–
[37] to reduce the simulation cost. This approach exploits the
sparsity on-the-fly according to the variance of the computed
terms in ANOVA decomposition, and it turns out to be suitable
for many circuit problems due to the weak coupling among
different variation sources. This algorithm can also be used for
global sensitivity analysis that can determine which parameters
contribute the most to the performance metric of interest.

The simulation results of some integrated circuits and
MEMS/IC co-design cases are reported to show the effective-
ness of the proposed algorithms.

II. STOCHASTIC TESTING SIMULATOR

In this section we summarize the algorithms and results of
our recently developed fast stochastic testing circuit simulator.
We refer the readers to [28]–[30] for the technical details.
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Fig. 1. Overall flow of the stochastic testing simulator.

A. Overview of the Simulator

The overall flow of the stochastic testing simulator is shown
in Fig. 1. The main procedures are summarized below.

1) Set Up Stochastic Circuit Equations:Given a circuit
netlist, the device models and the specification of device-
level uncertainties, one can use modified nodal analysis [38]
to obtain a stochastic differential algebraic equation:

d~q
(

~x(t, ~ξ), ~ξ
)

dt
+ ~f

(

~x(t, ~ξ), ~ξ
)

= B~u (t)
(1)

where ~u(t) is the input signal;~x ∈ R
n denotes nodal

voltages and branch currents;~q ∈ R
n and ~f ∈ R

n represent
the charge/flux and current/voltage terms, respectively. Here
~ξ=[ξ1, · · · , ξd] ∈ Ω (with Ω ⊆ R

d) representsd independent
random variables describing device-level uncertainties.The
joint probability density function of~ξ is

ρ(~ξ) =

d
∏

k=1

ρk (ξk), (2)

whereρk (ξk) is the marginal density ofξk ∈ Ωk ⊆ R.
2) Stochastic Testing Formulation:When ~x(~ξ, t) has a

bounded 2nd-order moment, we can approximate it by a
truncated generalized polynomial chaos expansion [6], [8]

~x(t, ~ξ) ≈ x̃(t, ~ξ) =
∑

~α∈P

x̂~α(t)H~α(~ξ) (3)

where x̂~α(t) ∈ R
n denotes a coefficient indexed by vector

~α = [α1, · · · , αd] ∈ N
d, and the basis functionH~α(~ξ) is an

orthonormal multivariate polynomial with the highest order of
ξi beingαi. In stochastic testing, the highest total degree of
the polynomials is set asp, leading toP = {~α| αk ∈ N, 0 ≤
α1 + · · ·+ αd ≤ p}. Consequently, the total number of basis
functions is

K =

(

p+ d
p

)

=
(p+ d)!

p!d!
. (4)

Since all components of~ξ are assumed mutually independent,
the multivariate basis function can be constructed as

H~α(~ξ) =

d
∏

k=1

φkαk
(ξk), (5)

where φkαk
(ξk) is a degree-αk univariate polynomial ofξk

satisfying the orthonormality condition
〈

φkγ(ξk), φ
k
ν(ξk)

〉

=

∫

Ωk

φkγ(ξk)φ
k
ν(ξk)ρk(ξk)dξk = δγ,ν (6)

whereδγ,ν is a Delta function; integersγ andν denotes the de-
grees ofξk in φkγ(ξk) andφkν(ξk), respectively. Givenρk(ξk),
one can utilize a three-term recurrence relation to construct
such orthonormal univariate polynomials [39]. The univariate
generalized polynomial chaos basis functions for Gaussian,
Gamma, Beta and uniform distributions can be easily obtained
by shifting and scaling existing Hermite, Laguerre, Jacobi
and Legendre polynomials, respectively [6], [8]. Since for
any integerk ∈ [1,K] there is a one-to-one correspondence
betweenk and~α, for simplicity we rewrite (3) as

~x(t, ~ξ) ≈ x̃(t, ~ξ) =
K
∑

k=1

x̂k(t)Hk(~ξ). (7)

In order to findx̃(t, ~ξ), we need to calculate the coefficient
vectorsx̂k(t)’s. In stochastic testing,̃x(t, ~ξ) is substituted into
(1) and then the resulting residual is forced to zero atK testing
points~ξ1, · · · , ~ξK , giving the following coupled deterministic
differential algebraic equation of sizenK

dq(x̂(t))
dt

+ f(x̂(t)) = Bu(t), (8)

where the state vector̂x(t) = [x̂1(t); · · · ; x̂K(t)] collects all
coefficient vectors in (7). This new differential equation can be
easily set up by stacking the function values of (1) evaluated
at each testing point [28], [30].

In stochastic testing, the testing points are selected as
follows [28], [30]:

Step 1.For eachξk, selectp + 1 Gauss quadrature points
ξjk ’s and weightswj

k ’s [40]–[42] to evaluate an integral by

∫

Ωk

g(ξk)ρk(ξk)dξk ≈
p+1
∑

j=1

g(ξjk)w
j
k (9)

which provides the exact solution wheng (ξk) is a polynomial
of degree≤ 2p+1 [40]. Thed-dimensional quadrature points
and weights for~ξ are then obtained by a tensor rule, leading
to (p+ 1)d samples in total.

Step 2.Define a matrixV∈RK×K , the (j, k) element of
which isHk(~ξ

j). Among the obtained(p+1)d d-dimensional
quadrature points, select theK points with the largest weights
as the final testing points, subject to the the constraint that V
is invertible and well conditioned.

3) Simulation Step:Instead of simulating (1) using a huge
number of random samples, our simulator directly solves the
deterministic equation (8) to obtain a generalized polynomial-
chaos expansion for~x(t, ~ξ). In DC and AC analysis, we only
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Fig. 2. Schematic of the BJT Colpitts oscillator.

need to compute the static solution by Newton’s iterations.
In transient analysis, numerical integration can be performed
given an initial condition to obtain the statistical information
(e.g., expectation and standard deviation) at each time point.

This simulator is very efficient due to several reasons [28].
First, it requires only a small number of samples to set up (8)
when the parameter dimensionality is not high. Second, the
linear equations inside Newton’s iterations can be decoupled
although (8) is coupled, and thus the overall cost has only a
linear dependence on the number of basis functions. Third,
adaptive time stepping can further speed up the time-domain
stochastic simulation.

B. Performance Summary

Extensive circuit simulation examples have been reported
in [28], showing promising results for analog/RF and digital
circuits with a small to medium number of random parameters.
For those examples, the stochastic testing simulator has shown
102× to 103× speedup over Monte Carlo due to the fast
convergence of generalized polynomial-chaos expansions.This
circuit simulator is also significantly more efficient than the
standard stochastic Galerkin [5] and stochastic collocation
solvers [11]–[13], especially for time-domain simulation.

Stochastic periodic steady-state solvers have been further
developed on this platform and tested on both forced circuits
(e.g., low-noise amplifier) and autonomous circuits (e.g.,os-
cillators) [29]. As an example, we consider the Colpitts BJT
oscillator in Fig. 2, the frequency of which is influenced by
the Gaussian variation ofL1 and non-Gaussian variation of
C1. With a3rd-order generalized polynomial-chaos expansion,
our stochastic testing simulator is about5× faster than the
solver based on stochastic Galerkin [23]. Fig. 3 shows the
histograms of the simulated period from our simulator and
from Monte Carlo, which are consistent with each other. Note
that Monte Carlo is about507× slower than our simulator
when the similar level of accuracy is required.

C. Extension to MEMS Simulation

The stochastic testing method can be easily extended to
simulate MEMS designs. Considering uncertainties, we can
describe a MEMS device by a2nd-order differential equation

M
(

~z(~ξ, t), ~ξ
) d2~z(~ξ, t)

dt2
+

D
(

~z(~ξ, t), ~ξ
) d~z(~ξ, t)

dt
+ ~f

(

~z(~ξ, t), u(t), ~ξ
)

= 0

(10)
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Fig. 3. Distributions of the period: (a) stochastic testing, (b) Monte Carlo.

where ~z ∈ R
n denotes displacements and rotations;u(t)

denotes the inputs such as voltage sources;M, D ∈ R
n×n are

the mass matrix and damping coefficient matrix, respectively;
~f denotes the net forces from electrostatic and mechanical
forces. This differential equation can be obtained by discretiz-
ing a partial differential equation or an integral equation[43],
or by using the fast hybrid platform that combines finite-
element/boundary-element models with analytical MEMS de-
vice models [44]–[46]. First representing~z(~ξ, t) by a truncated
generalized polynomial-chaos expansion and then forcing the
residual of (10) to zero at a set of testing points, we can obtain
a coupled deterministic2nd-order differential equation. This
new 2nd-order differential equation can be directly used for
stochastic static and modal analysis. For transient analysis, we
can convert this2nd-order differential equation into a1st-order
one which has a similar form with (8), and thus the algorithms
in [28]–[30] can be directly used.

III. H IERARCHICAL UNCERTAINTY QUANTIFICATION

This section presents a hierarchical non-Monte Carlo flow
for simulating a stochastic system consisting of several blocks.
Let us consider Fig. 4, which can be the abstraction of a
complex electronic circuit or system (e.g., phase-lock loops)
or a design with multi-domain devices (e.g., a chip with both
transistors and MEMS). The output of each block (denoted
by yi) depends on a group of low-level random parameters
~ξi ∈ R

di , and the output of the whole system~h is a function
of all low-level random parameters. Stochastic analysis for the
whole system is a challenging task due to the potentially large
problem size and parameter dimensionality. In this paper we
assume that̂xi’s are mutually independent.

A. The Key Idea

Instead of directly simulating the whole system using~ξi’s
as the random sources, we propose to perform uncertainty
quantification in a hierarchical way.

1) Step 1: We use our fast stochastic spectral simula-
tor [28], [29] to extract a surrogate model for each block

yi = fi(~ξi), with ~ξi ∈ R
di , i = 1, · · · , q. (11)

With the surrogate models,yi can be evaluated very rapidly.
Note that other techniques [18], [31], [48] can also be utilized
to build surrogate models. For numerical stability, we define

ζi = (yi − ai)/bi = f̂i(~ξi) (12)
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such thatζi has a zero mean and unit variance.
2) Step 2:By treatingζi’s as the new random sources, we

compute~h by solving the system-level equation

F (~h, ~ζ) = 0, with ~ζ = [ζ1, · · · , ζq]. (13)

Again, we use the stochastic testing algorithm [28]–[30] to
solve efficiently this system-level stochastic problem. Stochas-
tic Galerkin and stochastic collocation can be utilized as well.
Note that (13) can be either an algebraic or a differential
equation, depending on the specific problems.

B. Numerical Implementation

The main challenge of our hierarchical uncertainty quantifi-
cation flow lies in Step 2. As shown in Section II, in order to
employ stochastic testing, we need the univariate generalized
polynomial basis functions and Gauss quadrature rule ofζi,
which are not readily available. Letρ(ζi) be the probability
density function ofζi, then we first constructp+1 orthogonal
polynomialsπj(ζi) via [39]

πj+1(ζi) = (ζi − γj)πj(ζi)− κjπj−1(ζi),
π−1(ζi) = 0, π0(ζi) = 1, j = 0, · · · , p− 1

with

γj =

∫

R

ζiπ
2
j (ζi)ρ(ζi)dζi

∫

R

π2
j
(ζi)ρ(ζi)dζi

, κj+1 =

∫

R

π2
j+1(ζi)ρ(ζi)dζi

∫

R

π2
j
(ζi)ρ(ζi)dζi

(14)

andκ0 = 1. Hereπj(ζi) is a degree-j polynomial with leading
coefficient 1. After that, the firstp + 1 basis functions are
obtained by normalization:

φj(ζi) =
πj(ζi)√
κ0κ1 · · ·κj

, for j = 0, 1, · · · , p. (15)

In order to obtain the Gauss quadrature points and weights
for ζi, we first form a symmetric tridiagonal matrixJ ∈
R

(p+1)×(p+1) with Jj,j = γj−1, Jj,j+1 = Jj+1,j =
√
κj and

other elements being zero. Let its eigenvalue decomposition be
J = UΣUT , whereU is a unitary matrix, then thej-th quadra-
ture point and weight areΣj,j andu21,j , respectively [40].

From (14) it becomes obvious that both the basis func-
tions and quadrature points/weights depend on the probability
density function ofζi. Unfortunately, unlike the bottom-level
random parameters~ξi’s that are well defined by process cards,
the intermediate-level random parameterζi does not have a
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Fig. 5. Schematic of a voltage-control oscillator with MEMScapacitors.

given density function. Therefore, the iteration parameters γj
andκj are not known. In our hierarchical stochastic simulator,
this problem is solved as follows:

• When fi(~ξi) is smooth enough and~ξi is of low di-
mensionality, we compute the integrals in (14) in the
parameter space of~ξi. In this case, the multi-dimensional
quadrature rule of~ξi is utilized to evaluate the integral.

• Whenfi(~ξi) is non-smooth or~ξi has a high dimension-
ality, we evaluate this surrogate model at a large number
of Monte Carlo samples. After that, the density function
of ζi can be fitted as a monotone piecewise polynomial
or a monotone piecewise rational quadratic function [47].
The special form of the obtained density function allows
us to analytically computeγj andκj . For further details
on this approach, we refer the readers to [47].

C. MEMS/IC Co-Design Example

As a demonstration, we consider the voltage-controlled
oscillator in Fig. 5. This oscillator has two independent
identical MEMS capacitorsCm, the 3-D schematic of which
is shown in Fig. 6. Each MEMS capacitor is influenced by
four Gaussian-type process and geometric parameters, and the
transistor threshold voltage is also influenced by the Gaussian-
type temperature variation. Therefore, this circuit has nine
random parameters in total. Since it is inefficient to directly
solve the coupled stochastic circuit and MEMS equations, our
proposed hierarchical stochastic simulator is employed.

1) Surrogate Model Extraction:The stochastic testing al-
gorithm has been implemented in the commercial MEMS sim-
ulator MEMS+ [49] to solve the stochastic MEMS equation
(10). A 3rd-order generalized polynomial-chaos expansion and
35 testing points are used to calculate the displacements, which
then provide the capacitance as a surrogate model. Fig. 7
plots the density functions of the MEMS capacitor from our
simulator and from Monte Carlo using1000 samples. The
results match perfectly, and our simulator is about30× faster.

2) Higher-Level Simulation:The obtained MEMS capaci-
tor models are normalized as done in (12) (and denoted as
ζ1 and ζ2). A higher-level equation is constructed, which
is the stochastic differential algebraic equation in (1) for



Fig. 6. Schematic of the MEMS capacitor.
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this example. The constructed basis functions and Gauss
quadrature points/weights forζ1 are plotted in Fig. 8. The
stochastic-testing-based periodic steady-state solver [29] is
utilized to solve this higher-level stochastic equation toprovide
3rd-order generalized polynomial expansions for all branch
currents, nodal voltages and the oscillation period. In Fig. 9,
the computed oscillator period from our hierarchical stochastic
spectral simulator is compared with that from the hierarchical
Monte Carlo approach [31]. Our approach requires only20
samples and less than1 minute for the higher-level stochastic
simulation, whereas the method in [31] requires5000 samples
to achieve the similar level of accuracy. Therefore, the speedup
factor of our technique is about250×.

IV. ANOVA-B ASED SPARSETECHNIQUE

Some circuit and MEMS problems cannot be simulated in
a hierarchical way. When such designs have a large number
of random parameters, the performance of stochastic spectral
methods can significantly degrade, since the number of basis
functionK is a polynomial function ofd. To mitigate the curse
of dimensionality in high-dimensional problems, sparsityof
the coefficients in generalized polynomial coefficients canbe
exploited. This section presents a simulation flow that exploits
such sparsity using anchored ANOVA (analysis of variance).

A. ANOVA and Anchored ANOVA Decomposition

1) ANOVA: Let y = g(~ξ) be a performance metric of inter-
est smoothly dependent on the independent random parameters
~ξ. Given a sample of~ξ, the corresponding outputy can be
obtained by calling a deterministic circuit or MEMS simulator.
With ANOVA decomposition [32], [35], we have

y = g(~ξ) =
∑

s⊆I

gs(~ξs ), (16)

−5 0 5 10 15
0

0.2

0.4

0.6

0.8
(a)

Gauss quadrature points

W
ei

gh
ts

−5 0 5
−40

−30

−20

−10

0

10

20

ζ
1

φ k(τ
1)

(b)

 

 

k=0
k=1
k=2
k=3

Fig. 8. The computed Gauss quadrature points/weights and basis functions
for the intermediate-level parameterζ1.

2.506 2.508 2.51 2.512 2.514 2.516 2.518 2.52

x 10
−8

0

100

200

300

400

500

600

700

800

900
(a) Proposed hierarchical method

period [s]
2.506 2.508 2.51 2.512 2.514 2.516 2.518 2.52

x 10
−8

0

100

200

300

400

500

600

700

800

900
(b) Hierarchical Monte Carlo

period [s]

Fig. 9. Histograms of the oscillator period, (a) from our hierarchical
stochastic spectral simulator, (b) from hierarchical Monte Carlo [31].

wheres is a subset of the full index setI = {1, 2, · · · , d}.
Let s̄ be the complementary set ofs such thats ∪ s̄ = I
ands ∩ s̄ = ∅ and |s | be the number of elements ins . When
s =

{

i1, · · · , i|s|
}

6= ∅, we setΩs = Ωi1 ⊗ · · · ⊗ Ωi|s| , ~ξs =
[ξi1 , · · · , ξi|s| ] ∈ Ωs and have the Lebesgue measure

dµ(~ξs̄) =
∏

k∈s̄

(ρk (ξk) dξk). (17)

Then,gs(~ξs ) in ANOVA decomposition (16) is defined recur-
sively by the following formula

gs(~ξs) =











E

(

g(~ξ)
)

=
∫

Ω

g(~ξ)dµ(~ξ) = g0, if s = ∅

ĝs(~ξs )−
∑

t⊂s

gt (~ξt ) , if s 6= ∅.
(18)

Here ĝs(~ξs ) =
∫

Ωs̄

g(~ξ)dµ(~ξs̄ ), and the integration is computed

for all elements except those in~ξs . From (18), we have the
following intuitive results:

• g0 is a constant term;
• if s={j}, then ĝs(~ξs ) = ĝ{j}(ξj), gs(~ξs) = g{j}(ξj) =
ĝ{j}(ξj)− g0;

• if s={j, k} and j < k, then ĝs(~ξs ) = ĝ{j,k}(ξj , ξk) and
gs(~ξs ) = ĝ{j,k}(ξj , ξk)− g{j}(ξj)− g{k}(ξk)− g0;

• both ĝs(~ξs ) andgs(~ξs) are|s |-variable functions, and the
decomposition (16) has2d terms in total.

Since all terms in the ANOVA decomposition are mutually
orthogonal [32], [35], we have

Var

(

g(~ξ)
)

=
∑

s⊆I

Var

(

gs(~ξs )
)

(19)



whereVar(•) denotes the variance over the whole parameter
spaceΩ. What makes ANOVA practically useful is that for
many engineering problems,g(~ξ) is mainly influenced by the
terms that depend only on a small number of variables, and
thus it can be well approximated by a truncated ANOVA
decomposition

g(~ξ) ≈
∑

|s|≤m

gs(~ξs ), s ⊆ I (20)

where m ≪ d is called theeffective dimension. Unfor-
tunately, it is still difficult to obtain the truncated ANOVA
decomposition due to the high-dimensional integrals in (18).

2) Anchored ANOVA: In order to avoid the expensive
multidimensional integrals, [35] has proposed an efficient
algorithm which is called anchored ANOVA in [33], [36],
[37]. Assuming thatξk ’s have standard uniform distributions,
anchored ANOVA first choses a deterministic point called
anchored point~q = [q1, · · · , qd] ∈ [0, 1]d, and then replaces
the Lebesgue measure with the Dirac measure

dµ(~ξs̄) =
∏

k∈s̄

(δ (ξk − qk) dξk). (21)

As a result,g0 = g(~q), and

ĝs(~ξs) = g
(

ξ̃s

)

, with ξ̃k =

{

qk, if k ∈ s̄

ξk, otherwise.
(22)

Anchored ANOVA was further extended to Gaussian random
parameters in [36]. In [33], [37], this algorithm was com-
bined with stochastic collocation to efficiently solve high-
dimensional stochastic partial differential equations, where the
index s was selected adaptively.

B. Anchored ANOVA for Stochastic Circuit Problems

In many circuit and MEMS problems, the process variations
can be non-uniform and non-Gaussian. We show that anchored
ANOVA can be applied to such more general cases.

Observation: The anchored ANOVA in [35] can be applied
if ρk(ξk) > 0 for any ξk ∈ Ωk.

Proof: Let uk denote the cumulative density function
for ξk, then uk can be treated as a random variable uni-
formly distributed on [0, 1]. Since ρk(ξk) > 0 for any
ξk ∈ Ωk, there existsξk = λk(uk). Therefore,g(ξ1, · · · , ξd) =
g (λ1(u1), · · · , λd(ud)) = ψ(~u) with ~u = [u1, · · · , ud].
Following (22), we have

ψ̂s(~us) = ψ (ũs) , with ũk =

{

pk, if k ∈ s̄

uk, otherwise,
(23)

where~p = [p1, · · · , pd] is the anchor point for~u. The above
result can be rewritten as

ĝs(~ξs) = g
(

ξ̃s

)

, with ξ̃k =

{

λk(qk), if k ∈ s̄

λk(ξk), otherwise,
(24)

from which we can obtaings(~ξs ) defined in (18). Conse-
quently, the decomposition forg(~ξ) can be obtained by using
~q = [λ1(p1), · · · , λd(pd)] as an anchor point of~ξ.

Algorithm 1 Stochastic Testing Circuit Simulator Based on
Anchored ANOVA.

1: Initialize Sk ’s and setβ = 0;
2: At the anchor point, run a deterministic SPICE simulation

to obtaing0, and sety = g0;
3: for k = 1, · · · , m do
4: for eachs ∈ Sk do
5: run stochastic testing simulator to get the generalized

polynomial-chaos expansion of̂gs(~ξs ) ;
6: get the generalized polynomial-chaos expansion of

gs(~ξs) according to (18);

7: updateβ = β +Var

(

gs(~ξs )
)

;

8: updatey = y + gs(~ξs );
9: end for

10: for eachs ∈ Sk do
11: θs = Var

(

gs(~ξs)
)

/β;

12: if θs < σ
13: for any index sets ′ ∈ Sj with j > k, remove

s
′ from Sj if s ⊂ s

′.
14: end if
15: end for
16: end for

For a given effective dimensionm≪ d, let

Sk = {s |s ⊂ I, |s | = k} , k = 1, · · ·m (25)

contain the initialized index sets for allk-variate terms in
the ANOVA decomposition. Given an anchor point~q and
a thresholdσ, our adaptive ANOVA-based stochastic circuit
simulation is summarized in Algorithm 1. The index set for
each level is selected adaptively. As shown in Lines10 to 15, if
a termgs(~ξs ) has a small variance, then any term whose index
set includess as a strict subset will be ignored. All univariate
terms in ANOVA (i.e., |s | = 1) are kept. Let the final size
of Sk be nk and the total polynomial order in the stochastic
testing simulator bep, then the total number of samples used
in Algorithm 1 is

N = 1 +

m
∑

k=1

nk

(k + p)!

k!p!
. (26)

For most circuit problems, setting the effective dimensionas
2 or 3 can achieve a high accuracy due to the weak couplings
among different random parameters. For many cases, the uni-
variate terms in ANOVA decomposition dominate the output
of interest, leading to a near-linear complexity with respect to
the parameter dimensionalityd.

C. Global Sensitivity Analysis

Algorithm 1 provides a sparse generalized polynomial-chaos
expansiony=

∑

|~α|≤p

y~αH~α(~ξ). From this result, we can identify

how much each parameter contributes to the output by global
sensitivity analysis. Two kinds of sensitivity information can
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Fig. 11. Global sensitivity for the CMOS folded-cascode operational amplifier.
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Fig. 10. The schematic of a CMOS folded-cascode operationalamplifier.

be used to measure the importance of parameterξk: the main
sensitivitySk and total sensitivityTk, as computed below:

Sk =

∑

αk 6=0,αj 6=k=0

|y~α|2

Var(y)
, Tk =

∑

αk 6=0

|y~α|2

Var(y)
. (27)

D. Circuit Simulation Example

Consider the CMOS folded-cascode operational amplifier
shown in Fig. 10. This circuit has53 random parameters
describing the device-level uncertainties (variations oftemper-
ature, threshold voltage, gate oxide thickness, channel length
and width). We setp=3, m=3 andσ=0.01 for this example,
aiming to extract a generalized polynomial chaos expansionfor
the static voltage ofVout (other quality of interest such as DC
gain and total harmonic distortion can also be extracted). Di-
rectly using stochastic testing requires27720 samples, which
is too expensive on a regular workstation. Using the ANOVA-
based sparse simulator, only90 terms are needed to achieve
a similar accuracy with Monte Carlo using5000 samples:
besides the constant term, only53 univariate terms and36
bivariate terms are computed, and no3-variable terms are
required. Our simulator uses573 samples and less than1-min
CPU time to obtain a sparse generalized polynomial-chaos
expansion with only267 non-zero coefficients. Note that the
full truncated anchored ANOVA requires24858 terms and
482513 samples, which costs842× more than our simulator.

Fig. 11 shows the computed main sensitivity and total
sensitivity resulting from all device-level random parameters.
Clearly, the uncertainty of the output is dominated by only
a few number of device-level variations. The indices of the
five device-level variations that contribute most to the output
variation are1, 50, 51, 11 and46.

V. CONCLUSION

This paper has demonstrated a fast stochastic circuit sim-
ulator for integrated circuits and MEMS. This simulator can
provide100× to 1000× speedup over Monte Carlo when the
parameter dimensionality is not high. Based on this simulator,
a hierarchical stochastic spectral simulation flow has been
developed. This hierarchical simulator has been tested by an
oscillator with MEMS capacitors, showing high accuracy and
a promising250× speedup over hierarchical Monte Carlo.
For integrated circuits with high parameter dimensionality,
a sparsity-aware simulator has been further developed based
on anchored ANOVA. This simulator has an almost linear
complexity when the couplings among different parameters are
weak and a small number of parameters dominate the output
of interest. This simulator has been successfully applied to
extract the sparse generalized polynomial-chaos expansion of
a CMOS amplifier with over50 random parameters, at the
cost of less than1-minute CPU time. Based on the obtained
results, global sensitivity has been analyzed to identify which
parameters affect the output voltage the most.
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