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Abstract. Suppose that we are given two independent sets Ib and Ir of a graph such
that |Ib| = |Ir|, and imagine that a token is placed on each vertex in Ib. Then, the
sliding token problem is to determine whether there exists a sequence of indepen-
dent sets which transforms Ib into Ir so that each independent set in the sequence
results from the previous one by sliding exactly one token along an edge in the graph.
This problem is known to be PSPACE-complete even for planar graphs, and also
for bounded treewidth graphs. In this paper, we thus study the problem restricted
to trees, and give the following three results: (1) the decision problem is solvable in
linear time; (2) for a yes-instance, we can find in quadratic time an actual sequence
of independent sets between Ib and Ir whose length (i.e., the number of token-slides)
is quadratic; and (3) there exists an infinite family of instances on paths for which
any sequence requires quadratic length.

1 Introduction

Recently, reconfiguration problems attract the attention in the field of theoretical computer
science. The problem arises when we wish to find a step-by-step transformation between two
feasible solutions of a problem such that all intermediate results are also feasible and each
step abides by a fixed reconfiguration rule (i.e., an adjacency relation defined on feasible
solutions of the original problem). This kind of reconfiguration problem has been stud-
ied extensively for several well-known problems, including independent set [2, 5, 7, 10,
11, 13, 15, 19, 21–23], satisfiability [9, 20], set cover, clique, matching [13], vertex-
coloring [3, 6, 8, 23], list edge-coloring [14, 17], list L(2, 1)-labeling [16], subset
sum [12], shortest path [4, 18], and so on.

1.1 Sliding token

The sliding token problem was introduced by Hearn and Demaine [10] as a one-player
game, which can be seen as a reconfiguration problem for independent set. Recall that an
independent set of a graph G is a vertex-subset of G in which no two vertices are adjacent.
(Figure 1 depicts five different independent sets in the same graph.) Suppose that we are
given two independent sets Ib and Ir of a graph G = (V,E) such that |Ib| = |Ir |, and imagine
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(a) Ib = I1 (b) I2 (c) I3 (d) I4 (e) Ir = I5

w wwww

Fig. 1. A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the vertices in
independent sets are depicted by large black circles (tokens).

that a token (coin) is placed on each vertex in Ib. Then, the sliding token problem is to
determine whether there exists a sequence 〈I1, I2, . . . , Iℓ〉 of independent sets of G such that
(a) I1 = Ib, Iℓ = Ir, and |Ii| = |Ib| = |Ir| for all i, 1 ≤ i ≤ ℓ; and
(b) for each i, 2 ≤ i ≤ ℓ, there is an edge {u, v} in G such that Ii−1 \ Ii = {u} and

Ii \ Ii−1 = {v}, that is, Ii can be obtained from Ii−1 by sliding exactly one token on
a vertex u ∈ Ii−1 to its adjacent vertex v along {u, v} ∈ E.

Such a sequence is called a reconfiguration sequence between Ib and Ir. Figure 1 illustrates
a reconfiguration sequence 〈I1, I2, . . . , I5〉 of independent sets which transforms Ib = I1 into
Ir = I5. Hearn and Demaine proved that sliding token is PSPACE-complete for planar
graphs, as an example of the application of their powerful tool, called the nondeterministic
constraint logic model, which can be used to prove PSPACE-hardness of many puzzles and
games [10], [11, Sec. 9.5].

1.2 Related and known results

As the (ordinary) independent set problem is a key problem among thousands of NP-
complete problems, sliding token plays a very important role since several PSPACE-
hardness results have been proved using reductions from it. Indeed, sliding token is one
of the most well-studied reconfiguration problems.

In addition, reconfiguration problems for independent set (ISReconf, for short) have
been studied under different reconfiguration rules, as follows.

• Token Sliding (TS rule) [6, 7, 10, 11, 19, 23]: This rule corresponds to sliding token,
that is, we can slide a single token only along an edge of a graph.

• Token Jumping (TJ rule) [7, 15, 19, 23]: A single token can “jump” to any vertex
(including non-adjacent one) if it results in an independent set.

• Token Addition and Removal (TAR rule) [2, 5, 13, 19, 21–23]: We can either add or
remove a single token at a time if it results in an independent set of cardinality at
least a given threshold minus one. Therefore, under the TAR rule, independent sets
in the sequence do not have the same cardinality.

We note that the existence of a desired sequence depends deeply on the reconfiguration rules.
(See Fig. 2 for example.) However, ISReconf is PSPACE-complete under any of the three
reconfiguration rules for planar graphs [6, 10, 11], for perfect graphs [19], and for bounded
bandwidth graphs [23]. The PSPACE-hardness implies that, unless NP = PSPACE, there
exists an instance of sliding token which requires a super-polynomial number of token-
slides even in a minimum-length reconfiguration sequence. In such a case, tokens should

Ib Ir

Fig. 2. A yes-instance for ISReconf under the TJ rule, which is a no-instance for the sliding

token problem.
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make “detours” to avoid violating independence. (For example, see the token placed on the
vertex w in Fig. 1(a); it is moved twice even though w ∈ Ib ∩ Ir.)

We here explain only the results which are strongly related to this paper, that is, sliding
token on trees; see the references above for the other results.

Results for TS rule (sliding token).
Kamiński et al. [19] gave a linear-time algorithm to solve sliding token for cographs

(also known as P4-free graphs). They also showed that, for any yes-instance on cographs,
two given independent sets Ib and Ir have a reconfiguration sequence such that no token
makes detour.

Very recently, Bonsma et al. [7] proved that sliding token can be solved in polynomial
time for claw-free graphs. Note that neither cographs nor claw-free graphs contain trees as
a (proper) subclass. Thus, the complexity status for trees was open under the TS rule.

Results for trees.
In contrast to the TS rule, it is known that ISReconf can be solved in linear time under

the TJ and TAR rules for even-hole-free graphs [19], which include trees. Indeed, the answer
is always “yes” under the two rules when restricted to even-hole-free graphs. Furthermore,
tokens never make detours in even-hole-free graphs under the TJ and TAR rules.

On the other hand, under the TS rule, tokens are required to make detours even in
trees. (See Fig. 1.) In addition, there are no-instances for trees under TS rule. (See Fig. 2.)
These make the problem much more complicated, and we think they are the main reasons
why sliding token for trees was open, despite the recent intensive algorithmic research on
ISReconf [2, 5, 7, 15, 19, 22].

1.3 Our contribution

In this paper, we first prove that the sliding token problem is solvable in O(n) time for
any tree T with n vertices. Therefore, we can conclude that ISReconf for trees is in P
(indeed, solvable in linear time) under any of the three reconfiguration rules.

It is remarkable that there exists an infinite family of instances on paths for which any
reconfiguration sequence requires Ω(n2) length, although we can decide it is a yes-instance
in O(n) time. As the second result of this paper, we give an O(n2)-time algorithm which
finds an actual reconfiguration sequence of length O(n2) between two given independent sets
for a yes-instance.

Since the treewidth of any graph G can be bounded by the bandwidth of G, the result
of [23] implies that sliding token is PSPACE-complete for bounded treewidth graphs.
(See [1] for the definition of treewidth.) Thus, there exists an instance on bounded treewidth
graphs which requires a super-polynomial number of token-slides even in a minimum-length
reconfiguration sequence unless NP = PSPACE. Therefore, it is interesting that any yes-
instance on a tree, whose treewidth is one, has an O(n2)-length reconfiguration sequence
even though trees require to make detours to transform.

1.4 Technical overview

We here explain our main ideas; formal descriptions will be given later.
We say that a token on a vertex v is “rigid” under an independent set I of a tree T

if it cannot be slid at all, that is, v ∈ I ′ holds for any independent set I ′ of T which is
reconfigurable from I. (For example, four tokens in Fig. 2 are rigid.) Our algorithm is based
on the following two key points.
(1) In Lemma 1, we will give a simple but non-trivial characterization of rigid tokens,

based on which we can find all rigid tokens of two given independent sets Ib and Ir in
time O(n). Note that, if Ib and Ir have different placements of rigid tokens, then it is
a no-instance (Lemma 5).

3
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Fig. 3. Subtree T u

v in the whole tree T .

(2) Otherwise, we obtain a forest by deleting the vertices with rigid tokens together with
their neighbors (Lemma 6). We will prove in Lemma 7 that the answer is “yes” as
long as each tree in the forest contains the same number of tokens in Ib and Ir.

2 Preliminaries

In this section, we introduce some basic terms and notation.

2.1 Graph notation

In the sliding token problem, we may assume without loss of generality that graphs are
simple and connected. For a graph G, we sometimes denote by V (G) and E(G) the vertex
set and edge set of G, respectively.

In a graph G, a vertex w is said to be a neighbor of a vertex v if {v, w} ∈ E(G). For a
vertex v in G, let N(G, v) = {w ∈ V (G) | {v, w} ∈ E(G)}, and let N [G, v] = N(G, v) ∪ {v}.
For a subset S ⊆ V (G), we simply write N [G,S] =

⋃

v∈S N [G, v]. For a vertex v of G, we
denote by degG(v) the degree of v in G, that is, degG(v) = |N(G, v)|. For a subgraph G′ of
a graph G, we denote by G \G′ the subgraph of G induced by the vertices in V (G) \V (G′).

Let T be a tree. For two vertices v and w in T , the unique path between v and w is simply
called the vw-path in T . We denote by dist(v, w) the number of edges in the vw-path in T .
For two vertices u and v of a tree T , let T u

v be the subtree of T obtained by regarding u as
the root of T and then taking the subtree rooted at v which consists of v and all descendants
of v. (See Fig. 3.) It should be noted that u is not contained in the subtree T u

v .

2.2 Definitions for sliding token

Let Ii and Ij be two independent sets of a graph G such that |Ii| = |Ij |. If there exists
exactly one edge {u, v} in G such that Ii \ Ij = {u} and Ij \ Ii = {v}, then we say that Ij
can be obtained from Ii by sliding the token on u ∈ Ii to its adjacent vertex v along the edge
{u, v}, and denote it by Ii ↔ Ij . We note that the tokens are unlabeled, while the vertices
in a graph are labeled. We sometimes omit to say (the label of) the vertex on which a token
is placed, and simply say “a token in an independent set I.”

A reconfiguration sequence between two independent sets I1 and Iℓ of G is a sequence
〈I1, I2, . . . , Iℓ〉 of independent sets of G such that Ii−1 ↔ Ii for i = 2, 3, . . . , ℓ. We sometimes
write I ∈ S if an independent set I of G appears in the reconfiguration sequence S. We

write I1
G
! Iℓ if there exists a reconfiguration sequence S between I1 and Iℓ such that all

independent sets I ∈ S satisfy I ⊆ V (G). The length of a reconfiguration sequence S is
defined as the number of independent sets contained in S. For example, the length of the
reconfiguration sequence in Fig. 1 is 5.

Given two independent sets Ib and Ir of a graph G, the sliding token problem is to

determine whether Ib
G
! Ir or not. We may assume without loss of generality that |Ib| = |Ir|;

otherwise the answer is clearly “no.” Note that sliding token is a decision problem asking
for the existence of a reconfiguration sequence between Ib and Ir, and hence it does not ask
for an actual reconfiguration sequence. We always denote by Ib and Ir the initial and target

independent sets of G, respectively.
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t1

t2 t5
t6

t3

t4
t7

T

Fig. 4. An independent set I of a tree T , where t1, t2, t3, t4 are (T, I)-rigid tokens and t5, t6, t7 are
(T, I)-movable tokens. For the subtree T ′, tokens t6, t7 are (T ′, I ∩ T ′)-rigid.

3 Algorithm for Trees

In this section, we give the main result of this paper.

Theorem 1. The sliding token problem can be solved in linear time for trees.

As a proof of Theorem 1, we give an O(n)-time algorithm which solves sliding token

for a tree with n vertices.

3.1 Rigid tokens

In this subsection, we formally define the concept of rigid tokens, and give their nice char-
acterization.

Let T be a tree, and let I be an independent set of T . We say that a token on a vertex

v ∈ I is (T, I)-rigid if v ∈ I ′ holds for any independent set I ′ of T such that I
T
! I ′.

Conversely, if a token on a vertex v ∈ I is not (T, I)-rigid, then it is (T, I)-movable; in other

words, there exists an independent set I ′ such that v 6∈ I ′ and I
T
! I ′. For example, in

Fig. 4, the tokens t1, t2, t3, t4 are (T, I)-rigid, while the tokens t5, t6, t7 are (T, I)-movable.
Note that, even though t6 and t7 cannot be slid to any neighbor in T under I, we can slide
them after sliding t5 downward.

We then extend the concept of rigid/movable tokens to subtrees of T . For any subtree T ′

of T , we denote simply I∩T ′ = I∩V (T ′). Then, a token on a vertex v ∈ I∩T ′ is (T ′, I∩T ′)-

rigid if v ∈ J holds for any independent set J of T ′ such that I ∩ T ′ T ′

! J . For example, in
Fig. 4, tokens t6 and t7 are (T

′, I∩T ′)-rigid even though they are (T, I)-movable in the whole
tree T . Note that, since independent sets are restricted only to the subtree T ′, we cannot
use any vertex (and hence any edge) in T \ T ′ during the reconfiguration. Furthermore, the
vertex-subset J ∪

(

I ∩ (T \ T ′)
)

does not necessarily form an independent set of the whole
tree T .

We now give our first key lemma, which gives a characterization of rigid tokens. (See
also Fig. 5(a) for the claim (b) below.)

Lemma 1. Let I be an independent set of a tree T , and let u be a vertex in I.
(a) Suppose that |V (T )| = |{u}| = 1. Then, the token on u is (T, I)-rigid.

u

v

w

T v
w

T u
v

u

v

w

T v
w

(a) (b)

Fig. 5. (a) A (T, I)-rigid token on u, and (b) a (T, I)-movable token on u.

5



v

w w

T v
wT v

w

Fig. 6. Illustration for Lemma 2.

(b) Suppose that |V (T )| ≥ 2. Then, a token on u is (T, I)-rigid if and only if, for every

neighbor v ∈ N(T, u), there exists a vertex w ∈ I ∩ N(T u
v , v) such that the token on

w is (T v
w, I ∩ T v

w)-rigid.

Proof. Obviously, the claim (a) holds. In the following, we thus assume that |V (T )| ≥ 2 and
prove the claim (b).

We first show the if-part. Suppose that, for every neighbor v ∈ N(T, u), there exists a
vertex w ∈ I∩N(T u

v , v) such that the token on w is (T v
w, I∩T v

w)-rigid. (See Fig. 5(a).) Then,
we will prove that the token t on u is (T, I)-rigid. Since we can slide a token only along
an edge of T , if t is not (T, I)-rigid (and hence is (T, I)-movable), then it must be slid to
some neighbor v ∈ N(T, u). By the assumption, v is adjacent with another token t′ placed
on w ∈ I ∩N(T u

v , v), and hence we first have to slide t′ to one of its neighbors other than v.
However, this is impossible since the token t′ on w is assumed to be (T v

w, I ∩ T v
w)-rigid and

hence w ∈ J holds for any independent set J of T v
w such that I ∩ T v

w

Tv
w

! J . We can thus
conclude that t is (T, I)-rigid.

We then show the only-if-part by taking a contrapositive. Suppose that u has a neighbor
v ∈ N(T, u) such that either I ∩ N(T u

v , v) = ∅ or all tokens on w ∈ I ∩ N(T u
v , v) are

(T v
w, I ∩ T v

w)-movable. (See Fig. 5(b).) Then, we will prove that the token t on u is (T, I)-
movable; in particular, we can slide t from u to v. Since any token t′ on a vertex w ∈
I∩N(T u

v , v) is (T
v
w, I∩T

v
w)-movable, we can slide t′ to some vertex in T v

w via a reconfiguration
sequence Sw in T v

w. Recall that only the vertex v is adjacent with a vertex in T v
w and v 6∈ I.

Therefore, Sw can be naturally extended to a reconfiguration sequence S in the whole tree
T such that I ′ ∩

(

T \ T v
w

)

= I ∩
(

T \ T v
w

)

holds for any independent set I ′ ∈ S of T . Apply
this process to all tokens on vertices in I ∩ N(T u

v , v), and obtain an independent set I ′′

of T such that I ′′ ∩ N(T u
v , v) = ∅. Then, we can slide the token t on u to v. Thus, t is

(T, I)-movable. ⊓⊔

The following lemma is useful for proving the correctness of our algorithm in Section 3.3.

Lemma 2. Let I be an independent set of a tree T such that all tokens are (T, I)-movable,

and let v be a vertex such that v 6∈ I. Then, there exists at most one neighbor w ∈ I∩N(T, v)
such that the token on w is (T v

w, I ∩ T v
w)-rigid.

Proof. Suppose for a contradiction that there exist two neighbors w and w′ in I ∩N(T, v)
such that the tokens on w and w′ are (T v

w, I ∩T v
w)-rigid and (T v

w′ , I ∩T v
w′)-rigid, respectively.

(See Fig. 6.) Since the token t on w is (T v
w, I ∩ T v

w)-rigid but is (T, I)-movable, there is a
reconfiguration sequence St starting from I which slides t to v. However, before sliding t
to v, St must slide the token t′ on w′ to some vertex in N(T v

w′ , w′). This contradicts the
assumption that t′ is (T v

w′ , I ∩ T v
w′)-rigid. ⊓⊔

3.2 Linear-time algorithm

In this subsection, we describe an algorithm to solve the sliding token problem for trees,
and estimate its running time; the correctness of the algorithm will be proved in Section 3.3.
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T u
v

u

v

w

x
T v

w

(b)

T u
v

u

v

w
w

x
T v

w

(a)

Fig. 7. Illustration for Lemma 3.

Let T be a tree with n vertices, and let Ib and Ir be two given independent sets of T . For
an independent set I of T , we denote by R(I) the set of all vertices in I on which (T, I)-rigid

tokens are placed. Then, the following algorithm determines whether Ib
T
! Ir or not.

Step 1. Compute R(Ib) and R(Ir). Return “no” if R(Ib) 6= R(Ir); otherwise go to Step 2.

Step 2. Delete the vertices in N [T,R(Ib)] = N [T,R(Ir)] from T , and obtain a forest F
consisting of q trees T1, T2, . . . , Tq. Return “yes” if |Ib ∩ Tj | = |Ir ∩ Tj| holds for
every j ∈ {1, 2, . . . , q}; otherwise return “no.”

We now show that our algorithm above runs in O(n) time. Clearly, Step 2 can be done
in O(n) time, and hence we will show that Step 1 can be executed in O(n) time.

We first give the following property of rigid tokens on a tree, which says that deleting
movable tokens does not affect the rigidity of the other tokens.

Lemma 3. Let I be an independent set of a tree T . Assume that the token on a vertex x ∈ I
is (T, I)-movable. Then, for every vertex u ∈ I \ {x}, the token on u is (T, I)-rigid if and

only if it is (T, I \ {x})-rigid.

Proof. The if-part is trivially true, because we cannot make a rigid token movable by adding
another token. We thus show the only-if-part by contradiction.

Let I ′ = I \ {x}. Suppose that u ∈ I is the closest vertex to x such that its token is
(T, I)-rigid but (T, I ′)-movable. We assume that x is contained in a subtree T u

v for a neighbor
v of u. (See Fig. 7.) Note that x 6= v since x, u ∈ I. Since the token tu on u is (T, I)-rigid,
by Lemma 1 the vertex v ∈ N(T, u) has at least one neighbor w ∈ I ∩N(T u

v , v) such that
the token tw on w is (T v

w, I ∩ T v
w)-rigid. Indeed, tw is (T, I)-rigid, because tu is assumed to

be (T, I)-rigid. Thus, we know that x 6= w since the token tx on x is (T, I)-movable.
First, consider the case where x is contained in a subtree T v

w′ for some neighbor w′ of v
other than w. (See Fig. 7(a).) Then, I ′ ∩ T v

w = I ∩ T v
w. Since tw is (T v

w, I ∩ T v
w)-rigid, it is

also (T v
w, I

′∩T v
w)-rigid. Therefore, by Lemma 1 the token tu is (T, I ′)-rigid. This contradicts

the assumption that tu is (T, I ′)-movable.
We thus consider the case where x ∈ V (T v

w) \ {w}. (See Fig. 7(b).) Recall that I ′ is
obtained by deleting only x from I. Then, since tu is (T, I)-rigid but (T, I ′)-movable, it
must be slid from u to v. However, before executing this token-slide, we have to slide tw
to some vertex in N(T v

w, w). Thus, tw is (T v
w, I

′ ∩ T v
w)-movable, and hence it is also (T, I ′)-

movable. Since tw is (T, I)-rigid and w is strictly closer to x ∈ V (T v
w) than u, this contradicts

the assumption that u is the closest vertex to x such that its token is (T, I)-rigid but (T, I ′)-
movable. ⊓⊔

Then, the following lemma proves that Step 1 can be executed in O(n) time.

Lemma 4. For an independent set I of a tree T with n vertices, R(I) can be computed in

O(n) time.

Proof. Lemma 3 implies that the set R(I) of all (T, I)-rigid tokens in I can be found by
removing all (T, I)-movable tokens in I. Observe that, if I contains (T, I)-movable tokens,

7



then at least one of them can be immediately slid to one of its neighbors. That is, there is a
token on u ∈ I which has a neighbor w ∈ N(T, u) such that N(T,w) ∩ I = {u}. Then, the
following algorithm efficiently finds and removes such tokens iteratively.

Step A. Define and compute degI(w) = |N(T,w) ∩ I| for all vertices w ∈ V (T ).

Step B. Define and compute M = {u ∈ I | ∃w ∈ N(T, u) such that degI(w) = 1}.

Step C. Repeat the following steps (i)–(iii) until M = ∅.
(i) Select an arbitrary vertex u ∈ M , and remove it from M and I.
(ii) Update degI(w) := degI(w) − 1 for each neighbor w ∈ N(T, u).
(iii) If degI(w) becomes one by the update (ii) above, then add the vertex

u′ ∈ N(T,w) ∩ I into M .

Step D. Output I as the set R(I).

Clearly, Steps A, B and D can be done in O(n) time. We now show that Step C takes
only O(n) time. Each vertex in I can be selected at most once as u at Step C-(i). For the
selected vertex u, Step C-(ii) takes O(degT (u)) time for updating degI(w) of its neighbors
w ∈ N(T, u). Each vertex in V (T ) \ I can be selected at most once as w at Step C-(iii).
For the selected vertex w, Step C-(iii) takes O(degT (w)) time for finding u′ ∈ N(T,w) ∩ I.

Therefore, Step C takes O
(

∑

v∈V (T ) degT (v)
)

= O(n) time in total. ⊓⊔

Therefore, Step 1 of our algorithm can be done in O(n) time, and hence the algorithm
runs in linear time in total.

3.3 Correctness of the algorithm

In this subsection, we prove that the O(n)-time algorithm in Section 3.2 correctly determines

whether Ib
T
! Ir or not, for two given independent sets Ib and Ir of a tree T .

We first show the correctness of Step 1.

Lemma 5. Suppose that R(Ib) 6= R(Ir) for two given independent sets Ib and Ir of a tree

T . Then, it is a no-instance.

Proof. By the definition of rigid tokens, R(Ib) = R(I ′) holds for any independent set I ′ of

T such that Ib
T
! I ′. Therefore, there is no reconfiguration sequence between Ib and Ir if

R(Ir) 6= R(Ib). ⊓⊔

We then show the correctness of Step 2. We first claim that deleting the vertices with
rigid tokens together with their neighbors does not affect the reconfigurability.

Lemma 6. Suppose that R(Ib) = R(Ir) for two given independent sets Ib and Ir of a tree

T , and let F be the forest obtained by deleting the vertices in N [T,R(Ib)] = N [T,R(Ir)] from

T . Then, Ib
T
! Ir if and only if Ib ∩ F

F
! Ir ∩ F . Furthermore, all tokens in Ib ∩ F are

(F, Ib ∩ F )-movable, and all tokens in Ir ∩ F are (F, Ir ∩ F )-movable.

Proof. We first prove the if-part. Suppose that Ib ∩ F
F
! Ir ∩ F , and hence there exists

a reconfiguration sequence SF between Ib ∩ F and Ir ∩ F . Then, for each independent set
I ∈ SF of F , the vertex-subset R(Ib) ∪ I = R(Ir) ∪ I forms an independent set of T since
F is obtained by deleting all vertices in N [T,R(Ib)] = N [T,R(Ir)]. Therefore, SF can be

extended to a reconfiguration sequence between Ib and Ir of T . We thus have Ib
T
! Ir .

We then prove the only-if-part. Suppose that Ib
T
! Ir , and hence there exists a recon-

figuration sequence ST between Ib and Ir . Then, for any independent set I ∈ ST , we have

Ib
T
! I and I

T
! Ir, and hence by the definition of rigid tokens R(Ib) = R(Ir) ⊆ I holds.

Furthermore, I \ R(Ib) = I \ R(Ir) is a vertex-subset of V (F ) since no token can be placed
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w

Fig. 8. A degree-1 vertex v of a tree T which is safe.

on any neighbor of R(Ib) = R(Ir). Therefore, I \ R(Ib) = I \ R(Ir) forms an independent
set of F . For two consecutive independent sets Ii−1 and Ii in ST , let Ii−1 \ Ii = {u} and
Ii \ Ii−1 = {v}. Since u /∈ Ii and v /∈ Ii−1, neither u nor v are in R(Ib) = R(Ir). Therefore,
we have u, v ∈ V (F ), and hence the edge {u, v} is in E(F ). Then, we can obtain a reconfig-
uration sequence between Ib ∩ F and Ir ∩ F by replacing all independent sets I ∈ ST with

I ∩ F . We thus have Ib ∩ F
F
! Ir ∩ F .

We finally prove that all tokens in Ib ∩ F are (F, Ib ∩ F )-movable. (The proof for the
tokens in Ir ∩ F is the same.) Notice that each token t on a vertex v in Ib ∩ F is (T, Ib)-
movable; otherwise t ∈ R(Ib). Therefore, there exists an independent set I ′ of T such that

v 6∈ I ′ and Ib
T
! I ′. Then, Ib ∩ F

F
! I ′ ∩ F as we have proved above, and hence t is

(F, Ib ∩ F )-movable. ⊓⊔

Suppose that R(Ib) = R(Ir) for two given independent sets Ib and Ir of a tree T . Let F
be the forest consisting of q trees T1, T2, . . . , Tq, which is obtained from T by deleting the
vertices in N [T,R(Ib)] = N [T,R(Ir)]. Since we can slide a token only along an edge of F ,

we clearly have Ib ∩ F
F
! Ir ∩ F if and only if Ib ∩ Tj

Tj

! Ir ∩ Tj for all j ∈ {1, 2, . . . , q}.
Furthermore, Lemma 6 implies that, for each j ∈ {1, 2, . . . , q}, all tokens in Ib ∩ Tj are
(Tj , Ib ∩ Tj)-movable; similarly, all tokens in Ir ∩ Tj are (Tj , Ir ∩ Tj)-movable.

We now give our second key lemma, which completes the correctness proof of our algo-
rithm.

Lemma 7. Let Ib and Ir be two independent sets of a tree T such that all tokens in Ib

and Ir are (T, Ib)-movable and (T, Ir)-movable, respectively. Then, Ib
T
! Ir if and only if

|Ib| = |Ir|.

The only-if-part of Lemma 7 is trivial, and hence we prove the if-part. In our proof, we do
not reconfigure Ib into Ir directly, but reconfigure both Ib and Ir into some independent set

I∗ of T . Note that, since any reconfiguration sequence is reversible, Ib
T
! I∗ and Ir

T
! I∗

imply that Ib
T
! Ir .

We say that a degree-1 vertex v of T is safe if its unique neighbor u has at most one
neighbor w of degree more than one. (See Fig. 8.) Note that any tree has at least one safe
degree-1 vertex.

As the first step of the if-part proof, we give the following lemma.

Lemma 8. Let I be an independent set of a tree T such that all tokens in I are (T, I)-
movable, and let v be a safe degree-1 vertex of T . Then, there exists an independent set I ′

such that v ∈ I ′ and I
T
! I ′.

Proof. Suppose that v 6∈ I; otherwise the lemma clearly holds. We will show that one of the
closest tokens from v can be slid to v. Let M = {w ∈ I | dist(v, w) = minx∈I dist(v, x)}. Let
w be an arbitrary vertex in M , and let P = (p0 = v, p1, . . . , pℓ = w) be the vw-path in T .
(See Fig. 9.) If ℓ = 1 and hence p1 ∈ I, then we can simply slide the token on p1 to v. Thus,
we may assume that ℓ ≥ 2.

We note that no token is placed on the vertices p0, . . . , pℓ−1 and the neighbors of
p0, . . . , pℓ−2, because otherwise the token on w is not closest to v. Let M ′ = M ∩N(T, pℓ−1).
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Fig. 9. Illustration for Lemma 8.

Since pℓ−1 6∈ I, by Lemma 2 there exists at most one vertex w′ ∈ M ′ such that the token
on w′ is (T

pℓ−1

w′ , I ∩T
pℓ−1

w′ )-rigid. We choose such a vertex w′ if it exists, otherwise choose an
arbitrary vertex in M ′ and regard it as w′.

Since all tokens on the vertices w′′ in M ′ \ {w′} are (T
pℓ−1

w′′ , I ∩ T
pℓ−1

w′′ )-movable, we first
slide the tokens on w′′ to some vertices in T

pℓ−1

w′′ . Then, we can slide the token on w′ to v
along the path P . In this way, we can obtain an independent set I ′ such that v ∈ I ′ and

I
T
! I ′. ⊓⊔

We then prove that deleting a safe degree-1 vertex with a token does not affect the
movability of the other tokens. (See also Fig. 10.)

Lemma 9. Let v be a safe degree-1 vertex of a tree T , and let T̄ be the subtree of T ob-

tained by deleting v, its unique neighbor u, and the resulting isolated vertices. Let I be an

independent set of T such that v ∈ I and all tokens are (T, I)-movable. Then, all tokens in

I \ {v} are (T̄ , I \ {v})-movable.

Proof. Since T u
v consists of a single vertex v, the token on v is (T u

v , I ∩T u
v )-rigid. Therefore,

no token is placed on degree-1 neighbors of u other than v (see Fig. 10), because otherwise
it contradicts to Lemma 2; recall that all tokens in I are assumed to be (T, I)-movable.

Let Ī = I \{v}. Suppose for a contradiction that there exists a token in Ī which is (T̄ , Ī)-
rigid. Let wp ∈ Ī be such a vertex closest to v, and let z be the vertex on the vwp-path right
before wp.

Case (1): z = u. (See Fig. 10(a).)
Recall that the token on v is (T, I)-movable, but is (T u

v , I ∩ T u
v )-rigid. Therefore, by

Lemma 2 the token on wp must be (T u
wp

, I ∩ T u
wp

)-movable. However, this contradicts the

assumption that wp is (T̄ , Ī)-rigid, because T̄ = T u
wp

and Ī = I ∩ T u
wp

in this case.

Case (2): z 6= u. (See Fig. 10(b).)
Letw1 be the neighbor of z on the vwp-path other than wp; letN(T, z) = {w1, w2, . . . , wp}.

We note that the subtree T z
w1

contains the deleted star T \ T̄ centered at u.

z T
v u w1

w2

wp

wp-1

no token

Tv u = z wp

no token

(b)(a)

T u
wp

T z
wp-1

T z
wp

T z
w2

T z
w1

Fig. 10. Illustration for Lemma 9.
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We first note that the token tp on wp is (T̄ z
wp

, Ī ∩ T̄ z
wp

)-rigid, because otherwise tp can be

slid to some vertex in T̄ z
wp

and hence it is (T̄ , Ī)-movable. Since T̄ z
wp

= T z
wp

and Ī ∩ T̄ z
wp

=
I ∩ T z

wp
, the token tp is also (T z

wp
, I ∩ T z

wp
)-rigid.

For each j ∈ {2, 3, . . . , p− 1} with wj ∈ I, since tp is (T z
wp

, I ∩ T z
wp

)-rigid and all tokens
in I are (T, I)-movable, by Lemma 2 each token tj on wj is (T z

wj
, I ∩ T z

wj
)-movable. Then,

since T z
wj

= T̄ z
wj

and I ∩ T z
wj

= Ī ∩ T̄ z
wj
, the token tj is (T̄ z

wj
, Ī ∩ T̄ z

wj
)-movable. Therefore, if

w1 6∈ Ī or the token t1 on w1 is (T̄ z
w1

, Ī ∩ T̄ z
w1

)-movable, then we can slide tp from wp to z
after sliding each token tj in Ī ∩ {w1, w2, . . . , wp−1} to some vertex of the subtree T̄ z

wj
. This

contradicts the assumption that tp is (T̄ , Ī)-rigid.
Therefore, we have w1 ∈ Ī and a token t1 on w1 is (T̄ z

w1
, Ī ∩ T̄ z

w1
)-rigid. However, since

tp is (T̄ z
wp

, Ī ∩ T̄ z
wp

)-rigid, this implies that t1 is (T̄ , Ī)-rigid. Since w1 is on the vwp-path in

T , this contradicts the assumption that tp is the (T̄ , Ī)-rigid token closest to v. ⊓⊔

Proof of the if-part of Lemma 7.
We now prove the if-part of the lemma by the induction on the number of tokens |Ib| =

|Ir |. The lemma clearly holds for any tree T if |Ib| = |Ir| = 1, because T has only one token
and hence we can slide it along the unique path in T .

We choose an arbitrary safe degree-1 vertex v of a tree T , whose unique neighbor is u.
Since all tokens in Ib are (T, Ib)-movable, by Lemma 8 we can obtain an independent set I ′b of

T such that v ∈ I ′b and Ib
T
! I ′b. By Lemma 9 all tokens in I ′b \{v} are (T̄ , I ′b \{v})-movable,

where T̄ is the subtree defined in Lemma 9. Similarly, we can obtain an independent set I ′r

of T such that v ∈ I ′r , Ir
T
! I ′r and all tokens in I ′r \ {v} are (T̄ , I ′r \ {v})-movable. Apply

the induction hypothesis to the pair of independent sets I ′b \ {v} and I ′r \ {v} of T̄ . Then,

we have I ′b \ {v}
T̄
! I ′r \ {v}. Recall that both u 6∈ I ′b and u 6∈ I ′r hold, and u is the unique

neighbor of v in T . Furthermore, u 6∈ V (T̄ ). Therefore, we can extend the reconfiguration
sequence in T̄ between I ′b \ {v} and I ′r \ {v} to a reconfiguration sequence in T between I ′b

and I ′r. We thus have Ib
T
! Ir.

This completes the proof of Lemma 7, and hence completes the proof of Theorem 1. ⊓⊔

3.4 Length of reconfiguration sequence

In this subsection, we show that an actual reconfiguration sequence can be found for a yes-
instance on trees, by implementing our proofs in Section 3.2. Furthermore, the length of the
obtained reconfiguration sequence is at most quadratic.

Theorem 2. Let Ib and Ir be two independent sets of a tree T with n vertices. If Ib
T
! Ir,

then there exists a reconfiguration sequence of length O(n2) between Ib and Ir, and it can be

output in O(n2) time.

We note that a reconfiguration sequence S can be represented by a sequence of edges on
which tokens are slid. Therefore, the space for representing S can be bounded by a linear in
the length of S.

By Theorem 1 we can determine whether Ib
T
! Ir or not in O(n) time. In the following,

we thus assume that Ib
T
! Ir. Furthermore, suppose that all tokens in Ib are (T, Ib)-movable,

and that all tokens in Ir are (T, Ir)-movable; otherwise we obtain the forest by deleting the
vertices in N [T,R(Ib)] = N [T,R(Ir)] from T , and find a reconfiguration sequence for each
tree in the forest, according to Lemma 6.

As in the if-part proof of Lemma 7, we choose an arbitrary safe degree-1 vertex v of T ,

and obtain an independent set I ′b of T such that v ∈ I ′b and Ib
T
! I ′b, as follows.

(a) Find a vertex w ∈ Ib which is closest to v, and let P = (v, p1, p2, . . . , pℓ−1, w) be the
vw-path in T . Let M ′ = Ib ∩N(T, pℓ−1). (See also Fig. 9.)
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Fig. 11. Illustration for Lemma 10.

(b) Choose a vertex w′ such that the token on w′ is (T
pℓ−1

w′ , I ∩ T
pℓ−1

w′ )-rigid if it exists,
otherwise choose an arbitrary vertex in M ′ and regard it as w′.

(c) Slide each token on w′′ ∈ M ′ \ {w′} to some vertex in T
pℓ−1

w′′ , and then slide the token
on w′ to v.

In Lemma 8 we have proved that such a reconfiguration sequence from Ib to I ′b always exists.
We apply the same process to Ir, and repeat until we obtain the same independent set I∗

of T such that Ib
T
! I∗ and Ir

T
! I∗. Note that, since any reconfiguration sequence is

reversible, this means that we obtained a reconfiguration sequence between Ib and Ir.

Therefore, to prove Theorem 2, it suffices to show that the algorithm above runs in O(n)
time for one safe degree-1 vertex v and the reconfiguration sequence for sliding one token to
v is of length O(n). In particular, the following lemma completes the proof of Theorem 2.

Lemma 10. Let I be an independent set of a tree T , and let w ∈ I. For a neighbor

z ∈ N(T,w), suppose that the token on w is (T z
w, I ∩ T z

w)-movable. Then, there exists a

reconfiguration sequence Sw of length O(|V (T z
w)|) from I to an independent set I ′ of T such

that w 6∈ I ′ and J ∩ (T \ T z
w) = I ∩ (T \ T z

w) for all J ∈ Sw. Furthermore, Sw can be output

in O(|V (T z
w)|) time.

Proof. We prove the lemma by the induction on the depth of T z
w, where the depth of a tree

is the longest distance from its root to a leaf. If the depth of T z
w is zero (and hence T z

w

consists of a single vertex w), then the token on w is (T z
w, I ∩ T z

w)-rigid; this contradicts the
assumption. Therefore, we may assume that the depth is at least one. If the depth of T z

w is
exactly one, then T z

w is a star centered at w, and no token is placed on any neighbor of w.
Thus, we can slide the token on w by 1 (< |V (T z

w)|) token-slides. Then, the lemma holds for
trees with depth one.

Assume that the depth of T z
w is k ≥ 2, and that the lemma holds for trees with depth at

most k−1. Since w is (T z
w, I∩T z

w)-movable, by Lemma 1 there is a vertex y ∈ N(T z
w, w) such

that all tokens on the vertices x in I∩N(Tw
y , y) are (T y

x , I∩T
y
x )-movable. (See Fig. 11.) Then,

we can obtain a reconfiguration sequence which (1) first slides all tokens on the vertices x
in I ∩ N(Tw

y , y) to some vertices in T y
x , and (2) then slide the token on w to the vertex y.

By applying the induction hypothesis to each subtree T y
x , this reconfiguration sequence is

of length

1 +
∑

x∈I∩N(Tw
y ,y)

O (|V (T y
x )|) = O(

∣

∣V (Tw
y )

∣

∣),

and can be output in time O(
∣

∣V (Tw
y )

∣

∣). Note that w 6∈ I ′ holds for the obtained independent
set I ′ of T . Thus, the lemma holds for trees with depth k. ⊓⊔

It is interesting that there exists an infinite family of instances on paths for which any
reconfiguration sequence requires Ω(n2) length, where n is the number of vertices. For exam-
ple, consider a path (v1, v2, . . . , v8k) with n = 8k vertices for any positive integer k, and let
Ib = {v1, v3, v5, . . . , v2k−1} and Ir = {v6k+2, v6k+4, . . . , v8k}. In this yes-instance, any token
must be slid Θ(n) times, and hence any reconfiguration sequence requires Θ(n2) length to
slide them all.
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IrIb

Fig. 12. No-instance for an interval graph such that all tokens are movable.

4 Concluding Remarks

In this paper, we have developed an O(n)-time algorithm to solve the sliding token

problem for trees with n vertices, based on a simple but non-trivial characterization of rigid
tokens. We have shown that there exists a reconfiguration sequence of length O(n2) for any
yes-instance on trees, and it can be output in O(n2) time. Furthermore, there exists an
infinite family of instances on paths for which any reconfiguration sequence requires Ω(n2)
length.

The complexity status of sliding token remains open for chordal graphs and interval
graphs. Interestingly, these graphs have no-instances such that all tokens are movable. (See
Fig. 12 for example.)
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