
MIT Open Access Articles

A noise bifurcation architecture for
linear additive physical functions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yu, Meng-Day, David M’Raihi, Ingrid Verbauwhede, and Srinivas Devadas. “A Noise
Bifurcation Architecture for Linear Additive Physical Functions.” 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST) (May 2014).

As Published: http://dx.doi.org/10.1109/HST.2014.6855582

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/100005

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100005
http://creativecommons.org/licenses/by-nc-sa/4.0/

 1

A Noise Bifurcation Architecture for Linear Additive Physical Functions

 Meng-Day (Mandel) Yu
*+

 Ingrid Verbauwhede
+
 Srinivas Devadas

†

 David M’Raїhi
*

 {myu, david}@verayo.com ingrid.verbauwhede@esat.kuleuven.be devadas@mit.edu

*
Verayo, Inc.

+
COSIC, KU Leuven

†
MIT

 San Jose, CA, USA Leuven, Belgium Cambridge, MA, USA

Abstract— Physical Unclonable Functions (PUFs) allow a
silicon device to be authenticated based on its manufacturing
variations using challenge/response evaluations. Popular realizations
use linear additive functions as building blocks. Security is scaled up
using non-linear mixing (e.g., adding XORs). Because the responses
are physically derived and thus noisy, the resulting explosion in noise
impacts both the adversary (which is desirable) as well as the verifier
(which is undesirable). We present the first architecture for linear
additive physical functions where the noise seen by the adversary and
the noise seen by the verifier are bifurcated by using a randomized
decimation technique and a novel response recovery method at an
authentication verification server. We allow the adversary’s noise �a
→ 0.50 while keeping the verifier’s noise � v constant, using a
parameter-based authentication modality that does not require explicit
challenge/response pair storage at the server. We present supporting
data using 28nm FPGA PUF noise results as well as machine learning
attack results. We demonstrate that our architecture can also withstand
recent side-channel attacks that filter the noise (to clean up training
challenge/response labels) prior to machine learning.

Keywords- Architecture, Authentication, Machine Learning,

Physical Security, Side Channel

I. INTRODUCTION

Physical Unclonable Functions (PUFs) allow a silicon
device to be authenticated using a challenge/response
evaluation of its manufacturing variations [4]. PUF building
blocks are often linear and additive functions. To achieve
security against machine learning attacks [5,7,9,14], building
blocks are often composed in a non-linear fashion, as in the
XOR Arbiter PUF [17] and Lightweight Secure PUF [10].
More recently, machine learning attacks coupled with side
channel information [1,2,8,15,16] have been developed.
Current proposed methods to address these attacks include
increasing amount of non-linear mixing (e.g., adding XORs
[17]) at PUF output. While this increases machine learning
attack complexity for the adversary, it also increases
authentication noise for the verifier. It is, therefore, desirable to
derive and analyze a PUF construction that induces detrimental
learning noise as seen by the adversary while simultaneously
limiting authentication noise as seen by the verifier. It will be
advantageous if such a PUF construction also addresses some
of the recently published side channel leaks that aid machine
learning via noise filtering and reduction.

II. MACHINE LEARNING AND NOISE

A. Learning With Noise

In our context, the purpose of machine learning is to predict
the response to a previously unseen (and randomly chosen)
challenge. The machine learning-equipped adversary obtains a
set of labels {x, f(x)}, where x is a challenge (e.g., 64 bits or
128 bits), and f(x) is a single bit response. The adversary

attempts to build a predictor g(x) during the training phase.
The quality of the predictor would obviously depend on the
amount of noise in (or the accuracy of) the labels. During the
attack phase, the adversary would like to see a small
classification (prediction) error ɛc, which is the probability that
g(x) ≠ f(x) for a previously unseen and randomly chosen
challenge x.

A relationship between machine learning complexity and
noise of input labels was established in Kearns’ seminal work
[6] on the Statistical Query model of machine learning, where
machine learning labels that are used to train g(.) are subject to
random noise bit corruption characterized by �, 0 ≤ � ≤ 0.5. A
value of � = 0 means that none of the labels, and specifically
{f(x)}, are corrupted. An � = 0.5 means that {f(x)} values are
completely corrupted by random noise. As suggested in [6],
learning complexity, e.g., learning time, is polynomial to
inverse of noise, which is expressed follows:

 ����� ∝ �
�

��	

	�� 							0	 ≤ 	�	 ≤ 0.5 , e	�	1 (1)

While Eqn. 1 seems to indicate that increasing � will increase
the adversary’s learning difficulty, increasing � also requires
the verifier to relax the threshold for authentication, implying
that the adversary does not need to learn with the same
accuracy. It would, therefore, seem useful to develop a PUF
architecture that can bifurcate noise � into two aspects:

i. �a, average noise seen by the adversary; and

ii. �v, average noise seen by the verifier.
Ideally, we want to keep �v constant while allowing security
scaling by making �a approach 0.5 (at 0.5, adversary cannot
distinguish PUF output bits from random). None of the papers
published to date using linear additive physical building blocks
have attempted this, for it seems obvious that the adversary and
the verifier should see the same noise. We use a randomized
decimation approach, where out of every D bits generated by a
PUF, D-1 bits are randomly thrown away inside the device, and
only 1 bit is sent outside the device. The adversary does not
know the precise challenge x associated with the post-
decimated response bit, and therefore has to make imperfect
inferences to form the challenge/response labels {x, f(x)} which
are needed as input for the machine learning training phase.
Our architecture allows for a novel response recovery method
such that the noise seen by the verifier �v remains constant as a
function of the decimation factor D, while the adversary’s noise
�a asymptotically approaches 0.5.

B. Example PUF Noise at 28nm

In Table I, we show average environmental noise �e in a 4-
XOR PUF 28nm FPGA implementation subject to a wide
operating temperature range spanning -65°C to 125°C ambient.
To the best of our knowledge, PUF implementation results
below 40nm have not yet been published. The implementation

 2

is linear additive 4-XOR using 64-stage k-sum RO architecture
in [18], in a 28 nm Xilinx Artix-7 FPGA.

TABLE I. NOISE VS. TEMPERATURE, 4-XOR (REFERENCE @ 25OC)

Temperature -65oC -45oC 25oC 85oC 125oC

�e 0.217 0.195 0.046 0.241 0.317

Now let’s consider the un-bifurcated case, where �a = �v =

�e. While a PUF’s environmental noise �e varies depending on
implementation specifics, process node, and operating
environmental specifications, the data above shows that the
number of XORs cannot be scaled without severely impacting
authentication noise, especially as the environmental difference
between the provisioning (reference) condition and a
regeneration (authentication) condition grows. 8-XOR PUFs
were not successfully attacked in [14] but attacks proposed in
[8] and [16] may require a move to 12, 16 or more XORs. At
85°C, a 4-XOR 28nm implementation has a noise of �e = 0.24.
At 12-XOR, the same implementation would have a noise level
close to the reliability limiting “wall” at 0.50. In our
architecture, we bifurcate � and allow � v to stay constant as
security is scaled up.

III. RELATED WORK

A. Physical Unclonable Function

Gassend et al. in [4] coined the term Physical Unclonable
Function, and presented the first silicon PUF with integrated
measurement circuitry. Many other silicon realizations of PUFs
have been proposed; of these, the Arbiter PUF [4], Lightweight
PUF [10], Ring-Oscillator-based [17] k-sum PUF [18], and
Slender PUF [11] use linear additive building blocks.

It has been observed by [3,12] that storage requirements
corresponding to CRPs in PUF authentication may be reduced
if the verifier instead stores a secret model for the PUF, by
which it can emulate and predict arbitrary responses of the
PUF. The server no longer needs to maintain an explicit
challenge/response database that grows with the number of
authentication events, but instead maintains a constant-size
database per device. Our architecture is confined to this usage
modality (herein referred to as parameter-based
authentication), so that the server can predict the response to an
arbitrary challenge and the device and server can perform an
exchange of challenge seed for each authentication.

B. Machine Learning and Related Side Channel Attacks

Machine learning attacks on linear additive PUFs were
proposed in [7,9] and certain constructs broken in [14]. Last
year, machine learning attacks coupled with side channel
information [1,2,8,15,16] became an active area of research.
Our architecture addresses certain side-channel attacks,
specifically power and fault injection attacks that require
repeated measurements.

IV. RESPONSE DECIMATION ARCHITECTURE

A. Background

Arbiter PUF. Arbiter PUFs were introduced in [4], shown in
Figure 1. We shall refer to it as “basic” Arbiter PUF when we
want to distinguish it from more complex constructs to be
discussed later. PUF output is derived from a race condition
formed by successive delay stages each comprising a crossbar

switch formed using two 2:1 multiplexers. A challenge bit x
i
, 0

≤ i < k, for each of the k stages determines whether parallel
path or cross path is active. Collectively, k challenge bits
determine which path is chosen to create the transition at the
top input to the arbiter latch, and which is used to create the
bottom input. The difference comparison between the two
delays determines whether the PUF produces a “1” output bit
or a “0” output bit. The layout of the design has to be
symmetrically matched such that random manufacturing
variation would affect the response.

An n-way XOR Arbiter PUF is constructed using n copies

of structure above.

k-sum PUF. In the k-sum PUF [18], each of the k stages
above is replaced with a pair of identically manufactured ring
oscillators. Delay propagation is mimicked by using digital
logic to add an appropriate delay value for each stage
depending on the challenge bit associated with that stage.
From a machine learning attack standpoint, the k-sum PUF
and Arbiter PUF can be reduced to the same topology.

Parameter-based Authentication. A basic k-stage Arbiter PUF
can be modeled with k + 1 parameters [4,7], with k parameters
in the machine learning algorithm representing difference
delays in each stage, and one parameter representing a
systematic DC offset. During provisioning, instead of a server
obtaining and storing CRPs explicitly for future use, the server
instead obtains enough CRPs to model a basic PUF.

1
 This can

be repeated n times for an n-XOR PUF. Instead of storing the
explicit CRPs of the combined n-XOR PUF, the server stores
the n · (k + 1) parameter values that constitute a PUF
parameter “snapshot” (pss); this allows the server, acting as the
verifier, to synthesize any CRP during a later authentication
event. For the k-sum implementation, k delay difference
counter values need to be stored for each basic k-sum PUF,
and there are n of these.

We note that there needs to be a secure provisioning
mechanism to extract pss from a device, after which the
extraction mechanism needs to be disabled (e.g., via a fuse).
The server securely stores pss instead of explicit CRPs. During
authentication verification, the server synthesizes responses
from pss and compares against responses from the device.

B. Goal

Consider an n-XOR PUF, shown in Figure 2. A challenge
value xi is applied as input to produce a single bit value yi.
For illustrative purposes, we assume |xi| = n · k (| . | is the size
operator, expressed in bits). For an n-XOR PUF, each of n
basic PUFs produces a 1-bit response that is bit-wise XOR’ed
to produce the composite single bit yi. The resulting

1 The output of a basic PUF, prior to the application of any XOR mixing,

can be learned to an accuracy of greater than 99% according to data in [15].

Figure 1: Basic Arbiter PUF Structure

 3

challenge/response pair xi, yi constitutes a single label in the
training set {x, f(x)}. In practice, to generate multiple response
bits, x0...r-1

2
 is derived from a seed value cseed that serves as the

initial value for a digital circuit, e.g., LFSR-based circuit (not
shown), to produce y0...r-1, where r is the response length.

Now let’s analyze how applying the n-XOR changes the

authentication noise. Let �′ be the probability of response bit
mismatch for the basic PUF building block (no XORs). For n-
XOR, we get the correct result when all n outputs do not
mismatch (between provisioning and a later authentication
query), or when an even number of bits mismatch. The
probability of each basic PUF being incorrect is �′ . The
probability of the post-n-XOR result being incorrect is:

���, �′� = 1 −� ��	���′(�)(1 − ��)��	�� !"
�#$ (2)

Observe that the verifier sees a noise level according to Eqn.
(2), and the adversary is impacted, under the Statistical Query
model of machine learning, based on Eqn. (1). If both parties
see the same increase in � (noise) as a result of increasing n
(XORs) to scale up security, both parties get impacted
negatively. There is an asymptotic wall at � = 0.5, where PUF
responses are indistinguishable from random for the
adversary; for the verifier, it is impossible to authenticate. Our
goal is to impact the adversary and the verifier asymmetrically,
allowing �a → 0.50 while keeping �v constant.

3

C. Response Decimation Architecture

We add Response Decimation as shown in Figure 3. An n-

XOR PUF is augmented with challenge control logic, response
decimation logic as well as a true random number generator
(RNG). RNG can be derived from PUF noise (e.g., Ring
Oscillator PUF least significant bit count values in certain
implementations), but is shown as a separate block for clarity.

2 x0...r-1 = x0 || x1 || … || xr-1, and similarly for other variables.
3 We note that adding a cryptographic hash to a basic PUF’s raw output

bits would indeed help thwart learning attacks (�a → 0.50), but the PUF’s
physical noise would explode through the hash, causing �v → 0.50 as well.

The challenge control logic mixes subchallenge seeds c2
and c1, i.e., cseed is split into two parts so no one party controls
x. c2 is generated using the device’s RNG and c1 by the
verifier’s RNG. In one possible configuration, c1 has n · k/2
bits and c2 has n · k/2 bits, e.g., k = 64, n = 6.

 4
 During an

authentication event, the server issues c1 using its own RNG;
the device returns c2 and y′. We note that the adversary is
capable of passively observing all transactions, and also
adaptively issuing different values of c1 to obtain the resulting
c2 and y′ , with the goal of fooling the verifier in a future
authentication event.

In the Response Decimator module, randomized response
decimation is performed with a down-mixing factor of D. As a
result, the adversary no longer knows the precise challenge
associated with each post-decimated response bit to launch a
machine learning attack and has to make imperfect inferences
to create the machine learning training labels. Next, we shall
detail response decimation performed by the device as well as
response recovery by the server.

D. Response Decimation with Pre-expand (RDP)

Let’s suppose we have a PUF where probability of a
response bit mismatch is � (ref: Table I). Now let r′′ be PUF
response size in bits (the reason for the “double prime”
notation will become clear soon), and τ be the authentication
threshold expressed as a percentage. A PUF authentication
fails if more than r′′ · τ bits mismatch, computed as described
in [7]. The false negative (fn) probability is given by:

%�(&′′, ', �) = � ()**� + ��(1 − �)()**��))**
�#,)**·./ (3)

Correspondingly, the false positive (fp) probability is:

%0(&′′, ', 1) = � ()**� + 1�(1 − 1)()**��)2)**·.3
�#$ 								 (4)

(Note: 1 is the PUF bias value that can be made close to an
ideal value of 0.5 in modern PUF designs [19].) From this, one
observes that given the same τ, � and 1, so long as we target a
response size r′′ and pre-compensate for decimation effects,
we can preserve some or all of the fn and fp probabilities.

Suppose we decimate the response bits by a factor of D =
2, as shown in the strike-throughs (e.g., 01) in Figure 4. We
divide y into non-overlapping pairs of bits. For each 2 bits of
response in y, the device randomly eliminates 1 of 2 bits, thus
only outputting a single bit to the server. On the surface,
authentication appears to have become problematic, since the
server has a ½ chance of correctly guessing actual challenge
used for post-decimated response bit. The server does not
know whether the incoming response bit corresponds to the
first or second challenge in the pair. Fortunately, due to the
parameter-based authentication modality, the server has access
to a PUF parameter snapshot pss for the device that allows the
server to synthesize via emulation any challenge/response pair
without having explicitly collected and stored those pairs
during a device provisioning process. The server can apply
both possible challenges to computationally evaluate using pss

4 In this example, c2 = 192 bits. In general, we want c2 to be large enough

to prevent challenge collisions inside the device. This prevents the adversary
from undoing the randomized response decimation, thwarts recently-published
power and fault injection side channel attacks that rely on repeated
measurements, and reduces the capabilities of an adaptive chosen challenge
adversary into a passive one.

PUF0

xi

yi
0 xi

0,0…xi
k-1,0

PUF
1

yi

1

xi

0,1

…xi

k-1,1

PUF
n-1

yi

n-1

xi

0,n-1

…xi

k-1,n-1

yi

n-XOR PUF

Figure 2: n-XOR PUF

 Response

Decimator

c1

c2

y′0...r/D-1

RNG

c
2

y0...r-1

Challenge

Control

x0...r-1

DEVICE

n-XOR PUF

Figure 3: Response Decimation Architecture

ambiguation value a0...r/D-1

 4

the two resulting output bits. Assuming that PUF outputs are
unbiased and challenges are uncorrelated, there is ¼ chance
that both possible challenges produce a “0” response bit, same
for a “1” response bit. This brings us to the key observation.
There is a ¼ + ¼ = ½ chance that incoming (post-2x-
decimated) bit can actually be verified by the server. The
server authenticates for the cases that “11” or “00” are
produced by the 2 possible challenges. This corresponds to an
average of ½ of incoming bits, and the server ignores the rest.
This is less reliable given the same authentication threshold τ,
since we decimated by 2 at the device and we authenticate on
only half of those bits at the server. We can, however, pre-
expand y by 4x to compensate, to recapture the “lost” fn and
fp. Therefore, to get a reliability associated with a r′′ = 256-bit
response, we set |y| = r = r′′ · 4 = 1024.

 5
 In general, for a RDP

scheme, we can recapture fn and fp for the average case with
an expansion factor of

E = D x 2
D-1

 (5)
So:
 r = |y | = # of pre-decimated bits generated by PUF
 r′ = |y′| = r/D = # of post-decimated bits
 r′′ = r/E = average # of bits authenticated, determines fp, fn
As shown by Eqn. (3) and Eqn. (4), if τ, �, and 1 are fixed,
authentication reliability in term of both fp and fn becomes a
function of r′′ which, in the case of decimation, we can pre-
expand using Eqn. (5) by setting r = r′′·E. Intuitively, for an r
= 1024-bit (pre-decimated) PUF response, if the server
authenticates on a subset comprising of r′′ = 256 bits that are
unambiguous, the authentication reliability should be that of a
256-bit response.

More generally, the RDP algorithm comprises of the steps
in Figure 5 (MV = manufacturing variations). The transaction
begins with a challenge seed exchange, with the server and
device each generating one half of the challenge seed (steps i.
and ii.). Next, response decimation is performed on the device
(steps iii. through v.). In step v.,

y′j = yj·D+a
j
, 0 ≤ j < r/D,

 aj ∈ {0,1,...,D-1} randomly selected for each j

5 Alternately, one can consider response expansion and pad random noise

at random locations. In fact, that’s what RDP is doing, except that it is done in
a manner where the verifier, in possession of pss, knows which post-decimated
bits to ignore, thereby creating the bifurcated noise effect.

The ambiguation value aj (from the device’s RNG) determines
which bits are decimated, or equivalently, which bit is kept
and sent out. Note that the aj values are kept secret on the
device while the challenge seed values c1 and c2 are known to
the server as well as the adversary. Next, response recovery is
performed on the server (steps vi. through ix.). In step viii., the
server derives a mask identifying the locations of the “good”
bits for authentication (and equivalently, which bits to ignore):

mj = all_onesj | all_zerosj
all_onesj = y

emu
j·D+0 & y

emu
j·D+1 & … & y

emu
j·D+D-1

all_zerosj = ~(y
emu

j·D+0 | y
emu

j·D+1 | … | y
emu

j·D+D-1)
0 ≤ j < r/D

Here, & is the bit-wise AND operator (detects all 1s), | is the
bitwise OR operator (detects all 0s), and ~ is logical inversion.
In step ix., a masked threshold comparison is performed. The
device is authentic if (^ is bitwise XOR operator, wt is the
Hamming weight operator counting the number of ones):

wt((y′0...r/D-1 ^ all_ones0...r/D-1) & m0...r/D-1) ≤ τ · wt(m0...r/D-1)

V. EVALUATIONS

A. Inferring CRPs from Decimated Bits

A machine learning algorithm requires challenge/response
input labels {x, f(x)} during the training phase. Its
classification error during the attack phase is highly dependent
on the accuracy (noise level) of these labels. Due to
randomized decimation, the adversary no longer knows the
precise challenge x associated with each post-decimated
response bit, and has to infer the best {x, f(x)}. In this section,
we analyze different CRP inference strategies based on the
goal of minimizing CRP uncertainty (the adversary’s noise),
and provide a mathematical proof.

Let’s consider the 2x decimation case. Eqn. (1) would
suggest that the strategy that produces lowest noise is best.
For the 2x decimation case, there are only two possibilities.

Single-Challenge-Guess Strategy. The adversary can guess,
among all the candidate challenges, a single challenge. As an
example, the adversary can form {x, f(x)} using {x2j, y ′ j}.
Assuming unbiased response bits and uncorrelated challenges,
given an incoming response bit, the adversary has a 1/D
chance of guessing the correct challenge, but in the case where
the wrong challenge was guessed there is a ½ chance that the
CRP derived is still correct. Thus, the probability that an
accurate CRP is derived is 1/D · 1 + (D-1)/D · ½. The CRP
uncertainty is:
ɛu(D) = 1 - (D+1)/2D = (D - 1)/2D (6)

Full-Response-Replication Strategy. The adversary replicates
the incoming response bit for both challenges (and in general

Response

Decimation

 y′
(|y′| = r′ = 512 bits)

RNG

 y

(|y| = r = 1024 bits)

x = function_of(c1,c2)

emulation

using pss

yemu

(|yemu| = r = 1024 bits)

x = function_of(c1,c2)

a

DEVICE

SERVER

n-XOR PUF

00 10 11 10 01 10…

00 10 11 10 01 10…

 0 1 1 0 0 1…

00 10 11 10 01 11…
authenticate on all 1s or all 0s

 (r′′ ≈ 256 bits)

Figure 4: Response Decimation Example

Response Decimation with Pre-expansion (RDP)
i. c1 ← Server
ii. c2 ← Device
iii. x0...r-1 = function_of(c1 , c2) (on Device)
iv. y0...r-1 = function_of(MV, x0...r-1) (on Device)
v. y′0...r/D-1 ← function_of(y0...r-1,D,a0...r/D-1) (on Device)
vi. x0...r-1 = function_of(c1 , c2) (on Server)
vii. yemu

0...r-1 = function_of(pss, x0...r-1) (on Server)
viii. m0...r/D-1 = function_of(yemu

0...r-1) (on Server)

 ix. Authenticate on “good” bits of y′ (on Server)
 Figure 5: Response Decimation Procedure

 5

D challenges). As an example, the adversary forms {x, f(x)}
using {x2j, y′j} ⋃ {x2j+1, y′j}.

Now we derive the CRP uncertainty. First, we introduce
two new concepts and give examples to aid understanding.
Let h = wt(x2j…2j+D-1) be the Hamming weight of a grouping of
D pre-decimated bits. Let’s define ■ as the “pseudo-majority”
case surviving after decimation, and ▪ as the “pseudo-
minority” case surviving. For D = 3, if the pre-decimated bits
are 110, ■ refers to a post-decimated bit of “1”, and ▪ refers to
a post decimated bit of “0”. So for D = 3, we have Pr(■| h = 2)
= ⅔ and Pr(▪| h = 2) = ⅓. If there is an equal number of 1s and
0s (D is even), we define Pr(■| h = D/2) = Pr(▪| h = D/2) = ½.

Now, let’s compute the probability that the adversary
makes a correct CRP inference (herein denoted as CInfr)
when a post-decimated response bit is replicated D times and
inferred as the response to all D candidate challenges. In the
110 case, if the adversary observes a “1”, the adversary would
infer a replicated response of 111 to map to the three
challenges. Here, Pr(CInfr | ■ , h = 2)= ⅔. Similarly, Pr(CInfr |
▪ , h = 2) = ⅓. More generally,

Pr(■ | h, D) = max(h/D, (D-h)/D) (7)
Pr(▪ | h, D) = min(h/D, (D-h)/D) (8)
Pr(CInfr | ■, h, D) = max(h/D, (D-h)/D)

(9)

Pr(CInfr | ▪, h, D) = min(h/D, (D-h)/D) (10)
This gives the joint probabilities:

Pr(CInfr, ■ | h, D) = max(h/D, (D-h)/D)
2

(11)
Pr(CInfr, ▪ | h, D) = min(h/D, (D-h)/D)

2 (12)
Note that the two probabilities immediately above are
conditioned on h. If for each one we compute the marginal
probability over 0 ≤ h ≤ D and sum them, we arrive at Pr(CInfr
| D). The CRP uncertainty is 1 - Pr(CInfr | D) :

 								ɛ′6(7) = 1 −8 9(:;+	: < =(>?+	+(?�>? +	A
?

>#$
							(13)

Proof of Equivalence. Now we prove that the single-
challenge-guess strategy has same CRP uncertainty, i.e.,
contributes same noise level to adversary, as the full-response-
replication strategy. From the binomial theorem:

(B + C)� =� ��D�BDC��D�
D#$ (14)

Setting a = 1 and taking first and second derivatives with
respect to x, and substituting variables, we have:

� �?>� · ℎ = 7 · 2?��?
>#$ (15)

� �?>� · ℎ	 = (7 +	7) · 2?�	?
>#$ (16)

Thus, Eqn. (13) is equivalent to:

 ɛ′u(D) = 1 −	 �
?!·	:� �?>�G2ℎ	+7	 − 2ℎ7H?

>#$

 =	1 − 	 �
?!·	: (2(7+7) · 2?�	 + 7	 · 2? − 27	 · 2?��)

 = 1 - (D+1)/2D = ɛu(D) □

For D = 2, the single-challenge-guess and full-response-
replication are the only two possible strategies. In the proof,
we showed that both have an equivalent CRP uncertainty and
contribute the same amount of noise to the adversary (i.e.,
ɛ′u(D) = ɛu(D)), and this noise scales with D. However, for D =
3, there are additional possible strategies. The adversary can
use a partial-response-replication strategy, taking the

incoming bit and replicating for only two of the three
challenges (or in general, up to D-1 challenges). We can
extend the proof to show that a partial-response-replication
strategy can do no better than the prior strategies (observe that
Eqn. (9) and Eqn. (10) holds regardless of the number of times
the incoming bit is replicated to infer CRPs, encompassing the
single, full, as well as partial replication cases).

B. Machine Learning: Baseline Results and Background

We first replicated selected results from [14], and this
comparison is shown in the “Baseline” columns in Table II.
We used the most effective machine learning algorithm in [14]
in modeling n-XOR 64-stage PUFs, namely RPROP [13]. An
Intel i7 6-core, 12-thread CPU with 64 Gigabytes of memory
was used. These attacks were performed on synthetic as
opposed to physical PUFs. Based on Eqn. (1), noise increases
learning complexity. This was demonstrated in [15], where
even when majority voting was used to reduce noise, the
researchers could not replicate breaking 6-XOR with 200k
CRPs on a physical PUF and estimated that 700k CRPs are
needed. All things being equal, our synthetic PUF (no noise)
results serve as a bound for what machine learning might
achieve on a physical PUF with noise.

C. Machine Learning Results: Security-Enhanced

TABLE II. MACHINE LEARNING: BASELINE VS. SECURITY-ENHANCED

 Baseline Security-Enhanced

n-XOR
Results of

[14]

Replicating

[14]
500k CRPs6

 1M CRPs6

4-XOR 12k CRPs

ɛc ≤ 1%

4 min

12k CRPs

ɛc ≤ 1%

1 min

ɛc = 8%

5 hrs (D =2x)
-

5-XOR 80k CRPs

ɛc ≤ 1%

2 hrs

80k CRPs

ɛc ≤ 1%

10 min

ɛc ≈ 50%

2 days (D = 2x)

ɛc ≈ 50%

2 days (D= 2x)

6-XOR 200k CRPs

ɛc ≤ 1%

31 hrs

200k CRPs

ɛc ≤ 1%

5 hrs

ɛc ≈ 50%

2 days (D = 2x)

ɛc ≈ 50%*

2 days (D = 2x)

* Latest results demonstrate 6-XOR not converging after 98 days, 16M CRPs

To derive the security-enhanced results, we made
modifications and extended the RPROP algorithm. First, we
added a CRP inference front end to optimally derive the CRPs
using the full-response-replication strategy (cf. proof in V.A).
We also modified the error signal to compute the classification
error only for the known “good” response bit positions in the
final computation for ɛc. For gradient search, the error
feedback was similarly modified since only the all 1s and all
0s cases are significant. If either the error signal modification
or the error feedback modification or both are removed,
algorithm does not successfully converge, with a prediction
rate of no better than 50% ± 1%.

With decimation applied, we show in Table II that for 5-
XOR there is no successful machine learning convergence
with up to 1M CRPs when a mere decimation = 2x is applied.
We note that in comparison to [14], the same 5-XOR is
learned to ɛc ≤ 1% with considerably less than 1M CRPs, at
80k CRPs, in 2 hours.

Figure 6 highlights security gain for 5-XOR and 6-XOR in
terms of increases in time and CRPs on a log-log scale, and
yet the classification error remains near 50% with order of
magnitude (10x to 100x) increases in attack resource. We

6 500k and 1M CRPs refer to the number response bits sent outside the

device, visible to the adversary.

 6

currently do not have data to see whether ɛc remains near 50%
for 100x plus increases in run-time and CRP (i.e., we don’t
know the breaking points for 5-XOR and 6-XOR at D = 2).

D. Example of Bifurcated Noise at 28nm

Figure 7 shows examples of bifurcated noise at D = 2,
using 28nm data from Table I. We assume that the adversary
attacks at the lowest noise level, which is at 25°C, where �e =
0.046 for 4-XOR. Applying Eqn. (2), setting �′= �e, we obtain
8-XOR and 12-XOR noise of 0.088 and 0.126. Verifier sees �v= �e. Adversary sees �a based on combined effect of :

i. CRP uncertainty due to decimation ɛu(D) (Eqn. (6))
ii. environmental noise �e (e.g., Table I).

Specifically, �a(n) = 1- [ɛu(D) · �e(n) + (1- ɛu (D)) · (1-�e(n))] (11)
For example, at 4-XOR, the verifier sees a noise level of 0.046
(x-axis) while the adversary sees a noise level of 0.273 (y-
axis). This advantage grows with D (not explicitly shown).

E. Machine Learning Attacks with Side Channel Information

In 2013, machine learning attacks with side channel
information became an active research topic. [15] performed
majority voting from five measurements of a physical PUF to
reduce noise. [1] looked at side channel noise, using repeated
measurements to produce a reliability-aware algorithm. [2]
used fault injection to attack Arbiter and RO k-sum PUFs. All
these attacks required repeated measurements, which our
architecture disallows. The adversary needs to find other
means to reduce �a.

VI. CONCLUSIONS

We presented the first noise bifurcation architecture for
linear additive physical functions, allowing the adversary’s

noise �a → 0.50 while keeping the verifier’s noise �v constant;

the former to confuse the adversary, the latter to ease reliable
authentication. This approach provides an extra dimension for
security scaling in the battle against emerging machine

learning attacks. The architecture also thwarts emergent
power and fault injection side channel attacks requiring
repeated measurements. Future work includes using maximum
likelihood methods to authenticate beyond the all 1s and 0s
case, to reduce pre-expansion overhead.

REFERENCES

[1] J. Delvaux, I. Verbauwhede, “Side Channel Modeling Attacks on 65nm
Arbiter PUFs Exploiting CMOS Device Noise,” IEEE International

Symposium on Hardware-Oriented Security and Trust (HOST), 2013,
pp. 137–142.

[2] J. Delvaux, I. Verbauwhede, “Fault Injection Modeling Attacks on
65nm Arbiter and RO Sum PUFs via Environmental Changes,” IACR
Cryptology ePrint, 2013: 619 (2013).

[3] S. Devadas, “Non-networked RFID PUF Authentication,” US Patent
Application 12/623,045, 2008, US Patent 8,683,210, 2014.

[4] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Silicon Physical
Random Functions,” ACM Conference on Computer and
Communication Security Conference (CCS), 2002.

[5] G. Hospodar, R. Maes, I. Verbauwhede, “Machine Learning Attacks on
65nm Arbiter PUFs: Accuracy Modeling Poses Strict Bounds on
Usability,” IEEE International Workshop on Information Forensics
and Security (WIFS), 2012.

[6] M. Kearns, “Efficient Noise-Tolerant Learning form Statistical
Queries,” Journal of the ACM, 1998, vol. 45(6), pp. 983-1006.

[7] D. Lim, “Extracting Secret Keys from Integrated Circuits,” Master’s
thesis, MIT, 2004.

[8] A. Mahmoud, U. Rȕhrmair, M. Majzoobi, F. Koushanfar, “Combined
Modeling and Side Channel Attacks on Strong PUFs,” IACR
Cryptology ePrint, 2013: 632 (2013).

[9] M. Majzoobi, F. Koushanfar, M. Potkonjak, “Testing Techniques for
Hardware Security,” IEEE International Test Conference (ITC), 2008.

[10] M. Majzoobi, F. Koushanfar, M. Potkonjak, “Lightweight Secure
PUF,” International Conference on Computer Aided Design, 2008.

[11] M. Majzoobi, M. Rostami, F. Koushanfar, D. Wallach, S. Devadas,
“SlenderPUF: a Lightweight, Robust and Secure Strong PUF by
Substring Matching,” IEEE International Workshop on Trustworthy
Embedded Devices (TrustED), 2012.

[12] E. Oztiirk, G. Hammouri, B. Sunar, “Towards Robust Low Cost
Authentication for Pervasive Devices,” International Conference on
Pervasive Computing and Communications (PerCom), 2008.

[13] M. Reidmiller, H. Braun, “A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm,” IEEE
International Conference on Neural Networks, 1993.

[14] U. Rȕhrmair, F. Sehnke, J. Sȍlter, G. Dror, S. Devadas, J.
Schmidhuber, “Modeling Attacks on Physical Unclonable Functions,”
ACM Conference on Computer and Communication Security (CCS),
2010.

[15] U. Rȕhrmair, J. Sȍlter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, S. Devadas, “PUF Modeling
Attacks on Simulated and Silicon Data,” IEEE Transactions on

Information Forensics and Security (TIFS), 2013, vol. 8(11), pp. 1876-
1891.

[16] U. Rȕhrmair, X. Xu, J. Sȍlter, A. Mahmoud, F. Koushanfar, W.
Burleson, “Power and Timing Side Channels for PUFs and their
Efficient Exploitation,” IACR Cryptology ePrint, 2013: 851 (2013).

[17] G. Suh, S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” Design Automation
Conference (DAC), 2007, pp. 9–14.

[18] M. Yu, D. M’Raїhi, R. Sowell, S. Devadas, “Lightweight and Secure
PUF Key Storage Using Limits of Machine Learning,” Workshop on

Cryptographic Hardware and Embedded Systems (CHES), 2011,
LNCS vol. 6917, pp. 358-373.

[19] M. Yu, R. Sowell, A. Singh, D. M’Raїhi, S. Devadas, “Performance
Metrics and Empirical Results of a PUF Cryptographic Key Generation
ASIC,” IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), 2012.

Figure 7: Examples of Bifurcated Noise @ 28nm, D = 2

Figure 6: Example Security Increase

