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Abstract— Physical Unclonable Functions (PUFs) allow a 
silicon device to be authenticated based on its manufacturing 
variations using challenge/response evaluations. Popular realizations 
use linear additive functions as building blocks.  Security is scaled up 
using non-linear mixing (e.g., adding XORs).  Because the responses 
are physically derived and thus noisy, the resulting explosion in noise 
impacts both the adversary (which is desirable) as well as the verifier 
(which is undesirable). We present the first architecture for linear 
additive physical functions where the noise seen by the adversary and 
the noise seen by the verifier are bifurcated by using a randomized 
decimation technique and a novel response recovery method at an 
authentication verification server. We allow the adversary’s noise �a 
→ 0.50 while keeping the verifier’s noise � v constant, using a 
parameter-based authentication modality that does not require explicit 
challenge/response pair storage at the server. We present supporting 
data using 28nm FPGA PUF noise results as well as machine learning 
attack results. We demonstrate that our architecture can also withstand 
recent side-channel attacks that filter the noise (to clean up training 
challenge/response labels) prior to machine learning. 
 

Keywords- Architecture, Authentication, Machine Learning, 

Physical Security, Side Channel 

I.  INTRODUCTION 

Physical Unclonable Functions (PUFs) allow a silicon 
device to be authenticated using a challenge/response 
evaluation of its manufacturing variations [4]. PUF building 
blocks are often linear and additive functions. To achieve 
security against machine learning attacks [5,7,9,14], building 
blocks are often composed in a non-linear fashion, as in the 
XOR Arbiter PUF [17] and Lightweight Secure PUF [10].  
More recently, machine learning attacks coupled with side 
channel information [1,2,8,15,16] have been developed.  
Current proposed methods to address these attacks include 
increasing amount of non-linear mixing (e.g., adding XORs 
[17]) at PUF output. While this increases machine learning 
attack complexity for the adversary, it also increases 
authentication noise for the verifier. It is, therefore, desirable to 
derive and analyze a PUF construction that induces detrimental 
learning noise as seen by the adversary while simultaneously 
limiting authentication noise as seen by the verifier. It will be 
advantageous if such a PUF construction also addresses some 
of the recently published side channel leaks that aid machine 
learning via noise filtering and reduction.    

II. MACHINE LEARNING AND NOISE 

A. Learning With Noise 

In our context, the purpose of machine learning is to predict 
the response to a previously unseen (and randomly chosen) 
challenge. The machine learning-equipped adversary obtains a 
set of labels {x, f(x)}, where x is a challenge (e.g., 64 bits or 
128 bits), and f(x) is a single bit response. The adversary 

attempts to build a predictor g(x) during the training phase.  
The quality of the predictor would obviously depend on the 
amount of noise in (or the accuracy of) the labels. During the 
attack phase, the adversary would like to see a small 
classification (prediction) error ɛc, which is the probability that 
g(x) ≠ f(x) for a previously unseen and randomly chosen 
challenge x. 

A relationship between machine learning complexity and 
noise of input labels was established in Kearns’ seminal work 
[6] on the Statistical Query model of machine learning, where 
machine learning labels that are used to train g(.) are subject to 
random noise bit corruption characterized by �, 0 ≤ � ≤ 0.5. A 
value of � = 0 means that none of the labels, and specifically 
{f(x)}, are corrupted. An � = 0.5 means that {f(x)} values are 
completely corrupted by random noise. As suggested in [6], 
learning complexity, e.g., learning time, is polynomial to 
inverse of noise, which is expressed follows: 

 ����� ∝ �
�

��	

	�� 							0	 ≤ 	�	 ≤ 0.5 , e	�	1 (1) 

While Eqn. 1 seems to indicate that increasing � will increase 
the adversary’s learning difficulty, increasing �  also requires 
the verifier to relax the threshold for authentication, implying 
that the adversary does not need to learn with the same 
accuracy. It would, therefore, seem useful to develop a PUF 
architecture that can bifurcate noise � into two aspects: 

i. �a, average noise seen by the adversary; and 

ii. �v, average noise seen by the verifier.  
Ideally, we want to keep �v constant while allowing security 
scaling by making �a approach 0.5 (at 0.5, adversary cannot 
distinguish PUF output bits from random). None of the papers 
published to date using linear additive physical building blocks 
have attempted this, for it seems obvious that the adversary and 
the verifier should see the same noise. We use a randomized 
decimation approach, where out of every D bits generated by a 
PUF, D-1 bits are randomly thrown away inside the device, and 
only 1 bit is sent outside the device. The adversary does not 
know the precise challenge x associated with the post-
decimated response bit, and therefore has to make imperfect 
inferences to form the challenge/response labels {x, f(x)} which 
are needed as input for the machine learning training phase.  
Our architecture allows for a novel response recovery method 
such that the noise seen by the verifier �v remains constant as a 
function of the decimation factor D, while the adversary’s noise 
�a asymptotically approaches 0.5.   

B. Example PUF Noise at 28nm 

In Table I, we show average environmental noise �e in a 4-
XOR PUF 28nm FPGA implementation subject to a wide 
operating temperature range spanning -65°C to 125°C ambient.  
To the best of our knowledge, PUF implementation results 
below 40nm have not yet been published. The implementation 
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is linear additive 4-XOR using 64-stage k-sum RO architecture 
in [18], in a 28 nm Xilinx Artix-7 FPGA. 

TABLE I.     NOISE VS. TEMPERATURE, 4-XOR (REFERENCE @ 25OC) 
 

Temperature -65oC -45oC 25oC 85oC 125oC 

�e 0.217 0.195 0.046 0.241 0.317 
 
Now let’s consider the un-bifurcated case, where �a = �v = 

�e.  While a PUF’s environmental noise �e varies depending on 
implementation specifics, process node, and operating 
environmental specifications, the data above shows that the 
number of XORs cannot be scaled without severely impacting 
authentication noise, especially as the environmental difference 
between the provisioning (reference) condition and a 
regeneration (authentication) condition grows. 8-XOR PUFs 
were not successfully attacked in [14] but attacks proposed in 
[8] and [16] may require a move to 12, 16 or more XORs. At 
85°C, a 4-XOR 28nm implementation has a noise of �e = 0.24.  
At 12-XOR, the same implementation would have a noise level 
close to the reliability limiting “wall” at 0.50. In our 
architecture, we bifurcate �  and allow � v to stay constant as 
security is scaled up. 

III. RELATED WORK 

A. Physical Unclonable Function 

Gassend et al. in [4] coined the term Physical Unclonable 
Function, and presented the first silicon PUF with integrated 
measurement circuitry. Many other silicon realizations of PUFs 
have been proposed; of these, the Arbiter PUF [4], Lightweight 
PUF [10], Ring-Oscillator-based [17] k-sum PUF [18], and 
Slender PUF [11] use linear additive building blocks.   

It has been observed by [3,12] that storage requirements 
corresponding to CRPs in PUF authentication may be reduced 
if the verifier instead stores a secret model for the PUF, by 
which it can emulate and predict arbitrary responses of the 
PUF. The server no longer needs to maintain an explicit 
challenge/response database that grows with the number of 
authentication events, but instead maintains a constant-size 
database per device. Our architecture is confined to this usage 
modality (herein referred to as parameter-based 
authentication), so that the server can predict the response to an 
arbitrary challenge and the device and server can perform an 
exchange of challenge seed for each authentication.  

B. Machine Learning and Related Side Channel Attacks 

Machine learning attacks on linear additive PUFs were 
proposed in [7,9] and certain constructs broken in [14]. Last 
year, machine learning attacks coupled with side channel 
information [1,2,8,15,16] became an active area of research.  
Our architecture addresses certain side-channel attacks, 
specifically power and fault injection attacks that require 
repeated measurements. 

IV. RESPONSE DECIMATION ARCHITECTURE 

A. Background 

Arbiter PUF.  Arbiter PUFs were introduced in [4], shown in 
Figure 1. We shall refer to it as “basic” Arbiter PUF when we 
want to distinguish it from more complex constructs to be 
discussed later. PUF output is derived from a race condition 
formed by successive delay stages each comprising a crossbar 

switch formed using two 2:1 multiplexers. A challenge bit x
i
, 0 

≤ i < k, for each of the k stages determines whether parallel 
path or cross path is active. Collectively, k challenge bits 
determine which path is chosen to create the transition at the 
top input to the arbiter latch, and which is used to create the 
bottom input. The difference comparison between the two 
delays determines whether the PUF produces a “1” output bit 
or a “0” output bit. The layout of the design has to be 
symmetrically matched such that random manufacturing 
variation would affect the response.  

 

 

  
An n-way XOR Arbiter PUF is constructed using n copies 

of structure above. 
 

k-sum PUF.  In the k-sum PUF [18], each of the k stages 
above is replaced with a pair of identically manufactured ring 
oscillators. Delay propagation is mimicked by using digital 
logic to add an appropriate delay value for each stage 
depending on the challenge bit associated with that stage.  
From a machine learning attack standpoint, the k-sum PUF 
and Arbiter PUF can be reduced to the same topology. 

 
Parameter-based Authentication. A basic k-stage Arbiter PUF 
can be modeled with k + 1 parameters [4,7], with k parameters 
in the machine learning algorithm representing difference 
delays in each stage, and one parameter representing a 
systematic DC offset. During provisioning, instead of a server 
obtaining and storing CRPs explicitly for future use, the server 
instead obtains enough CRPs to model a basic PUF.

1
 This can 

be repeated n times for an n-XOR PUF. Instead of storing the 
explicit CRPs of the combined n-XOR PUF, the server stores 
the n · (k + 1) parameter values that constitute a PUF 
parameter “snapshot” (pss); this allows the server, acting as the 
verifier, to synthesize any CRP during a later authentication 
event. For the k-sum implementation, k delay difference 
counter values need to be stored for each basic k-sum PUF, 
and there are n of these. 

We note that there needs to be a secure provisioning 
mechanism to extract pss from a device, after which the 
extraction mechanism needs to be disabled (e.g., via a fuse).  
The server securely stores pss instead of explicit CRPs. During 
authentication verification, the server synthesizes responses 
from pss and compares against responses from the device. 

B. Goal 

Consider an n-XOR PUF, shown in Figure 2.  A challenge 
value xi is applied as input to produce a single bit value yi.   
For illustrative purposes, we assume |xi| = n · k (| . | is the size 
operator, expressed in bits).  For an n-XOR PUF, each of n 
basic PUFs produces a 1-bit response that is bit-wise XOR’ed 
to produce the composite single bit yi. The resulting 

                                                           
1 The output of a basic PUF, prior to the application of any XOR mixing, 

can be learned to an accuracy of greater than 99% according to data in [15]. 

Figure 1: Basic Arbiter PUF Structure 
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challenge/response pair xi, yi constitutes a single label in the 
training set {x, f(x)}. In practice, to generate multiple response 
bits, x0...r-1

2
 is derived from a seed value cseed that serves as the 

initial value for a digital circuit, e.g., LFSR-based circuit (not 
shown), to produce y0...r-1, where r is the response length.   

 

 

 

 

 

 

 

 

 

 
 

 
Now let’s analyze how applying the n-XOR changes the 

authentication noise. Let �′ be the probability of response bit 
mismatch for the basic PUF building block (no XORs).  For n-
XOR, we get the correct result when all n outputs do not 
mismatch (between provisioning and a later authentication 
query), or when an even number of bits mismatch. The 
probability of each basic PUF being incorrect is �′ . The 
probability of the post-n-XOR result being incorrect is:

 
 

���, �′� = 1 −� ��	���′(	�)(1 − ��)��	�� !"
�#$   (2) 

Observe that the verifier sees a noise level according to Eqn. 
(2), and the adversary is impacted, under the Statistical Query 
model of machine learning, based on Eqn. (1). If both parties 
see the same increase in � (noise) as a result of increasing n 
(XORs) to scale up security, both parties get impacted 
negatively. There is an asymptotic wall at � = 0.5, where PUF 
responses are indistinguishable from random for the 
adversary; for the verifier, it is impossible to authenticate. Our 
goal is to impact the adversary and the verifier asymmetrically, 
allowing �a → 0.50 while keeping �v constant.

3
 

C. Response Decimation Architecture 

 

 

 

 

 

 

 

 

 
 
We add Response Decimation as shown in Figure 3. An n-

XOR PUF is augmented with challenge control logic, response 
decimation logic as well as a true random number generator 
(RNG).  RNG can be derived from PUF noise (e.g., Ring 
Oscillator PUF least significant bit count values in certain 
implementations), but is shown as a separate block for clarity.

 
 

                                                           
2 x0...r-1 =  x0 || x1 || … || xr-1, and similarly for other variables. 
3 We note that adding a cryptographic hash to a basic PUF’s raw output 

bits would indeed help thwart learning attacks (�a → 0.50), but the PUF’s 
physical noise would explode through the hash, causing �v → 0.50 as well. 

The challenge control logic mixes subchallenge seeds c2 
and c1, i.e., cseed is split into two parts so no one party controls 
x. c2 is generated using the device’s RNG and c1 by the 
verifier’s RNG. In one possible configuration, c1 has n · k/2 
bits and c2 has n · k/2 bits, e.g., k = 64, n = 6.

 4
 During an 

authentication event, the server issues c1 using its own RNG; 
the device returns c2 and y′. We note that the adversary is 
capable of passively observing all transactions, and also 
adaptively issuing different values of c1 to obtain the resulting 
c2 and y′ , with the goal of fooling the verifier in a future 
authentication event. 

In the Response Decimator module, randomized response 
decimation is performed with a down-mixing factor of D. As a 
result, the adversary no longer knows the precise challenge 
associated with each post-decimated response bit to launch a 
machine learning attack and has to make imperfect inferences 
to create the machine learning training labels. Next, we shall 
detail response decimation performed by the device as well as 
response recovery by the server.   

D. Response Decimation with Pre-expand (RDP) 

Let’s suppose we have a PUF where probability of a 
response bit mismatch is � (ref: Table I). Now let r′′ be PUF 
response size in bits (the reason for the “double prime” 
notation will become clear soon), and τ be the authentication 
threshold expressed as a percentage. A PUF authentication 
fails if more than r′′ ·  τ bits mismatch, computed as described 
in [7]. The false negative (fn) probability is given by: 

%�(&′′, ', �) = � ()**� + ��(1 − �)()**��)							)**
�#,)**·./ (3) 

Correspondingly, the false positive (fp) probability is:
 
 

%0(&′′, ', 1) = � ()**� + 1�(1 − 1)()**��)2)**·.3
�#$ 								 (4) 

(Note: 1 is the PUF bias value that can be made close to an 
ideal value of 0.5 in modern PUF designs [19].) From this, one 
observes that given the same τ, � and 1, so long as we target a 
response size r′′ and pre-compensate for decimation effects, 
we can preserve some or all of the fn and fp probabilities. 

Suppose we decimate the response bits by a factor of D = 
2, as shown in the strike-throughs (e.g., 01) in Figure 4. We 
divide y into non-overlapping pairs of bits. For each 2 bits of 
response in y, the device randomly eliminates 1 of 2 bits, thus 
only outputting a single bit to the server. On the surface, 
authentication appears to have become problematic, since the 
server has a ½ chance of correctly guessing actual challenge 
used for post-decimated response bit. The server does not 
know whether the incoming response bit corresponds to the 
first or second challenge in the pair. Fortunately, due to the 
parameter-based authentication modality, the server has access 
to a PUF parameter snapshot pss for the device that allows the 
server to synthesize via emulation any challenge/response pair 
without having explicitly collected and stored those pairs 
during a device provisioning process. The server can apply 
both possible challenges to computationally evaluate using pss 

                                                           
4 In this example, c2 = 192 bits.  In general, we want c2 to be large enough 

to prevent challenge collisions inside the device.  This prevents the adversary 
from undoing the randomized response decimation, thwarts recently-published 
power and fault injection side channel attacks that rely on repeated 
measurements, and reduces the capabilities of an adaptive chosen challenge 
adversary into a passive one. 
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the two resulting output bits. Assuming that PUF outputs are 
unbiased and challenges are uncorrelated, there is ¼ chance 
that both possible challenges produce a “0” response bit, same 
for a “1” response bit. This brings us to the key observation. 
There is a ¼ + ¼ = ½ chance that incoming (post-2x-
decimated) bit can actually be verified by the server. The 
server authenticates for the cases that “11” or “00” are 
produced by the 2 possible challenges. This corresponds to an 
average of ½ of incoming bits, and the server ignores the rest. 
This is less reliable given the same authentication threshold τ, 
since we decimated by 2 at the device and we authenticate on 
only half of those bits at the server. We can, however, pre-
expand y by 4x to compensate, to recapture the “lost” fn and 
fp. Therefore, to get a reliability associated with a r′′ = 256-bit 
response, we set |y| = r = r′′ ·  4 = 1024.

 5
 In general, for a RDP 

scheme, we can recapture fn and fp for the average case with 
an expansion factor of 

E = D x 2
D-1

     (5)  
So: 
    r   = |y | = # of pre-decimated bits generated by PUF 
    r′ =  |y′| = r/D = # of post-decimated bits 
    r′′ = r/E = average # of bits authenticated, determines fp, fn 
As shown by Eqn. (3) and Eqn. (4), if τ, �, and 1 are fixed, 
authentication reliability in term of both fp and fn becomes a 
function of r′′ which, in the case of decimation, we can pre-
expand using Eqn. (5) by setting r = r′′·E. Intuitively, for an r 
= 1024-bit (pre-decimated) PUF response, if the server 
authenticates on a subset comprising of r′′ = 256 bits that are 
unambiguous, the authentication reliability should be that of a 
256-bit response. 
      
 

 

 
 

More generally, the RDP algorithm comprises of the steps 
in Figure 5 (MV = manufacturing variations). The transaction 
begins with a challenge seed exchange, with the server and 
device each generating one half of the challenge seed (steps i. 
and ii.). Next, response decimation is performed on the device 
(steps iii. through v.).  In step v.,   

y′j = yj·D+a
j 
,  0 ≤ j < r/D, 

                     aj ∈ {0,1,...,D-1} randomly selected for each j 

                                                           
5 Alternately, one can consider response expansion and pad random noise 

at random locations. In fact, that’s what RDP is doing, except that it is done in 
a manner where the verifier, in possession of pss, knows which post-decimated 
bits to ignore, thereby creating the bifurcated noise effect. 

The ambiguation value aj (from the device’s RNG) determines 
which bits are decimated, or equivalently, which bit is kept 
and sent out. Note that the aj values are kept secret on the 
device while the challenge seed values c1 and c2 are known to 
the server as well as the adversary. Next, response recovery is 
performed on the server (steps vi. through ix.). In step viii., the 
server derives a mask identifying the locations of the “good” 
bits for authentication (and equivalently, which bits to ignore): 

mj  =  all_onesj | all_zerosj  
all_onesj  =     y

emu
j·D+0 & y

emu
j·D+1 & … & y

emu
j·D+D-1 

all_zerosj  = ~(y
emu

j·D+0 |   y
emu

j·D+1  |   … |   y
emu

j·D+D-1) 
0 ≤  j < r/D 

Here, & is the bit-wise AND operator (detects all 1s), | is the 
bitwise OR operator (detects all 0s), and ~ is logical inversion.  
In step ix., a masked threshold comparison is performed. The 
device is authentic if (^ is bitwise XOR operator, wt is the 
Hamming weight operator counting the number of ones): 

wt((y′0...r/D-1 ^ all_ones0...r/D-1) & m0...r/D-1) ≤  τ · wt(m0...r/D-1) 
      

   
   

  

V. EVALUATIONS 

A. Inferring CRPs from Decimated Bits 

A machine learning algorithm requires challenge/response 
input labels {x, f(x)} during the training phase. Its 
classification error during the attack phase is highly dependent 
on the accuracy (noise level) of these labels. Due to 
randomized decimation, the adversary no longer knows the 
precise challenge x associated with each post-decimated 
response bit, and has to infer the best {x,  f(x)}. In this section, 
we analyze different CRP inference strategies based on the 
goal of minimizing CRP uncertainty (the adversary’s noise), 
and provide a mathematical proof.    

Let’s consider the 2x decimation case. Eqn. (1) would 
suggest that the strategy that produces lowest noise is best.  
For the 2x decimation case, there are only two possibilities. 

 
Single-Challenge-Guess Strategy. The adversary can guess, 
among all the candidate challenges, a single challenge. As an 
example, the adversary can form {x, f(x)} using {x2j, y ′ j}.  
Assuming unbiased response bits and uncorrelated challenges, 
given an incoming response bit, the adversary has a 1/D 
chance of guessing the correct challenge, but in the case where 
the wrong challenge was guessed there is a ½ chance that the 
CRP derived is still correct. Thus, the probability that an 
accurate CRP is derived is 1/D · 1 + (D-1)/D · ½. The CRP 
uncertainty is:  
ɛu(D) = 1 -  (D+1)/2D =   (D - 1)/2D  (6) 
 

Full-Response-Replication Strategy. The adversary replicates 
the incoming response bit for both challenges (and in general 

    

    

  

Response 

Decimation 

           y′ 
(|y′| = r′ = 512 bits) 

RNG 

 

  y 

(|y| = r = 1024 bits) 

x = function_of(c1,c2) 

emulation 

using pss 
  
yemu 

(|yemu| = r = 1024 bits) 

 

x = function_of(c1,c2) 
 

 

a 

DEVICE 
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n-XOR PUF 

00 10 11 10 01 10… 

00 10 11 10 01 10… 

  0    1    1    0   0   1… 

00 10 11 10 01 11… 
authenticate on all 1s or all 0s 

 (r′′ ≈ 256 bits) 

Figure 4: Response Decimation Example 

Response Decimation with Pre-expansion (RDP) 
i. c1           ← Server 
ii. c2                 ← Device 
iii. x0...r-1        = function_of(c1 , c2)          (on Device) 
iv. y0...r-1          = function_of(MV, x0...r-1)            (on Device) 
v. y′0...r/D-1    ← function_of(y0...r-1,D,a0...r/D-1)   (on Device) 
vi. x0...r-1       = function_of(c1 , c2)                  (on Server) 
vii. yemu

0...r-1  = function_of(pss, x0...r-1)             (on Server) 
viii. m0...r/D-1   = function_of(yemu

0...r-1)               (on Server) 

      ix.    Authenticate on “good” bits of y′              (on Server) 
 Figure 5: Response Decimation Procedure 
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D challenges). As an example, the adversary forms {x, f(x)} 
using {x2j, y′j} ⋃ {x2j+1, y′j}.    

Now we derive the CRP uncertainty. First, we introduce 
two new concepts and give examples to aid understanding.  
Let h = wt(x2j…2j+D-1) be the Hamming weight of a grouping of 
D pre-decimated bits. Let’s define ■ as the “pseudo-majority” 
case surviving after decimation, and ▪ as the “pseudo-
minority” case surviving. For D = 3, if the pre-decimated bits 
are 110, ■ refers to a post-decimated bit of “1”, and ▪ refers to 
a post decimated bit of “0”.  So for D = 3, we have Pr(■| h = 2) 
= ⅔ and Pr(▪| h = 2) = ⅓. If there is an equal number of 1s and 
0s (D is even), we define Pr(■| h = D/2) = Pr(▪| h = D/2) = ½. 

Now, let’s compute the probability that the adversary 
makes a correct CRP inference (herein denoted as CInfr) 
when a post-decimated response bit is replicated D times and 
inferred as the response to all D candidate challenges. In the 
110 case, if the adversary observes a “1”, the adversary would 
infer a replicated response of 111 to map to the three 
challenges. Here, Pr(CInfr | ■ , h = 2)= ⅔. Similarly, Pr(CInfr | 
▪ , h = 2) = ⅓.   More generally,  

Pr(■ | h, D) = max(h/D, (D-h)/D)  (7) 
Pr(▪ | h, D) =  min(h/D, (D-h)/D)  (8) 
Pr(CInfr | ■, h, D) = max(h/D, (D-h)/D)

  
(9) 

Pr(CInfr | ▪, h, D) = min(h/D, (D-h)/D)  (10) 
This gives the joint probabilities: 

Pr(CInfr, ■ | h, D) = max(h/D, (D-h)/D)
2  

(11) 
Pr(CInfr, ▪ | h, D) = min(h/D, (D-h)/D)

2  (12) 
Note that the two probabilities immediately above are 
conditioned on h. If for each one we compute the marginal 
probability over 0 ≤ h ≤ D and sum them, we arrive at Pr(CInfr 
| D). The CRP uncertainty is 1 - Pr(CInfr | D) : 

 								ɛ′6(7) = 1 −8 9(:;+	: < =(>?+	+(?�>? +	A
?

>#$
							(13) 

 

Proof of Equivalence.   Now we prove that the single-
challenge-guess strategy has same CRP uncertainty, i.e., 
contributes same noise level to adversary, as the full-response-
replication strategy.  From the binomial theorem: 

(B + C)� =� ��D�BDC��D�
D#$     (14) 

Setting a = 1 and taking first and second derivatives with 
respect to x, and substituting variables, we have: 

� �?>� · ℎ = 7 · 2?��?
>#$      (15) 

� �?>� · ℎ	 = (7 +	7	) · 2?�	?
>#$    (16) 

Thus, Eqn. (13) is equivalent to: 

 ɛ′u(D) = 1 −	 �
?!·	:� �?>�G2ℎ	+7	 − 2ℎ7H?

>#$  

     =	1 − 	 �
?!·	: (2(7+7	) · 2?�	 + 7	 · 2? − 27	 · 2?��) 

     = 1 - (D+1)/2D = ɛu(D)                            □                 

For D = 2, the single-challenge-guess and full-response-
replication are the only two possible strategies. In the proof, 
we showed that both have an equivalent CRP uncertainty and 
contribute the same amount of noise to the adversary (i.e., 
ɛ′u(D) = ɛu(D)), and this noise scales with D. However, for D = 
3, there are additional possible strategies. The adversary can 
use a partial-response-replication strategy, taking the 

incoming bit and replicating for only two of the three 
challenges (or in general, up to D-1 challenges). We can 
extend the proof to show that a partial-response-replication 
strategy can do no better than the prior strategies (observe that 
Eqn. (9) and Eqn. (10) holds regardless of the number of times 
the incoming bit is replicated to infer CRPs, encompassing the 
single, full, as well as partial replication cases). 

B. Machine Learning: Baseline Results and Background 

We first replicated selected results from [14], and this 
comparison is shown in the “Baseline” columns in Table II.  
We used the most effective machine learning algorithm in [14] 
in modeling n-XOR 64-stage PUFs, namely RPROP [13]. An 
Intel i7 6-core, 12-thread CPU with 64 Gigabytes of memory 
was used. These attacks were performed on synthetic as 
opposed to physical PUFs. Based on Eqn. (1), noise increases 
learning complexity. This was demonstrated in [15], where 
even when majority voting was used to reduce noise, the 
researchers could not replicate breaking 6-XOR with 200k 
CRPs on a physical PUF and estimated that 700k CRPs are 
needed.  All things being equal, our synthetic PUF (no noise) 
results serve as a bound for what machine learning might 
achieve on a physical PUF with noise.  

C. Machine Learning Results: Security-Enhanced 

TABLE II.  MACHINE LEARNING: BASELINE VS. SECURITY-ENHANCED  

 Baseline Security-Enhanced 

n-XOR 
Results of 

[14] 

Replicating 

[14] 
500k CRPs6 

 1M CRPs6 

4-XOR 12k CRPs 

ɛc ≤ 1% 

4 min 

12k CRPs 

ɛc ≤ 1% 

1 min 

ɛc = 8% 

5 hrs (D =2x) 
- 

5-XOR 80k CRPs 

ɛc ≤ 1% 

2 hrs 

80k CRPs 

ɛc ≤ 1% 

10 min 

ɛc ≈ 50% 

2 days (D = 2x) 

ɛc ≈ 50% 

2 days (D= 2x) 

6-XOR 200k CRPs 

ɛc ≤ 1% 

31 hrs 

200k CRPs 

ɛc ≤ 1% 

5 hrs 

ɛc ≈ 50% 

2 days (D = 2x) 

ɛc ≈ 50%* 

2 days (D = 2x) 

* Latest results demonstrate 6-XOR not converging after 98 days, 16M CRPs 
 

To derive the security-enhanced results, we made 
modifications and extended the RPROP algorithm. First, we 
added a CRP inference front end to optimally derive the CRPs 
using the full-response-replication strategy (cf. proof in V.A).  
We also modified the error signal to compute the classification 
error only for the known “good” response bit positions in the 
final computation for ɛc. For gradient search, the error 
feedback was similarly modified since only the all 1s and all 
0s cases are significant. If either the error signal modification 
or the error feedback modification or both are removed, 
algorithm does not successfully converge, with a prediction 
rate of no better than 50% ± 1%. 

With decimation applied, we show in Table II that for 5-
XOR there is no successful machine learning convergence 
with up to 1M CRPs when a mere decimation = 2x is applied.  
We note that in comparison to [14], the same 5-XOR is 
learned to ɛc ≤ 1% with considerably less than 1M CRPs, at 
80k CRPs, in 2 hours.   

Figure 6 highlights security gain for 5-XOR and 6-XOR in 
terms of increases in time and CRPs on a log-log scale, and 
yet the classification error remains near 50% with order of 
magnitude (10x to 100x) increases in attack resource. We 

                                                           
6 500k and 1M CRPs refer to the number response bits sent outside the 

device, visible to the adversary.   
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currently do not have data to see whether ɛc remains near 50% 
for 100x plus increases in run-time and CRP (i.e., we don’t 
know the breaking points for 5-XOR and 6-XOR at D = 2). 

 

 
 

 

D. Example of Bifurcated Noise at 28nm 

Figure 7 shows examples of bifurcated noise at D = 2, 
using 28nm data from Table I.  We assume that the adversary 
attacks at the lowest noise level, which is at 25°C, where �e = 
0.046 for 4-XOR. Applying Eqn. (2), setting �′= �e, we obtain 
8-XOR and 12-XOR noise of 0.088 and 0.126. Verifier sees �v= �e.  Adversary sees �a based on combined effect of : 

i.  CRP uncertainty due to decimation ɛu(D) (Eqn. (6)) 
ii.  environmental noise �e (e.g., Table I).   

Specifically,  �a(n) = 1- [ɛu(D) ·  �e(n) +  (1-  ɛu (D)) ·  (1-�e(n))]   (11) 
For example, at 4-XOR, the verifier sees a noise level of 0.046 
(x-axis) while the adversary sees a noise level of 0.273 (y-
axis).  This advantage grows with D (not explicitly shown). 

 
 

E. Machine Learning Attacks with Side Channel Information 

In 2013, machine learning attacks with side channel 
information became an active research topic. [15] performed 
majority voting from five measurements of a physical PUF to 
reduce noise. [1] looked at side channel noise, using repeated 
measurements to produce a reliability-aware algorithm. [2] 
used fault injection to attack Arbiter and RO k-sum PUFs. All 
these attacks required repeated measurements, which our 
architecture disallows. The adversary needs to find other 
means to reduce �a.  

VI. CONCLUSIONS 

We presented the first noise bifurcation architecture for 
linear additive physical functions, allowing the adversary’s 

noise �a → 0.50 while keeping the verifier’s noise �v constant; 

the former to confuse the adversary, the latter to ease reliable 
authentication. This approach provides an extra dimension for 
security scaling in the battle against emerging machine 

learning attacks.  The architecture also thwarts emergent 
power and fault injection side channel attacks requiring 
repeated measurements. Future work includes using maximum 
likelihood methods to authenticate beyond the all 1s and 0s 
case, to reduce pre-expansion overhead.     
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Figure 7: Examples of Bifurcated Noise @ 28nm, D = 2  

Figure 6: Example Security Increase 


