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Abstract

When can t terminal pairs in an m× n grid be connected by t vertex-disjoint paths that
cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result
can be compared to two previous NP-hardness proofs: Lynch’s 1975 proof without the “cover
all vertices” constraint, and Kotsuma and Takenaga’s 2010 proof when the paths are restricted
to have the fewest possible corners within their homotopy class. The latter restriction is a
common form of the famous Nikoli puzzle Numberlink ; our problem is another common form
of Numberlink, sometimes called Zig-Zag Numberlink and popularized by the smartphone app
Flow Free.

1 Introduction

Nikoli is a famous Japanese publisher of pencil-and-paper puzzles, best known world-wide for its role
in popularizing Sudoku puzzles [27]. Nikoli in fact publishes whole ranges of such puzzles, following
rules of their own and others’ inventions; see [23]. The meta-puzzle for us theoretical computer
scientists is to study the computational complexity of puzzles, characterizing them as polynomially
solvable, NP-complete, or harder [7]. In the case of Nikoli puzzles, nearly every family has been
proved NP-complete: Country Road [10], Corral [5], Fillomino [29], Hiroimono [1], Hashiwokakero
[2], Heyawake [9], Kakuro [24], Kurodoko [15], Light Up [21], Masyu [6], Nurikabe ([20, 8, 22]),
Shakashaka [3], Slither Link ([28, 29]), Sudoku ([30, 14, 29]), Yajilin [10], and Yosenabe [12].

In this paper, we study the computational complexity of one Nikoli family of puzzles called
Numberlink (also known as Number Link, Nanbarinku, Arukone, and Flow). A Numberlink puzzle
consists of an m× n grid of unit squares, some of which contain numbers, which appear in pairs.
The goal of the player is to connect corresponding pairs of numbers by paths that turn only at the
center of grid squares, do not cross any other numbered squares, and do not cross any other paths.
Furthermore, in most versions of the puzzle, the paths should together visit every grid square; in
many puzzles, this constraint is in fact forced by any otherwise valid solution.1 Figure 1 shows a
simple example.

Although popularized and named by Nikoli, the history of Numberlink-style puzzles is much
older [13, 26]. The earliest known reference is an 1897 column by Sam Loyd [17] (most famous
for popularizing the 15 Puzzle in 1891 [25]). Figure 2 reproduces his puzzle, called “The Puzzled
Neighbors”. While the puzzle statement does not require visiting every square, his solution visits
most of the squares, and a small modification to his solution visits all of the squares. The same

1This coverage constraint is absent from Nikoli’s Numberlink website (http://www.nikoli.co.jp/en/puzzles/
numberlink.html), but this may simply be an omission.
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(a) Puzzle (b) Solution

Figure 1: Sample 5× 5 instance with 4 terminal pairs.

puzzle later appeared in Loyd’s famous puzzle book [18]. Another early Numberlink-style puzzle is
by Dudeney in his famous 1931 puzzle book [4]. His puzzle is 8× 8 with five terminal pairs, and
while the puzzle statement does not require visiting every square, his solution does.

Some Numberlink puzzles place an additional restriction on paths, which we call Classic
Numberlink (following the Numberlink Android app). Informally stated, restricted paths should
not have “unnecessary” bends. Although we have not seen a formal definition, based on several
examples, we interpret this restriction to mean that each path uses the fewest possible turns among
all paths within its homotopy class (i.e., according to which other obstacles and paths it loops
around). This version of Numberlink has already been shown NP-complete [16].

In this paper, we analyze the unrestricted version, which we call Zig-Zag Numberlink (again
following the Numberlink Android app). Informally, this style of puzzle allows links to zig-zag
arbitrarily to fill the grid. Personally, we find this formulation of the problem more natural, given
its connection to both vertex-disjoint paths and Hamiltonicity in graphs. When we only allow for
one pair of terminals this problem reduces to finding a Hamiltonian path in a grid given fixed start
and end points, which is known to be solvable in polynomial time [11]. Unfortunately, for the case
with several terminal pairs, as shown in Section 3, the hardness proof of [16] does not (immediately)
apply to Zig-Zag Numberlink. Nonetheless, we construct a very different and intricate NP-hardness
proof, inspired by an early NP-hardness proof from 1975 for vertex-disjoint paths [19].

2 Definitions

Next we formally define the puzzle Zig-Zag Numberlink.

Definition 1. A board Bm,n is a rectangular grid of mn equal sized squares arranged into m rows
and n columns. We will identify the squares with an ordered pair consisting of their column and
row position. The top left corner is defined to be position (1, 1).

Definition 2. A terminal pair is a pair of distinct squares. An instance of Zig-Zag Numberlink
is a tuple F = (Bm,n, T ) where Bm,n is a m × n board and T = {(T1, T

′
1), . . . , (Tt, T

′
t)} a set of

terminal pairs. All terminals are distinct, that is, any square of the board may contain at most one
terminal.

Definition 3. Two squares (x, y) and (p, q) are adjacent if either x = p and |y − q| = 1, or y = q
and |x− p| = 1. A sequence of squares P = s1, . . . , sk is a path of length k if si is adjacent to si+1

for i ∈ [1, k − 1] and si 6= sj for all i 6= j. Two squares are linked in P if they appear successively
in P .
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(a) Puzzle (b) Solution

Figure 2: Sam Loyd’s “The Puzzled Neighbors” from 1897 [17]. Each house should be connected by
a path to the gate it directly faces, by noncrossing paths. Scans from http://bklyn.newspapers.

com/image/50475607/ and http://bklyn.newspapers.com/image/50475838/.

Definition 4. A solution to a Zig-Zag Numberlink instance F = (B, T ) is a set of paths
S = {P1, . . . , Pt}, where Pi = si,1, . . . , si,ki , so that:

(i) Every terminal pair (Ti, T
′
i ) is connected by path Pi, i.e. si,1 = Ti and si,ki

= T ′i .

(ii) Each square in B is contained in exactly one path in S.

We call an instance of Zig-Zag Numberlink solvable if there exists a solution and unsolvable
otherwise. We say that two squares are linked by a solution S if they are linked in some path P ∈ S.
In the case of t = 1, we will abuse the above notation and identify the solution by a single path.

Finally, we will talk about parity. To illustrate this concept, we will color the squares alternating
black and white as on a checkerboard (cf. Figure 3) and assume that (1, 1) is colored black. The
important aspect of parity is that any path of a solution necessarily alternates between white and
black squares. In the construction of our gadgets, parity helps to ensure that a combination of
gadgets still allows a solution. As it will turn out, parity along with terminal position is crucial to
determine whether instances with only one terminal pair are solvable.

3 NP-hardness

Our NP-hardness reduction for Zig-Zag Numberlink mimics the structure of a very early NP-
hardness proof for vertex-disjoint paths among k terminal pairs in grid graphs by Lynch [19]. The
important differences are that Lynch’s reduction (1) allows obstacles (untraversable squares), and
(2) does not require every traversable square to be covered by some path. The first issue is relatively
easy to deal with because terminals serve as obstacles for all other paths. For the second issue, we
replace all of Lynch’s gadgets with more complicated gadgets to make it possible to cover every
square of the grid in all cases.

Theorem 1. Zig-Zag Numberlink is NP-complete for k terminal pairs in an n× n square.
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Figure 3: Squares colored to illustrate parity.

Figure 4: High-level sketch of NP-hardness
proof: two paths per variable, three paths
per clause, and crossover gadgets (faded un-
derpasses). Circles indicate terminals; squares
indicate actual crossings. Whitespace indicates
obstacles where paths cannot go.

Proof. Zig-Zag Numberlink is in NP because the solution paths can be expressed in O(n2 log k)
space and checked in the same amount of time.

To prove NP-hardness, we reduce from 3SAT. Figure 4 illustrates the high-level picture. We
construct one terminal pair (v′i, v

′′
i ) for each variable vi, and two candidate paths Vi,−, Vi,+ for

connecting this pair, Vi,− representing the false setting and Vi,+ representing the true setting. We
construct one terminal pair (c′j , c

′′
j ) for each clause cj , and three candidate paths Cj,1, Cj,2, Cj,3

for connecting this pair, one per literal in the clause cj = cj,1 ∨ cj,2 ∨ cj,3. Effectively, for each
clause literal cj,k = ±vi say, the corresponding literal path Cj,k intersects just the variable path
Vi,∓ corresponding to the setting that does not satisfy the clause literal. Thus, setting the variable
in this way blocks that clause path, and a clause must have one of its paths not blocked in this way
(corresponding to satisfaction). It follows that any noncrossing choice of paths corresponds to a
satisfying assignment of the 3SAT instance.

The reality is more complicated because, in a square grid, all variable paths will intersect all
clause paths. However, we can simulate the nonintersection of two paths using the crossover gadget
shown in Figure 8. The idea is to split the two variable paths Vi,−, Vi,+ into two classes of variable
paths, top and bottom, with nonintersection of the paths forcing alternation between top and
bottom classes. A variable starting with a top path corresponds to a false setting (darker in the
figure), and starting with a bottom path corresponds to a true setting (lighter in the figure). The
crossover gadget must work when the vertical clause path is either present (chosen to satisfy the
clause) or absent (having chosen a different of the three paths), resulting in four total cases.

We simulate obstacles between paths using many pairs of terminals at unit distance (black in
the figure). These obstacle pairs can be connected by a unit-length edge (as drawn in black) or by a
longer path (drawn lighter, as a replacement for the black path, though the black path is still drawn).
Such longer paths can only prevent choices for the variable/clause paths, so any nonintersecting set
of paths still solves the 3SAT instance. Furthermore, by connecting the obstacle pairs by the lighter
longer paths illustrated in the figure, in each of the four cases, we can turn any solution to the 3SAT
instance into a valid solution to Zig-Zag Numberlink (which in particular visits every square).2

2Our careful and deliberate placement and orientation of obstacle pairs to enable such “filling” in all cases is the
main novelty to our proof. Lynch’s crossover gadget has the same nonobstructed paths as our Figure 8a, but as his
proof allowed obstacles, lacked the complexity of obstacle pairs and the four cases.
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(a) Crossing (preventing) true, while still allowing false.

12

3 2

(b) Crossing (preventing) false, while still allowing true.

Figure 5: Crossing gadget, with paths drawn only between obstacle pairs. The highlight indicates
the unique added obstacle pair.

This crossover gadget necessitates nontrivial crossing gadgets, because the two variable paths in
the high-level picture (Figure 4) have been replaced by alternation between two classes of paths. Fig-
ure 5 illustrates two gadgets for crossing (preventing) the false and true settings, respectively. Each
of these gadgets adds just a single obstacle pair to the crossover gadget of Figure 8. These obstacles
suffice to block the clause path in the prevented variable setting, but are consistent with the solutions
in Figure 8 both with and without the clause path, so they still allow the other variable setting.

Finally, we can form the two-way branches on the left side v′i and the right side v′′i , and the
three-way branches at the top side c′j and the bottom side c′′j ), using the split gadget in Figure 6.
This gadget allows the incoming path on the top to exit at either of the two bottom ports, while still
covering all squares, provided the exit ports both have the same parity (color on the checkerboard).
A key property of the crossover and crossing gadgets (and the reason for the strange fifth column) is
that they have even numbers of rows and columns. As a result, when we build a grid of these gadgets,
the top entrance ports all have the same parity, as do all the left entrance ports. Therefore the split
gadgets can correctly connect to the ports on the left, right, top, and bottom sides of the grid.

Figure 7 illustrates why the NP-hardness proof for the restricted game [16] does not immediately
apply to Zig-Zag Numberlink. The illustrated gadget, from Fig. 7 of [16], consists of a 1-in-4
SAT clause connected to four wires. Figure 7a shows the intended solution, which has one wire in
the opposite state from the three other wires. But Figure 7b shows another possible solution in
Zig-Zag Numberlink, where the wires are all in the same state (or two in each state, depending
on the definition of state). Thus the reduction does not immediately apply to the zig-zag case. An
interesting question is whether the proof (which is rather different from ours) can be adapted to
Zig-Zag Numberlink by modifying the gadgets from [16].
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(a) Choice 1 (b) Choice 2

Figure 6: Split gadget.

(a) Intended solution. (b) Additional zig-zag solution.

Figure 7: The 1-in-4 SAT clause from [16] does not immediately work for Zig-Zag Numberlink.
Shaded regions represent obstacles (made by obstacle pairs).

4 Open Questions

There is still more fun to be had out of this game. Is there a polynomial solution to the problem
for more than one pair of terminals? Our reduction from 3SAT creates instances with a huge
number of terminals. Therefore we cannot exclude the possibility that, for any constant number of
terminals, the problem can be solved in polynomial time. If so, it would be especially interesting to
know whether the problem is fixed parameter tractable, i.e., solvable in f(k) · nO(1) time for some
function f . It might be that more sophisticated tools like multiterminal flow algorithms could help
answer these questions.
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(a) Crossover gadget with paths drawn only between
obstacle pairs.
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(b) False setting with clause path.
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(c) False setting without clause path.
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(d) True setting with clause path.
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(e) True setting without clause path.

Figure 8: Crossover gadget.
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