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(a) Our Method, 138 rpp, 3.14 sec (b) Equal time,
176 rpp, 3.11 sec

(c) Our method,
138 rpp, 3.14 sec

(d) Eq. quality,
5390 rpp, 130 sec

(e) No factoring,
138 rpp, 3.10 sec
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(f) Primary �lter
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Figure 1: (a) The CHESS scene, with defocus blur, area light direct and indirect illumination, rendered at 900�1024 with an average 138
atomic rays per pixel (rpp), in 3.14 sec on an NVIDIA Titan GPU. We compare to different methods in the insets. Readers are encouraged
to zoom into the PDF to examine the noise. The top row inset is a sharp in-focus region while the other two regions are defocus blurred; all
insets include noisy direct and indirect illumination. In (b) we compare to equal time strati�ed Monte Carlo (MC) sampling with 176 rpp; in
(c), Our method; and in (d), Equal quality MC with 5390 rpp is 40� slower. One of the key contributions of our method is factoring of texture
and irradiance, so that irradiance can be pre-�ltered before combining with texture. Without factoring, the defocus �lter cannot remove noise
for in-focus regions as shown in (e), top inset. In (f) and (g) top row, we show �lter size for texture and indirect irradiance. Black pixels
indicate that factoring cannot be used and irradiance cannot be pre-�ltered. In the bottom row we show number of primary rays and indirect
samples respectively. Our method uses separate sampling rates and �lters for primary and secondary effects which makes it more effective.

Abstract

Monte Carlo (MC) ray-tracing for photo-realistic rendering often
requires hours to render a single image due to the large sampling
rates needed for convergence. Previous methods have attempted to
�lter sparsely sampled MC renders but these methods have high
reconstruction overheads. Recent work has shown fast perfor-
mance for individual effects, like soft shadows and indirect illu-
mination, using axis-aligned �ltering. While some components of
light transport such as indirect or area illumination are smooth,
they are often multiplied by high-frequency components such as
texture, which prevents their sparse sampling and reconstruction.

We propose an approach to adaptively sample and �lter for si-
multaneously rendering primary (defocus blur) and secondary (soft
shadows and indirect illumination) distribution effects, based on a
multi-dimensional frequency analysis of the direct and indirect il-
lumination light �elds. We describe a novel approach of factoring
texture and irradiance in the presence of defocus blur, which al-
lows for pre-�ltering noisy irradiance when the texture is not noisy.
Our approach naturally allows for different sampling rates for pri-

mary and secondary effects, further reducing the overall ray count.
While the theory considers only Lambertian surfaces, we obtain
promising results for moderately glossy surfaces. We demonstrate
30� sampling rate reduction compared to equal quality noise-free
MC. Combined with a GPU implementation and low �ltering over-
head, we can render scenes with complex geometry and diffuse and
glossy BRDFs in a few seconds.

CR Categories: Computing Methodologies [Computer Graphics]:
Rendering�Ray Tracing

Keywords: sampling, �ltering, diffuse, global illumination

Links: DL PDF WEB VIDEO

1 Introduction

Monte Carlo distribution ray-tracing is an accurate way to render
multiple distribution effects such as depth-of-�eld, soft shadows
in direct illumination, and indirect (global) illumination. But the
convergence to a noise-free image is slow, often requiring over a
thousand rays per pixel. Fortunately, there is signi�cant coherence
in the color between pixels, making adaptive sampling and �ltering
an obvious solution to reducing the ray-tracing cost. However,
these existing methods are usually memory intensive and have high
reconstruction overheads, even though they reduce the number of
samples in ray-tracing by one to two orders of magnitude.

The recent method of sheared �ltering ([Egan et al. 2009;
Egan et al. 2011]) utilized Fourier-domain sparsity of motion-
blurred or visibility light �elds, to reduce sampling rate and �lter
in light-�eld space. To reduce the �ltering overhead, more recent
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work on axis-aligned1 �ltering ([Mehta et al. 2012; Mehta et al.
2013]) for soft shadows and indirect illumination proposes a
method for adaptive sampling and image-space �ltering that has
very low overhead and makes fast render-times possible. But these
methods are limited to rendering single effects rather than full
distribution ray-tracing with multiple effects, and extending them
to a higher-dimensional rendering domain is a challenge. Specif-
ically, coupling between the irradiance and texture components
of light transport (due to motion or defocus blur) hinders sparse
sampling and reconstruction in proportion to the bandwidth of each
individual component.

In this paper, we provide an axis-aligned method for image-
space �ltering that can handle a combination of different effects,
namely defocus blur (primary), soft shadows and indirect illumi-
nation (secondary). We do not consider motion blur in the main
paper since our GPU ray-tracer doesn’t support it, but we provide
a proof-of-concept description with results, in the Appendix. We
derive a multi-dimensional end-to-end frequency analysis that
handles a combination of effects. Our analysis differs from pre-
vious works in that it provides �ltering bandwidths separately for
both the noisy texture and illumination using a simple geometric
approach. We introduce factoring of the radiance integral to more
ef�ciently sample and �lter each component. Previous methods
either (i) �lter the full high-dimensional light �eld [Lehtinen et al.
2011; Lehtinen et al. 2012], resulting in large overhead, or (ii)
use expensive atomic computation [Belcour et al. 2013] for each
ray interaction to compute the overall bandwidth for the noisy
pixel color without factoring texture and irradiance. Our primary
contributions are:

Combined frequency analysis for primary and secondary
effects: Our main theoretical contibution is the geometric and
Fourier analysis of both direct and indirect illumination under
lens (defocus) blur for diffuse surfaces. We extend the �atland
2D Fourier analysis of [Egan et al. 2011; Mehta et al. 2013],
to the 3D light-�eld in a position-lens-light space for direct or
position-lens-angle space for indirect. We derive how the light
�eld is bandlimited due to integration over the lens, light, and
angle. Our approach is end-to-end unlike the atomic operations
of [Durand et al. 2005; Belcour et al. 2013]. This makes our
parameters easier to evaluate, without requiring complex frequency
analysis along light paths.

Factoring texture and irradiance: Our main practical con-
tribution is a method to approximate the integral of color (radiance)
at each pixel as a product of texture and irradiance integrals. In
the absence of defocus blur and spatial anti-aliasing, the primary
hit is a single location per-pixel, making factorization trivial, as
assumed by previous irradiance �ltering (e.g. irradiance caching)
methods. However, due to defocus blur, the texture and irradiance
are coupled. We propose to use the texture-irradiance factoring
approximation when the error is below a threshold. For example,
an image region with a high-frequency texture (Fig. 1(e) top row)
cannot be �ltered without factorization, since we do not want to
blur the texture. Hence, a large number of secondary rays would
previously need to be traced to reduce the noise in soft shadows
and indirect illumination.

Two-level adaptive sampling strategy: Our method is based
solely on ray-tracing for all rendering effects. Instead of naively
path tracing each pixel, we allocate rays to primary and secondary
effects in proportion to their frequency content while maintaining
physical correctness, as depicted in Fig.1(f,g) lower row. For
example, at an in-focus pixel with soft shadows we allocate a
single lens ray but multiple light shadow rays. At an out-of-focus
pixel with no soft shadows, we have an adequate number of
primary rays, and a single shadow ray per primary ray. Similarly,
we predict the sampling rate for indirect illumination taking

1Axis-aligned refers to the Fourier light-�eld rather than image-space,
although the image-space �lters as implemented are also axis-aligned.

into account both the local illumination frequency, and defocus.
Previous adaptive sampling methods like [Belcour et al. 2013]
only provide a single sampling rate at each pixel and hence are
inef�cient in reducing ray-tracing cost.

We have integrated our method into NVIDIA’s Optix ray-
tracer [Parker 2010] and implemented our reconstruction method
on the GPU. We achieve about 4� ray count reduction compared
to equal RMS error MC (quantitative) and about 30� compared
to equal visual quality ground truth MC (qualitative). Figure 12
emphasizes this point. Our method has a low reconstruction
overhead of under 200 ms, and can be easily combined with a GPU
ray-tracer. We demonstrate render times of 3-10 seconds2 for a
variety of scenes.

2 Previous Work

[Cook et al. 1984] and [Kajiya 1986] �rst introduced Monte Carlo
distribution ray and path tracing for evaluating pixel radiance
using the rendering equation. Building on the basic framework of
physically based rendering, we use adaptive sampling and �ltering
to ef�ciently produce physically-based renderings with depth of
�eld, and area light direct and indirect illumination.

Image Filtering and Noise-guided Reconstruction: Image
�ltering has been a popular approach to remove noise in images
generated by MC ray-tracing, because of its simplicity and
ef�ciency. Geometric information such as normals, textures, and
depths, can play an important role for predicting noise in rendered
images. Methods that use a denoising approach based on noise
estimation from geometric parameters include the use of the cross
bilateral �lter [Ritschel et al. 2009], the A-Trous wavelet transform
[Dammertz et al. 2010], adaptive wavelet rendering [Overbeck
et al. 2009] and the �ltering of stochastic buffers [Shirley et al.
2011]. Other examples are random parameter �ltering (RPF, [Sen
and Darabi 2012]) which has a high computation and storage cost,
[Li et al. 2012] that uses Steins unbiased risk estimator for sam-
pling and bandwidth selection for anisotropic �lters, and [Rouselle
et al. 2012] which uses non-local means �ltering and residual
errors to guide sampling density. [Kalantari and Sen 2013] give a
noise estimation metric to locally identify the amount of noise in
different parts of the image, and adaptively sample and �lter using
standard denoising techniques. Another novel approach is that of
[Sen et al. 2011] which uses compressed sensing. [Delbracio et al.
2014] use ray color histograms to guide �ltering. These methods
do not exploit the geometric and Fourier structure of the light
�eld and require either high sampling rates or high reconstruction
overheads. Our method is also different from 2D post-processing
solutions [Max and Lerner 1985; Potmesil and Chakravarty 1981]
that blur a 2 or 2.5D image with spatially-varying �lters according
to depth or motion, since we �lter an image obtained by accurate
ray and path tracing. Further, using a primary �lter given by the
circle of confusion or motion vector does not �lter noisy secondary
effects.

Light Field Analysis: These methods attempt to reconstruct
the full high-dimensional light �eld. Multi-dimensional adaptive
sampling and reconstruction [Hachisuka et al. 2008] improves
upon [Mitchell 1991], and uses sample contrast to guide adaptive
sampling, followed by anisotropic reconstruction of the light
�eld. [Lehtinen et al. 2011] and [Lehtinen et al. 2012] proposed
a reconstruction method for motion and defocus blur from sparse
sampling of the 3D/5D (spatial position, lens and time) light �eld
that uses velocity and depth information to reproject samples into
each pixel, but with a high memory and computation overhead.

Fourier-guided Adaptive Sampling and Filtering: We build on
recent approaches that have studied the frequency aspects of light

2We are slower than [Mehta et al. 2013] since we need more rays for
depth of �eld, and our images are at higher resolution.
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Figure 2: A simpli�ed �ow chart of the algorithm. In two sampling
(ray-tracing) passes, we adaptively sample the noisy per-pixel tex-
ture, irradiance and radiance. These are then �ltered and combined
to produce an accurate radiance value.

transport in static scenes, e.g. [Chai et al. 2000; Ramamoorthi and
Hanrahan 2001; Durand et al. 2005]. They presented an a-priori
frequency analysis to perform adaptive sampling and appropriate
reconstruction. [Egan et al. 2009; Egan et al. 2011] applied such
an analysis and sheared reconstruction to motion-blurred images
and soft shadows utilizing the space-time and space-light Fourier
spectra respectively. [Soler et al. 2009] proposed to adaptively
sample primary rays by predicting image bandwidth and per-pixel
variance of incoming light, to ef�ciently ray-trace and reconstruct
images with depth of �eld. They used a sampled representation of
the spectrum which is expensive and prone to noise. 5D covariance
tracing [Belcour et al. 2013] uses a covariance representation that
is compact and stable, addressing the full 5D (space-angle-time)
light �eld, and focuses on atomic operations to achieve generality.
We instead use an image-space axis-aligned �lter similar to [Mehta
et al. 2012; Mehta et al. 2013] combined with adaptive sampling
for both primary and secondary effects in a single framework.

Our method is simpler and faster than covariance tracing and
generalizes axis-aligned �ltering to combine primary and sec-
ondary effects. Moreover, our texture-irradiance factorization
improves on methods that only �lter the �nal pixel radiance,
without �ltering irradiance. Those methods are inef�cient for
in-focus regions. Methods that retain the full light �eld (individual
samples) such as [Lehtinen et al. 2011; Lehtinen et al. 2012; Sen
and Darabi 2012] can �lter the noisy irradiance separately but
have a high storage and reconstruction overhead. The concurrent
work of [Vaidyanathan et al. 2014] demonstrates a much faster,
interactive formulation of sheared �ltering for depth of �eld. They
separate the image into depth layers, and simplify the 4D �lter into
splatting and screen-space convolution steps.

3 Overview

We describe our algorithm in brief to motivate the theoretical
analysis and highlight the main contributions. A block diagram is
shown in Fig 2. We �rst sparsely path trace each pixel to identify
frequency bandwidths for each of the effects under consideration,
namely the defocus blur, area light direct illumination and indirect
illumination. Through this sparse sampling, we can predict the
local Fourier structure of the high-dimensional light �eld for both
direct and indirect illumination. Sections 4-6 derive this structure
and corresponding reconstruction bandwidths.

For both the direct and indirect components at a pixel, we
need to decide if approximating the radiance integral by factoring
into a product of texture and irradiance integrals is possible. Know-
ing the Fourier structure of the local light �eld gives us the required
sampling rates for each component, as derived in Section 7. In a
second path-tracing pass, we trace the minimum adequate number
of primary rays to sample world location and texture, and then for
each primary ray, trace an appropriate number of secondary rays
to compute the irradiance. Then, in the �rst �ltering pass, if the
factorization was determined valid, we �lter the factored direct and
indirect irradiance. In a second �ltering pass, we take the combined
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Figure 3: (a) Ray-tracing geometry for defocus blur. (b) Fourier
spectrum and axis-aligned �lter for defocus blur.

color at a pixel and apply the defocus �lter. This gives the �nal
noise free image. Implementation details are provided in Section 8.

Assumptions: The key assumption underlying our analysis
is that surfaces are diffuse. Lambertian BRDFs allow a sim-
ple end-to-end equation for multiple effects since there is no
angle-dependence. However, our practical method works well for
moderately glossy surfaces, and all of our results include glossy
direct and indirect illumination. Note that we always �lter samples
obtained by accurate ray or path tracing using the full BRDF. We
also assume Gaussian lens aperture transmission and area light
intensity, like previous methods based on frequency analysis. We
evaluate the direct illumination form factor for a surface at the
center of the light to simplify analysis and implementation, as in
previous work.

4 Defocus Blur

We now describe our Fourier light �eld analysis which guides
our bandwidth prediction. We �rst consider defocus blur only,
assuming diffuse surfaces and a thin lens model. Secondary
effects are discussed in the next two sections. Defocus blur is a
distribution effect produced by primary (eye) rays, traced from the
camera lens of �nite aperture out to the world focal plane.

Our derivation is in �atland, but the extension to the 3D
world is straightforward. The set up is shown in Fig 3(a). The
screen resolution is 2W , lens aperture is 2a and focal distance is
f (in world space; we do not explicitly need to involve the focal
length). Pixel coordinates x (pixel units) range in [�W; W ]; lens
coordinates u (dimensionless) range in [�1; 1]. A primary ray
(x; u) is traced from world location (au; 0) to (Sx=W; f), where
2S is the world space size (meters) of the focal plane. Consider a
parallel surface at depth z from the lens, parametrized by �, i.e. �
is the world x-coordinate along the object. Then, the intersection
with the object, of the primary ray (x; u) is

� = au +
z
f

�
Sx
W

� au
�

=
Sz
W f

�
x + auW

f � z
Sz

�
: (1)

Let us denote

r(x; u) =
aW
S

�
f

z(x; u)
� 1

�
(2)

as the width of the circle of confusion (in pixel units) for the ray
hitpoint (x; u). We also de�ne the magni�cation ‘p = (Sz=W f)
measured in meters per pixel, which transforms pixel-space x to
world space �. For a non-parallel surface, r(x; u) changes for each
ray, since the depth is not constant. Since the surface is pure diffuse,
the light �eld at the camera sensor is

L(x; u) = Lo(�) = Lo(‘p � (x + ru)): (3)



Here Lo(�) is the intensity re�ected by the receiver with argument
� in meters. The Fourier transform of the light �eld is

L̂(
x; 
u) =
1
‘p

�(
u � r
x)L̂o

�

x

‘p

�
: (4)

All frequencies on the spatial axis are in pixel�1 units. Each par-
allel receiver surface contributes a line in Fourier space (
x; 
u),
with slope given by its circle of confusion. Due to sloped or multi-
ple receivers, the spectrum is a double wedge, as shown in Fig 3(b).
The �nal color c at pixel x is

c(x) =
R

L(x; u)A(u) du; (5)

where A(u) is the lens aperture function. The Fourier transform of
the pixel-domain color is

ĉ(
x) =
R

L̂(
x; 
u)Â(�
u) d
u: (6)

The lens aperture function bandlimits L̂(
x; 
u), on the lens fre-
quency axis, so that we can apply a simple �lter to ĉ as shown in
Fig 3(b). The spatial bandwidth of the axis-aligned �lter is


d
x = min

�

max

pix ; 
max
u =rmin

	
: (7)

Here 
max
pix = 0:5 is the maximum allowed pixel bandlimit (corre-

sponding to 1 sample per pixel) and 
max
u is the bandlimit of A(u).

This becomes an image-space �lter implemented as a Gaussian with
std. deviation 
d

x. We use the superscript d to denote defocus �lter
width, since we have different �lters for different effects. We as-
sume the lens to be a Gaussian with a 2� width over u 2 [�1; 1],
so � = 1, implying a standard deviation of �̂ = 1 in Fourier space
and 
max

u = �̂ = 1. Since the primal-domain defocus �lter width
Rd

x (in pixels) is inversely proportial to the Fourier domain �lter
width, eqn. 7 implies:

Rd
x = max f2; rming : (8)

The minimum width of 2 pixels corresponds to the �lter weight
for the adjacent pixel going to zero. As intuition would suggest,
for diffuse surfaces, the defocus �lter width is simply the smallest
circle of confusion at a pixel. The actual bandlimit can be
somewhat smaller for glossy highlights, but the difference (from
using a �lter width derived for diffuse) is usually not noticeable.

Discussion: [Belcour et al. 2013] arrive at a similar result
for the lens matrix that tranforms the light �eld’s covariance
matrix. Although they are also able to handle glossy surfaces and
occlusions in the same framework, their approach is also more
complex and requires additional data structures for occlusion test-
ing. [Soler et al. 2009] also give a light �eld analysis for defocus
blur, using a series of atomic shears, and use the predicted shape
of the power spectrum to guide sampling and �ltering. However,
our approach is end-to-end unlike the approach of concatenating
atomic operators used in both [Belcour et al. 2013] and [Soler
et al. 2009]. Neither of these papers explicitly equates the slope
of the defocused light �eld to the local circles of confusion. The
concurrent work of [Vaidyanathan et al. 2014] does derive a very
similar frequency analysis for defocus blur, but does not explore
the connections with direct and indirect illumination that we study
next.

5 Direct Illumination with defocus blur

While texture samples at a pixel are functions of the random lens
position alone, incident radiance samples (direct and indirect) are
functions of two random parameters: the lens position and the
illumination direction. Hence, reconstruction can be more ef�cient
if the pixel irradiance can be pre-�ltered to remove noise due
to incoming direction. To avoid the overhead of storing the full
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Figure 4: (a) Path tracing geometry for defocus blur and soft
shadows (area light shown in yellow). (b) Power Spectrum of V,
jV̂ (
x; 
u; 
y)j2, for a simple �atland scene with non-parallel ge-
ometry, showing our double-cone model holds for this case.

light �eld (individual ray samples), we propose a novel method
to factor the integrated texture and irradiance. This allows us to
�lter ef�ciently and work with lower sampling rates than [Belcour
et al. 2013] who consider all effects but only derive a single �lter
width at each pixel. To motivate our �ltering scheme with factored
irradiance, we �rst study the illumination integral, and perform a
frequency analysis of the incident light �eld. Sections 5 and 6 treat
direct and indirect illumination respectively, in combination with
defocus blur.

Consider a �atland scene illuminated with an area light with
intensity function I(y) which is a Gaussian over a support
[�‘I ; ‘I ]. Similar to the lens function, the light bandlimit is

max

y = 1=‘I . As before, we sample the lens u, for each screen
(pixel) coordinate x, and each sample corresponds to a world
location �(x; u). We now trace secondary shadow rays from �
to y on the light, as depicted in Fig 4(a). For the differential
geometry at �, we parametrize the texture and illumination in
(x; u; y) coordinates, and de�ne k(x; u) = k(�) as the diffuse
texture, f(x; u; y) as the form factor (two cosine terms divided by
distance-squared) and V (x; u; y) as the light visibility for the ray
pair (x; u; y). We use the form factor evaluated at the center of the
light fc(x; u) = f(x; u; 0) (as in [Egan et al. 2011; Mehta et al.
2012]) because this simpli�es both analysis and implementation.
The pixel radiance due to direct illumination from the area light is
given by

Ldir(x) =
R

u k(x; u)
�R

y f(x; u; y)V (x; u; y)I(y) dy
�

A(u) du

=
R

u k(x; u) fc(x; u)
�R

y V (x; u; y)I(y) dy
�

A(u)du:
(9)

Factoring Texture and Irradiance: Equation 9 suggests that the
irradiance (the inner integral) is integrated with both the light and
the lens functions, while the texture term is integrated with the
lens function. To pre-�lter the irradiance term, we must factor
the radiance into a product of integrated texture and irradiance.
We �rst de�ne the expectation of a function b over a kernel A as
EA[b] �

R
b(u)A(u)du. Here A(�) is chosen to be the lens func-

tion satisfying
R

A(u)du = 1. Then we invoke the standard iden-
tity from statistics,

EA[b1 �b2] = EA[b1] �EA[b2]+EA[(b1 �EA[b1])(b2 �EA[b2])]:
(10)

The second term is negligibly small if either b1 or b2 is almost
constant, or if they are uncorrelated over the support of A(u).
Thus, when the texture k(x; u) and the incident light intensity
fc(x; u)

R
V (x; u; y)I(y) dy are either constant or uncorrelated

w.r.t. u, we can approximate equation 9 as

Ldir(x) �
R

k(x; u)A(u) du�
R

fc(x; u)A(u)
�R

V (x; u; y)I(y) dy
�

du:
(11)



We can rewrite this last approximation as

Ldir(x) � kdir(x) � Edir(x); (12)

where we have de�ned the integrated texture term as

kdir(x) =
R

k(x; u)A(u) du (13)

and the integrated irradiance term as

Edir(x) =
R

fc(x; u)A(u)
�R

V (x; u; y)I(y) dy
�
du: (14)

Almost all image-space global illumination methods ([Gershbein
et al. 1994; Ward and Heckbert 1992; Mehta et al. 2013], etc.)
factor out the texture term and work with the irradiance. However,
methods that deal with defocus blur cannot do this directly. If only
the pixel radiance is �ltered in image space (e.g. [Belcour et al.
2013], [Li et al. 2012]), in a region with high frequency texture
and small or no defocus, the shadow �lter cannot be used (else
the texture will be incorrectly blurred), and the light visibility
will have to be sampled densely to remove noise. Our proposed
factorization allows us to pre-�lter the irradiance term by the light
bandlimit separately, before multiplication by texture and applying
the defocus blur �lter. Without factoring, the pixel color frequency
is only determined by defocus blur magnitude, since the texture
term is not �ltered by the light. To derive the �lter and sampling
rate for the irradiance, we perform a frequency analysis of the
visibility V (x; u; y).

Frequency analysis of light visibility in (x; u; y) space:
We �rst perform a frequency analysis of the light visibility in
(x; u; y) space, considering a parallel plane of occluders. Let
g(�) be the one-dimensional visibility in the occluder plane. The
set up is as shown in Fig 4(a). Let � = d2=d1, where d1 and d2
are distances of receiver and occluder from the light respectively.
Then, the shadow light �eld on the receiver surface, following
[Egan et al. 2011] and [Mehta et al. 2012], is3 g(�� + (1 � �)y).
Hence, we have

V (x; u; y) = V (�; y) = g(�� + (1 � �)y)
= g(�‘p(x + ru) + (1 � �)y) � g(�x + �u + 
y): (15)

In the last step we have introduced the parameters �; �; 
 to sim-
plify the representation. Performing a 3D Fourier transform gives:

V̂ (
x; 
u; 
y) =
R R R

g(�x + �u + 
y)
exp(�j(x
x + y
y + u
u))dx du dy

=
1
�

ĝ
�


x

�

�
�

�

u �

�
�


x

�
�

�

y �



�


x

�
:

(16)

This is a line through the origin in 3D frequency space, normal to
the isosurface plane de�ned by eqn. 15. Due to the integration with
aperture and light in eqn. 14, this line is bandlimited (clipped) by
the planes j
uj � 
max

u and j
yj � 
max
y . The two slopes given

by the delta functions in eqn. 16 imply that the line is clipped along

x to j
xj � 
max

u =r and j
xj � ‘p
max
y =(��1 � 1). Let

s = ��1 � 1 = (d1=d2) � 1: (17)

s is analogous to r de�ned in eqn. 2. For non-parallel and multi-
ple receivers and occluders, the visibility spectrum becomes a ban-
dlimited double-cone in frequency space. As illustrated in Fig 4 (b)
with a �atland simulation, this is a good approximation for arbitrar-
ily oriented surfaces and area lights. The �lter width (in per-pixel

3In general there will also be a constant offset in the argument of g(:)
here, if the origins of the x and y coordinates are not aligned. However, the
constant offset does not affect the Fourier energy spectrum, so we ignore it.

units) that can be used to �lter Edir according to the light bandlimit
then becomes


s
x = min

�

max

pix ; ‘p
max
y =smin; 
max

u =rmin
	

(18)

Equivalently, the primal-domain �lter size in pixels is

Rs
x = max f2; ‘Ismin=‘p; rming : (19)

Filtering using factoring: In practice, we can use factoring
(eqn. 12) wherever the error4 jjLdir � kdir � Edirjj (obtained from
a �rst sparse sampling pass) is small enough. For the pixels where
the factorization is valid, we can �lter Edir separately, by the
shadow �lter 
s

x, then multiply by kdir and �lter the product by
the defocus �lter 
d

x. Pre-�ltering allows lower sampling rates for
the light visibility, thus saving on expensive ray-tracing. For pixels
where the factorization is not valid, we �lter the pixel radiance
Ldir(x) for defocus only. Usually these are pixels with a large
defocus width, and hence can gather radiance information from
many neighboring pixels, implying a lower sampling rate. Hence,
most pixels can work with low sampling rates which are derived in
Section 7.

In Fig 5(a) we show the pixel radiance Ldir from the �rst
sampling pass, and compare it to the integrated texture kdir in (b)
and the integrated irradiance Edir in (c). The thresholded error is
shown as a binary �ag in (d). Object silhouettes or regions with
high defocus blur cannot be factored, but those with soft shadows
on smooth textures can. About 80% of pixels are separable for this
scene, but the fraction is larger for indirect illumination, and other
scenes. This makes our method much more ef�cient since we can
pre-�lter noisy irradiance.

(a) Ldir (b) kdir (c) Edir (d) SepDir

Figure 5: (a) The direct radiance Ldir for the CHESS scene from the
�rst sampling pass (16 spp), (b) The factored texture kdir and (c)
the separated irradiance Edir. (d) The factorization error
jjLdir �kdir �Edirjj is below a threshold except at the pixels marked
black (shown smoothed with a median �lter).

Glossy Surfaces: Our �lter widths 
d
x and 
s

x are derived
assuming diffuse surfaces. Even though we do not handle glossy
surfaces explicitly in our theory, our approximations work well for
glossy direct and non-caustic indirect illumination, as demonstrated
in our renders, all of which have glossy surfaces. This is because
our �lter is axis-aligned, and can capture a lot of energy that leaks
beyond the double-wedge model. We also �lter an accurately
path traced illumination for both diffuse and glossy components.
To handle direct illumination on a glossy surface, suppose ê is
the primary ray (x; u), and r̂ is the direction from the hitpoint of
the primary ray to the light’s center, re�ected about the hitpoint
normal. Then the Phong BRDF gloss factor evaluated at the light
center is simply (�ê � r̂)m � p(x; u). We can separate p(x; u) out
into the texture term. Explicitly, k(x; u) in eqn. 13 becomes

k(x; u) = kd(x; u) + ks(x; u)p(x; u) (20)

where kd and ks are the diffuse and specular textures respectively.

4jj � jj is the standard euclidean distance between RGB colors.



6 Indirect Illumination

The total pixel radiance is the sum of the integrated direct and
indirect radiance, i.e. L(x) = Ldir(x) + Lind(x), and we treat
the two components independently. Many of the same arguments,
including factorization, that apply in the direct case, also apply to
indirect illumination.

We use the parametrization in [Mehta et al. 2013], where in-
cident radiance is a function of linearized direction v measured in
a plane parallel to the local receiver. The indirect radiance Lind
at pixel x is the integral of the texture k(x; u), the BRDF and
geometry term5 h(v) and incoming indirect radiance li(x; u; v)
re�ected from the nearest surface in direction v. We can also
factorize the texture and irradiance as follows:

Lind(x) =
R

k(x; u)
�R

h(v)li(x; u; v) dv
�

A(u)du

�
R

k(x; u)A(u) du �
R

A(u)
�R

h(v)li(x; u; v) dv
�

du
� kind(x) � Eind(x):

(21)

This is similar to the direct lighting equation, with the light
intensity I replaced by the transfer function h. If the factorization
error jjLind � kind � Eindjj is small, we use the factored product
kind � Eind. Factoring allows pre-�ltering the Eind term and
reducing the sampling rate required. If factoring is not possible,
the radiance Lind can still be blurred by the defocus �lter, and a
moderate sampling rate suf�ces.

Assuming diffuse re�ectors, the spectrum of the incident in-
direct radiance li is also similar to that of the light visibility V
from the previous section. Extending the result of [Mehta et al.
2013], individual re�ectors contribute lines in the Fourier space
with slope along the 
x � 
v plane given by the re�ector depth
z at (x; u; v). The slope along the 
x � 
u plane is given by the
circle of confusion r at (x; u). Similar to eqn. 18, the �lter width
for Eind is given by


i
x = min

�

max

pix ; ‘p
max
v =zmin; 
max

u =rmin
	

: (22)


max
v is the bandlimit of the low-pass transfer function h; the

numerical values for diffuse and glossy BRDFs can be found
in [Mehta et al. 2013]. The primal domain �lter size is

Ri
x = max f2; zmin=(‘p
max

v ); rming : (23)

Glossy Surfaces: The diffuse and glossy transfer functions h(v)
are different (we need not know their exact forms), and the v de-
pendence cannot be dropped to separate h from the Eind integral as
we did for f(x; u; y) in direct illumination. In other words, an ap-
proximation like eqn. 20 cannot be made for indirect illumination.
For the factorization kind � Eind to work for a surface with both
diffuse and glossy components, each of Lind; kind; Eind must be
evaluated and stored separately for the diffuse and glossy compo-
nents. In the �ltering pass, both diffuse and glossy Eind are �ltered
according to their own bandwidths given in equation 22 and then
combined with the appropriate kind.

7 Sampling Rates

Point sampling of the high-dimensional light �eld can cause alias-
ing if the sampling rate is not suf�cient, even if we subsequently
use the proper axis-aligned reconstruction �lter. The minimum
sampling rate is that which just prevents adjacent copies of spectra
from overlapping our baseband �lter. As in [Egan et al. 2009;

5The BRDF term is most generally a function of the world location also,
i.e. h(x; u; v). We assume that the surface visible in a small neighborhood
around a current pixel (for all u) is �at, and drop the x; u dependence.

Mehta et al. 2012; Mehta et al. 2013], we derive the minimum
distance between aliases of spectra, 
�

x; 
�
u; 
�

y; 
�
v , and multiply

these to obtain the per-pixel sampling rates. However, the major
difference is that we derive different sampling rates for both
primary and secondary rays. We allocate rays in proportion to the
frequency content of each effect, instead of using a �xed number
of secondary rays per primary ray at each pixel as has been done in
previous work.

In the �rst sampling pass, we trace a �xed number of rays
per pixel to estimate bandwidths and sampling rates for the next
pass. In our main (second) sampling pass, at each pixel, we �rst
send np primary rays from the lens, then for direct illumination
we trace a number of shadow rays for each of these np primary
rays so that the total number is ndir. For indirect illumination, for
each primary ray a certain number of indirect radiance samples
are obtained, so that the total number is nind. In addition, our
secondary sampling rates vary depending on whether we use the
exact radiance, or factored texture and irradiance. Superscripts ‘c’
(combined) and ‘f’ (factored) are used to denote these two different
secondary sampling rates respectively.

For determining the primary sampling rate, we need only
consider simple defocus blur (assuming diffuse surfaces). Our
axis-aligned �lter was described in Section 4. The minimum
primary sampling rate is obtained considering aliasing in 
x � 
u
space, as shown in Fig. 6(a). We have,

np = (
�
x)2(
�

u)2

= (
max
pix + 
d

x)2(1 + rmax
d
x)2:

(24)

Although [Soler et al. 2009] use power spectral energy and variance
to determine their sampling rate, their overall sampling density in
defocused regions looks similar to ours. However, their sampling
method is quite different as they obtain image and lens samples in
Fourier space.
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Figure 6: (a) Packing of aliases for defocus only, showing the spa-
tial and lens sampling rates 
�

x and 
�
u (b) Packing for aliases of

the light visibility V . The yellow and grey double wedges are the
projection on the 
x�
y and 
x�
u planes respectively. Aliases
not shown for clarity. The minimum sampling rates 
�

x; 
�
y and 
�

u
are analogous to those shown in (a).

Secondary sampling rate with factored texture and irradiance:
For area light direct illumination, the visibility in equation (7) must
be sampled suf�ciently to avoid aliasing in each of the (x; u; y) di-
mensions. At pixels with factored direct illumination, �ltering Edir
clips it to a spatial Fourier width of 
s

x. This case is illustrated
in Figure 6(b), with projections of the spectrum on two coordinate
planes instead of the full volumetric spectrum for clarity. The min-
imum separation for no aliasing along each axis follows similarly
from the 2D packing for defocus only; the per-pixel sampling rate



for V (x; u; y) (secondary shadow rays) is

nf
dir = (
�

x)2(
�
u)2(
�

y)2‘2
I

= (
max
pix + 
s

x)2(1 + rmax
s
x)2(1 + ‘Ismax
s

x=‘p)2

(25)

Similarly, for indirect illumination the indirect light �eld li in equa-
tion (12) must be sampled more to avoid aliasing in each of the
(x; u; v) dimensions. When factored irradiance is used, the spec-
trum is clipped to a bandlimit 
i

x. The sampling rate is then,

nf
ind = (
�

x)2(
�
u)2(
�

v)2

= (
max
pix + 
i

x)2(1 + rmax
i
x)2(
max

v + zmax
i
x=‘p)2

(26)

Secondary sampling rate without factoring: If the direct radi-
ance cannot be factored into texture and irradiance, only the defo-
cus �lter must be applied to the radiance. The light �eld spectrum
is then clipped to a bandlimit 
d

x. The direct illumination sampling
rate is then

nc
dir = (
max

pix + 
d
x)2(1 + rmax
d

x)2(1 + ‘Ismax
d
x=‘p)2 (27)

Finally, without factorization, the indirect illumination sampling
rate is

nc
ind = (
max

pix +
d
x)2(1+rmax
d

x)2(
max
v +zmax
d

x=‘p)2 (28)

Discussion: Observe from eqns. 7, 18 that 
s
x � 
d

x � 
max
pix . As

expected, if the pixel is in focus (i.e., either f = z or a = 0) the
number of primary rays per pixel is np = (2
max

pix )2 = 1 since
rmax = rmin = 0. Similarly, nc

dir = np if we have a point light
with ‘I = 0. This means we only take one visibility sample if
the light size shrinks to zero, verifying that our formulae work in
the limit. Further, observe that nf

dir � nc
dir, since the former uses

a smaller spatial bandlimit. This is expected, since the ability to
�lter the irradiance Edir allows for a lower secondary sampling
rate. Also note that at a pixel that uses factored irradiance, the
defocus is typically small, and then nf

dir � np since the secondary
sampling rate has an extra (
�

y)2 term in eqn. 25. Then we must
trace nf

dir=np � 1 secondary rays per primary ray6.

We now qualitatively discuss our practical sampling rates
shown in �g 8(e)-(g). First, in the region marked ‘A’, we have
a high defocus and depth variance, and hence we provide more
rays for all effects (i.e. np; ndir; nind are all large, but this type of
region covers only a small part of the image). In the region marked
‘B’, which is in-focus, we need few primary rays but many indirect
samples since it has nearby re�ectors. In ‘C’, the wall is defocused
but at a constant depth, so a few primary rays suf�ce, but more
direct and indirect samples are needed.

Convergence with increasing sampling rate: As in [Mehta
et al. 2012; Mehta et al. 2013] we can control our sampling
rates with a user-de�ned parameter �. To implement this, each
reconstruction bandwidth is simply scaled by � and the sampling
rates are then computed as above. For example, the primary
sampling rate as a function of � becomes:

np(�) = (
max
pix + 
d

x(�))2(1 + rmax
d
x(�))2; (29)

where 
d
x(�) = min

�

max

pix ; � � 
d
x
	

. Thus, we can smoothly con-
trol our speed and accuracy, and converge to ground truth with in-
creasing ray count. We demonstrate this quantitatively as an error-
vs-rpp plot in Fig. 12(e). Controlling sampling rate and �lter size

6However, a pixel with constant texture and high defocus can also allow
factorization. In this and some other cases, we may also have nf

dir < np,
but for physical correctness we trace one secondary ray per primary ray.

using � can also be used to speed-up our method by starting with
low � and updating the image with increasing �, and refreshing
if the camera or light is changed. We demonstrate this interactive
pre-view rendering system in our video.

8 Implementation

A �ow chart of our algorithm is shown in Figure 7. All quantities
are concisely de�ned in Table 1 which also points to the relevant
equations.

Sampling
Pass 1

Secondary
Filter Primary 

Filter

Sampling 
Pass 2

Figure 7: Flow chart of the algorithm for the direct component
only; the indirect component is handled similarly. Filled blocks are
variables stored in memory, empty blocks are operations. Refer to
table 1 for de�nitions of variables.

Quantity Description Equation

Ldir integrated color, direct component 9
kdir integrated texture, direct component 13
Edir integrated illumination, direct component 14
Lind integrated color, indirect component 21
kind integrated texture, indirect component 21
Eind integrated illumination, indirect component 21

SepDir Boolean, set if direct factorization error is small 30
SepInd Boolean, set if indirect factorization error is small 30

rmin; rmax min, max circle of confusion in pixels 2
smin; smax min, max soft shadow slopes 17
zmin; zmax min, max re�ector distance for indirect -


d
x depth-of-�eld �lter width 7


s
x direct illumination �lter width 16


i
x indirect illumination �lter width 19

np Num. primary (lens) rays 24
nc

dir Num. light shadow rays if SepDir = 0 27
nf

dir Num. light shadow rays if SepDir = 1 25
nc

ind Num. indirect samples if SepInd = 0 28
nf

ind Num. indirect samples if SepInd = 1 26

Table 1: A list of the variables we store in a per-pixel buffer. The
de�ning equation for each variable is indicated in the last column.

Our algorithm is implemented in multiple consecutive pixel shader
passes in NVIDIA’s Optix ray-tracer. The source code will be made
available online upon publication.

1. Sampling pass 1: We �rst trace 16 paths per pixel into the
scene. A single path is one primary lens ray, one secondary
shadow ray, and a one-bounce indirect sample (separate for
diffuse and glossy). We draw lens samples, light samples (for
direct) and hemisphere samples (for indirect) from a 4 � 4
strati�cation each, and match the samples with random per-
mutations [Shirley and Morley 2003]. At each pixel we accu-
mulate the colors Ldir; kdir; Edir; Lind; kind; Eind. The direct
parameters smin; smax, indirect parameters zmin; zmax and
defocus parameters cmin; cmax, and the lens-averaged world
location, projected area Ap, and normal are computed. From
these we compute the �lter widths 
r

x; 
s
x; 
i

x and set �ags:

SepDir = jjLdir � kdir � Edirjj < 0:01
SepInd = jjLind � kind � Eindjj < 0:01 (30)



2. Sampling pass 2: The primary and secondary sampling rates
np; nf

dir; nc
dir; nf

ind and nc
ind are as discussed in Section 7. We

run a 3�3 max-�lter on the ray counts, and a median �lter on
the factorization �ags, to reduce noise and artifacts. Next,
for pixels with SepDir = 1, we trace np primary rays, and
from each primary hit-point trace nf

dir=np shadow rays when
SepDir = 1 and nc

dir=np shadow rays otherwise. Samples
are fully strati�ed7 over each dimension (lens, light, hemi-
sphere) and matched by random permutation as in the �rst
pass. A similar sampling scheme applies for indirect illumi-
nation. Instead of importance sampling which gives noisier
estimates of sampling rates and �lter sizes, we apply explicit
Gaussian weights to lens and light samples. This sampling
pass updates the noisy color buffers, reducing the noise so
that it can be removed by �ltering.

3. Irradiance Filtering: In this pass, only the direct and indirect
illumination Edir and Eind are �ltered. We �lter using world
space distances and �lter width 
s

x and 
i
x. Lens-averaged

world space locations � and normals are used since there is no
single world space location per-pixel due to defocus. Explic-
itly, the weight we apply to the direct irradiance of a neigh-
boring pixel j for a central pixel i is

wi(j) = exp
�

�16jj�(i) � �(j)jj2 � (
s
x(i)=‘p(i))2	

(31)
Note that the projected pixel length ‘p converts 
s

x into me-
ters. For adjacent pixels i and j, jj�(i) � �(j)jj � ‘p(i); if

s

x = 0:5 then wi(j) = exp(�4). Hence, the constant 16 is
chosen so that sharp shadow edges are not blurred. We do not
�lter between pixels with normals differing by more than 10�.

4. Defocus Filtering: Finally, we choose between the exact ra-
diance and factored product of texture and �ltered irradiance.
The direct and indirect components are added, as:

L(x) = SepDir � (kdir � Edir) + SepDir � (Ldir)

+ SepInd � (kind � Eind) + SepInd � (Lind)
(32)

The �nal pass �lters the total pixel radiance L(x) using a
screen-space gaussian �lter of width 
d

x to compute the �nal
color; the weights are analogous to equation 31,

wi(j) = exp
n

�16(i � j)2 � (
d
x(i))2

o
: (33)

In both �ltering passes, at current pixel i, a neighboring pixel
j is rejected if wj(i) < 0:01, i.e. if i does not fall in the �lter
radius of j. This mitigates errors due to noisy estimation of
�lter radii, and prevents bleeding of sharp regions into blurry
regions.

9 Results

We show results of distributed rendering with defocus blur, area
light direct and one-bounce indirect illumination on �ve scenes with
high-frequency textures and both diffuse and glossy surfaces. The
accompanying video shows animations and screen captures with
a moving light source and viewpoint, and examples of dynamic
geometry. Our images are rendered on an Intel Xeon, 2.26GHz,
2 core desktop with a single Nvidia Titan GPU. Each frame is
rendered independently, without any precomputation (except
possibly the raytracer BVH). We report the total individual rays
per pixel instead of the more common samples per pixel. In vanilla
MC, a single ‘sample’ is 1 primary ray, 1 direct sample (1 shadow
ray) and 1 one-bounce indirect sample (2 rays), i.e. a total of 4 rays.

7This requires that we round up np to p2 and ndir to p2s2 where p; s are
integers. We did not use low-discrepancy sampling based on (0,2) sequences
since it requires rounding to a power of two, while other sequences caused
some artifacts.

Our method is accurate in a range of different scenarios,
with consistent reductions in sample counts over basic path tracing.
Figure 1 shows the CHESS scene (21K triangles), with mid-depth
focus. Our image (a,c) is noise-free with 138 average rays per
pixel (rpp) in only 3.14 sec. Equal visual quality ground truth
MC (d) requires 5390 rpp and 40� more time. Careful inspection
reveals some noise even with 5390 rpp. Since our overhead is
minimal, equal time MC (b) is only 176 rpp, and is very noisy
due to the high dimensionality of the light �eld. We also compare
to (e), obtained by simply �ltering the radiance without factoring
texture and irradiance. Noise from secondary effects is retained
in the in-focus region in the top inset. Figure 8 shows similar
results for the STILL LIFE scene with complex geometry and
128K triangles. Our method with only 178 rpp is perceptually
comparable to strati�ed MC with 4620 rpp. Two more scenes,
SIBENIK CATHEDRAL in Fig. 9 and TOASTERS in Fig. 11, with
comparisons are discussed below. We also include ground truth
insets, obtained at about 15000 rpp, in these �gures. Figure 12,
the ROOM scene, demonstrates that our method can produce fast
results for scenes with complex light paths.

9.1 Timings

Scene Tris rpp Sample Filter Total Over-
(sec) (sec) (sec) head

CHESS 21K 138 2.97 0.15 3.14 5.4%
STILL LIFE 128K 178 7.26 0.12 7.40 2.7%
SIBENIK 75K 192 6.10 0.11 6.23 3.2%
TOASTERS 2.5K 125 3.43 0.16 3.61 5.5%
ROOM 100K 181 8.08 0.15 8.25 2.4%

Table 2: Render times for all scenes at 1024�1024. An extra over-
head of 0.02 sec (20 ms) is incurred for determining �lter sizes and
sampling rates - this is not shown in the table above, but is included
as part of total and overhead in the last two columns. Our overall
render times are under 10 seconds, and the �ltering overhead is
very small compared to the ray-tracing time.

As demonstrated in Fig. 10, to obtain the same visual quality and
noise level as our method, MC path-tracing requires about 30�
more rays, so we get a corresponding speed-up. In Table 2, we show
timings for the sampling and �ltering parts of our algorithm on our
scenes, all rendered at 1024�1024. We obtain most of the bene�ts
of axis-aligned �ltering, as in [Mehta et al. 2012; Mehta et al. 2013],
even though our algorithm is much more complex (with separate
direct and indirect illumination, as well as separate radiance, irradi-
ance and texture buffers). The total overhead in a frame is between
110 and 160 ms, which is small compared to the cost of OptiX path
tracing (between 3 and 9 seconds), and results in only a marginal
decrease in the performance of the real-time raytracer. Our cur-
rent �lter implementation uses only Optix; preliminary tests show
a speed-up of over 4� on CUDA using image tiling. Although our
overhead is currently about 5%, strati�ed MC still manages about
20% more rays (as seen in all our scenes which include equal-time
rpp) in the same time, since our method produces an unbalanced
GPU load. Our �lter operates only in image-space and therefore has
limited memory requirements (about 150 MB due to storing various
buffers). Note that we are limited only by the speed of the raytracer,
and using further GPU raytracing accelerations would provide fur-
ther speedups. This is one of the �rst demonstrations of distributed
rendering that runs in seconds and not minutes of time, based on
principled Monte Carlo sampling. Alternative methods, discussed
next, add overheads of 10 sec to 1 min.

9.2 Quantitative Accuracy

We evaluated the accuracy of our method quantitatively; in
Fig. 12(e) we show average per-pixel RMS error vs average number
of rays for the ROOM scene. The error of our method (blue curve)



(a) Our method, 178 rpp, 7.40 sec (b) Equal time,
220 rpp, 7.4 sec

(c) Our method,
178 rpp, 7.4 sec

(d) Eq. quality,
4620 rpp, 4.5 min

Rx in pixelsd

primary rays (np)

A C

B

A C

B

(e) Primary rpp
and �lter

Rx in pixelss

shadow rays (ndir)

A C

B

A C

B

(f) Direct rpp
and �lter

1

20

1

64
Rx in pixelsi

indirect rays (nind)

A C

B

A C

B

(g) Indirect spp
and �lter

Figure 8: The STILL LIFE scene, with defocus blur, area light direct and indirect illumination, rendered in 7.40 sec with an average 178 rays
per pixel (rpp). The insets compare (b) equal time strati�ed MC, (c) our method, and (d) equal quality strati�ed MC with 4620 rpp (275 sec).
In (e)-(g), we show heatmaps for our three �lter widths and sampling rates, namely for defocus, and direct and indirect illumination. A more
detailed discussion is provided near the end of Sec. 7.

(a) Our method, 192 rpp, 6.23 sec (b) Equal time,
229 rpp, 6.3 sec

(c) Our Method,
192 rpp, 6.2 sec

(d) Eq. quality,
5400 rpp, 3.5 min

(e) Gr. Truth,
16400 rpp

(f) SURE,
200 rpp, 4 min

(g) AMLD,
200 rpp, 4 min

Figure 9: (a) The SIBENIK CATHEDRAL scene, with area light direct and indirect illumination, and foreground defocus, with an average 192
rays per pixel (rpp) requires 6.23 sec; and insets showing (b) equal time strati�ed MC with 229 rpp, (c) Our method, (d) Equal quality with
5400 rpp and (e) Ground truth with 16400 rpp. We also compare to (f) SURE, with 200 rpp rendered in 4 min and (g) AMLD with 200 rpp in
4 min.

is signi�cantly below strati�ed Monte Carlo at all sample counts,
and for the same error we require about 4� less rays. As we in-
crease the number of rays (higher �, eqn. 29), we do converge to
ground truth and error decreases. This is in contrast to most previ-
ous solutions for �ltering MC images which do not provide a simple
solution to converge with increasing ray count. Since our method
replaces some of the noise with some bias, equal perceptual error is
achieved at over 30� fewer ray counts, as illustrated in Fig. 10.

9.3 Comparisons

We have already discussed comparison to brute-force equal time
and equal visual quality MC. In Figs. 9(f,g) and 11(f,g), we
include comparison insets to two alternative recent approaches to
MC denoising. Insets of the other methods use a similar average
number of rays.

We compare to SURE, [Li et al. 2012], since for the same
quality, they are faster than other recent approaches such as [Sen
and Darabi 2012; Rousselle et al. 2011], etc. The comparison

MC, 3500 rpp MC, 5220 rpp MC, 7000 rppOur, 180 rpp

Figure 10: We compare strati�ed MC and our method with increas-
ing sample count for an inset from the ROOM scene (Fig. 12). Strat-
i�ed MC visually matches our method for about 5220 rpp. At 180
rpp, our method is very slightly over-blurred, but MC at 5220 rpp
shows more noise (zoom in) in comparison.

insets show that SURE slightly over-blurs both in-focus and
out-of-focus regions if the original image is very noisy. The
authors’ implementation with PBRT requires around 4 min, with
a �ltering overhead of 1 min due to its multiple �ltering passes.
It also requires a slightly higher sampling rate for the same
quality. Adaptive Multi-Level Denoising (AMLD, [Kalantari and



(a) Our method, 125 rpp, 3.61 sec (b) Equal time,
147 rpp, 3.7 sec

(c) Our Method,
130 rpp, 3.6 sec

(d) Eq. quality,
4620 rpp, 3 min

(e) Gr. Truth
14800 rpp

(f) SURE,
150 rpp, 2.5 min

(g) AMLD,
128 rpp, 2 min

Figure 11: (a) The TOASTERS scene, with area light direct and indirect illumination, and mid-depth focus, rendered with an average 125 rays
per pixel in total 3.61 sec; Insets showing (b) equal time strati�ed MC with 147 rpp, (c) Our method, (d) Equal quality with 4620 rpp, (e)
Ground Truth with 14800 rpp; and comparisons to (f) SURE, 128 rpp, 2.5 min and (g) AMLD, 128 rpp, 2 min.

(a) Our method, 181 rpp, 8.25 sec (b) Equal time,
219 rpp, 8.1 sec

(c) Our method,
181 rpp, 8.2 sec

(d) Eq. quality,
5220 rpp, 5 min

(e) No factoring,
181 rpp, 8.1 sec
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Figure 12: (a) The ROOM scene, with area light direct and indirect illumination, and foreground defocus, rendered with an average 181 rays
per pixel (rpp) in total 8.25 sec (b) Insets showing equal time strati�ed MC with 219 rpp, (c) Our method, (d) Equal quality MC with 5220
rpp (e) without factoring texture and irradiance, noise in in-focus regions is not �ltered. In (f) we show RMS error relative to ground truth,
for our method and strati�ed MC. Our method requires 4� fewer rays than strati�ed MC for the same RMS error.

Sen 2013]) demonstrated faster results using PBRT for adaptive
sampling and BM3D [Dabov et al. 2007] for denoising. We used
the authors’ code for producing the images. AMLD produces
results of nearly the same quality as ours. There is some under-blur
in the TOASTERS and over-blur in SIBENIK; however in some
regions it can also perform better. Their overhead is still around 20
seconds (total time 3 min), making our method much faster. We
do not compare to Covariance tracing [Belcour et al. 2013] since
the method has high overhead (reported as 2.5 min, total time 25
min on CPU) and implementation is complex.

10 Limitations

Direct and indirect illumination re�ected from glossy surfaces can-
not be treated with a simple approach like ours, and more complex
analysis is required. Our diffuse bandwidths can result in some
over-blurring of specular highlights. Like most image-space �lter-
ing methods, we need to allocate a lot of samples to pixels where
out-of-focus and in-focus objects overlap, since such pixels (gener-
ally few in number) cannot be �ltered without blurring the in-focus
object. Our approach also requires each light source to be handled
separately, so scenes with many lights are an issue. Our sampling

rates and �lter sizes based on frequency analysis may not always
be suf�cient to eliminate noise completely at high-variance pixels
(Fig. 9c lower inset). Since frequency analysis is only effective on
locally smooth surfaces, high-frequency bump or normal mapping
cannot be handled. Spatial anti-aliasing cannot be done directly
because our factorization requires that only one image sample per
pixel be taken. But it is easy to do indirectly, for example, for 4�
AA, render the image at 4� resolution, with 
max

pix = 0:25 (which
requires fewer rays) and then downsample. An example of this is
shown for the SIBENIK scene in the accompanying video.

11 Conclusion and Future Work

In this paper we demonstrated a method to adaptively reconstruct
a Monte Carlo ray-traced image. Most previous methods based
on frequency analysis handle one effect at a time; our method can
reconstruct images with depth of �eld, area light direct and indirect
illumination. Our novel factorization scheme allows pre-�ltering
noisy irradiance before multiplication with texture. We also intro-
duced a new sampling strategy wherein the number of primary and
secondary rays traced can be controlled independently, allowing an
overall lower sampling rate. By analyzing the Fourier spectra of



the direct and indirect illumination light �elds, we derived image
space bandlimits for both the radiance and irradiance. Our render
times are around 5 seconds, and our overhead is more than 50�
lower than state-of-the-art.

It could also be possible to combine our approach with a
many-lights framework [Walter et al. 2006] to handle more general
lighting environments. Finally, it would also be interesting to see
if the approach can be extended for noisy caustics from highly
specular surfaces.
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A Appendix: Motion Blur

We now describe how the factored axis-aligned �ltering and
two-level adaptive sampling framework can be used for rendering
motion blur with direct and indirect illumination. We assume no
defocus blur; the combined analysis is left for future work.

Factoring: The equations for computing factored texture
and irradiance are similar to eqn. 12. Lens coordinate u is replaced
by time t , and the lens function is replaced by the shutter function.
Instead of simply using the factoring error, for motion blur,
factoring is enforced at all pixels with a single primary hit velocity.
Pixels with two or more visible surfaces with different velocities
are not factorizable.

Filtering: We follow the Fourier analysis for texture and ir-
radiance under motion blur in [Egan et al. 2009]. At a given pixel,
assume there is a single surface moving with image-space speed
vp > 0. The texture �lter width is


 m
x;p = min

�

 max

pix ; 
 max
t =vp

	
(34)

The superscript ‘m’ denotes motion blur. The extra subscript ‘p’
indicates that this is a primary texture �lter width. 
 max

t is the
shutter bandwidth, inversely related to shutter open time. Similarly,
if a static surface receives a shadow moving with image-space speed
vs > 0, then the irradiance (Edir) �lter width is


 m
x;s = min

�

 max

pix ; 
 max
t =vs

	
(35)

The subscript ‘s’ indicates that this is a secondary, or irradiance
�lter width. These equations are analogous to eqn. 7 for de-
focus blur. Note that these �lters are 1-D Gaussians in image
space, oriented in the direction of the velocity v , unlike the 2-D
symmetric Gaussian defocus �lter. The irradiance is also �ltered
according to the area-light �lter width given in eqn. 18. For indirect
illumination, we only apply the standard irradiance �lter based on
minimum re�ector depth; this is found to �lter out noise due to
re�ector motion with an adequate sampling rate. As stated before,
factoring and �ltering cannot be used at a pixel if there are two or
more surfaces with different velocities. We apply a small 3 � 3
pixel-wide �lter to the radiance to reduce noise at such pixels.
Recall that for defocus blur, the irradiance was pre-�ltered and
�ltered again by the defocus �lter after combining with texture.
For motion blur, the motion blur �lters are applied independently
to texture and irradiance, since a moving surface may receive
shadows that are not motion-blurred.

Sampling: In the �rst pass, we trace 9 paths per pixel.
Since we only �lter motion-blurred texture at a pixel with a single
moving surface, the number of primary rays (second pass) is
similar to eqn. 24:

np = (
 max
pix + 
 t

x)2(1 + v
 t
x)2 (36)

This equation is used only at pixels with a single moving visible
surface and/or a single moving shadow. At pixels with more
than one velocity for the primary hit or the shadow, we enforce a
large constant primary sampling rate (64 rays), and apply a small

3 � 3 pixel-wide �lter. The number of secondary shadow rays is
similar to eqn. 25. The sampling rate for indirect can be computed
similar to eqn. 26, but we found that the (
 �

t )2 term can be ignored.

Results: We implemented our algorithm for motion blur
with soft shadows and indirect illumination on Intel’s CPU-parallel
Embree ray-tracer (since the Optix ray-tracer does not support
motion-blur ray-tracing). In Fig. 13, we show a cornell box scene
with textures and moving objects. The insets (c, d, e), from top to
bottom, show a moving teapot, shadow of the moving teapot on a
moving sphere, and shadow of a static sphere on a moving textured
plane. We are able to �lter noise from all kinds of motion blur
effects while reducing ray-count 23� and rendering time by 14�
compared to equal-quality strati�ed MC. In Fig. 13 (b) we show
heatmaps of the primary and indirect sampling rate, and in (f) we
show the texture �lter weights used by speci�c pixels in the insets,
to show how they �lter using neighboring pixel values. These
�lters are aligned in the motion direction, unlike the isotropic
defocus �lter.

(a) Our method, 155 rpp, 15.0 sec
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Figure 13: A Cornell Box scene, with motion blur and area light
direct and indirect illumination, rendered at 1024 � 1024 with an
average 155 rays per pixel (rpp) in total 15.0 sec. The insets com-
pare (c) equal time strati�ed MC with 260 rpp (d) our method, and
(e) equal quality strati�ed MC with 3660 rpp (198 sec). In (b) we
show the per-pixel primary and indirect sampling rates; (f) shows
the �lter weights used by certain pixels for their neighboring pixels.


