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A search is performed for a massive new vector-like quark T, with charge 2
3 , that is pair produced together

with its antiparticle in proton–proton collisions. The data were collected by the CMS experiment at the
Large Hadron Collider in 2012 at

√
s = 8 TeV and correspond to an integrated luminosity of 19.5 fb−1.

The T quark is assumed to decay into three different final states, bW, tZ, and tH. The search is carried
out using events with at least one isolated lepton. No deviations from standard model expectations are
observed, and lower limits are set on the T quark mass at 95% confidence level. The lower limit lies
between 687 and 782 GeV for all possible values of the branching fractions into the three different
final states assuming strong production. These limits are the most stringent constraints to date on the
existence of such a quark.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The discovery of a Higgs boson with a mass close to 125 GeV,
with properties consistent with those of a standard model (SM)
Higgs particle [1–3], suggests the need for a mechanism to sta-
bilize the mass of this particle. Loop corrections to the mass of
a scalar particle diverge quadratically with the cutoff scale of the
calculation. The dominant contributions arise from loops that in-
volve top quarks, W bosons, and Higgs bosons. If the SM applies to
energies significantly above the electroweak scale, there must be
other new particles that give rise to loop corrections that cancel
these contributions. Little Higgs models [4,5], for example, predict
a quark “T”, a partner to the top quark, which would cancel the
contributions of the top-quark loops to the Higgs-boson mass. This
T quark must have a mass at the TeV scale if it is to effectively
fulfill this role. Here we assume that the T quark is vector-like,
i.e. that it has only vector couplings with the W and Z bosons,
thereby evading the many constraints placed by precision elec-
troweak measurements [6] on extensions to the SM that propose a
fourth generation of quarks and leptons.

We assume that the T quark is produced together with its an-
tiquark in proton–proton (pp) collisions through the strong inter-
action. Thus its production cross section can be calculated using
perturbative quantum chromodynamics. We use the approximate
next-to-next-to-leading order (NNLO) calculation implemented in
hathor [7], which gives results varying from 570 fb to 0.05 fb for

� E-mail address: cms-publication-committee-chair@cern.ch.

T-quark masses between 500 GeV and 1500 GeV. A recent exact
NNLO calculation [8] gives consistent results. The T quark can de-
cay into three different final states: bW, tZ, or tH. At low T-quark
masses, the tZ and tH modes are kinematically suppressed. If the T
quark is assumed to be an electroweak singlet, the branching frac-
tions should be approximately 50% into bW and 25% each into tZ
and tH when using the Goldstone Equivalence assumption [9]. We
will call these the nominal branching fractions.

We search for a T-quark signal without making any specific as-
sumptions on the branching fractions. This is the first search that
considers all three final states. Previous searches have considered
a single final state or two final states. The Compact Muon Solenoid
(CMS) Collaboration excluded T quarks that decay 100% into tZ for
masses below 625 GeV [10]. T quarks that decay 100% into bW
were excluded for masses below 570 GeV [11,12] and for masses
below 656 GeV [13] by the CMS and ATLAS Collaborations, respec-
tively.

All three decay channels produce final states with b quarks and
W bosons. Here, we consider final states in which at least one W
boson decays leptonically.

2. The CMS detector

The characteristic feature of the CMS detector is a supercon-
ducting solenoid, 6 m in diameter and 13 m in length, which
provides an axial magnetic field of 3.8 T. CMS uses a right-handed
Cartesian coordinate system with its origin at the center of the
detector. The z axis coincides with the axis of symmetry of the

http://dx.doi.org/10.1016/j.physletb.2014.01.006
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detector, and is oriented in the counterclockwise proton beam di-
rection. The x axis points towards the center of the Large Hadron
Collider (LHC) ring. The polar angle θ is defined with respect to
the positive z axis and φ is the corresponding azimuthal angle.
Pseudorapidity is defined as η = − ln[tan(θ/2)].

Several particle detection systems are located within the bore of
the solenoid. A multi-layered silicon pixel and strip tracker cover-
ing the pseudorapidity region |η| < 2.5 measure the trajectories of
charged particles. An electromagnetic calorimeter (ECAL) covering
|η| < 3.0 made of lead tungstate crystals, with a lead scintillator
preshower detector covering 1.65 < |η| < 2.6, measures electrons
and photons. A hadron calorimeter made of brass and scintillators
covering |η| < 3.0 measures jets. Muons are measured with gas-
ionization detectors covering |η| < 2.4 embedded in the steel flux
return yoke of the solenoid, and with the pixel and strip trackers.
The CMS detector is nearly hermetic, enabling momentum imbal-
ance measurements in the plane transverse to the beam directions.
A two-level trigger system selects the most interesting pp collision
events for use in physics analyses. The Level-1 system uses custom
hardware processors to select events in less than 4 μs, using infor-
mation from the calorimeters and muon detectors. The high-level
trigger processor farm further reduces the event rate to a few hun-
dred Hz. A detailed description of the CMS detector can be found
in Ref. [14].

3. Event samples

The analysis is based on data recorded by the CMS experi-
ment in pp collisions at

√
s = 8 TeV during the 2012 LHC run

and corresponding to an integrated luminosity of 19.5 fb−1. The
inclusive muon sample is defined by the requirement to have an
isolated muon candidate in the event with the transverse momen-
tum pT > 24 GeV, as identified online by the trigger system. In
the inclusive electron sample, an isolated electron candidate in
the event with pT > 27 GeV is required at the trigger level. The
multilepton sample consists of events with two or more isolated
electron and/or muon candidates. At the trigger level, one lepton
candidate must have pT > 17 GeV and the other pT > 8 GeV. The
data are filtered to remove spurious events from noise or beam
backgrounds by requiring a primary interaction vertex, and to re-
move data collected at times when the detector was not operating
optimally.

The signal efficiencies and background contributions are esti-
mated using simulated event samples. The pp → TT̄ process is
simulated using version 5.1.1 of the MadGraph [15] event genera-
tor with up to two additional hard partons. For every T-quark mass
between 500 and 1500 GeV, in 100 GeV increments, six different
samples each with one of the possible final states (bWbW, bWtH,
bWtZ, tHtH, tHtZ, and tZtZ) are generated. All possible combina-
tions of branching fractions can be simulated by combining these
samples with the appropriate weights. The Higgs boson decays are
simulated assuming SM branching fractions for a mass of 125 GeV.

Events from SM processes that give rise to backgrounds are
generated using MadGraph (W + jets, Z + jets, tt̄W, and tt̄Z pro-
duction), powheg version 1 [16–18] (tt̄ and t production), and
pythia version 6.424 [19] (WW, WZ, ZZ, and tt̄H production). For
W + jets and Z + jets production, MadGraph generates samples
with up to four partons. These samples are merged using the MLM
scheme with kT jets [20,21]. For powheg the CTEQ6M parton dis-
tribution functions (PDFs) are used and for all other generators the
CTEQ6L1 [22] PDFs are used. Hadronization and parton showering
are simulated using pythia for all samples, and the CMS detector
response is simulated using Geant4 [23]. Minimum bias interac-
tions, generated using pythia, are superimposed on the simulated
events to model the effect of additional pp collisions within a

single bunch crossing (pileup). The simulated interaction multiplic-
ities are made to match the data, given the observed luminosity
profile. The average number of simultaneous collisions per bunch
crossing in the data sample is 21. The normalization of the W+ jets
sample is determined directly from the data, and all other sam-
ples are normalized to the next-to-leading-order prediction of their
cross sections as computed with mcfm [24].

4. Event reconstruction

The event vertex of the hard scatter, “primary vertex”, is iden-
tified as the reconstructed vertex with the largest

∑
p2

T of its as-
sociated tracks. Data and simulated samples are reconstructed by
a particle-flow algorithm [25], which reconstructs all visible parti-
cles in the event originating from the primary interaction. Charged
particles identified as coming from pileup interactions are not con-
sidered.

Muon candidates [26] are reconstructed from track segments
detected in the muon chambers combined with matching hits in
the silicon tracker. Electron candidates [27,28] are reconstructed as
clusters of energy deposits in the ECAL that are consistent with
a track in the silicon tracker. Electron candidates consistent with
arising from a photon conversion are rejected. An isolation variable
is defined as the ratio of the sum of pT of all additional particles
reconstructed in an isolation cone to the pT of the lepton can-
didate. The cone radius is �R = √

(�φ)2 + (�η)2 = 0.4 around
muon candidates and �R = 0.3 around electron candidates. The
sum of pT in the isolation cone is corrected, on an event-by-event
basis, for the remaining contributions from other interactions in
the same beam crossing. A muon is considered isolated if the
isolation variable is below 0.12. For electrons the corresponding
requirement is 0.10.

All reconstructed particles except isolated leptons are clustered
into jets using the anti-kT jet clustering algorithm [29] with a
distance parameter of 0.5, as implemented in fastjet 3.0 [30].
Energy response, trigger and reconstruction efficiencies for simu-
lated event samples are corrected using scale factors determined
from data to reproduce the performance of the CMS detector [31].
Efficiency corrections are of order a few percent. Jet energy correc-
tions vary between 1% and 10%, depending on η and pT.

The missing transverse energy, Emiss
T , is defined as the magni-

tude of the vector sum of the transverse momenta of all recon-
structed particles. We define HT as the scalar sum of the trans-
verse momentum of all jets, and ST as the sum of HT, Emiss

T , and
the transverse momenta of all leptons.

Jets originating from the hadronization of a b quark are identi-
fied by the combined secondary vertex algorithm [32], which com-
bines information about impact parameter significance, secondary-
vertex reconstruction, and jet kinematic properties. Jets identified
by the algorithm are said to be b-tagged. For jet kinematics typical
of top-quark decays, the algorithm has a 66.1 ± 0.3% probability of
tagging jets from b quarks and a 1.3 ± 0.2% probability of tagging
jets from light quarks and gluons [33].

For large values of the T-quark mass, its decay products have
large pT values and their secondary decay products may get
merged into a single jet. In order to identify highly boosted W-
boson and top-quark jets from the decay of massive particles,
we perform an additional jet reconstruction using the Cambridge–
Aachen algorithm [34] with a distance parameter of 0.8. Jets with
pT > 200 GeV and a mass between 60 and 130 GeV are classi-
fied as W jets [35–37]. This signature is most important for T
decays to bW because in this decay the W boson tends to have the
largest pT. It can also occur in T decays to tZ or tH but here the
decay products of the bosons merge less often because in these
decays the boson is accompanied by the massive top quark and
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Fig. 1. Observed multiplicity of b-tagged jets in the single-lepton sample compared with a simulation using the W-boson background normalization determined from the
data (left) and observed multiplicity of jets with pT > 30 GeV for events with one isolated lepton, at least three jets, at least one W jet and no b-tagged jets (right). The
bin-by-bin pulls shown in this and other figures are the values of the difference between observed number and expected number of events divided by the sum in quadrature
of the systematic and statistical uncertainties. The uncertainties are correlated bin-to-bin, and include those in the luminosity, the cross sections and the correction factors,
as described in Section 7.
therefore has smaller pT. The decay products of a hadronic top
decay may merge into a single jet. To identify top-quark jets, we
follow the method of Ref. [38]. Jets are classified as top jets if they
have pT > 200 GeV, a mass between 140 and 250 GeV, at least
three subjets, and the minimum pairwise mass larger than 50 GeV.
The efficiency for identifying W and top jets is adjusted for differ-
ences in the range of 5–7% between data and simulation. The W
and top jet reconstruction is independent of the standard jet re-
construction, and the collection of jets reconstructed by the latter
is not modified by the W and top jet identified.

5. Single-lepton channel

Single-muon events are selected in the inclusive muon sam-
ple requiring an isolated muon candidate with pT > 32 GeV and
|η| < 2.1. Single-electron events are selected in the inclusive elec-
tron sample requiring an isolated electron candidate with pT >

32 GeV and |η| < 1.44 or 1.57 < |η| < 2.5. In each case, the candi-
date lepton must be consistent with originating from the primary
vertex. Events that have a second muon or electron candidate are
removed from the sample. All events must have at least three jets
with pT > 120,90, and 50 GeV respectively. In addition, at least
one W jet has to be identified or there has to be a fourth jet
with pT > 35 GeV. Each of the jets must have |η| < 2.4 and be
separated by �R > 0.4 from the isolated muon and by �R > 0.3
from the isolated electron. Requiring several high-pT jets greatly
reduces the contributions from SM background processes, which
are all dominantly produced with fewer and softer jets. All events
must also have Emiss

T > 20 GeV. Combined with the requirements
above, this last requirement effectively suppresses contributions
from background multijet events.

To avoid large uncertainties from modeling W-boson produc-
tion in association with multiple energetic jets, the W-boson back-
ground is normalized directly to a control data sample consisting
of events selected in exactly the same way as in the signal selec-
tion but with the requirement that the events have at most three
jets with pT > 35 GeV and no W jet. This sample is dominated
by W-boson and top-quark production, and would have a negligi-
ble signal contribution. We determine two scale factors such that
the total number of simulated events and the number of simulated
events with at least one b-tagged jet agree with the correspond-
ing counts observed in the control data sample. One scale factor is
used to multiply the number of events with a W boson and heavy-
flavor (b- or c-quark) jets; the other scale factor is used to multiply
the number of events with a W boson without heavy-flavor jets. In

Table 1
Number of events predicted for background processes and observed in the single-
lepton sample. The uncertainty in the total background expectation is computed
including the correlations between the systematic uncertainties of the individual
contributions. The uncertainties include those in the luminosity, the cross sections
and the correction factors, as detailed in Section 7.

Lepton flavor Muon Electron

tt̄ 36 700 ± 5500 35 900 ± 5400
Single top quark 2200 ± 1100 2100 ± 1000
W 19 700 ± 9900 18 600 ± 9400
Z 2200 ± 1100 2000 ± 1000
Multijets < 60 1680 ± 620
tt̄W 144 ± 72 137 ± 68
tt̄Z 109 ± 54 108 ± 54
tt̄H 570 ± 290 570 ± 290
WW/WZ/ZZ 410 ± 200 400 ± 200

Total background 61 900 ± 13 900 61 500 ± 13 700
Data 58 478 57 743

addition, we scale events containing b- and c-quark jets with two
different scale factors. The ratio of these two scale factors is set to
the value determined in the semileptonic tt̄ sample at

√
s = 7 TeV

from [39]. The scale factors are 0.8 for events that have at least one
b quark, 1.1 for events without b quarks but at least one c quark,
and 1.0 for events with only light quarks and gluons. These factors
are applied after the samples are normalized to the inclusive W-
boson production cross section predicted at NNLO [40]. The same
scale factors are applied to events with electrons and to events
with muons.

Fig. 1 shows that the overall jet multiplicity distribution and the
multiplicity of b-tagged jets are both well modeled by the simula-
tion following the scaling procedure. The left plot in Fig. 1 shows
the agreement between data and simulation for the multiplicity of
b-tagged jets. As an additional cross-check of the simulation of the
background we have looked at the overall jet multiplicity, in a sub-
set of the event sample without b-tagged jets. This distribution is
shown as the right plot in Fig. 1.

The numbers of events expected and observed are given in Ta-
ble 1. The selection efficiencies and expected numbers of events
for the T-quark signal, assuming nominal branching fractions, are
summarized in Table 2.

We use boosted decision trees (BDT) [41] to further separate
the T-quark signal from the SM background, more than 96% of
which arises from tt̄, W- and Z-boson production. In the training
of the BDT, we include the signal sample with the composition de-
fined by the nominal branching fractions. We have tried training
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Fig. 2. Observed and expected distributions of the BDT discriminant. The distribution for a T quark with a mass of 800 GeV is also shown. The top panel is for events with
at least one W jet, the bottom panel for events without W jets. The left column is for events with a muon and the right column for events with an electron.

Fig. 3. Observed and expected distributions of the BDT discriminant for the subset of events in the subsample without b-tagged jets. The distribution for a T quark with a
mass of 800 GeV is also shown. The top panel is for events with at least one W jet, the bottom panel for events without W jets. The left column is for events with a muon
and the right column for events with an electron.
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Table 2
Production cross section, efficiency, and number of events predicted by the single-
lepton analysis, for the T-quark signal processes, assuming the nominal branching
fractions into bW, tH, tZ of 50%, 25%, 25%, respectively.

Lepton flavor Cross section Muon Electron

T mass (GeV) (fb) Efficiency Events Efficiency Events

500 571 7.6% 850 7.5% 840
600 170 8.3% 280 8.4% 280
700 56.9 8.7% 97 8.8% 98
800 20.8 8.9% 36 9.1% 37
900 8.09 9.0% 14.3 9.3% 14.8

1000 3.27 9.0% 5.8 9.4% 6.0
1100 1.37 9.0% 2.4 9.4% 2.5
1200 0.58 9.0% 1.0 9.4% 1.1

separate BDTs using T quark samples decaying 100% to one of
the three final states bW, tZ, or tH. This procedure did not lead
to a significant improvement in sensitivity and therefore we use
the same BDT for all combinations of branching fractions. Only
tt̄, W- and Z-boson production contributions enter the BDT train-
ing. We train separate BDTs for events with at least one W jet
and for events without any W jet, at every value of the T-quark
mass. The BDT distributions for the T-quark signal move towards
slightly higher values and get a little wider with increasing mass.
Although our sample includes all SM decays of the Higgs boson, we
are mostly sensitive to decays to b-quark pairs and vector bosons
with hadronic decays. We split the signal and background sam-
ples into two subsamples and use one of the subsamples to train
the BDT and the other to model the BDT discriminant distribu-
tion to be compared with the data. The input variables for the BDT
are jet multiplicity, b-tagged jet multiplicity, HT, Emiss

T , lepton pT,
pT of the third jet, and pT of the fourth jet. For events with a
W jet, the number and pT of W jets and the number of top jets
are included as additional parameters. These variables are chosen
based on their importance calculated by the BDT algorithm and the
desire to avoid strong correlations between the input variables. We
have verified that the distributions of these variables agree well
with expectations. The distributions of the BDT discriminant are
shown in Fig. 2. These demonstrate the discrimination between the
T-quark signal and the SM background.

As an auxiliary check, we show that the simulation models the
data well by comparing the distributions of the BDT discriminant
in the subset of the sample without b-tagged jets as shown in
Fig. 3. In this sample the signal is suppressed by a factor 5 rel-
ative to the default selection with W jets and by a factor 8 for the
sample without W jets.

6. Multilepton channel

The multilepton sample is divided into the four mutually ex-
clusive subsamples described below. Dilepton events are required
to have exactly two leptons with pT > 20 GeV. These are divided
into opposite- and same-sign dilepton events according to their
charges, and the opposite-sign sample is further divided in two
samples according to the number of jets in the event. Trilepton
events must have at least three leptons with pT > 20 GeV. To reject
heavy-flavor resonances and low-mass Drell–Yan (DY) production,
we require at least one dilepton pair with a mass above 20 GeV
and Emiss

T > 30 GeV in these samples. Jets must have pT > 30 GeV
and |η| < 2.4 and be separated by �R > 0.3 from the selected lep-
tons. We also require that at least one jet must be identified as a
b jet.

The first opposite-sign dilepton sample (referred to as the OS1
sample) mostly accepts events in which both the T and the T̄
quarks decay to bW, resulting in a bWbW final state [12]. The

Fig. 4. Observed and expected distributions of the smallest M�b for the opposite-
sign dilepton sample. The distribution for a T quark with a mass of 800 GeV is also
shown. It is dominated by the bWbW final state. The arrow indicates the chosen
requirement.

main irreducible backgrounds in this sample are tt̄ and DY pro-
duction. To minimize these backgrounds, we impose the following
requirements. The mass of the dilepton pair, M�� , must not be con-
sistent with the Z-boson mass, i.e. we eliminate events in which
76 < M�� < 106 GeV. We require that the smallest invariant mass
of lepton and b-jet combinations, M�b, is larger than 170 GeV.
Since, in a top-quark decay, M�b must be smaller than the top-
quark mass, this drastically reduces the tt̄ background as can be
seen in Fig. 4. Finally, the events must have either two or three
jets, HT > 300 GeV, and ST > 900 GeV. The final selection require-
ments are optimized by computing expected limits on the T-quark
mass.

The DY background is not modeled adequately at low invari-
ant mass and in the presence of missing transverse energy. We
therefore use data to measure the residual background in events
with two muons or two electrons. The observed event count in
the Z-boson mass peak is rescaled by the ratio of DY events out-
side and inside the mass window as measured in a control data
sample consisting of events with no b-tagged jets, Emiss

T < 10 GeV,
ST < 700 GeV, and HT > 300 GeV. Since contamination from non-
DY backgrounds can still be present in the Z-boson mass window,
this contribution is subtracted using the eμ channel scaled accord-
ing to the event yields in the μμ and ee channels.

Events in the second opposite-sign dilepton sample (referred
to as the OS2 sample) must have at least five jets, of which two
must be b-tagged, HT > 500 GeV, and ST > 1000 GeV. This sample
accepts final states in which both leptons come from the decay of a
Z boson but is not sensitive to the bWbW final state. The dominant
background in this channel is tt̄ production.

The same-sign dilepton sample (the SS sample) accepts events
in which at least one T quark decays to tZ or tH. The bWbW
final state does not contribute to this channel. We further fil-
ter these events by requiring at least three jets, HT > 500 GeV,
and ST > 700 GeV. The distribution of ST is shown in Fig. 5. The
backgrounds associated with this channel fall into three main cat-
egories. Standard model processes leading to prompt, same-sign
dilepton signatures have very small cross sections and are deter-
mined from simulation. Events with two prompt leptons of op-
posite charge can be selected if one lepton is misreconstructed
with the wrong charge sign. The probability to misreconstruct the
charge sign of a muon in the pT range considered here is negli-
gible. We determine the probability to misreconstruct the charge
sign of an electron from a sample of Z decays where events with
oppositely charged leptons are selected with the same criteria as
in the signal selection except for the charge requirement. We then
weight the events by the charge misreconstruction probability to
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Table 3
Number of events predicted for background processes and observed in the opposite-sign dilepton samples with two or three jets (OS1) and with at least 5 jets (OS2), the
same-sign dilepton sample (SS), and the trilepton sample. An entry “–” means that the background source is not applicable to the channel.

Channel OS1 OS2 SS Trileptons

tt̄ 5.2 ± 1.9 80 ± 12 – –
Single top quark 2.5 ± 1.3 2.0 ± 1.0 – –
Z 9.7 ± 2.9 2.5 ± 1.9 – –
tt̄W – – 5.8 ± 1.9 0.25 ± 0.11
tt̄Z – – 1.83 ± 0.93 1.84 ± 0.94
WW – – 0.53 ± 0.29 –
WZ – – 0.34 ± 0.08 0.40 ± 0.21
ZZ – – 0.03 ± 0.00 0.07 ± 0.01
WWW/WWZ/ZZZ/WZZ – – 0.13 ± 0.07 0.08 ± 0.04
tt̄WW – – – 0.05 ± 0.03
Charge misidentification – – 0.01 ± 0.00 –
Non-prompt – – 7.9 ± 4.3 0.99 ± 0.90

Total background 17.4 ± 3.7 84 ± 12 16.5 ± 4.8 3.7 ± 1.3
Data 20 86 18 2
Fig. 5. Observed and expected distributions of ST for the same-sign dilepton sample.
The arrow indicates the chosen requirement.

determine the number of expected background events. The charge
misidentification contribution to the background is dominated by
events from tt̄ production. We also determine instrumental back-
grounds, where jet misidentification is the source of one or both
lepton candidates, using control data samples.

The trilepton sample also accepts events in which at least one T
quark decays to tZ or tH. The bWbW final state does not contribute
to this channel. We further filter trilepton events requiring at least
three jets, HT > 500 GeV, and ST > 700 GeV. The backgrounds in
this channel originate from SM processes with three or more lep-
tons in the final state, such as diboson and triboson production,
which are modeled by simulation. There are also non-prompt back-
grounds from tt̄ production and other processes, characterized by
one or more misidentified leptons. These are determined from data
as for the dilepton samples.

The numbers of events expected and observed in the multi-
lepton samples are given in Table 3. The selection efficiencies and
expected numbers of events for the T-quark signal, assuming nom-
inal branching fractions, are summarized in Table 4. The selection
efficiencies decrease for large values of the T-quark mass, above
1100 GeV, because an increasing fraction of the decay products of
W and Z bosons are reconstructed as single jets. For the multi-
lepton samples, the numbers of events expected from background
and the T-quark signal are of similar order of magnitude and there-
fore we use the event count in the different multilepton samples,
distinguished by lepton flavor, for the limit computation. We sepa-
rate the dilepton samples into μμ, eμ, and ee subsamples and the
trilepton sample into a μμμ subsample, an eee subsample, and a
subsample containing all events with mixed lepton flavors.

7. Limit computation and systematic uncertainties

We observe no evidence for a signal in the data. This section
discusses upper limits on the production cross section of T-quark
pairs. We use Bayesian statistics to compute 95% confidence level
(CL) upper limits for the production cross section for values of the
T-quark mass between 500 and 1500 GeV in 100 GeV steps. For
the single-lepton channels we compute the posterior probability
density as a function of the TT̄ production cross section using the
BDT discriminant distribution observed for data at each mass value
and the combination of the BDT discriminant distributions for sig-
nal and background processes. For the multilepton channels we
use the observed and predicted numbers of events in the twelve
subsamples to compute the likelihood. We integrate the posterior
probability density function over the nuisance parameters assigned
to the sources of systematic uncertainties that affect both the nor-
malization and the distribution of the discriminating observables.

Uncertainties in the normalization of the signal and background
samples arise from the 2.6% uncertainty in the integrated lumi-
nosity for the

√
s = 8 TeV data collected by CMS in 2012 [42],

and the uncertainties in the cross sections and in the efficiency
corrections. We assign a systematic uncertainty of 50% for each
of the diboson backgrounds, for the single-top-quark production,
and for the W- and Z-boson backgrounds. This accounts for the
uncertainties related to the definition of the renormalization and
factorization scales used in the simulation, which is the largest
with a systematic uncertainty of 40%, and for the uncertainties in
the determination of the W + jets and Drell–Yan backgrounds from
data. For the normalization of the tt̄ background we use the NNLO
cross section of 245.8 pb [8] with an 8% uncertainty to cover the
difference between alternative calculations [43,44]. We correct the
lepton trigger and identification efficiencies in the simulation to
agree with the performance observed in the data. The uncertain-
ties in the correction factors give rise to uncertainties of 3% in the
normalization of the signal and background samples. We further
account for the effect of uncertainties in the jet energy and resolu-
tion, the b-tagging efficiency, the renormalization and factorization
scales, the jet-parton matching scale, and the top-quark-pT distri-
bution on the number of events expected and the distribution of
the BDT discriminant. The uncertainties related to the PDFs used
to model the hard scattering of the proton–proton collisions are
determined to be negligible.

The observed and expected limits for the nominal branching
fractions are shown in Fig. 6. The observed limit is slightly higher
than expected because there are slightly more events observed
than expected in the high tail of the BDT distribution from single-
lepton events with at least one W jet and in the multilepton
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Table 4
Efficiencies ε and number of events N for the T-quark signal with the nominal branching fractions into bW, tH, tZ of 50%, 25%, 25%, respectively, in the opposite-sign dilepton
samples with two or three jets (OS1) and with at least 5 jets (OS2), the same-sign dilepton sample (SS), and the trilepton sample.

Channel OS1 OS2 SS Trileptons

T mass (GeV) ε N ε N ε N ε N

500 0.15% 16.7 0.31% 35.1 0.19% 21.3 0.17% 19.1
600 0.27% 8.9 0.50% 16.6 0.22% 7.5 0.26% 8.5
700 0.36% 4.0 0.60% 6.6 0.25% 2.8 0.28% 3.1
800 0.39% 1.6 0.61% 2.5 0.25% 1.0 0.32% 1.3
900 0.43% 0.67 0.60% 0.96 0.25% 0.40 0.33% 0.52

1000 0.44% 0.28 0.56% 0.36 0.23% 0.15 0.33% 0.21
1100 0.44% 0.12 0.52% 0.14 0.22% 0.06 0.32% 0.09
1200 0.45% 0.05 0.46% 0.05 0.20% 0.02 0.31% 0.04
Fig. 6. Observed and expected 95% confidence level upper limits for the T-quark
production cross section for the nominal branching fractions into bW, tH, tZ of 50%,
25%, 25%, respectively.

channels. We set a lower limit at the mass of the T quark where
the observed cross section limit and the predicted T-quark pro-
duction cross section intersect. To model the BDT discriminant
distribution expected for different values of the T-quark branching
fractions we weight the contributions from the six signal samples
according to the branching fractions. The lower limits for the T-
quark mass measured for the different sets of branching fractions
are listed in Table 5 and represented graphically in Fig. 7.

8. Summary

We have searched for the associated production of a heavy
vector-like T quark with charge 2

3 and its antiparticle, based on
events with at least one isolated lepton. No evidence for a signal
in the data is seen. Assuming that the T quark decays exclusively
into bW, tZ, and tH, we set lower limits for its mass between 687
and 782 GeV for all possible branching fractions into these three
final states assuming strong production. This is the first search that
considers all three final states, and these limits are the most strin-
gent constraints to date on the existence of such a quark.
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Fig. 7. Branching-fraction triangle with expected (top) and observed 95% CL limits
(bottom) on the T-quark mass. Every point in the triangle corresponds to a specific
set of branching-fraction values subject to the constraint that all three add up to 1.
The branching fraction for each mode decreases from 1 at the corner labeled with
the decay mode to 0 at the opposite side of the triangle.
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