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Abstract

Mechanical deformation plays a crucial role both in the normal operation of a Lithium-Ion
battery, as well as in its degradation and ultimate failure. This thesis addresses the theoret-
ical formulation, numerical implementation, and application of fully-coupled deformation-
diffusion theories aimed at two different classes of electrode materials: (i) phase-separating
electrodes, and (ii) amorphous Silicon electrodes, which are elaborated on next.

Central to the study of phase-separating electrodes is the coupling between mechanical
deformation and the Cahn-Hilliard phase-field theory. We have formulated a thermody-
namically consistent theory which couples Cahn-Hilliard species diffusion with large elastic
deformations of a body. Through a split-method, we have numerically implemented our
theory, and using our implementation we first studied the diffusion-only problem of spinodal
decomposition in the absence of mechanical deformation. Second, we studied the chemo-
mechanically-coupled problem of lithiation of isotropic spheroidal phase-separating electrode
particles. We showed that the coupling of mechanical deformation with diffusion is crucial in
determining the lithiation morphology, and hence the Li distribution, within these particles.

Amorphous silicon (a-Si), when fully lithiated, has a theoretical capacity ~ 10 times
larger than current-generation graphite anodes. However, the intercalation of such a large
amount of Li into a-Si induces very large elastic-plastic deformations. We have formulated
and numerically implemented a fully-coupled deformation-diffusion theory, which accounts
for transient diffusion of lithium and accompanying large elastic-plastic deformations. We
have calibrated our theory, and applied it to modeling galvanostatic charging of hollow a-
Si nanotubes whose exterior walls have been oxidized to prevent outward expansion. Our
predictions of the voltage vs. state-of-charge (SOC) behavior at various charging rates (C-
rate) are in good agreement with experiments from the literature. Through simulation, we
studied how plastic deformation affects the performance of a-Si-based anodes by reducing
stress, thus enabling higher realizable capacities, and introducing dissipation.

Finally, in order to design a-Si-based anodes aimed at mitigating failure of the solid
electrolyte interphase (SEI), we have formulated and studied a continuum theory for the
growth of an SEI layer — a theory which accounts for the generation of growth stresses.

Thesis Supervisor: Lallit Anand
Title: Rohsenow Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

The development of Lithium-Ion batteries (LIBs) with improved capacity, life, safety, and
cost, is of major importance for a wide range of industries — from large-scale stationary
energy storage systems in renewable energy plants, to portable power systems for sustainable
electric vehicles. The development of simulation-based tools for the design, life-prediction,
optimization, and diagnosis of LIBs for various applications is then of crucial importance
and remains at large an unsolved research question.

Lithium-ion batteries are assemblies of several cells which themselves are multilayered
systems containing many anode/separator/cathode units saturated with an electrolyte. The
anode and cathode layers (each = 100 um thick) are separated by a thin (20 gm) microporous
polymeric membrane which prevents physical contact between the anode and cathode while
enabling ionic transport. The electrolyte consists of a lithium salt (e.g., LiPF6) in a mixed
organic solvent (e.g., etheylene carbonate-dimethyl carbonate).

The electrodes themselves are composite materials of active particles embedded in a
polymeric binder (e.g., PVDF) which contains a conductivity enhancer (e.g., carbon-black).
At the heart of a LIB are the active particles within the electrodes. Some representative
chemistries for the two electrodes are:

(i) For the negative electrode (anode): graphite in particulate form (mesocarbon mi-
crobeads); and

(ii) For the positive electrode (cathode): a lithium-metal-oxide in particulate form (e.g.,
LiCOOQ; LiMn204; L1F6P04)

Mechanical deformation plays a crucial role both in the normal operation of a battery, as
well as in its degradation, at virtually all length scales discussed above. For example, during
normal operation, stress can have a significant effect on the electrochemical behavior of the

17
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cell, while plastic deformation mechanisms can introduce unwanted dissipation. Mechanical
failure, through for example fracture of the active particles or delamination of the active
particles from their conductive matrix, can lead to degradation, capacity loss, and ultimately
the failure of the battery.

A complete understanding of LIBs will invariably require multi-scale modeling of the
various components described above, however in this thesis the research focus is at the single
active particle level. In this thesis, we have focused on studying the coupled diffusion-
deformation behavior of two different classes of electrode materials: (i) phase-separating
electrodes, and (ii) amorphous Silicon electrodes, which are discussed in the following sub-
sections.

1.1.1 Phase-separating electrodes

Several Li intercalation compounds of interest in battery applications exhibit phase-separation
into Li-rich and Li-poor phases (cf., e.g., Bruce et al., 2008; Tang et al., 2010). Central to
the study of diffusion-deformation problems in such electrode materials is understanding
the coupling between mechanical deformation and the resulting phase separation behavior
as modeled through the Cahn-Hilliard phase-field theory (Cahn and Hilliard, 1958, 1959).
Specifically, it is important to understand how mechanical deformation can affect the dis-
tribution of Li content within the particle during charging/discharging. This distribution of
Li, in turn, will affect the build up of stresses in the particle which might lead to its failure
through fracture.

1.1.2 Amorphous Silicon electrodes

When fully lithiated a-Si has a theoretical gravimetric capacity ~ 10 times larger than
current-generation graphite anodes. However, the intercalation of such a large amount of
Li into the a-Si induces very large elastic-plastic deformations — with volume changes of
approximately 300% (Obrovac and Krause, 2007). Two major mechanisms by which the
large deformations of the anode negatively affect its performance are:

a) Fracture of the anode particles. The large stresses that develop in the anode due to
inhomogeneous volume changes associated with large gradients of Li-ions in the anode
can lead to fracture of an anode particle. The formation and propagation of cracks in
turn lead to degradation of the performance of the battery, and significantly limit its
lifetime.

b) Failure of the solid electrolyte interface (SEI). During operation of a Li-ion battery, a
passivating film, known as the solid electrolyte interface (SEI), forms on the surface
of the anode. Due to the large volumetric changes associated with the lithiation of Si
anodes, the SEI is placed under large tensile stresses, which in turn cause it to fail.
Repeated failure and growth of the SEI leads to capacity fade of the battery.
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Fracture of anode particles has been successfully mitigated through the use of nano- and
micro-dimensioned particles (cf. He et al., 2011; McDowell et al., 2012; Berla et al., 2014).

In order to mitigate failure of the SEI due to the large volume changes associated with
lithiating a-Si anodes, various research groups have proposed the use of novel “engineered”
anodes which restrict the deformation incurred by the SEI during cyclic lithiation.

However, restriction of the expansion of a-Si during cycling leads to the generation of very
large stresses, forcing the a-Si anode to deform plastically. The elastic-plastic deformation
of the Si anode, resulting from the mechanical restrictions engineered into the structure, will
have a significant effect on the electrochemical performance of the anode, which at present
is largely unexplored, and is the focus of this part of the part of the thesis.

Finally, in order to design engineered a-Si nanostructured anodes aimed at mitigating
SEI failure, we must also consider the concurrent growth and stress generation within the
SEI layer. In order to understand stress generation within the SEI layer, a part of this thesis
is also focused on formulating a continuum theory for the the growth of an SEI layer — a
theory which accounts for the generation of the attendant growth stresses (cf. Mukhopadyay
et al., 2012).

1.2 Brief summary

This thesis is comprised of three major parts:

(i) Modeling phase-separating electrode materials;
(ii) Modeling amorphous Silicon electrodes; and

(iii) Modeling growth of a solid electrolyte interphase.

Each part is discussed in more detail in the following sections, and publications in peer-
reviewed journals related to each part are listed.

1.2.1 Modeling phase-separating electrode materials

We formulate a unified framework of balance laws and thermodynamically-consistent con-
stitutive equations which couple Cahn-Hilliard-type species diffusion with large elastic de-
formations of a body. The traditional Cahn-Hilliard theory, which is based on the species
concentration ¢ and its spatial gradient V¢, leads to a partial differential equation for the
concentration which involves fourth-order spatial derivatives in c; this necessitates use of
basis functions in finite-element solution procedures that are piecewise smooth and glob-
ally C'-continuous. In order to use standard C°-continuous finite-elements to implement
our phase-field model, we use a split-method to reduce the fourth-order equation into two
second-order partial differential equations (pdes). These two pdes, when taken together with
the pde representing the balance of forces, represent the three governing pdes for chemo-
mechanically-coupled problems. These equations are amenable to finite-element solution
methods which employ standard C°continuous finite-element basis functions.
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We have numerically implemented our theory by writing a user-element subroutine for
the widely-used finite-element program Abaqus/Standard. We use this numerically imple-
mented theory to first study the diffusion-only problem of spinodal decomposition in the
absence of any mechanical deformation. Next, we use our fully-coupled theory and numerical-
implementation to study the combined effects of diffusion and stress on the lithiation of a
representative isotropic spheroidal-shaped particle of a phase-separating electrode material.

Importantly, we demonstrate that the elastic stiffness of the material can have a signif-
icant impact on the morphology of the phase front which forms inside the particle during
lithiation. Specifically, we showed that increasing the elastic stiffness can change the dis-
tribution of Li from a “core-shell” type distribution, to a “planar-front” distribution. This
change in Li distribution has important consequences in determining potential fracture sites,
since the “planar-front” type of distribution predicts a tensile maximum principle stress on
the exterior surface of the particle during lithiation, while the “core-shell” structure always
predicts compressive stresses on the exterior surface during lithiation.

- Di Leo, C.V. Rejovitzky, E. Anand, L., 2014. A Cahn-Hilliard-type phase-field theory
for species diffusion coupled with large elastic deformations: Application to phase-
segragating Li-ion electrode materials. Journal of the Mechanics and Physics of Solids
70, 1-29.

1.2.2 Modeling amorphous Silicon electrodes

We have formulated a fully-coupled diffusion-deformation theory, which accounts for tran-
sient diffusion of lithium and accompanying large elastic-plastic deformations. We have
numerically implemented our theory by writing a user-element subroutine for the widely-
used finite-element program Abaqus/Standard. The material parameters in the theory have
been calibrated to experiments of galvanostatic cycling of a half-cell composed of an a-Si
thin-film anode deposited on a quartz substrate, which have been reported in the litera-
ture. We show that our calibrated theory satisfactorily reproduces the mechanical response
of such an anode — as measured by the changes in curvature of the substrate, as well as
the electrochemical response — as measured by the voltage versus state-of-charge (SOC)
response.

We have applied our numerical simulation capability to model galvanostatic charging of
hollow a-Si nanotubes whose exterior walls have been oxidized to prevent outward expansion;
such anodes have been recently experimentally-realized in the literature. We show that the
results from our numerical simulations are in good agreement with the the experimentally-
measured voltage versus SOC behavior at various charging rates (C-rates).

Through our simulations, we have identified, and quantified, two major effects of plasticity
on the electrochemical performance of a-Si anodes:

e First, for a given voltage cut-off, plasticity enables lithiation of the anode to a higher
SOC. This is because plastic flow reduces the stresses generated in the material, and
thus reduces the potential required to lithiate the material.
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e Second, plastic deformation accounts for a significant percentage of the energy dissi-
pated during the cycling of the anode at low C-rates.

Hence, plasticity can have either (a) a beneficial effect, that is, a higher SOC for a given
voltage cut-off; or (b) a detrimental effect, that is significant energy dissipation at low C-
rates.

- Di Leo, C.V. Rejovitzky, E., Anand L., 2015. Diffusion-deformation theory for amor-
phous silicon anodes: the role of plastic deformation on electrochemical performance.
International Journal of Solids and Structures. In Press.

1.2.3 Modeling growth of a solid electrolyte interphase

We have formulated a continuum theory for the growth of an SEI layer — a theory which
accounts for the generation of the attendant growth stresses. The theory has been numeri-
cally implemented in a finite-element program. This simulation capability for SEI growth is
coupled with our previously published chemo-mechanical simulation capability for interca-
lation of Li in electrode particles. We have calibrated the material parameters in our theory
by simulating SEI growth on graphite anodes which have been deposited on a stiff substrate.
We show that our simulation tool — with suitable choices for the material parameters — can
reproduce the experimentally measured substrate curvature versus state-of-charge, including
reproducing the “irreversible” stresses due to SEI growth

The evolution of the stress state within the SEI layer and at the SEI/anode-particle
interface for spherical- and spheroidal-shaped graphite particles is studied. This knowledge
of the local interfacial stresses provides a good estimate for the propensity of potential
delamination of an SEI layer from an anode particle.

- Rejovitzky, E., Di Leo, C.V., Anand, L., 2014. A theory and simulation capability for
growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery.
Journal of the Mechanics and Physics of Solids 78, 210—230.



Part I

Modeling phase-separating electrode
materials

22



Chapter 2

Introduction

Several Li intercalation compounds of interest in battery applications exhibit phase-separation
(cf., e.g., Bruce et al., 2008; Tang et al., 2010), and central to the study of coupled diffusion-
deformation problems in such electrode materials is the Cahn-Hilliard phase-field theory
(Cahn and Hilliard, 1958, 1959; Cahn, 1961). As background, first consider the classical
Cahn-Hilliard theory for species diffusion and phase segregation which is uncoupled from the
mechanical problem. Let ¢ € [0, 1] denote a normalized species concentration, (¢, VE) the
free energy per unit reference volume, and let the functional

() = /B Ve (E, VE) dug (2.1)

denote the total free energy of the region of space occupied by the body B. Then classically,
for theories in which the free energy depends on V¢, the chemical potential p is defined as
the variational derivative of the functional ¥(c):

at 00 3u(c,VE) . (8¢a(c,VO)
W= P ove : (2.2)

A widely-used specific form for the free energy is the following separable energy first proposed
by Cahn and Hilliard
Ur(C, VE) = 92 (8) + 3Acu|VE[?, Acu > 0. (2.3)

Here, z/A)f{(E) represents the coarse-grain chemical free energy, a double-well potential whose
wells (the “binodal points”) define the phases; the second term which depends on the con-
centration gradient represents an interfacial energy, with Aoy a gradient energy coefficient
with units of energy per unit volume times a length squared. For the free energy (2.3), the
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chemical potential, using (2.2), is

RGN
U= i AcnC, (2.4)

where A is the Laplace operator. Next, species balance requires that
¢ = —Divja, (2.5)
with the species flux j related to the chemical potential p through the constitutive equation
Jr = —(2)Vp, (2.6)

where (), the species mobility, is a nonlinear and positive function. Using (2.4) and (2.6)
in (2.5) yields the classical Cahn-Hilliard diffusion equation,

& = Div (m(a)v (d‘%f) - )\CHAE)> . 2.7)

Two mechanisms dominate the evolution of a solution to the Cahn-Hilliard equation: a
minimization of the chemical energy 15(¢) drives the solution to binodal points and separates
the phases, while minimization of the interface energy (1/2)Acu|Ve|? effectively coarsens the
phases.

The Cahn-Hilliard equation (2.7) involves fourth-order spatial derivatives of the con-
centration ¢. For recent reviews and discussions of numerical solution techniques for the
Cahn-Hilliard equation, cf., e.g., Wells et al. (2006), Kuhl and Schmidt (2007), and Gomez
et al. (2008). As noted by Gomez et al. (2008), traditional numerical methods for dealing
with higher-order operators on very simple geometries include finite differences and spectral
approximations. However, for practical engineering applications, simple geometries are not
very relevant, and more geometrically flexible techniques such as the finite-element method
— which might allow for arbitrary two- and three-dimensional geometries — need to be
utilized.

In the context of the finite element method, the fourth order equation (2.7) typically
requires basis functions that are piecewise smooth and globally C!-continuous, but there are
only a very limited number of two-dimensional finite elements possessing C!-continuity appli-
cable to complex geometries, and none in three-dimensions. Instead of using C!-continuous
functions, the most common manner to solve this equation using finite elements, has been
with split-methods (also known as mixed-methods) which in addition to the primal variable
¢, introduce an extra degree of freedom (cf., e.g., Wodo and Ganapathysubramanian, 2011).
We discuss next one such method proposed by Ubachs et al. (2004).1

LGomez et al. (2008) have developed a new numerical analysis technique for the Cahn-Hilliard diffusion
problem based on an isogeometric analysis. In this thesis we do not discuss the isogeometric analysis proce-
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In contrast to the standard derivation of the Cahn-Hilliard equation discussed above,
Ubachs et al. (2004) introduced another variable &, which they call a nonlocal species con-
centration, and took as the governing partial differential equation for their diffusion problem,
the equation

d‘”R(C) +8(E-c), B>0, (2.8)

¢ =Div (m(c)Vy), with pu=

where the nonlocal field € is evaluated by solving another Helmholtz-type partial differential
equation,

€ - PAE = ¢, £>0, (2.9)

in which ¢ is a parameter with units of length. Note that using (2.9) we may eliminate the
factor (¢ — &) in (2.8); to obtain

= dd)dLé(C) —MAE, with A=p8¢>0. (2.10)
This expression for the chemical potential is similar to the Cahn-Hilliard relation (2.4),
except that in (2.10) one has the Laplacian of the nonlocal field A€ and two parameters
and ¢, instead of the Laplacian of the local field A¢ and a single parameter Acy.

Equations (2.8) and (2.9), being partial differential equations, require boundary con-
ditions. The boundary conditions for (2.8) are standard. For (2.9) Ubachs et al. (2004)
introduced boundary conditions on either the value of € or its normal derivative. In their
calculations they used a homogeneous Neumann-type boundary condition of the form

(V&) - ng = 0 on the external boundary 0B of the body,

where ni denotes the outward unit normal to the external boundary 0B of the body B.
The resulting problem then consists of two coupled second-order partial differential equations
(2.8) and (2.9), which are solved using finite element methods which employ standard C°-
continuous finite element basis functions.

Such a theory, which uses a nonstandard variable € in order to introduce nonlocal effects,
has met with substantial operational success when modeling microstructure evolution in
two-phase alloys.(cf., e.g., Ubachs et al., 2004). However, from a physical point of view the
“derivation” of the important partial differential equation (2.9) for the variable € in Ubachs
et al. (2004) is not entirely satisfactory.

e In particular, it is not clear whether (2.9) is a balance law, a constitutive equation, or
a combination of the two. Also, it is not clear how to arrive at such an equation based
on classical thermodynamic arguments.

dure, but restrict our attention to the widely-used finite-element solution methods which employ standard
CO-continuous finite-element basis functions.
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On the other hand — following the formulation of micromorphic theories of continua? —
if from the outset one introduces ¢ as an additional kinematical variable in the theory, then
it is possible to develop a thermodynamically consistent theory in a systematic fashion using
the principle of virtual power, in which the important relation (2.9) represents a microforce
balance supplemented by thermodynamically consistent constitutive equations.

Remark.

It is also possible to split the fourth-order Cahn-Hilliard equation without introducing
the additional kinematical variable €. In this case, the first second-order partial differential
equation is still given by conservation of mass through

¢ = Div(m(e)Vp), (2.11)

and the second second-order partial differential is simply the equation for the chemical po-
tential (2.4), viz. A
/=
p= ‘—h—l’% — AenAC. (2.12)
Using the principle of virtual power, (2.12) may also be shown to represent a microforce
balance supplemented by thermodynamically consistent constitutive equations.

These two distinct ways of deriving the Cahn-Hilliard equation using the principle of
virtual power, and subsequently computing using standard finite element procedures, are
studied extensively in Appendix B, where for simplicity and clarity we neglect the mechanical
deformation effects and consider only the diffusion problem as governed by the Cahn-Hilliard
equation.

The study in Appendix B also serves to determine how accurate numerical solutions to
the Cahn-Hilliard equation using the nonlocal field €, as governed by (2.8) and (2.9), are
when compared to numerical solutions using the split method as governed by (2.11) and
(2.12). O

This part of the thesis is organized as follows. In Chapter 3 we develop a thermodynam-
ically consistent framework for coupling a Cahn-Hilliard-type phase-field theory for species
diffusion with large elastic deformation. First, in Sections 3.1 through 3.8 we develop a rea-
sonably general framework which is summarized in Section 3.9. In Section 3.10 we specialize
our general framework and in Section 3.11 we summarize the governing partial differential
equations and boundary conditions for our theory. Finally, in Section 3.12 we briefly discuss
the numerical implementation of our theory. The theory was numerically implemented by
writing a user-element subroutine for the commercial finite element program Abaqus (2010).

In Chapter 4, using our numerical capability, we study the diffusion-only problem of
spinodal decomposition with the aim of determining an appropriate value for the modulus 3
in (2.9) for the split-method used in this work. This is also studied in detail in Appendix B.

2Cft., e.g., Forest (2009) and Anand et al. (2011) for recent discussions in the context of other gradient
theories.
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Finally, in Chapter 5, we use our fully-coupled theory and numerical implementation to study
the combined effects of diffusion and stress on the lithiation of a representative spheroidal-
shaped particle of a phase-separating electrode material. We finish in Chapter 6 with some
concluding remarks.
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Chapter 3

A Cahn-Hilliard-type phase-field
theory for species diffusion coupled
with large elastic deformations.

In the development of the theory in this Chapter — for clarity of the physical units of the
various quantities introduced — we find it useful to formulate our theory in terms of the
actual species concentration cy, given in terms of moles per unit reference volume, rather
than in terms of a normalized species concentration ¢ € [0, 1] used thus far in the introductory
Chapter 2. Also, we employ a variable ¢z with units of moles per unit reference volume, and
its gradient Vg — with the latter being chosen to represent a measure of the inhomogeneity
of the microscale species concentration. For want of a better terminology, we call cg the
“micromorphic concentration.”

In this Chapter, limiting our consideration to isothermal conditions, we develop a rea-
sonably general theory. An extension of this theory for anisothermal conditions is fairly
straightforward, an example of which can be found in our previous work Di Leo (2012) and
Di Leo and Anand (2013) where the theory is derived in the context of hydrogen diffusion
in metals.

Notation:  We use standard notation of modern continuum mechanics (Gurtin et al.,
2010). Specifically: V and Div denote the gradient and divergence with respect to the
material point X in the reference configuration, and A = DivV denotes the referential
Laplace operator; grad div, and divgrad denote these operators with respect to the point
x = x(X,t) in the deformed body; a superposed dot denotes the material time-derivative.
Throughout, we write Fe~! = (F¢)~!, F¢=7 = (F¢)™7, etc. We write trA, sym A, skw A, Ay,

10ur previous work Di Leo (2012), also uses a non-local variable, similar to €, however related to the
equivalent plastic strain, rather than to the concentration. There the non-local variable is used to formulate
a gradient plasticity theory for sole purpose of numerical regularization of shear bands.
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and symgA respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric
parts of a tensor A. Also, the inner product of tensors A and B is denoted by A :B, and
the magnitude of A by |A| = VA:A.

3.1 Balance law for the diffusing species

Let cg(X,t) denote the total number of moles of the species per unit reference volume.
Changes in cg in a part P are brought about by the diffusion of the species across its
boundary 0P. The diffusion is characterized by a flux js(X, t), measured in number of moles
per unit area per unit time, so that
- f Jr - D dag
aP

represents the amount of species entering P across OP per unit time. Thus the rate of change
of the species in P is given by

/CR d'UR == _‘/ jR * Ny daR (3.1)
P opP

for every part P. Bringing the time derivative in (3.1) inside the integral and using the
divergence theorem on the integral over OP, we find that

/ (éR + Diij> dvy = 0. (3.2)
P
Finally, since P is arbitrary, this leads to the following local balance law for cg,

én = —Divi. (3.3)

3.2 Basic kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a
fixed reference configuration, and denote by X an arbitrary material point of B. We denote
by P an arbitrary part (subbody) of the reference body B with ng the outward unit normal
on the boundary 0P of P.

A motion of B is a smooth one-to-one mapping x = x(X, t) with deformation gradient,
velocity, and velocity gradient given by

F=Vyx, v=%  L=gradv=FF1 (3.4)
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We base the theory on a multiplicative decomposition of the deformation gradient
F = F°F°. (3.5)

Here, suppressing the argument ¢:

(1) F¢(X) represents the local distortion of the material neighborhood of X due to the
insertion (extraction) of the chemical species; and

(ii) F¢(X) represents the subsequent stretching and rotation of this coherent chemically
distorted material neighborhood, and thereby represents a corresponding elastic dis-
tortion.

We refer to F© and F¢ as the chemical and elastic distortions, respectively. We write

JE det F > 0, (3.6)

and hence, using (3.5),
J=JJg°,  where J°¥detFe>0 and JEdetFe>0, (3.7

so that F¢ and F¢ are invertible.
The right and left polar decompositions of F¢ are given by

F°¢ = R°U°® = V°R®, (3.8)
where R is a rotation, while U® and V¢ are symmetric, positive-definite right and left stretch

tensors with
U¢ = VFe Fe and V¢ = VFeFeT, (3.9)

Also, the right elastic Cauchy-Green deformation tensor is given by

C¢ =U® =F“F°. (3.10)
Next, by (3.4)3 and (3.5)
L = L¢ 4+ FeL°Fe !, (3.11)
with . .
L¢ = F°Fe 1, L¢ = FFe !, (3.12)

where L¢ represents a distortion rate due to insertion (extraction) of the chemical species.
We assume that L¢ is given by

L¢=¢éx A, with A =A(c). (3.13)
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Finally, using (3.4), (3.12), and (3.13), we may write (3.11), for future use, as

(VX)F ™! = FeF! 4 ¢ (FEAFT). (3.14)

3.3 An additional variable c,

Next, we introduce another scalar ¢z, which we refer to as the “micromorphic concentration”,
measured in moles per unit volume.

o The variable cr serves as an additional kinematical degree of freedom in developing a
gradient theory for species diffusion. Specifically, in contrast to the traditional Cahn-
Hilliard theory which is based on cp and Vg, here we develop a theory which depends
ON Cgr, Cg, and the gradient Vcg.

3.4 Macroscopic and microscopic force balances de-
rived via the principle of virtual power

Following Germain (1973) and Gurtin (2002), we formulate the macroscopic and microscopic
force balances of the theory based on a nonstandard version of the principle of virtual power.

Consider an arbitrary part P of the body B. The virtual-power principle is based on a
fundamental power balance between the internal power Wiy (P) expended within P, and the

external power Wex (P) expended on P. Specifically, we allow for power expended internally
by

(a) a stress S® power-conjugate to F¢;

(b) a scalar microscopic force m power-conjugate to cg;

(c) a scalar microscopic force p power-conjugate to Cg;

(d) a vector microscopic force & power-conjugate to the gradient Vg;
and take Wiy (P) to be given by

Wine(P) = / (se ‘Fe 4 e + pén+ & ch:R) dvg, (3.15)
P

where, S¢, 7, p and £ are defined over the body for all time. We also allow for power to be
expended externally by

(a) atraction tg(ng) (for each unit vector ng) that expends power over x on the boundary
of the part;
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(b) a body-force by that also expends power over x; 2 and

(c) a scalar microscopic traction {(ng) (for each unit vector ng) that expends power over
Cg on the boundary of the part;

and take W (P) to be given by

Wi (P) = / tr(ng) - X dan + / br - % dvn + / ¢ (D) En dan. (3.16)
oP P P

The balance equations and traction conditions of the theory — presumed not known in
advance — are derived using the principle of virtual power. Assume that, at some arbitrarily-
chosen but fized time, the fields x, F, F¢, F¢, A, cy, and ¢y are known, and consider the
fields %, F¢, and ¢, as virtual velocities to be specified independently in a manner consistent
with (3.14); that is, denoting the virtual fields by X, Fe, and & to differentiate them from
fields associated with the actual evolution of the body, we require that

(Vx)F ! = FFe! + &, (FPAFe™). (3.17)

Further, also considering ¢y to be a virtual velocity, and denoting the virtual counterpart of
Cg by €r, we define a generalized virtual velocity to be a list

V = (Xa Fe, ER) @R)

consistent with (3.17).
In the statement of the principle of virtual power (to be delineated below), we need the
notion of a macroscopic rigid generalized virtual velocity V. Recall that if the macroscopic

motion of a body is rigid, then .
F = QF, (3.18)

where at any time ¢, € is a spatially-constant skew tensor. Accordingly, we presume that
each fixed time t, for a macroscopic rigid virtual velocity V, the corresponding virtual F
obeys

F = QF, (3.19)

with € a constant skew tensor on B, together with
cr=0 = F¢ =0, and ¢p =0, (3.20)

so that 3 ~
F¢ = FFe L. (3.21)

Hence, using (3.19) we have

Fe = QF°. (3.22)

2 Since time scales associated with species diffusion are usually considerably longer than those associated
with wave propagation, we neglect all inertial effects.
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Accordingly, we refer to a macroscopic virtual field V as rigid if it satisfies
(Vx) =F = QF, (3.23)
with €2 a spatially constant skew tensor, together with
F° = QF°, el; =0, and & =0. (3.24)

Then, writing

Weu(P,V) = [

tr(ng) - X dag + / bg - X dvg + ¢(ng) €x dag,
op P ap

(3.25)
Wint(P, V) = / (Se . Fe + 7TER + ]péa -+ 6 . VéR) dvR,
P

respectively, for the external and internal expenditures of virtual power, the principle of
virtual power consists of two basic requirements:

(V1) Given any part P,

Wext (P, V) = Wine(P, V)  for all generalized virtual velocities V. (3.26)

(V2) Given any part P and a rigid virtual velocity V,

Wint(P,V) = 0 whenever V is a rigid macroscopic virtual velocity. (3.27)

To deduce the consequences of the principle of virtual power, assume that (3.26) and (3.27)
are satisfied. Note that in applying the virtual balance we are at liberty to choose any V
consistent with the constraint (3.17).

3.4.1 Macroscopic force and moment balances

Let & = 0 and &, = 0, so that (Vx)(F¢)~ = Fe. For this choice of V, (3.26) yields

/ tn(ng) - % dag +/bR-5<dvR=/Se:f?‘edvR=/(SeF°“T):V5(dvR, (3.28)
P P P P

which, by defining

def

Ty & SF, (3.29)

may be rewritten as

/ ta(ng) - % dag = / (TR: VX — bg - x) dvs, (3.30)
oP P
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and using the divergence theorem we may conclude that

/ (tr(ng) — Trng) - X das + /(Div Tz +bg) - X dvg =0.
ap P

Since this relation must hold for all P and all ¥, standard variational arguments yield the
traction condition
tp(ng) = Trng, (3.31)

and the local macroscopic force balance
Div Tg + bg =0, (3.32)

respectively.

Next, we deduce the consequences of requirement (V2) of the principle of virtual power.
Using (3.24) and (3.25),, requirement (V2) of the principle of virtual power leads to the
requirement that

/ (SFT): Qdvg = 0. (3.33)
P

Since P is arbitrary, we obtain that (S°F¢7): @ = 0 for all skew tensors €2, which implies
that S¢F¢’ is symmetric:
SeFeT = FeSe’. (3.34)

Moreover, (3.34) and (3.29) imply that
TyF = FT,. (3.35)

o In view of (3.32) and (3.35) the stress T, represents the classical Piola stress, with
(3.32) and (3.35) representing the local macroscopic force and moment balances in the
reference body.

As is standard, the Piola stress Ty is related to the symmetric Cauchy stress T in the
deformed body by
Ty=JTF, (3.36)

so that
T=J'T.F. (3.37)

It is convenient to introduce two new stress measures:

e The elastic second Piola stress,
Te & jepe-lTFeT, (3.38)

which is symmetric on account of the symmetry of the Cauchy stress T.
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e The Mandel stress,
Me & CeTe = JeFTFe . (3.39)

which in general is not symmetric.

Using (3.29), (3.36) and (3.5) we find that
S¢ = JTF . (3.40)
Thus, using the definitions (3.38) and (3.39) we find that

Fe1S° = J°T° and F°'S¢ = J°ME". (3.41)

3.4.2 Microscopic force balances

To discuss the microscopic counterparts of macroscopic force balance, consider first a gener-
alized virtual velocity with x = 0 and ¢z = 0. Choose the virtual field ¢ arbitrarily, and
let
F¢ = —&, F°A.
Then 5
S¢:F¢ = —Co(FTS): A= —(JCME:A)éR, (3.42)

where we have used the relationship (3.41),. Using (3.42) the power balance (3.27) then
yields the first microscopic virtual-power relation

0= / (7= (J°M®: B) ) & dvg (3.43)

P

to be satisfied for all é; and all P. This yields the first microscopic force balance
m=JM*":A. (3.44)

Next, consider a generalized virtual velocity with ¥ = 0 and é; = 0. Choose the virtual
field €y arbitrarily, then the power balance (3.26) yields the second microscopic virtual-power
relation

/ C(Ng)En dag = / (]p B+ € Va":R) dvg (3.45)
oP P
to be satisfied for all € and all P. Equivalently, using the divergence theorem,

/(g(n) _ g-nR)@R day + / (Div £ ]p)cf:R dvg = 0,

oP P
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and a standard argument yields the microscopic traction condition
¢(ng) = &-ng (3.46)
and the second microscopic force balance

Divé —p =0. (3.47)

The converse assertion — that (3.31), (3.32), (3.44), (3.46) and (3.47) imply the principle
of virtual power — follows upon reversing the foregoing arguments.

Finally, using the traction conditions (3.31) and (3.46), the actual external expenditure
of power (3.16) may be written as

W) = [(Tana) - Xdan + [ X+ (€ 1) én dan (3.48)
P P P
Also, using (3.41); and (3.10), the stress power S: F¢ may be alternatively written as
S:Fe = (J°T): (FF¢) = L(J°T*): Ce. (3.49)
Thus, the corresponding internal expenditure of power (3.15) may be written as

Wi (P) = / (%(JCTE) 1 G + mén + PEr + & ch) dvs. (3.50)
P

3.5 Free energy imbalance

Let 1x denote the Helmholtz free-energy per unit reference volume, and consider a material
region P. Then, consistent with our omission of inertial effects, we neglect kinetic energy,
and take the free-energy imbalance under isothermal conditions as

/'d}R dUR S Wext(P) - /a‘P llsz * anaR, (3.51)
P

where p represents the chemical potential of the diffusing species. Thus, since Wex(P) =
Wini(P), upon recalling (3.50) and applying the divergence theorem to the term in (3.51)
involving an integral over the boundary JP of P, we obtain

/ (¢R - -;-(JCTe):Ce — ég — PEr — & V&g + uDivip + jn - w) dve <0,  (3.52)
P
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which upon use of the balance law (3.3), and using the fact that (3.52) must hold for all
parts P, gives the local form of the free energy imbalance as

. 1 : . . . .
Yr — §(JCT6):Ce — Hneelrn — PCr — & VCr +Jr - Vu <0, (3.53)

where we have written et
Poet = p+ 7 (3.54)

for a net chemical potential.

For later use we define the dissipation density D > 0 per unit volume per unit time by

1 : . . . . ;
D = §(JCTE): Ce + ,u'netCR "I" ]p(BR + g' VCR - JR * V/Jz s d"R 2 0. (3.55)

Remark. For brevity we have not discussed invariance properties of the various fields
appearing in our theory. However, such considerations are straight-forward and extensively
elaborated upon in the context of a similar diffusion-deformation theory by Anand (2012).
Here, we simply note that all quantities in the free energy imbalance (3.53) and (3.55) are
invariant under a change in frame. O

3.6 Constitutive theory

Guided by the free energy imbalance (3.53) we consider constitutive equations for the free
energy g, the stress T¢, the net chemical potential y,,,, the microstresses p and &, and the
species flux jr of the form:

Yr = PYa(C®, cn, Cx, Vg),

T® = T¢(C®, cg, Cx, V),
Poaer = fine(C, Cr, Cr, VEg),

P = P(C® ¢, Cr, Ver),

€& = £(C* cx, cr, Ven),

jr = Jr(C®, cx, Cx, Vg, V).

(3.56)

It is convenient to introduce the notation

A = (C%cp,Cr, Veg). (3.57)
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Substituting the constitutive equations (3.56) into the free-energy imbalance (3.53), we find
that it may then be written as

[&ZR(A) L JcTe] o [‘%R(A) - um} én + [M ~ p] ¢n

oCe 2 Ock Ocg
B (A) (3.58)
TRV el L vg i . < 0.
+ [ Ve, 5} Veér + Jr(A,Vu) - Vu <0

This inequality is to hold hold for all values of C¢, cg, ¢y, and Vcg. Since Ce, ég, €g, and
V¢x appear linearly, their “coefficients” must vanish, for otherwise C¢, ¢g, ¢, and Vég may
be chosen to violate (3.58). We are therefore led to the thermodynamic restriction that the
free energy determines the stress T, the chemical potential u, the scalar microstress p, and
the vector microstress € through the “state relations”

1 [(609x(A) )
e __ ge—1 R
T =J (2 50 ) ,
_ 9Ya(A)
= b,
R (3.59)
_ oY (A)
ocg '
¢ _ Oa()
OVcey ’ J
and we are left with the following reduced dissipation inequality
D=—ja(A)-Vu>0. (3.60)

Remark. Combining the constitutive equations (3.59), for p with the first microforce
balance (3.44), we obtain the following constitutive equation for the chemical potential

_ (A

_J°M®:A. (3.61)
Ocg

a

3.7 Species flux
Henceforth we neglect the dependence of ji on the microfields cg and Vcg, and assume that

jr = —M(C®,¢c) Vi, (3.62)
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where M is a mobility tensor. Using (3.62) the dissipation inequality (3.60) may be written
as

Vi - M(C8, ce)Viu >0, (3.63)

which is a requirement that the mobility tensor M be positive-semidefinite.

3.8 Isotropic materials

Next we restrict our attention to ésotropic materials, an idealization that leads to several
simplifications in the constitutive equations.

3.8.1 Isotropic free energy

To begin with, the free energy function 1 (C®, cg,Cx, Veg) is then an isotropic function of
its arguments. An immediate consequence is that the free energy function has the represen-
tation®

(Q[;R(Ce7 Cr; Cr; V‘BR) = iR(ICea Cr, Cr, IVCRD; (364)

with
Toe = (L(C), 1(C%), I5(C*))

the list of principal invariants of C¢. Next, the spectral representation of C¢ is
Z Wwirt @ré,  with  wf =2 (3.65)

where (r{,r$,r3) are the orthonormal eigenvectors of C¢ and U®, and (XS, \§, \S) are the
positive eigenvalues of U®. Let

E° ¥ mue = ZE‘ere@rl, with  E° < InAe, (3.66)

denote the logarithmic elastic strain. With the logarithmic elastic strain defined by (3.66),
for isotropic materials we henceforth consider a free energy of the form

wR = éR(IE% Cr, cR? |VCR|)> (367)

with Zge a list of principal invariants of E€, or equivalently a list of principal values of E€.
Then, straightforward calculations (cf., e.g. Anand and Su, 2005) show that the Mandel

3In addition to a dependence of the free energy on the list (Zge, cr, Cr, |Vcr]), there is a possible depen-
dence on the joint invariants (Veg)-Ce(Veg) and (Veg) - C®(Veg), but for brevity we do not include them
here.



41

stress is symmetric and given by

_1 [ 8%a(Tae, cas Cx, [Ven])
Me = jet : ’ .
( BTl , (3.68)
and the corresponding Cauchy stress is
T = J* 'R*M°R*". (3.69)

3.8.2 Constitutive equation for the chemical distortion rate L¢

Let Q denote the volume of a mole of the species (partial molar volume), presumed to be
constant. Then for isotropic materials we assume that the chemical distortion F¢ is given by

Fo= (7)1,  with J°=1+Qc >0, (3.70)

such that the total change in volume per unit reference volume when cg = Cg max, IS given
by (£2 - crmax). Recalling the constraint (3.13), and using (3.70), we have that the chemical
distortion is given by

. 1
LE=FF = A = ¢ §J°‘IQ 1 and we have A = %JC‘IQ 1. (3.71)

In this case, with A given by (3.71),, the expression (3.61) for the chemical potential
simplifies to

p= 8%(1”’5“""“’%‘*) o) (ltrMe> : (3.72)
Cr 3
3.8.3 Isotropic mobility
For isotropic materials the mobility tensor has the representation
M(C?, c) = m(Tge,ca)l,  with  m(Zge,ca) >0 (3.73)

a scalar mobility. The isotropic constitutive theory discussed above is summarized next.

3.9 Summary

Our theory relates the following basic fields:
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x = x(X, 1),
F=Vyx, J=detF >0,
F = FeF°,

Fe, J¢=detF° >0,
Fe, Je=detFe >0,
F°¢ = R°U° = V°R®,
US = Yy Xorl, ® 1,

Ve=32_ Xt ®l2, where I = Rere,

E¢ =302 (InX)rs,®rs,

E; € RERT =0 (M) @8,
T=T",

Me¢ = J*R"TRS,

T, = JTF,

Y,

¥ = constant,

Cr,

Cr,max

= CR/CR,max S [07 1]7

)

c
Q

c= (DR/CR,max,
P,
3

3.9.1 Constitutive equations

1. Free energy

wR - "j;R(IEeacfh(DRa IVCRI)a

motion;

deformation gradient;
multiplicative decomposition of F;
chemical distortion;

elastic distortion;

polar decompositions of F¢;
spectral decomposition of U¢;
spectral decomposition of V¢;
logarithmic elastic strain;

spatial logarithmic elastic strain;

Cauchy stress;

Mandel stress;

Piola stress;

free energy density per unit reference volume;
constant absolute temperature;

molar species concentration

per unit reference volume;

maximum molar species concentration

per unit reference volume;

normalized species concentration;

volume of a mole of the diffusing species;
chemical potential;

referential species flux vector;

micromorphic species concentration;
normalized micromorphic species concentration;
scalar microstress;

vector microstress.

(3.74)

where Zge represents a list of the principal invariants of the logarithmic elastic strain

E°.

2. Mandel stress. Cauchy stress. Piola stress
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The Mandel stress is given by

Me = Je! (ad;R(IEG,CR, Cr, |VCR|)>

OEe

which, on account of the isotropy of Y is symmetric.

The Cauchy stress is given by

T déf J—l (Re ad;R(IEechﬂDRa |VCR|) ReT) ,

OEe

and the Piola stress is given by

TR déf (Re a'l)bR(IEe’gRE?::IH IVCRI) ReT) F_T.

. Chemical potential

The quantity

8¢R(IEe7cRaCR7 |VCR|) 1
= —Q —trM*
# Ocr @ 3 f

represents the chemical potential, with 2 the molar volume of the species.

. Microstress p

The scalar microstress p is given by

— aTﬁR(IECa Cr, Cr, IVCRD
p Ocg

. Microstress &

The vector microstress & is given by

_ 8'QZR(IEC » Cry Cr, |VCR|)

3 AV

.

. Evolution equation for F°¢

The evolution equation for F¢ is

FC=L°F, L°=¢éA, A= JC“I%QI,

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)
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with
J¢ =1+ Qcg, (3.82)

and with Q a constant.

7. Species flux

The species flux jg is presumed to obey the constitutive equation
jr=-mVyu, (3.83)

with m = Mm(Zge, cg) > 0 the species mobility.

3.10 Specialization of the constitutive equations

Within the limits of an isotropic idealization, the theory presented thus far is quite general.
Next we introduce special constitutive equations which are useful for modeling Cahn-Hilliard-
type diffusion of Li coupled to large elastic deformation of electrode materials in Li-ion
batteries.

3.10.1 Free energy

We consider a separable free energy of the form

~

wR(IEE, Cr, Cr,s IVCRI) — "lc;‘\hemical(cR) + ,lj)genalty(cm CR) + qﬁglterface(vcr{) + 1/;§Iastic(IEe, CR)‘
(3.84)
Here

(i) tpgchemical ig the change in chemical free energy due to mixing of the species with the
host material. As a simple continuum approximation to mixing, we take this to be
given by a regular solution model (cf., e.g., DeHoff, 2006)

chemical _ o (;f’ ¢+ RY (alné +(1-2)In(1 - é)) +x¢(1 - 5)) ,  (3.85)
where
_ Cr _
c= , 0<e<1 (3.86)
Cr,max

is a normalized species concentration, with cg max the concentration of the species in
moles per unit reference volume when all the accommodating sites in the host material
all filled; R the universal gas constant; and ¥ the absolute temperature (assumed to
be constant). Also,

— 10 is a reference value of the chemical potential of the diffusing species;

— the second term in (3.85), involving R, represents the entropy of mixing for an
ideal solution; while
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— the last term in (3.85), involving Y, represents an energetic interaction between
the diffusing species and the host material.

(ii) ¥R accounts for an energetic penalty incurred by the micromorphic concentration
¢y being different from the concentration field cg. Introducing
C
&= —, (3.87)

Cr,max

as a normalized micromorphic concentration, we take the energetic penalty to be given
by the following simple quadratic form

1
penalty — ¢ max -2-B((': - €)%, (3.88)

with 8 > 0 a penalty energy coefficient with units of energy per mole.

(iii) tpinterface jg an interfacial free energy which depends on the gradient of the micromorphic
concentration, Veci. We take it to be given by the following simple quadratic form

interface _];

R = CRr,max ) A |V<I_3|2, (3.89)

with A > 0 a gradient energy coefficient with units of energy per mole times length
squared, and it is this term which introduces an internal length scale for the width of
interfaces between distinct phases.

(iv) wglsstic is the contribution to the change in the free energy due to the elastic deformation
of the host material, taken to be given by
. 1. . e 2
clastic — je (EEe:C(é)[EeD , C(e) of 2G(e)L + (K(rz) - 5G(5)> 1®1, (3.90)

where C is the elasticity tensor, with I and 1 the fourth- and second-order identity
tensors, and the parameters

G@) >0, K@) >0, (3.91)

are the concentration-dependent shear and bulk moduli, respectively.* The term

1 e, = e
5B COIE

4 This is a simple generalization of the classical strain energy function of infinitesimal isotropic elasticity
to finite strains using the logarithmic elastic strain (Anand, 1979, 1986), and concentration-dependent elastic
moduli.
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in (3.90) is a measure of the free energy per unit volume of the local structural space
defined by the range of F¢(X), and multiplication of this term by J¢ = det F¢ gives us
the free energy per unit volume of the reference space.

Thus, using (3.85), (3.88), (3.89), and (3.90) in (3.84), a simple form of the free en-
ergy function which accounts for the combined effects of mixing, swelling, and finite elastic
stretching is

Wr = Cr.max (u°a+ RY (Elné+ (1—2)In(1 — é)) +x&(1-2) + %ﬂ (c—-¢e)’+ %)\ |Vq‘:12>

4+ (%E‘%C(é)[Eﬂ) |

(3.92)
3.10.2 Stress
Using (3.92) and (3.75) we find that the Mandel stress is given by
M? = 2GE°® + (K — (2/3)G)(trE°)1. (3.93)
Then, using (3.76) we find that the Cauchy stress tensor is given by
T = Jje-! [QGE; + (K - (2/3)G)(trE;)1] , (3.94)
and the Piola stress, Ty = JTF™7, is given by
Tp = J° [2GE; + (K - (2/3)0)(trEg)1] F. (3.95)

def

In (3.94) and (3.95) we have used the notation E¢ = R°ER® for the spatial logarithmic

elastic strain.

3.10.3 Chemical potential

Using (3.78) and (3.92), the chemical potential 4 is given by

—C

A (lEe; oC(e) [Ee]> +Q <%E"’:@(E)[Ee]> .

Crmax \ 2 oe

¢ 1
M=MO+RQ9111(1 ¢ >+x(1—25)+ﬂ(6—@)——§2§trMe

(3.96)
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3.10.4 Microforces. Governing equation for the micromorphic
concentration ¢

From (3.79), (3.80), and (3.92), the microstresses p and & are given by

pP= -/8(6_ @)’

€= \VE. (3:97)

Further, the local microforce balance (3.47), viz. Div€ — p = 0, together with the
constitutive equations (3.97) for p and &, yield

AAE+ B(e—c¢) =0. (3.98)

¢= \/é > 0, (3.99)

which has units of length, equation (3.98) may be written as

Remark. Introducing the quantity

c—-LrAt=c (3.100)

The partial differential equation (3.100), together with (3.99) are identical to the Helmholtz-
type equation (2.9) introduced by Ubachs et al. (2004), but here derived in a thermodynam-
ically consistent manner. Further, as we shall show in Chapter 4, the parameter ¢ defined
in (3.99) does not by itself control the width of the interface between phases. Once a value
of B is chosen such that the micromorphic concentration cy is sufficiently close to ¢, then
the width of the interface between phases at a given temperature depends only on the two
physical parameters A and x in the free energy. d

3.10.5 Species flux

In the expression (3.83) for the species flux, we take the mobility as the following function
of the species concentration,

m{cg) =moce (1 —€), with mo >0 a constant, (3.101)

which represents the physical requirement that the pure phases ¢ = 0 and ¢ = 1 have
vanishing mobility. Thus, using (3.101) in (3.83) we obtain

jr=—(moca (1 —0) Vp, (3.102)
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with p given in (3.96).

Remark. In the absence of mechanical coupling, under isothermal conditions, and in the
case of an ideal solution for which x = 0, and for which we neglect the gradient effects
B = A =0, the gradient of the chemical potential (3.96) is given by

Vu = RY ( Ve, (3.103)

and in this case, using (3.101) and (3.102), the species flux reduces to the classical Fick’s

law

ju=—Do Ver, with Dy & myRo >0, (3.104)

where Dy represents a species diffusivity, and the partial differential equation (3.3) takes the
classical form
¢r = Do Acg. (3.105)

O

3.11 Governing partial differential equations. Bound-
ary conditions

3.11.1 Partial differential equations
The governing partial differential equations consist of:
1. The local macroforce balance (3.32), viz.
DivTy + by =0, (3.106)
where by is the non-inertial body force, and Ty is given by (3.95).

2. The local balance equation for the species concentration (3.33, together with (3.102),
gives

¢g = Div ((cr) V), with  7(cg) = moca (1 —©), me >0,  (3.107)
and with the chemical potential given by (3.96).

3. The local microforce balance (3.47), together with the constitutive equations (3.97),
yields the governing equation for the micromorphic concentration (3.100), viz.

AAE+B(c—¢E)=0. (3.108)
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3.11.2 Boundary and initial conditions

Let S, and S, denote complementary subsurfaces of the boundary 0B of the body B. Then,
as is standard, for a time interval ¢ € [0, T'] we consider a pair of simple boundary conditions
in which the motion is specified on S, and the surface traction on Sgy:

X=X onSXX[O,T],}

; (3.109)
TRHR = tR on StR X [O, T]

Further, letting S, and S;, denote complementary subsurfaces of the boundary, we consider
a pair of simple boundary conditions in which the species concentration is specified on S,
and the species flux on Sj,:

cn =0Cn On Sg X [O,T],} (3.110)

jR'nR=3 On ngR X [O,T].

Next, the presence of microscopic stresses results in an expenditure of power

/ (A(VE) - ng) ¢ dag
8B

where in writing this expenditure we have made use of the constitutive equation (3.97),. This
necessitates a consideration of boundary conditions on 0B involving the term A(VE):ng and
the scalar rate cg.

e We restrict our attention to boundary conditions that result in a null expenditure of
microscopic power in the sense that (A(VE) - ng) ¢z = 0.

Consistent with our assumption of null expenditure of microscopic power, we consider a
boundary condition of the form®

AVE)-n, =0 on 0B x][0,7T)] (3.111)
The initial data is taken as
x(X,0) = x,o(X), cr(X, 0) = cr,0, and cp(X,0)=cpo in B. (3.112)

The coupled set of equations (3.106), (3.107), and (3.108), together with the boundary con-
ditions (3.109), (3.110), (3.111), and the initial conditions (3.112), yield an initial/boundary-
value problem for the motion x (X, t), the species concentration cg(X,t), and the micromor-
phic concentration cr(X,t).

5 From a theoretical point of view it is clear that one may also prescribe a boundary condition of the form
Cr = &g, where &g is a prescribed constant micromorphic concentration on a portion of B where (3.111) is
not prescribed. However, the physical nature of such a boundary condition is unclear, and we thus restrict
ourselves to a boundary condition of the form (3.111).
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Remark. In the standard variational derivation of the Cahn-Hilliard theory, if the func-

tional ¥(¢) in (2.1) is augmented to include a contribution from a surface energy of the
body

(e) = /B Vr (2, VE) dug + /8 i @r () dag, (3.113)

where ¢ (C) is a surface free-energy per unit area of the boundary dB of the body (Cahn,
1977), then the first variation of (3.113) gives the following natural boundary condition,

dpr(C)
de

(AVE) -ng = — on 0B, (3.114)
where ng is the outward unit normal to 0B. Such a boundary condition has been re-
cently considered by Cogswell and Bazant (2013) in their study of phase-separation at sur-
faces of nanoparticles. While surface-energy effects are clearly of substantial importance in
nanometer-sized particles where the surface-to-volume ratio is large, in this study we restrict
our attention to the boundary condition (3.111), and leave a study of the consequences of
using a boundary conditions of the type (3.114) to future work. O

3.12 Numerical Implementation of the theory

Eq. (3.96) for the chemical potential may be written as

M=MO+R191n< ) +x(1—=2¢) + B(c — €) + o, (3.115)

c
1-¢
where we have introduced a “stress potential”,

_Je (1 oC(c)

def 1 e e, e _1_ e. M A\Te
Yo = —QgtrM + 2E . (E ]) + <2E :C(c)E ) , (3.116)

Cr,max
which quantifies the effect of mechanical deformation on the chemical potential. In our
numerical implementation, we restrict attention to materials for which the last two terms on
the right of (3.116) are small compared to the first term, and as an approximation we take
the stress chemical potential to be simply given by®

to = —Q%tr Me. (3.117)

We have implemented our theory in the implicit finite element program Abaqus (2010)
by writing a user element subroutine (UEL). We have implemented three different elements:

6Cf. Sethuraman et al. (2010a) for arguments leading to such an approximation even for silicon, which
can absorb a large amount of lithium, and for which the values of the elastic moduli are significantly affected
when it is fully lithiated.
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(i) a 2D plane-strain 4-node linear isoparametric quadrilateral which we refer to as UPE4;
(ii) a 2D axisymmetric 4-node linear isoparametric quadrilateral which we refer to as UAX4;
and (iii) a 3D 8-node linear isoparametric brick which we refer to as U3D8. The details of
our numerical procedure can be found in Appendix. A.

The degrees of freedom for these elements are the displacement components {u;}, the
normalized concentration ¢, the normalized micromorphic concentration €, and in order to
resolve the stress gradients required to compute the term Vy in (3.102), we treat the stress
chemical potential u, in (3.117) as an additional degree of freedom (cf., Bower and Guduru,
2012).
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Chapter 4

Simulations for the special case of
spinodal decomposition by diffusion in
the absence of mechanical
deformation

In this section we focus on the special case of simulating spinodal decomposition by diffusion
in a body for which deformation is suppressed (a rigid body) and which is also stress free.
Spinodal decomposition is a phase transformation in which an initially homogeneous binary
mixture separates into distinct regions which are characterized by being either rich or poor
in their concentration of a particular component. This results in the creation of interfaces
with sharp concentration gradients which introduce additional energy into the system.

In the absence of any mechanical deformation, the free energy (3.92) may be written in
a “normalized” manner as

PV = U (5lné+ (1-¢)ln(1—¢)+xe(l — E)) + A(1/2)|Vel? +B8(1/2)(c - €)?
RﬂcR,max A" o~ N - ~ 7
chemical :nergy 1/—)!% interfagaj energy penalt; energy
(4.1)

where we have set the reference chemical potential u° = 0, and, fixing the temperature 9,
have defined the following “normalized” quantities *

@

_def X ydef A adef B
X= 25 )‘_Rﬁ’ and ot (4.2)

Here,

'We use the term “normalized” loosely; the quantities X and j are dimensionless, however the gradient
coefficient A has units of length squared.

53
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e The normalized chemical energy, 1[_;%, the first term in (4.1), governs phase separation
and depends only on the local concentration ¢. A plot of the normalized chemical
energy for ¥ = 3 is shown schematically in Fig. 4-1. When the initial concentration ¢
is within the spinodal region ¢ € (,, ) (i.e., regions where %1 /0¢® < 0), the system
can spinodally decompose into multiple phases of equilibrium concentrations ¢, and
¢g, called the binodal concentrations. The system minimizes its energy by changing its
initial concentration distribution and tending towards the equilibrium concentrations.

Pm==—==

o
Q
o
<
Olf-----
O

Cp

Figure 4-1: Typical double-well chemical free energy 1§ based on equation (4.1) for ¥ = 3.

e The second term in (4.1), the interfacial energy, depends on the gradient of the mi-
cromorphic concentration V&, and is scaled by an interfacial energy parameter A with
units of length squared. This energy can be reduced via “coarsening” of the phases, a
process during which the system finds more favorable lower energy configurations by
minimizing the phase interfaces.

e The third term in (4.1) represents an energetic penalty for the micromorphic concen-
tration € being different from the actual concentration ¢. This energy is scaled by a
penalty modulus 3. As f3 is increased, the difference |¢—¢| is reduced, and the solutions
from the present gradient micromorphic concentration theory are expected to converge
towards the solutions to the actual fourth-order Cahn-Hilliard equation (2.7).

The purpose of this section is to understand the effects of the value of the penalty modulus A
on the solutions from our gradient micromorphic concentration theory for spinodal decompo-
sition in two and three dimensions. Specifically, it is important to make an informed decision
as to what the value of the parameter 3 should be in order to obtain solutions which are in
some sense close to those which might be obtained from the actual Cahn-Hilliard theory.
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Accordingly, for all simulations in this section, we fix the value of the parameters ¥ and
A at?
x=3, A=25x10"*um? (4.3)
and study the manner in which the value of 3 affects the numerical solution of a spinodal
decomposition problem. Specifically, we chose to study isolated and periodic systems in
which phase separation is allowed to proceed until a “steady-state” solution for the phase
morphology is attained. From the results of our numerical simulations at steady-state, we

(i) plotted the distribution of the difference ¢ — &, from which we computed the maximum
of the absolute value of the difference of the two quantities, max |¢ — |, and

(ii) also measured the phase interface width d,

and through this quantified the effect of the parameter 3 on max | — &| and d.

In order to measure the width of the interface between the two phases in a consistent
fashion, we chose a specific method for characterizing a phase-interface, which is shown
schematically for a one-dimensional phase-separation situation in Fig. 4-2 (c.f. Wodo and
Ganapathysubramanian, 2011). With respect to this figure, the interface width d is defined
by the intersection of the tangent to the concentration profile at the mean concentration
Cm = |Ca — €|/2 with the binodal concentrations. That is,

a,,,> o (4.4)

We recall from Cahn and Hilliard (1958) that an estimate of the concentration variation
across a phase interface may be obtained as

- 1/2
_ Awg,m&x
- (4%=)" o

where the quantity Ayg ., is schematically shown in Fig. 4-1.3 Combining (4.5) with (4.4)
we have the following important estimate for the width of the interface separating the two

phases,
5 1/2
dest = (Ca — C5) (m—c—“—) : (4.6)
R,max

2We also fix the diffusivity at Dy = 1.0 x 10"¥ m?/sec. For the purpose of the study reported in this
section, the value of the diffusivity Dy acts only to change the time-scale within which a nominal steady-state
in the morphology of phase separation is reached — it has no effect on the actual morphology of the phase
separation. Thus, any reasonable value of Dy would suffice, and is not crucial for the conclusions that we
shall draw from our simulations regarding the value of 3.

3 Here, A does not represent the Laplace operator. For the specific free-energy considered here, Atﬁﬁ,max
is the difference in the value of the chemical free energy at the mean concentration &,, and value of the
chemical free energy at either of the binodal points &, or cg.

dc
d¥ (@, —2) [ —
(@ Cﬁ)(dx

E
dzx

Cm
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Figure 4-2: Schematic of a phase front between binodal concentrations ¢, and ég, and the defi-
nition of the interface width d.

Using the values (4.3) for the material parameters ¥ and A, we obtain the estimate
dest = 40 nm. (4.7)

We use this estimate (4.7) for the interface width to choose an appropriately fine finite-
element mesh so as to get a good resolution of the phase interfaces in our numerical simula-
tions.

4.1 Two-dimensional simulations of phase-separation

The results in the form of contours of ¢ shown in Fig. 4-3, are from a simulation which
was performed on a square domain with an edge length L = 800nm and meshed with
100 x 100 two-dimensional square elements. Each element is of an edge length of 8 nm,
which gave a mesh resolution of dey/8nm = 5 elements across a potential phase interface.
The initial concentration in the domain was given as a random uniform distribution with
a mean of ¢y = 0.63 and a maximum fluctuation of 0.05. The initial distribution &, of the
micromorphic concentration € was taken to be identical to that of the actual concentration
¢. Periodic boundary conditions on ¢ and ¢ were applied on all the boundaries. For the
particular simulation shown in this figure, the penalty modulus is taken as 5 = 1000. Fig. 4-3
illustrates the evolution of phases during spinodal decomposition — from the early stages
of the spinodal decomposition, when the components are well-mixed and the concentration
is nearly homogenous, until a steady-state is reached, at which time two distinct phases are
observed. In this particular simulation, the steady-state morphology consists of a circular
concentration-poor region surrounded by a concentration-rich domain.
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In order to maximize the accuracy of our numerical measurement of the interface width
d, we performed additional simulations with an improved mesh resolution. Specifically, we
considered a square domain with an edge length L = 200 nm which was again meshed with
100 x 100 two-dimensional square elements, so that each element is now of an edge length
2nm. This gives an improved mesh resolution of des;/2 nm = 20 elements across a potential
phase interface. In these simulations, keeping all other parameters constant, we varied

B € [5,10, 25,50, 100, 250, 500, 750, 1000).

In Fig. 4-4 we show contours of the difference ¢ — € at steady-state for various values of
B, using the simulations with refined mesh. In this figure one can clearly observe that as
the value of 3 increases from 5 towards 1000, the difference ¢ — & decreases to a low value
of |- & £ 5 x 107* for 8 = 1000. In Fig. 4-5 we plot the maximum of the absolute value
of the difference, max|¢ — |, for increasing values of 5 on a log-log scale. From this figure
we observe that max|¢ — €| tends to zero as the penalty modulus 3 is increased. Thus, as 8
is increased the solutions from our theory approach those that would be obtained by using
the standard Cahn-Hilliard theory.

As an alternative measure of convergence we measured the interface widths d from the
same simulations shown in Fig. 4-4 for different values of 5. The result is shown in Fig. 4-6 (a);
note that the z-scale in this figure is logarithmic. This figure clearly shows that as the value
of B is increased to a value greater than about 5 ~ 100, the interface-width converges to
a finite value of d &~ 30nm. To emphasize this result, in Fig. 4-6 (b) we plot the variation
of |(ds — dg—1000)/dest| as a function B, on a log-log scale. This plot clearly shows that for
values § > 100 the difference |(dg — dz_1000)/dest| is approximately 1%.

These results show that using a value of B = 1000 the solutions from our theory should
approach the solutions that might be obtained from the standard Cahn-Hilliard theory.

4.2 Three-dimensional simulations of phase-separation

For completeness, we repeat the calculations shown in the previous section, but this time in
three dimensions. The simulation shown in Fig. 4-7 was performed in a cubic domain with
an edge length L = 400 nm and meshed with 50 x 50 x 50 three-dimensional cubic elements,
so that each element is of edge length 8 nm, which gives a mesh resolution of des;/8nm =5
elements across a potential phase interface. The initial concentration in the domain is given
as a random uniform distribution with a mean of ¢ = 0.75 and a maximum fluctuation of
0.05. The initial distribution €, of the micromorphic concentration € is taken to be identical
to that of the actual concentration ¢. As before, periodic boundary conditions on ¢ and € are
applied on all the boundaries. For the particular simulation shown in Fig. 4-7 the penalty
modulus is taken as A = 1000.

In order to illustrate the evolution of phases during spinodal decomposition in three
dimensions, Fig. 4-7 shows iso-surfaces of the normalized concentration ¢ as they evolve
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in time. In this particular simulation, the steady-state morphology consists of a spherical
concentration-poor region surrounded by a concentration-rich domain.

As in the two-dimensional calculations, in order to maximize the accuracy of our numer-
ical measurement of d, we performed additional simulations with an improved mesh resolu-
tion. Specifically we considered a cubic domain with a smaller edge length of L = 200 nm,
which was again meshed with the same number of 50 x 50 x 50 three-dimensional cubic
elements, so that each element is now of edge length 4nm. This gives an improved mesh
resolution of deg;/4 nm = 10 elements across a potential phase interface. As before, keeping
all other parameters constant, we varied 8 € [5, 1000].

Fig. 4-8 shows iso-surfaces of the difference & — & for various values of 3, using the
simulations with refined mesh. As before, in Fig. 4-5 we also show the convergence of
max|¢ — €| for the 3D simulations. Again, as § increases to 8 = 1000, the max|¢ — &
decreases to a value less than approximately 5 x 10~%. The variation of the interface width
d with varying B for the 3D simulations is also shown in Fig. 4-6 and follows the same trend
as the two-dimensional simulations described above.

To conclude this brief study on spinodal decomposition in the absence of mechanical
deformation we note that:

o Our simulations show that as we increase the value of the penalty modulus 3 the value
of max|¢ — €| tends to zero. This indicates that the solutions from our theory based on
the gradient of the microconcentration ¢y will approach those that might be obtained
using the classical Cahn-Hilliard theory which is based on the gradient of cg.*

e The convergence of the values of the interface-width d as the penalty modulus 3 in-
creases gives us a methodology for choosing an appropriately high value of 3. For a
sufficiently large value of 3, the interface width d is controlled solely by the physical
parameters \ and ¥.

e The results from our two- and three-dimensional numerical study show that for the
material parameters chosen, a value of # = 1000 is sufficiently large to provide an
accurately converged solution to the problem of phase-separation.

Having determined an appropriate value for the penalty modulus 83, we next study the
important chemo-mechanically-coupled problem of lithiation of a spheroidal-shaped electrode
particle.

An additional analysis of the convergence of the split-method discussed in this chapter to
the solutions of the classical Cahn-Hilliard theory is given in Appendix A, where we compare
to solutions of the classical Cahn-Hilliard theory obtained using a different split-method, not
involving c¢g. See also the remark at the end of Chapter 2.

4 We also note that the two- and three-dimensional simulations shown here closely resemble those of Wodo
and Ganapathysubramanian (2011) who used an operator-split method to solve the Cahn-Hilliard equation
which does not include the introduction of the micrmorphic concentration &.
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Chapter 5

Coupled chemo-mechanical
simulations of lithiation of a
spheroidal electrode particle

We consider lithiation of a spheroidal particle whose semi-major axis (axis of radial symme-
try) is 0.5 pm, and semi-minor axis is 0.3 um, see Fig. 5-1. The illustrative material properties
used in our simulations are shown in Table 5.1. They represent values for a particle made
from “isotropic” LiFePQy. Using (4.6) and the values of ¥ and A chosen in Table 5.1, we
estimate a potential phase-interface-width of des; = 0.04 um (in the absence of stress), which
is much smaller than the particular particle size chosen for study.!

Our interest in this section is to study the effect of stress through the stress potential
o on lithiation. To vary the magnitude of u, which depends on trM¢ (cf., eq. 3.117), we
shall — keeping the Poisson’s ratio v fixed — vary the value of the Young’s modulus of the
particle, which will in turn change the magnitude of the Mandel stress M® (cf., eq. 3.93).
Thus, introducing a normalized elastic modulus

E=—, (5.1)

where E, is the value of the Young’s modulus given in Table 5.1, we shall vary the value of
E in the range _
EF €10.1,0.2,1],

and study the effect of stress in the particle on lithiation.

! LiFePQy, is an important olivine-type material which is widely-used for the positive electrode in modern
Li-ion batteries. We recognize that actual LiFePOy4 particles currently used in practice are highly anisotropic
nanoparticles, and not isotropic and micron-dimensioned. We leave a study of the important effects of
crystallographic anisotropy and the nano-size of LiFePQy to future work.
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Parameter Value Source | Parameter Value
Ey 124.5 (GPa) a X 3
v 0.25 a A 2.5 x 1074 (um?)
Cmax 2.29 x 10%(mol/m3) b R 103
0 4.05 x 107%(m3/mol) c 9 300 (K)
Dy 1 x 10~ (m? /sec) d

Table 5.1: Material properties used in the simulations. Values for the Young’s modulus F and the
Poisson’s ratio v are the average of the values for FePO,4 and LiFePQy, estimated by Maxisch and
Ceder (2006) for isotropic polycrystalline materials from the anisotropic single-crystal constants.
Sources: a — Maxisch and Ceder (2006), b — Zeng and Bazant (2014), ¢ — Rousse et al. (2003),
d — Malik et al. (2010).

Due to the symmetry of the geometry, we mesh only one quarter of the cross-section

of the spheroidal particle with 3675 four-noded fully-integrated axi-symmetric elements; cf.
Fig. 5-1. The boundary conditions used in our simulations are as follows:

e Mechanical boundary conditions: The nodes along edge AB (radial symmetry) are

constrained to have zero radial displacement, while the nodes along edge BC (mirror
symmetry) are constrained to have zero vertical displacement. Further, the exterior
boundary AC is taken to be traction-free. Also, no body forces are applied.

Chemical boundary conditions: The edges AB and BC are prescribed zero flux
conditions, jr -ng = 0, while on the exterior boundary AC the species flux is controlled
by the boundary condition

(electrode surf.)

Jr e = k(pg; — fext), (5.2)
where {4°°% %) o the chemical potential at the boundary of the electrode particle
— which depends on both the concentration and the stress at the boundary through
(3.96) — and flex; is the externally “applied” electrochemical potential. The quantity

flext, is controlled in our simulations to model lithium insertion (p\S°™% ™) « 5 )

and lithium eztraction (p{S°°*® ™) 5 7.+). The parameter k > 0 is a factor which

characterizes the apparent conductance of the electrode/electrolyte interface to a flux
of Li ions.?

In our simulations we use a value of k = 1. This value was chosen so that the lithiation
of the particles is limited by the diffusion of Li in the bulk of the electrode particle, and

2This boundary condition can also be derived by considering linear electrochemical reaction kinetics at

this boundary, see Sect. 8.13, in which the boundary condition would stem from a suitable linearization of
(8.167).
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not by the conductance of Li across the electrode/electrolyte interface, cf. the remark
below.

¢ Boundary condition for the micromorphic concentration ci: We set
VCR * l’lR - 0

on all boundaries AB, BC, and AC; cf., eq. (3.111),.

Remark. The flux of Li through the surface is controlled by the conductance parameter k
defined in (5.2) above, while the flux of the lithium within the bulk of the electrode particle is
controlled by the mobility parameter m (cf. 3.83). The ratio k/m has units of inverse length,
and with L denoting a characteristic length dimension of the particle, we may — using the
analogy with standard ideas in heat-transfer — define a dimensionless “Biot”-number

Bi & 2= (5.3)

As in heat-transfer, if Bi > 1 then the surface reaction processes offers little resistance
to species transfer, while if Bi < 1 then the surface reaction processes offer substantial
resistance to species transfer while the species concentration within the particle is almost
constant.

In this part of our work we are concerned with circumstances in which Bi > 1, such that
that the surface reaction processes offer little resistance to species transfer. Accordingly, for
our simulations of the lithiation of a spheroidal particle, with m & mgcg max = DoCr max/ RV,
we find that for the values of Dy, g max, and ¥ given in Table 5.1, and a characteristic length
of the particle L = 0.3 um, that a value k¥ = 1mol?/(m? J s) gives B = 3.3 x 10° — a value
which is very much larger than 1. Accordingly, in the simulations reported in Chapter 5 we
use a value of surface conductance k = 1 mol?/(m? J s). O

We have conducted simulations for two different chemical loading conditions:

(a) Slow ramp of fie,: First we consider the case in which fie is ramped linearly from
an initial value fi; to a final value fiy,

Pext = i + (/]f - ﬂ'z)(t/T)’ (54)

over a time T = 30min. We consider this ramp to be slow, since the ramp-time
of T = 30min is much larger than the characteristic time scale for diffusion 7 =
(0.5 um)?/Dy = 255 of Li in the particle. The initial and final electrochemical poten-
tials are chosen based on the chemical potential of the Li in the stress-free electrode
at normalized concentrations of ¢ = 0.005 and ¢ = 0.995:3

wi(¢ = 0.005) = —=5.8kJ/mol, and pus(¢=0.995) = 5.8 kJ/mol. (5.5)

3These values where simply computed using eq. (3.115) with ¢— & =0, and p, = 0.



66

(b) Step change in ficx: In this case fiex is ramped from ji; to jis nearly instantaneously,
and then held constant. Numerically, this was realized by ramping fiey to its final
value in T' = 1sec,* and then maintaining it constant until full lithiation was achieved.

5.1 Lithiation under a slow ramp of fiexs

When the electrochemical potential fiey: is ramped slowly from fi; to fif, bulk diffusion of
Li in the particle is much faster than the rate of increase of the concentration of Li on
the boundary. This leads to a concentration profile inside the particle which is essentially
homogeneous up until the point at which phase-separation initiates at the boundary of the
particle.

A commonly used quantity in the Li-ion battery literature is the state-of-charge (SOC),

def (fsédvﬁ)
SOC = —————UB do) (5.6)

which represents the volume average of the net species concentration in the particle. We use
this average quantity as a measure of the extent of lithiation of the particle.

Fig. 5-2(a) shows the sate-of-charge (SOC) of the particle as a function of time for the
entire simulation span from 0 to 1800s, while Fig. 5-2(b) focuses-in on the time period
1060 < ¢t < 1120s in which a Li-rich and a Li-poor phase co-exist within the particle.
The effect of varying E € [0.1,0.2,1] on the state-of-charge versus time curves is not very
distinguishable in Fig. 5-2(a), but is clearly visible in the time-window shown in Fig. 5-2(b),
when the particle exhibits phase-separation. As E increases, Fig. 5-2(b) shows that the time
taken to lithiate the particle decreases. That is, the increased level of stresses, and hence
i, act to enable faster lithiation of the particle under the particular chemical-boundary
conditions considered here.

The different values of E also result in different distributions of the normalized Li con-
centration ¢, and the maximum principal Cauchy stress o; in the particle. The contour plots
of these quantities at ¢ = 1080s, indicated by a dashed line in Fig. 5-2(b), are shown in
Fig. 5-2(c).

Fig. 5-2(c) (top) shows that at the smallest value of E = 0.1, one obtains a “core-shell”
type of Li distribution in the particle. However, as the value of E increases from 0.1 to
1.0, one no longer obtains a core-shell type of lithium distribution — instead, because of the
spheroidal geometry, a mildly curved “planar front” separates a high-Li concentration region
from the low-Li concentration region. This is an important result because it indicates that
the widely-presumed “core-shell” type of lithiation is not the most energetically favorable
lithium concentration distribution under the conditions of the problem under study. The
contours in Fig. 5-2(c) (top) also show a widening of the interface separating the two phases

4As opposed to 7' = 30mins in case (a).
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as the value of E increases — this is another manifestation of the effect of stress in coupled
diffusion-deformation problems.

The change in the distribution of the lithium concentration with increasing values of E
also has an important effect on the resulting stress distribution in the particle. Fig. 5-2(c)
(bottom) shows contours of the maximum principal stress o;. Note that unlike the situation
for E = 0.1, where the maximum principal stress on the periphery of the particle is compres-
sive, 01 5 —100 MPa, — which is what one expects from a core-shell-like distribution of the
Li-concentration — for the case E = 1.0 there are regions on the periphery of the particle
with values of o1 £ 700 MPa. Since fracture of brittle electrode particles is usually dictated
by large positive values of the maximum principal stress, this result predicts substantially
different potential sites for fracture than are predicted by a theory in which the coupling of
the diffusion and phase-separation with the attendant mechanical swelling is not properly
accounted for.

In Fig. 5-3(a) we plot the externally-applied electrochemical potential fiex; as a function
of SOC, for both Li-insertion and Li-extraction, where the Li-extraction step is simulated
by simply reversing the fiex, ramp to vary from fis to fi;. To make contact with the manner
in which these results are typically presented in the literature, in Fig. 5-3(b) we plot the
interfacial voltage V' versus SOC, where

c_lgf 0 Hext
V=V 7 (5.7)
Here, V? = 3.42volts denotes the reference open-circuit voltage of an LiFePO,-electrode
versus a reference Li-metal electrode (c.f. Bai et al., 2011), F is the Faraday constant, and
V is the potential difference between the LiFePOy-electrode and the electrolyte. This figure
clearly shows the signature plateau in the experimentally-observed voltage versus SOC curves
for Li-ion batteries with LiFePO, cathodes (cf. Fig. 7 in Tarascon and Armand, 2001b).

The barely discernible multiple lines in the plateau regions of Fig. 5-3 correspond to
different values of E; there is essentially no effect of varying £ on the curves shown in this
figure. This is a result of the fact that we have prescribed the externally-applied electro-
chemical potential fiexs, and thus can not discern the effects of stress by simply looking at
plots of fiexs versus SOC.

5.2 Lithiation under a step change in [iext

Next we consider the case in which fie is quickly ramped from fi; to fif in 1 second, and
then held constant until full lithiation of the particle has been achieved. Fig. 5-4(a) shows
the SOC of the particle as a function of time for different values of E. Note first that in
contrast to the results in the previous subsection for the slow ramp, for the step change
boundary condition phase-separations occur nearly instantaneously for all values of E. The
SOC versus time curves show different rise-times for different values of E. Consistent with
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the results of the simulations in the previous subsection, we observe that an increase E
results in faster lithiation of the particle.

Fig. 5-4 (b) shows contours of the normalized concentration ¢ (top), and of the maximum
principal stress o; (bottom). These contours correspond to a time of ¢ = 3s, which is
indicated by a dashed line in Fig. 5-4(b). In contrast to the previous simulations, the
contours of ¢ show that in all of the simulations, regardless of the magnitude of E, the
particles lithiate with a “core-shell” type of phase distribution. Such a phase distribution is
a direct result of the fast “step”-change of the electrochemical potential on the boundary.
Since [iex;, is ramped to fif in 1s, this amount of time is much shorter than the time for
diffusion of 7 = 25s of Li in the particle; there is not enough time for two phases to form
and stably co-exist on the surface of the particle, and the result is a core-shell type of phase
distribution in the particle. Consistent with the simulations shown previously in Fig. 5-2, an
increase in £ for the present boundary condition also results in a widening of the interface
separating the two phases. The maximum tensile values of the maximum principal Cauchy

stress occur in the interior of the particle during lithiation — it reaches a high value of
o1 = 1.2GPa for £ = 1.
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Figure 5-1: Spheroid geometry and finite-element mesh used in computation. Due to the symme-
try of the problem, only a quarter of the cross-section of the spheroid is meshed with axisymmetric
elements.
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Figure 5-2: Simulations with varying Young’s modulus under an applied slow ramp of the
external electrochemical potential. (a) State of charge (SOC) vs. time for the entire lithiation
simulation. (b) SOC vs. time focused around the time at which phase-separation occurs. (c)
Contours at t = 1080 sec of normalized concentration ¢ (top), and of the maximum principal stress
o1 (bottom), for three varying values of the normalized modulus E = E/Ej.
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Figure 5-3: (a) Applied electrochemical potential vs. state of charge. (b) Applied voltage vs. state
of charge. (V" = 3.42V is the standard potential against Li metal, and F is Faraday’s constant)
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Figure 5-4: Simulations with varying Young’s modulus under an applied step of the external
electrochemical potential. (a) State of charge vs. time. (b) Contours at t = 3sec of normalized
concentration ¢ (top), and of maximum principal stress o7 (bottom), for three varying values of the
normalized modulus E = E/Ej.



Chapter 6

Concluding remarks

We have formulated a thermodynamically-consistent theory which couples Cahn-Hilliard-
type species diffusion with large elastic deformations of a body. In contrast to the traditional
Cahn-Hilliard theory which is based on ¢y and Vcg, our theory is based on cr, another
scalar cg, and its gradient Vcg. For the diffusion-only problem which is uncoupled from
mechanics, instead of a partial differential equation (pde) for the concentration cy which
involves fourth-order spatial derivatives, one then obtains two coupled second-order pdes
for ¢y and ci. These two pdes, when taken together with the pde representing the balance
of forces, represent the three governing pdes for the chemo-mechanically-coupled problem.
These equations are amenable to finite element solution methods, which employ standard
C°-continuous finite element basis functions. '

The general constitutive theory is specialized for isotropic materials, and within the
isotropic idealization the constitutive equations are further specialized to model the chemo-
mechanically-coupled problem of diffusion of Li in phase-separating electrode materials for
Li-ion batteries.

The specialized theory has been implemented in the widely-used finite-element package
Abaqus (2010) by writing custom user-element subroutines (UELs). This numerical simula-
tion capability is used to study aspects of (a) the diffusion-only problem of spinodal decompo-
sition, and (b) the chemo-mechanically-coupled problem of lithiation of a spheroidal-shaped
particle of a representative cathode material.

Much remains to be done to extend the theory and the numerical simulation capability
to model actual electrode materials. Many cathode and anode materials currently used in
Li-ion batteries are highly anisotropic and used as particles with nano-metric dimensions
— they are not isotropic and micron-dimensioned. Our general chemo-mechanically-coupled
phase-field theory is amenable to be specialized to account for such anisotropies, but we leave
such specializations and a study of the important effects of crystallographic anisotropy and
the nanometric size of modern electrode particles to future work. Also of major importance
for future study is the role of the many different types of boundary conditions which are
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encountered in the operation of actual Li-ion batteries. For nanometer-sized particles in
which the surface-to-volume ratio is large, there is also a need to properly formulate and
study the effects of boundary conditions which account for possibly-important surface energy
effects.



Part 11

Modeling amorphous Silicon
electrodes
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Chapter 7

Introduction

The development of Li-ion batteries with improved capacity, life, safety, and cost, is of ma-
jor importance for a wide range of industries — from large-scale stationary energy storage
systems in renewable energy plants, to portable power systems for sustainable electric vehi-
cles. In an attempt to increase capacity, researchers have proposed the use of lithium-metal
alloys, e.g. lithium-silicon and lithium-tin alloys, or a combination of lithium-metal alloys
and graphite, as potential anode materials since they possess a higher capacity for Li than
the current-generation graphite anodes (cf., e.g., Li et al., 1999; Tarascon and Armand,
2001a; Scrosati and Garche, 2010). For example, when fully lithiated to Li;5Sis, a silicon
anode can theoretically achieve a specific capacity of ~ 3.5 Ah/g, which compares with only
0.37 Ah/g for the current-generation graphite anodes. However, the intercalation of such a
large amount of Li into the silicon induces very large elastic-plastic deformations — with
volume changes of approximately of ~ 300% (Obrovac and Krause, 2007). The two major
mechanisms by which the large deformations of the anode negatively affect its performance
are:

e Fracture of the anode particles. The large stresses that develop in the anode due to
inhomogeneous volume changes associated with large gradients of Li-ions in the anode
can lead to fracture of an anode particle. The formation and propagation of cracks in
turn lead to degradation of the performance of the battery, and significantly limit its
lifetime.

o Failure of the solid electrolyte interface (SEI). During operation of a Li-ion battery, a
passivating film, known as the solid electrolyte interface (SEI), forms on the surface
of the anode. Due to the large volumetric changes associated with the lithiation of Si
anodes, the SEI is placed under large tensile stresses, which in turn cause it to fail.
Repeated failure and growth of the SEI leads to capacity fade of the battery.

In order to develop a successful Si-based anode, both the problems mentioned above need
to be addressed. Fracture of anode particles has been successfully mitigated through the

7
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use of nano- and micro-dimensioned particles. When the anode is composed of crystalline
silicon (c-Si), nano-dimensioned materials have been successfully lithiated without fracture,
even though lithiation in these materials occurs by a two-phase mechanism where pure c¢-Si
reacts with Li, forming a heavily lithiated amorphous Li,Si phase (often Li;5Si4) behind a
propagating phase front (cf., e.g., Ryu et al., 2011; Liu et al., 2012b). More recently, it has
been found that the lithiation behavior of amorphous Si (a-Si) is substantially different from
that of c¢-Si. Indeed, a-Si nanoparticles have been observed to be quite robust to fracture
during cycling (He et al., 2011; McDowell et al., 2012), and Berla et al. (2014) have recently
shown that a-Si is resistant to fracture even at the micron scale (~ 2um). In this thesis,
we focus on modeling the response of amorphous Silicon (a-Si) as an anode material. For
brevity, henceforth we often simply write Si rather than a-Si.

In order to mitigate failure of the SEI due to the large volume changes associated with
lithiating Si anodes, various research groups have proposed the use of novel “engineered”
anodes which restrict the deformation incurred by the SEI during cyclic lithiation. One
such engineered anode, developed by Wu et al. (2012), consists of an ensemble of hollow Si
nanotubes whose exterior surfaces have been oxidized to form silicon-dioxide. The electrolyte
contacts the anode only at the silicon-dioxide surface, and thus the SEI grows only on the
exterior of the nanotube and is not in contact with the Si. The relatively stiff silicon-
dioxide shell acts as a mechanical constraint layer which prevents the outward expansion of
the nanotube, and thus effectively restricts the deformation which is incurred by the SEI.
However, the presence of the silicon-dioxide constraining layer leads to the generation of very
large stresses during cyclic lithiation, forcing the Si anode to deform plastically towards the
inside of the hollow nanotube. The elastic-plastic deformation of the Si anode, resulting from
the mechanical constraint imposed by the silicon-dioxide layer, will have a significant effect
on the electrochemical performance of the anode, which at present is largely unexplored, and
is the focus of this thesis. We expect, as noted by Sethuraman et al. (2010b), that plasticity
will play a role both in determining the energy dissipated during cycling of the anode as well
as in determining the realizable capacity of the anode.

Recently, Zhao et al. (2011), Bower et al. (2011), and Anand (2012) have proposed
theories which couple large elastic-plastic deformations with large volumetric swelling due
to diffusion of lithium. Further, substantial progress has been made recently by Bucci et al.
(2014) to calibrate the theory of Bower et al. (2011) to results from their experiments in which
a half-cell based on an a-Si thin film deposited on a quartz substrate is electrochemically
cycled while the curvature of the substrate is simultaneously measured; cf. also Pharr et al.
(2014). However, to the best of our knowledge, such theories have not been used to determine
how the elastic-plastic deformation of a-Si affects the electrochemical performance of anodes

with more complex geometries such as those of the oxidized hollow a-Si nanotubes of Wu
et al. (2012).1

We note that Zhao et al. (2012) have previously studied the generation of stresses in spherical and cylin-
drical hollow core-shell nanostructures. However, in their study they used various simplifying assumptions —
e.g., rigid-perfectly-plastic material, no effect of concentration on the material properties, plane-strain condi-
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Accordingly, the purpose of this thesis is to report on our theory and finite-element-
based numerical simulation method for modeling geometrically complex a-Si anodes of the
type studied by Wu et al. (2012). We have applied our simulation capability to quantifying
how the elastic-plastic deformation deformation of engineered silicon anodes affects their
electrochemical performance.

This Part of the thesis is structured as follows. In Chapter 8 we develop a thermo-
dynamically consistent framework for coupling species diffusion with large elastic-plastic
deformations. First, in Sections 8.1 through 8.8 we develop a reasonably general theoreti-
cal framework. In Section 8.10 we specialize our general framework, which is summarized in
Section 8.11, and in Section 8.12 we further summarize the governing partial differential equa-
tions and the boundary conditions for our theory. Finally, in Section 8.14 we briefly discuss
the numerical implementation of our theory. The theory was numerically implemented by
writing user-element subroutines for the commercial finite element program Abaqus (2010).

In Chapter 9, in order to estimate the material parameters in our theory which are not
directly available in the literature, we calibrate the material parameters of our theory to
results from substrate curvature experiments available in the recent literature (Pharr et al.,
2014; Bucci et al., 2014).

In Chapter 10 we apply our fully calibrated theory to modeling the hollow double-walled
amorphous Silicon nanotube anodes of Wu et al. (2012). Beyond comparing our simulation
predictions to the results from their experiments, we investigate the importance of plastic-
ity on the electrochemical behavior of such anodes. We finish in Chapter 11 with some
concluding remarks.

tions, uniform concentration, etc. Further, they made no attempt to model the voltage versus state-of-charge
response of the system, and compare model predictions against experimental results.
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Chapter 8

Diffusion-deformation theory for
amorphous silicon anodes

In order to model the experimentally-observed chemo-mechanical response of a-Si (e.g., Pharr
et al., 2014; Bucci et al., 2014), the theory summarized below accounts for:

(i) large elastic-plastic deformations using finite deformation kinematics;

(ii) variation of the elastic moduli with varying lithium content;
(iii) dependence of the yield strength on lithium content; and
(iv) rate-sensitive plastic response.

We are interested in studying amorphous Si. Hence, from the onset, we will assume that
the deformation incurred by the body due to intercalation is isotropic, this will be made
mathematically precise in the sections to follow. Further, we note that we restrict ourselves
to isothermal conditions.

Notation: = We use standard notation of modern continuum mechanics (Gurtin et al.,
2010). Specifically: V and Div denote the gradient and divergence with respect to the
material point X in the reference configuration; grad and div denote these operators with
respect to the point x = x (X, t) in the deformed body; a superposed dot denotes the material
time-derivative. Throughout, we write F¢~1 = (F¢)~1, Fe=7 = (F¢)~7, etc. We write tr A,
sym A, skw A, Ay, and sym,A respectively, for the trace, symmetric, skew, deviatoric, and
symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and B is
denoted by A:B, and the magnitude of A by |A| = VA:A.
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8.1 Kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a
fixed reference configuration, and denote by X an arbitrary material point of B. A motion
of B is then a smooth one-to-one mapping x = x(X,t) with deformation gradient, velocity,
and velocity gradient given by

F =V, V=X, L = gradv = FFL. (8.1)
We base the theory on a multiplicative decomposition of the deformation gradient
F = F°FPF?, with F° = \°1, AP > 0. (8.2)
Here, suppressing the argument ¢:

(i) F5(X) represents the local distortion of the material neighborhood of X due to a
volumetric swelling (de-swelling) due to insertion (extraction) of lithium, with A* the
swelling stretch;

(ii) FP(X) represents the local irreversible plastic deformation of the swollen neighborhood
of X caused by inelastic mechanisms such as the motion of dislocations in crystalline
materials or shear transformations of atomic clusters in amorphous materials; and

(i) F¢(X) represents the subsequent stretching and rotation of this coherent swollen and
plastically deformed material neighborhood, and thereby represents a corresponding
elastic distortion.

We refer to F*, FP, and F¢ as the swelling, plastic, and elastic distortions, respectively.

We write
def

J =detF >0, (8.3)
and hence, using (8.2),
J=JJgPJs,  where J EdetFe>0 S EGetFP>0, and J° ®detF >0,
so that F¢, F? and F* are invertible. Note that from (8.2), (54
J* = ()3, (8.5)
The right and left polar decompositions of F¢ are given by
F°¢ = R°U® = V°R®, (8.6)

where Re is a rotation, while U¢ and V¢ are symmetric, positive-definite right and left stretch

tensors with
U¢ = vFeTFe and V¢ = VFeFeT, (8.7)



83

Also, the right elastic Cauchy-Green deformation tensor is given by
Ct = U = FF°. (8.8)
Next, by (8.1)3 and (8.2), and noting that F* is spherical in form,
L=L+F (17 + L) F, (8.9)
with _ _ _
L¢ = FeFe !, L? = FPFP!, L® = F°Fs L. (8.10)

As is standard, we define the elastic, plastic and swelling stretching and spin tensors
through
D¢ = symL®, We = skw Le,

DP = symL?, WP = gkw L?, (8.11)
D? = symL?, W? = skw L*,

so that L = D¢ + W¢, L? = D? + W?, and L* = D®* + W?,
Further from (8.2), (8.10)3, and (8.11)3

D*= (X1 and W°'=0. (8.12)
Also, since _
J? = JtrD?, ‘ (8.13)
we have 1
D® = 5((]'8.13-1)1, (8.14)

and, since L* = D?*, we have

F° = D°F°. (8.15)
Next, we make two basic kinematical assumptions concerning plastic flow:

(i) First, we make the standard assumption that plastic flow is incompressible, so that
JP=detFP =1 and trL? =trD? =0. (8.16)

Hence, using (8.4)
J=JJ?. (8.17)

(ii) Second, from the outset we constrain the theory by limiting our discussion to cir-
cumstances under which the material may be idealized as isotropic. For isotropic
elastic-viscoplastic theories utilizing the multiplicative decomposition of F, it is widely
assumed that the plastic flow is irrotational, in the sense that

WP = 0. (8.18)
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Then, L? = DP and '
F? = DPF?. (8.19)

Further, on account of (8.12) and (8.18), (8.9) reduces to
L=L¢+F(D’+D*)F. (8.20)

For later use we introduce a positive-valued variable € called the equivalent tensile plastic
strain, which we assume evolves according to the differential equation?

& = +/2/3|DP| subject to the initial condition &’ (X,0) = 0. (8.21)
Then, whenever |DP| # 0,

Dr )
NP = I—D—pl, with trNP =0, (8.22)

defines the plastic flow direction, and therefore

DP = /3/2&NP. (8.23)

8.2 Frame-indifference

A change in frame, at each fixed time t, is a transformation — defined by a rotation Q(t)
and a spatial point y(¢) — which transforms spatial points x to spatial points

x* = F(x), (8.24)
=y(t) +Qt)(x-o), (8.25)

with o a fixed spatial origin. The function JF represents a rigid mapping of the observed
space into itself.

By (8.25) the transformation law for the motion x = x(X, t) has the form
X'(X, 1) = y(t) + Q) (x(X, ) — o). (8.26)
Hence the deformation gradient F transforms according to
F* = QF. (8.27)

Since frame changes only involve the observed space, the reference space and the local
intermediate spaces (which are the ranges of F#(X) and FPF*(X)) are independent of the

1This is a slight abuse in notation in the sense that € is not the material time derivative of &, but is
defined to be /2/3 times the norm of DP.
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choice of a change in frame. Thus

F° and F? are invariant under a change in frame.

This observation, (8.2), and (8.27) yield the transformation law
Fe* = QF°.
Also, using (8.10) and (8.28),
D? and D? are invariant,
and, by (8.10);, L&* = QL¢Q" + QQ", and hence
D = QDQ, W = QW*Q + QQ.

Further, by (8.6),
QFC — QRCUE — QVCQTQRC,

and we may conclude from the uniqueness of the polar decomposition that

R** = QR®, Ve = QVeQ’, U® is invariant.
In addition, on account of the definition (8.8) and (8.32)s,

C¢ is also invariant.

8.3 Balance of forces and moments

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

Throughout, we denote by P an arbitrary part (subregion) of the reference body B, with ng

the outward unit normal on the boundary 0P of P.

Since time scales associated with species diffusion are usually considerably longer than

those associated with wave propagation, we neglect all inertial effects.
considerations of balance of forces and moments, when expressed referentially, give:

Then, standard

(a) There exists a stress tensor Tj, called the Piola stress, such that the surface traction

on an element of the surface OP of P, is given by

tR(nR) = TRnR_.

(b) Tg satisfies the macroscopic force balance

DivTg + bg =0,

(8.34)

(8.35)
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where by is an external body force per unit reference volume, which, consistent with
neglect of inertial effects, is taken to be time-independent.

(c) Tg obeys the the symmetry condition
T.F = FT7, (8.36)

which represents a balance of moments.

Further, under a change in frame, Ty transforms as
T; = QT%. (8.37)

Finally, as is standard, the Piola stress Ty is related to the standard symmetric Cauchy
stress T in the deformed body by
To=JTF, (8.38)

so that
T=J'T.F. (8.39)

On account of (8.27) and (8.37) the transformation rule for the Cauchy stress T under a
change in frame is

T = QTQ". (8.40)

8.4 Balance law for the diffusing species

Let cg(X,t) denote the molar concentration of lithium per unit reference volume, and let
¢(X,t) = J'cg denote the molar concentration of lithium per unit deformed volume. Changes
in ¢ in a part P; are brought about by the diffusion of lithium across its boundary 0P;. The
diffusion is characterized by a flux j(X, t), the number of moles of lithium measured per unit
area per unit time of the deformed body. Thus the rate of change of lithium in P; is given

by .
/ cdv=—/ j-nda (8.41)
Py P,

for every part P;. In bringing the time derivative in (8.41) inside the integral, we must
account for the fact that the intergal is taken over the deformed body, which may be changing
with time. Using the fact that dv = Jdvg, and ¢ = Jcg, we may manipulate the left hand
side of (8.41) to bring the time derivative inside the integral as follows

/ cdv=/(cJ) dvR:/(c'T)dvﬁ (Z]-)J"ldvz/ én JV dv. (8.42)
Pt P P Pt Pt
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and hence (8.41), using (8.42) may be written as

/ éRJ‘ldvz—/ j-nda. (8.43)
Py oP:

Using the divergence theorem on the integral over dP;, we find that

(énJ ™! + divj) dv = 0. (8.44)
Pt

Since P is arbitrary, this leads to the following local balance law for cg,
¢g = —Jdivj. (8.45)

For later use, we define a flux jr per unit are per unit time in the reference body. Mass balance
(8.45) may then also be expressed in terms of the referential divergence of the referential
flux as

¢r = —Divjg. (8.46)

8.5 Balance of energy. Entropy imbalance. Free en-
ergy imbalance

Our discussion of thermodynamics involves the following fields:

€r  the internal energy density per unit reference volume,
ns  the entropy density per unit reference volume,

qr the heat flux per unit reference area,

gz the external heat supply per unit reference volume,

¥  the absolute temperature (¢4 > 0),

the chemical potential,

and follows the discussion of (Gurtin et al., 2010, § 64). Consider a material region P.
Then, consistent with our omission of inertial effects, we neglect kinetic energy, and take the
balance law for energy as

/ERdUR = - qR-anaR+/quUR+/ (TRnR)'XdaR+/bR'XdUR_/ HjR'anaR,
P oP P P P ap

(8.47)
where the last term in (8.47) represents the flux of energy carried into P by the flux jr of
lithium.
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Also, the second law takes the form of an entropy imbalance

/PnR dvg > —/aP qu‘gnR dag + /P -%RdvR. (8.48)

Assume now that isothermal conditions prevail, so that

¥ = constant,
and introduce the Helmholtz free energy per unit reference volume defined by
Yr = €r — . (8.49)

Then, upon multiplying the entropy imbalance (8.48) by ¢} and subtracting the result from
the energy balance (8.47) yields the free energy imbalance

/@bn dvg < / (Tang) - x dag + /bR - x dvg — / Ujr - Drdag. (8.50)
P P P P

We henceforth restrict attention to isothermal processes and for that reason base the theory
on the free energy imbalance (8.50).

Applying the divergence theorem to the terms in (8.50) involving integrals over the bound-
ary 0P of P, we obtain

/(z/;n — (DivTs + bg) - X — T : F + uDivin + jr - w) dvg < 0, (8.51)
P

which upon use of the balance laws (8.35) and (8.46), and using the fact that (8.51) must
hold for all parts P, gives the local form of the free energy imbalance as

¢R_TR:F_NéR+jR'VNSO- (8.52)

Next, using (8.2), (8.10)23, (8.17) and (8.38), we find that the stress-power Tr: F admits
the decomposition

Ty:F = J°|(JFITFT): (FF®) 4 (CeJ°FITF*7): LP + (CeJeFe‘lTFe‘T):LS].
(8.53)

In view of (8.53), we introduce two new stress measures:

e The elastic second Piola stress,
e def rerme—1 e—T
T¢ = JF*'TF* ', (8.54)

which is symmetric on account of the symmetry of the Cauchy stress T.
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e The Mandel stress,
Me & cere, (8.55)

which in general is not symmetric.
Note that on account of the transformation rule (8.29) for F¢, and the transformation
rule (8.40), the elastic second Piola stress and the Mandel stress are invariant under a change

in frame,
T =T° and M = M®. (8.56)

Further, since the rate of change of elastic right Cauchy-Green tensor C¢ is
C® = FF° + FFe, (8.57)
the stress-power (8.53) may be written as
Ty F= %(J“’Te): Ce + J*Me:LP + J°M°®: L°. (8.58)
Next, recalling (8.12),, (8.14), (8.16) and (8.18), we may write the stress-power (8.58) as
Ty F = %(JSTC): Ce + J°MS: DP + %(trMe)Js. (8.59)
Hence, using (8.59) in (8.52), the local free energy imbalance may be written as

Y — E(JsTe):Ce - §(trMe)Js — pép — J°MG:DP +jr - Vi < 0. (8.60)

8.6 Constitutive constraint between J° and c,

We assume that

J* = J*(ca), (8.61)
with .
of AJ°
Q) & 4L (8.62)
deg

so that changes in J*® arise entirely due to the change in species content. The quantity
Q(cg) > 0 represents a partial molar volume. We may then also write

J® = Qéx. (8.63)

Using (8.63) we can rewrite the swell stretching (8.14) as

D® = %QJs“léR 1. (8.64)
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Using (8.63), the free energy imbalance (8.60) becomes
U = 5 (I T): C° = iy by = M5 DP + - Vi <0, (8.65)

where we have written

1
)u’net q:e':f ,LI, + Q —g(trMe) (866)

for an net chemical potential.
We note that under a change in frame

Yr, Cr, W4, jr, and Vyu are invariant, (8.67)

Y, Cr, and u because they are scalars, and j and Vu since they are referential vector fields.
Also, recalling (8.33) and (8.56), we have that '

C¢, T¢, and M*® are invariant under a change in frame. (8.68)

Thus with the invariance properties discussed above, all quantities in the free energy imbal-
ance (8.65) are invariant under a change in frame.

8.7 Constitutive theory

8.7.1 Energetic constitutive equations

Guided by the free-energy imbalance (8.65) we first consider the following set of constitutive
equations for the free energy s, the stress T¢, and the net chemical potential p,.:

Yr = JJR(CQ, Cr),
T = (O ), (3.69)
,u’net = [j’net(ce> CR)‘

Substituting the constitutive equations (8.69) into the free-energy imbalance (8.65), we
find that it may then be written as

9 (C°, cx)
G

_ . b (Ce
- %(JSTe)) LG4 (M _ ﬁnet)cﬁ — JMS:DP +jr - Vi < 0. (8.70)
Ocx

This inequality is to hold for all values of C® and cg. Since C¢ and ¢ appear linearly, their
“coefficients” must vanish, for otherwise C° and ¢z may be chosen to violate (8.70). We are
therefore led to the thermodynamic restriction that the free energy determines the stress T®
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and the chemical potential u through the “state relations”

Te = Js—l (28¢R(C ) CR) ) ,
00(C ;905 1 (8.71)
A L VR o Y e
m= 8CR Q 3(trM )1
and we are left with the following reduced dissipation inequality
JPM§:DP —jo -V >0. (8.72)

8.7.2 Dissipative constitutive equations

Recall the quantity € defined in (8.21). We use it as a scalar hardening variable to account
for the strain-hardening characteristics typically observed during plastic deformation. Since
€P is a scalar field it is invariant under a change in frame.

It is important to note that in the dissipation inequality (8.72) the quantity M§: D is
the plastic dissipation per unit volume of the local intermediate space mapped by F*F?, and
multiplying this term by J° gives the plastic dissipation per unit volume of the reference
space. Thus, guided by (8.72), and experience with existing plasticity theories, we assume
that the plastic stretching is given in terms of the stress deviator M§, as well as the equivalent
tensile plastic strain & and the species content cg:

D? = DP(MS, &, cz). (8.73)

To the constitutive equation (8.73), we append a Fick-type relation for the flux of the
diffusing species, 5
j=—Mgrady, where M = M(C? cg,¢e") (8.74)

is a mobility tensor. The constitutive equation (8.74) may be expressed in the reference body
as

jr =—(JCTHMVp. (8.75)

Remark. The constitutive equation (8.74) for the species flux differs from (3.62) used in
Part I. In Part I, it was the referential species flux, jr, which was taken to be given by a
mobility times the negative of the referential gradient of the chemical potential (—Vy). We
believe that (8.74) is the more appropriate form for the species flux for large deformations of
continually isotropic materials. However, we note that (3.62) in Part I is more appropriate for
instances in which the microstructure affects the manner in which diffusion occurs within a
body. In such instances, a referential description of the species flux is important in accounting
for how the transport and rotation of the microstructure will affect diffusion. O
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Using (8.73), (8.75), (8.21) and (8.22), the dissipation inequality (8.72) may be written

as
J*\/3/2(Mg: NPY& + V- (JCTIM)Vu > 0. (8.76)
Henceforth, we define
5 & \/3/2(ME: NP) (8.77)

as the equivalent tensile stress, so that (8.76) may be written as
J* & + V- (JCTTM)Vu > 0. (8.78)

Recalling that J* > 0 and J > 0, we assume that each of the two terms in (8.78)
individually satisfy

ge >0 for & >0, (8.79)
V- (CTIM)Vp > 0. (8.80)

In this case, we note from (8.80) that the tensor C~'M is positive semi-definite.

Finally, note that on account of the transformation rules listed in the paragraph con-
taining (8.67) and (8.68), the constitutive equations (8.69), (8.73), and (8.74) are frame-
indifferent.

8.8 Isotropy

As mentioned previously, we have restricted our attention to isotropic materials. In this case,
() the response functions Ur, T, i, and DP must also each be 1sotropic.

(1) the mobility tensor has the representation
M(C®, cr, &) = (Tce, ca, @)1, with m(Lce,cr, &) > 0 (8.81)
a scalar mobility, and with
Toe = (B(C?), B(C*), I4(C9))

the list of principal invariants of C¢.

8.8.1 Isotropic free energy

An immediate consequence of the isotropy of the free energy is that the free energy function
has the representation

'QZR(CE,CR) = JJR(ICG,CR)- (8.82)
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Thus, from (8.71);, it follows that
2 aT;(ICe, CR) )
oCe ’

and that T is an isotropic function of C¢. Then since the Mandel stress is defined by (cf.
(8.55))

Te = JH( (8.83)

Me = CeTe,

we find that T¢ and C¢ commute,
C°T® = TeC°, (8.84)

and hence that the Mandel stress M¢ is symmetric.

Next, the spectral representation of C¢ is
3
Co=) wiri®rf,  with  wf =X (8.85)
i=1

where (r$,r§,r§) are the orthonormal eigenvectors of C® and U®, and (Af, A\§, A5) are the
positive eigenvalues of U¢®.

Let s
EEnUc =Y Efrer (8.86)
i=1

denote the logarithmic elastic strain with principal values
Ee % mxe, (8.87)
and consider an elastic free energy function of the form
Ya(Zee, ca) = Yn(Ef, B3, E5, ca)- (8.88)

Then, straightforward calculations show that the Mandel stress is giVen by

3

op(Es, Eg, ES
M= J Yy il o 5 ) r; @ rf. (8.89)

i=1

With the logarithmic elastic strain defined by (8.86), and bearing (8.88) and (8.89), for
isotropic elastic materials we henceforth consider a free energy of the form

Ve (ES, ES, B, cr) = U (Tae, cg) (8.90)



94

with Zge a list of principal invariants of E¢, or equivalently a list of principal values of E¢.
The Mandel stress is then given by

M® = Jo! (————W“(GIE:’C“)> : (8.91)

and the corresponding Cauchy stress is

T = J*'R°M°R"". (8.92)

8.8.2 Plastic flow rule for isotropic materials

Recall the constitutive equation (8.73) along with (8.23) for the plastic stretching DP?,
D? = DP(MS, @, i) = /3/2&(ME, &, cx) NP(MS, 2, cy,). (8.93)

Guided by (8.76), we henceforth adopt the classical codirectionality hypothesis, which
asserts that the direction of plastic flow NP is parallel to and points in the same direction as
Mg, e
_ Mo

IM§|

NP

(8.94)

Further, note that on account of the isotropy of D, the equivalent tensile plastic strain rate
function é(M®, &, cg) is also isotropic, and has the representation

& =

(‘h.é- <

(IM?), gp, CR) Z 0, (895)

where Ty is the list of principal invariants of Mg.
A further consequence of (8.94) is that from the definition (8.77) for the equivalent tensile

stress we have
g =+/3/2(M§:NP) = 1/3/2|M§|. (8.96)
Further, in accordance with prior experience, we henceforth neglect any dependence on
det Mg in the expression (8.95) for viscoplastic flow. Then, using (8.77) and (8.94), the
plastic stretching D? in (8.93) may be written as
3. M¢

DP = S&— with & =&(5,&,cx) > 0. (8.97)
g




95

8.9 Summary of the constitutive theory

Our theory relates the following basic fields:

x = x(X,t),
F=Vx, J=detF >0,
F = FFPF>,

Fs= X1, J°=(\)3>0,

F?, JP =detFP =1,

Fe, Je=detFe >0,

Fe = ReUe = VeRe’

Ce = FeTFe = Ue2,

U= T, Mr e,

Ve=33_ Xele ®1g, where ¢, = Rerg,
Ee =37 (InAg)rg®rs,

Ez ¥ RERT =33 (lnx)E®L,
T="T,

Me = JeR"TRe,

TR = JTF_T,

1/)R7

CRa

C,
i,
jRa
Js
8.9.1 Constitutive equations

1. Swelling ratio J*

motion;

deformation gradient;
multiplicative decomposition of F;
swelling distortion;

plastic distortion;

elastic distortion;

polar decompositions of F¢;
elastic right Cauchy-Green tensor;
spectral decomposition of U¢,
spectral decomposition of V¢;
logarithmic elastic strain;

spatial logarithmic elastic strain;
Cauchy stress;

Mandel stress;

Piola stress;

free energy density per unit reference volume;,
molar concentration per unit
reference volume;

molar concentration per unit volume
in the deformed body;

chemical potential;

referential species flux vector;
spatial species flux vector.

The swelling ratio J¢ is related to the species concentration through a constitutive

relation

where

Q(CR)

represents a partial molar volume.

J* = J%(ca),

def djs(cR)

(8.98)

>0 (8.99)
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. Free energy

'lpﬂ = "[’R(IE% CR)) (8.100)

where ZTge represents a list of the principal invariants of the elastic strain Ee.

. Mandel stress. Cauchy stress

The Mandel stress is given by

Me = J*! <%%_@> , (8.101)

which, on account of the isotropy of v is symmetric. The equivalent tensile stress is
defined by

5 ¥ \/(3/2) M. (8.102)
The Cauchy stress is related to the Mandel stress by

T % J=1 (R°M*R). (8.103)

. Chemical potential

The quantity R
_ O (Tge,cr)
H Jcy

represents the chemical potential, with © he partial molar volume of lithium.

- Q(ca)é(trMe), (8.104)

. Evolution equation for F*

The evolution equation for F* is

F°=D°F°, (8.105)
with D?® given by .
D® = §QJS-lc'Rl. (8.106)
. Evolution equation for F?
The evolution equation for F? is
F? = DPF?, (8.107)
where DP is given by
D? = ¢’ (3M§/25), (8.108)

and €? is given by a constitutive equation

& =

(f\”g >

(5,€,cr) > 0. (8.109)
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Here .
2(X,t) = / 2(X,¢)de with  @(X,0) =0, (8.110)
0

is the equivalent tensile plastic strain.

7. Species flux
The spatial species flux j is presumed to obey
j= —mgradp, (8.111)
which yields a referential species flux
jr = —m(JC) Y, | (8.112)

with M(Zge, cg, €) > 0 the mobility of the diffusing species.

The evolution equations for F* and F?” need to be accompanied by initial conditions.
Typical initial conditions presume that the body is initially (at time t = 0, say) in a pristine
state in the sense that

F(X,0) =F*(X,0) =FP(X,0) =1, (8.113)

so that by F = FeFPF* we also have F¢(X,0) = 1.

8.10 Specialization of the constitutive equations

The theory presented thus far is quite general. We now introduce special constitutive equa-
tions aimed at modeling a-Si anodes. The specialized choices are based largely on the exper-
imental observations of Pharr et al. (2014) and Bucci et al. (2014), which will be discussed
in detail in Chapter 9, when the theory is calibrated.

8.10.1 Swelling ratio J°
For the constitutive equation (8.98) we assume that J° varies linearly with cg,
JS = 1 + Q(CR - CR,O)) (8.114)

with a constant partial molar volume £ > 0, and with cgo the concentration of Li when
J® = 1. cnyp is often taken as the initial concentration with the assumption that J° =1 is
the initial condition for the volume ratio swelling distortion.
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8.10.2 Free energy
We consider a separable free energy of the form
Yn(Te, Cr) = Y5 (ca) + ¥ (Tie , Ca). (8.115)

Here:

(i) 4¢ is the change in chemical free energy due to mixing/intercalation of the lithium ions
with the host electrode. It is taken to be given by

7
Y = R Cpmax (élné+ (1-2¢ln(1— 5)) + Crmax ) _ G - &) (8.116)
n=2
where w C
e:ecR , 0<e<l, (8.117)
R,max

is a normalized lithium ion concentration, with cg max the concentration of lithium in
moles per unit reference volume when all the intercalation sites are filled. In (8.116),
R is the gas constant, 9 is the absolute temperature, and the polynomial dependence
S G, E™, in which a, are fitting coefficients, is motivated by the recent paper by
Bucci et al. (2014).

(i1) 9¢ is the contribution to the change in the free energy due to the elastic deformation
of the host electrode material, taken to be given by

P = J* (%Eech;(a)[Ee]) . Ce Y2601+ (k(a) — %é(a)) 1®1, (8.118)

where @(E) is a concentration dependent elasticity tensor, with I and 1 the fourth- and
second-order identity tensors, and the parameters

G@ >0, K@ >0, (8.119)

are the concentration-dependent shear modulus and bulk modulus, respectively. The
term?

1 A
EEe : C(¢)[Ef]
in (8.118) is a measure of the free energy per unit volume of the local intermediate

space defined by the range of FPF*(X), and multiplication of this term by J* gives us
the free energy per unit volume of the reference space.

2 This is a simple generalization of the classical strain energy function of infinitesimal isotropic elasticity
to finite strains using the logarithmic elastic strain (Anand, 1979, 1986), and concentration-dependent elastic
moduli.
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Thus, using (8.116) and (8.118) in (8.115), a simple form of the free energy function
which accounts for the combined effects of mixing, swelling, and finite elastic stretching is

7
Yn = 1 cn + RV Crma (éln5+ (1—2)In(1 — a)) + Crmax O an - &)

n=2

v (3B C0rE),

with
E(0) & 2631 + (k(a) _ %é(a)) 191

the elasticity tensor, and J* = 1+ Q(cax — ¢cry).

8.10.3 Stress. Chemical potential

Using (8.120) and (8.101) we find that the Mandel stress is given by
M® = 2G(2)E* + (K(C) — (2/3)G(2))(tr E®)1.
Then, using (8.103) we find that the Cauchy stress tensor is given by3
T = Je-! (2(‘:(5)E§, + (K(ca) — (2/3)@“(5))(trEg)1).

Hence the Piola stress, Ty = JTF™, is given by

n=J° (2@(5)515, + (K@) - (2/3)@(5))(trE;)1)F-T.

In (8.123) and (8.124) we have used the notation
E{ =InV*

for the logarithmic elastic strain in the deformed body.

(8.120)

(8.121)

(8.122)

(8.123)

(8.124)

(8.125)

3Cf. Qi et al. (2010) and Shenoy et al. (2010) for a first-principles calculation of the variation of elas-
tic constants of silicon and graphite with increasing Li content. Their calculations show that graphite is

substantially stiffened by lithium, while silicon is substantially softened.
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Also, using (8.104) and (8.120), the chemical potential y is given by

c
/,L——R191n<fyl_é)

1 . 560 (8.126)
_ : ey 1ge. e | _ 1we. e
(Qg(trM )= <2E : S 2[E ]) Q (2E :©(ca)[E ])) .
where in writing (8.126) we have defined an “activity coefficient” v by
7
RIIn(y) = an-n-c"". (8.127)
=2

8.10.4 Species flux

In the expression (8.111) for the species flux, we take mobility as the following function of
the species concentration

m(cg) = moc (1 — ), with  mp > 0, (8.128)
which represents the physical requirement that the pure phases ¢ = 0 and & = 1 have

vanishing mobility. Further,

Do ¥ moR0 > 0 (8.129)

denotes the diffusivity of the chemical species.
Then, using (8.128) in (8.111) we obtain

Jj=—moc(l —¢)grad u (8.130)

with p given in (8.126).

8.10.5 Plastic flow rate &

Next, we consider the flow function (8.109) which specifies the equivalent tensile plastic
strain rate. We introduce two positive-valued scalar resistances Y and Y, with dimensions
of stress. We assume that Y, is a constant, while

Y =Y(©)

depends on the species concentration €. The resistance Y accounts for strain hardening/soft-
ening characteristics of the material. Then, as a simple specific expression for €, we choose
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a the following power-law form

0 if 7<%,

5_v\™ 8.131
e'0<°YY) if 7>V, (8.131)

&

For non-zero plastic strain rate, (8.131) may be inverted to give the following strength
relation,
N e\ 1/m .
=YY@ +Y. (?) when & > 0. (8.132)
0

Here ¢ is reference tensile plastic strain rate, and m is a measure of the strain-rate sensitivity
of the material.

In order to model the experimentally-observed concentration-dependent change in the
yield strength of a-Si, we adopt the following specific form for Y (),

Y (€) = Yeas + (Yo — Yeas) exp (—_3) : (8.133)

Cx

with {Yo, Yzat, G} three positive-valued material parameters. This function produces a simple
exponential softening response from an initial value Yj to a lower saturation value Yo < Yo,
with ¢, controlling the rate of decay. Further, as a special value for Y, in the rate-dependent
response (8.146), we take

Y, = Y (8.134)
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8.11 Summary of the specialized constitutive theory

Our specialized theory relates the following basic fields:

x =x(X, 1) motion;

F=Vx deformation gradient;

F = F°FPF*¢ multiplicative decomposition of F;

Fs FP, F¢ swelling, plastic, and elastic distortions;

Fe¢ = R°U*® polar decompositions of F*;

Ue=32_ dreere spectral decomposition of U¢;

E¢ =32 (InXe)r, ®ré logarithmic elastic strain;

E§; = R°E°R®T spatial logarithmic elastic strain;

T=T" Cauchy stress;

Me¢ = J*R¢"TR*® Mandel stress;

Cr molar concentration per unit reference volume;

Cr,max maximum molar concentration per unit reference volume;
€ = cn/Crmax € [0, 1] normalized concentration;

c=J e molar concentration per unit volume in the deformed body;
M chemical potential;

spatial species flux vector.

Qie

8.11.1 Constitutive equations
1. Kinematics. Multiplicative decomposition of the deformation gradient,
F = F°FPF?, (8.135)
with
J =detF >0, J¢ =detF° > 0, JP = detF?P =1, J? =detF® > 0. (8.136)
2. Swelling distortion. Based on the isotropy of a-Si, we take the swelling distortion F*
to be spherical and to depend on the Li concentration,
F* = (J°)Y%1, with J®=1+Q(ck — cro), (8.137)

where () is a constant partial molar volume of the intercalating Li in the body, and cg o
is the initial concentration of Li.
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3. Free energy. The free energy per unit reference volume is taken as

7
1 A
Yr = RYCq max (Elné +(1-¢&In(1 — 5)) + Coumax P O - € 4 J° <§E5 : C(E)[Ee]) :

n=2 ~ s

- 7

-~
-~ -
chemical energy elastic energy

(8.138)
Here, R is the gas constant, v} is the constant absolute temperature, and the polynomial
dependence 2;2 an - ™ in the chemical free energy, in which a,, are fitting coefficients,
is motivated by the recent paper Bucci et al. (2014). Further,

C(©) =2G@I+ (K@) — (2/3)G(@))N ®1, (8.139)

is a concentration-dependent elasticity tensor, with G(€) and K (€) concentration-dependent
shear and bulk moduli, respectively.

4. Stress. The Mandel and Cauchy stress tensors are respectively given by,

Me = o1 0¥ _ 2G(2)E® + (1‘{(5) - %é(a)) (trE®)1,  and

OEe
0 (8.140)
T = J*'R*M°R = J¢! <2G(E)E§ + (f{(a) - §é(e)) (trEg)1> .
5. Chemical Potential. The chemical potential of the Li in the anode is given by,
_ Oy 1 .
M= 8CR - QgtrM
¢ 1 Jo (1, dC(@) 1,
— —_ = € R [t s Ee - e: Ee
RY1n (71_5> QgtrM + p— (2E e EF ) +Q 2E C(c)[E?]
(8.141)

where, following Bucci et al. (2014), we have defined an “activity coefficient” «y by

7
Réln(y) = Z ap - m - 27D, (8.142)

n=2

The polynomial coefficients a,, are determined by fitting to experimental or numerical
simulations of the open-circuit potential of Si during lithiation. Such a fit was performed
by Bucci et al. (2014) for a-Si; we use their fitting coefficients in this paper.
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6. Evolution equation for F?. The plastic distortion evolves according to

. . [ 3M¢ .
F? = DPF?,  with DP=¢ (3 °> , @20 FP(X,0)=1, (8.143)

25 -7

where o
7= \/3/2|Mg| (8.144)
defines an equivalent tensile stress, and € denotes an equivalent tensile plastic strain rate.

We introduce a positive-valued, stress-dimensioned, and concentration-dependent yield
strength Y'(¢) > 0, and assume that a no-flow condition,

=0 if <Y, (8.145)

holds. During plastic flow, € > 0, the equivalent tensile stress is taken to be equal to a
rate-dependent flow strength, '

R @ 1/m
g=Y(@)+Y. (g) , (8.146)
where Y, > 0 is a positive-valued, stress-dimensioned constant, ¢, is a reference tensile
plastic strain rate, and m is a measure of the strain-rate sensititivy of the material.
Equations (8.145) and (8.146) may be combined to give the equivalent tensile plastic
strain rate as,

0 if a<Y(e),

e={ (o-v@\" .. (8.147)
€o <-_17*_> if &>Y(o.

In order to model the experimentally-observed concentration-dependent change in the
yield strength of a-Si, we adopt the following specific form for Y'(¢),

V(€)= Yo + (¥ — Ya) exp (—_3) , (8.148)

Cx

with {Yp, Yeat, G} three positive-valued material parameters. This function produces a
simple exponential softening response from an initial value Yj to a lower saturation value
Yeat < Yo, with &, controlling the rate of decay. Further, as a special value for Y, in the
rate-dependent response (8.146), we take

Y, =Y. (8.149)
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7. Species flux. The spatial fluz j, of the intercalating Li is taken to depend on the spatial
gradient grad u, of the chemical potential:

D
j=-mgrady, with m= -R—;c(l —&) >0 the mobility. (8.150)

Here, Dy is a constant diffusion coefficient.

8.12 Governing partial differential equations. Bound-
ary and initial conditions
The governing partial differential equations consist of:

1. The local force balance
divT + b =0, (8.151)

where the Cauchy stress T is given by (8.140), and b is the non-inertial body force.
2. The local balance for the species concentration
¢ = —J divj, (8.152)
with the flux j given by (8.150).

With S, and &; denoting complementary subsurfaces of the boundary 0B, of the deformed
body B;, as boundary conditions we consider a pair of simple boundary conditions in which
the displacement u = x — X is specified on S, and the surface traction on Sy:

u=1u on Sux(O,T),} (8.159)

Tn=%t on & x(0,7).

With S, and Sj another pair of complementary subsurfaces of the boundary 0B;, we also
consider boundary conditions in which the chemical potential is specified on S, and the
spatial species flux on S;

p=j onS,x(0,7T),
. g (8.154)
jrn=37 on&;x(0,T).
The initial data is taken as
u(X,0)=0, and p(X,0)=pu(X) in B. (8.155)

The coupled set of equations (8.151) and (8.152), together with (8.153), (8.154) and (8.155)
yield an initial/boundary-value problem for the displacement u(X,¢) and the chemical po-
tential u(X,t).
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8.13 Electrode/electrolyte interfacial reaction kinetics.
Butler-Volmer equation

ELECTROCHEMICAL POTENTIAL: The electrochemical potential of the ith charged species
in a chemical reaction is defined as

i € i+ 2 F 4y, (8.156)

where y; is its chemical potential, z; is its valence, F' is Faraday’s constant,* and ¢; is the
electric potential in phase I in which the charged species is found.®

Consider an electrode containing some Li submerged in a bath of an electrolyte containing
Li* ions. We make the following assumptions regarding this system:

e The electrode material is considered insoluble in the electrolyte.

e We assume that within the electrode there are more than enough electrons to combine
with the Li ions, so that lithium in the electrode exists as a neutral species.

o We consider the electrical conductivity of the electrode to be large, and the diffusion
of Lit through the electrolyte to be fast.

e We denote the electric potential in the electrode by ¢, and the electric potential in the
electrolyte by ¢. Further, we assume that both of these electric potentials are uniform,
and variations in the electric potential occur only at the electrode/electrolyte interface.

Consider now the following electrochemical reaction at the surface of the electrode,

Li(electmde surf.) —» Li+ (electrolyte) + e—(electrode surf.), (8157)
and let Joctrode surf lectrol lectrod

5 ctr ; - tr ~ tro f.

piejectrodesurt) - plelectrolyte) - ang lelectrode surk), (8.158)

respectively, denote the the electrochemical potentials of the Li atoms on the surface of the
electrode, Li ions in the electrolyte, and the electrons on the surface of the electrode.

Remark. Henceforth, for brevity, we will omit the superscripts used in (8.157) and (8.158)
to denote the location of each species. Thus, for the ensuing discussion, the neutral Li as well
as the electrons should always be considered as being on the the surface of the electrode, while
the Li* ions should always be considered as being in the electrolyte. Hence, the subscript
denoting the species type is also an indicator of its location. O

4The Faraday constant is the magnitude of electric charge per mole of electrons. It has a value
9.64853399(24) x 104 C mol~!.

SHenceforth we distinguish the electrochemical potential with an overset tilde, fi, while the chemical
potential, x, will not have an overset tilde.
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Let the difference between the electrochemical potentials of the reactant and products in
(8.157) divided by Faraday’s constant be denoted by

1/. . ~
n % = (i = (s + i) ). (8.159)

This represents a “driving force” for the chemical reaction (8.157) in the sense that:

e If n > 0, then lithium is favored to be expelled form the electrode into the electrolyte
— Li is oxidized to form Li*.

e Ifp < 0, then lithium is favored to be intercalated form the electrolyte into the electrode
— Li* is reduced to form Li.

e And, the condition n = 0 represents the condition for equilibrium of the reaction in
equation (8.157).

The electrochemical potentials in (8.159) may be further expressed in terms of their
chemical potentials and electric potentials as

ALi = ML,
Pri+ = b+ + Fo, (8.160)
ﬁe' = He— — F¢ey

where in writing (8.160) we have made use of the fact that Li atoms in the electrode are a
neutral species, that the Li ions are positively charged (valance of +1), and that the electrons
are negatively charged (valance of —1). Further note that the electric potential acting on
the Li ions is that of the electrolyte, ¢, and the electric potential acting on the electrons is
that of the electrode, ¢°.

Next, consistent with our earlier assumptions, we assume further that the activities of
the Li* ions in the electrolyte and the electrons e~ in the electrode have a value of unity® —
that is the electrolyte and the electrode may be treated as infinite reservoirs which supply
Li* ions and electrons e~ to the chemical reaction at the surface of the electrode particle.
Then, the electrochemical potentials (8.160) may be written as

pLi = ,U'?A + /}Li(a Mea 19)’
fi+ = s+ + Fo, (8.161)
p/e_ = ,Ug— —Fd)e’

6The chemical potential of a species is usually written as

pi = g + R In(ay),

where a; represents the activity of the species, and p{ represents the reference value when a; = 1.
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where the reference potentials uf;, “g# and ,ug- are constants, and where we have recalled
that the chemical potential of the Li at the surface of the electrode is a function of the
concentration, the Mandel stress, and the temperature, (c.f. eq. 8.141). Using (8.161) we
may write the quantity n defined (8.159) as

_ (M) (g + pg- — ps)
n F F

+ Ag, (8.162)

where
Dp = (g° - 9), (8.163)

represents the voltage drop across the electrode/electroyte interface.

Equilibrium: At equilibrium 1 = 0. Thus, using (8.162), we may define an equilibrium
interfacial voltage as
,&Li(éa Me)'&)

Ae= ;- )
¢q ‘/0 F

(8.164)

where 0 o o
Vo d:e‘f (:U'Lﬁ- + ﬂe— - MLi)
F
In the absence of stresses, (8.164) represents the standard Nernst equation for the system
under consideration.

Using (8.164), we may rewrite (8.162) as

= constant. (8.165)

n= A¢ - A¢eq- (8166)

The quantity n is commonly referred to as the overpotential, since — as is clear from
(8.166) — it represents the electric potential above (or below) an equilibrium value required
to drive the chemical reaction.

Deviation from equilibrium: When the overpotential 7 # 0, the chemical reaction (8.157)
takes place, and there is a resulting current I. The current I per unit area is a function of
the overpotential 7, and is widely taken to be given by the phenomenological Butler-Volmer
equation (cf., e.g., Newman and Thomas-Alyea, 2010; Bazant, 2013),

1=t (o (- 2) - (1 122)). e

Here, I is a concentration-dependent exchange current, given by
Iy = Fko(1 — )&=, (8.168)

0 < a < 1is a symmetry factor which biases the reaction, and kg is a rate constant which is
typically determined experimentally. In our simulations we assume o = 0.5, in which case
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(8.167) may be inverted to yield

R
n:};@ﬂ*(&%),WM1Q=F%U—WM@W. (8.169)
0

Remark. In writing the (8.168), we have made an assumption that the exchange current
Iy depend only on the concentration in a fashion that is consistent with an ideal solid
solution (cf. Bazant, 2013). Due to the fact that the chemical potential uy; depends also
on the mechanical deformation through the Mandel stress, we expect that Iy should also
depend on the mechanical deformation through the Mandel stress. We neglect any such
dependence here. Hence, our interfacial reaction kinetics, as given by the Butler-Volmer
equation (8.167), depend on the Mandel stress only through the overpotential n. We leave
a detailed investigation of the effect of stress on the exchange current I, for a future work.

d

Equilibrium potential. Cell voltage: Let

def

A(ﬁcnt = ¢cnt - ¢a

define the voltage drop at the counter-electrode/electrolyte interface in the cell, where ¢
is the electric potential of the counter-electrode which is a constant. Then, we define an
equilibrium potential for the cell through

UL Adpeq — Acat. (8.170)
Then, using (8.170) and (8.164), we obtain that

.aLi (Ev Me, 19)

7,  where Vo 2 V¥ — Agens = constant. (8.171)

U=V, -

Thus, the parameter V, depends on the counter-electrode used. It is a Li foil in all the
experiments considered in this part of the thesis.
Finally, the cell voltage is defined as the voltage drop between the electrode and the
counter electrode
V f_i;({f d’e _ ¢cnt
= (¢°— ¢) — (¢ — ¢) = AP — Adpens,

where in writting (8.172) we have made use of the assumption that the electrolyte electric
potential ¢ is constant through the electrolyte. Using (8.166), (8.169), and (8.171) the cell

(8.172)
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voltage may be written as
V=U+n

_y o Pu@EMe9) RO 11 (8.173)
=W 7 +2 fa sinh 5T )

Flux boundary condition: As discussed in (8.154),, at a point on the surface of the
deformed body we may prescribe a flux boundary condition, j - n = 5. The prescribed flux
j is related to an applied current I per unit area at that point by

j=-I/F. (8.174)

For such an applied flux boundary condition, we may then use (8.173) to compute the voltage
V corresponding the applied current per unit area I.

Remark. When a battery is cycled under constant current conditions, that is galvanostatic
conditions, it is the total current
Itotal = / I dav
8B,

which is constant across the electrode, while the current density I may not be uniform
across the electrode even though the Voltage V might be. In a finite-element simulation of
an arbitrary shaped-electrode which has been discretized to have m elements on the exterior
boundary of the body, one must prescribe an integral constraint of the form

m m
foa =3 [ =Y [ -Fjde (8.175)
k=1 v OB¢ k=1 Y 98¢

where ji represents the flux to be prescribed on the desired surface of the k-th element.
However, in the simulations considered in this part of the thesis the diffusion is essentially
one-dimensional in nature, there is a single element on the surface of our simulation domains,
and the simple eq. (8.174) applies. a

8.14 Numerical implementation of the theory

We have implemented our coupled diffusion-deformation theory described in Sect. 8.11 by
writing a user-element subroutine (UEL) for Abaqus (2010), for a 2D axisymmetric 4-node
linear isoparametric quadrilateral element. The details of our numerical procedure can be
found in Appendix. C.

We note that in our numerical implementation we have ignored the last two terms in
(8.141) for the chemical potential. These terms are quadratic in the elastic strains, and
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expected to be smaller in magnitude than the other terms in (8.141). Cf. Sethuraman et al.
(2010Db) for arguments leading to such an approximation even for silicon, which can absorb

a large amount of lithium, and for which the values of the elastic moduli are significantly
affected when it is fully lithiated.
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Chapter 9

Calibration of the material
parameters in the theory

The purpose of this Chapter is to report on the calibration of the material parameters in
our theory. The calibrated values are summarized in Table 9.1 at the end of this Section.
A majority of the material properties necessary to characterize our constitutive theory are
available in the literature. For the rest, we discuss in detail the procedures that we have
used to estimate the values from published experimental data, primarily from the substrate-
curvature experiments reported by Pharr et al. (2014).

9.1 Chemical properties

e The z in Li,Si represents the stoichiometric amount of Li in the compound Li,Si. We
assume here that Si may be fully lithiated to the compound Li;5Sig4, so that 2. = 3.75.
Note that z is related to the normalized concentration ¢ by £ = TmaxC.

e With pg; = 7.874-10* mol/m3 the molar density of Si (Mohr et al., 2008), the maximum
molar concentration of Li in Si is then given by cg max = 3.75 ps; = 0.295 - 10° mol/ m3.

e The maximum volumetric swelling of Si has been measured by Obrovac and Krause
(2007) as Qlcrmax = 2.625, and hence the partial molar volume of Li in Si is =
8.89 - 107% m3/mol.

e The diffusivity Dy of Li in Si has been measured by Ding et al. (2009) to be Dy =
10~ m?2 /sec.

e Finally, the coefficients used by Bucci et al. (2014) to fit the activity coefficient (8.142)
are az/F = 0.8735V, a3/F = 0.7185V, ay/F = —4.504V, as/F = 6.876V, as/F =

113
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~4.6272V, and a7/ F = 1.1744 V, where F' = 9.6485-10* C/mol is the Faraday constant.
The reference potential is Vy = 0.88V

9.2 Elastic properties

With _
z TmaxC

a = = —
r+1 zmaxC+1
denoting the atomic fraction of Li atoms, the variation of the Young’s modulus F, and the

Poisson’s ratio v, with Li concentration is taken to obey a simple rule-of-mixtures proposed
by Sethuraman et al. (2012),

(9.1)

E=aE;+(1—-a)Es, and v=avy+(1—a)vs, (9.2)

where (Ep;, vr;) are the elastic properties of pure Li, and (Fg;, vs;) are the elastic properties
of pure Si. Although the mixture rule (9.2) is linear with respect to the atom fraction
a, see Fig. 9-1(a), it produces a non-linear result with respect to either the stoichiometric
coefficient x or the normalized concentration ¢ = /Zmax, as shown in Fig. 9-1(b). The elastic
moduli (E, v) are converted to (G, K) by using the standard relations G = E/(2(1+v)) and
K =E/(3(1 - 2v)).

9.3 Plastic Properties. Reaction Constant

The remaining material properties that need to be calibrated are the plastic properties
{Y%, Ysat, C«, €0, m} in equations (8.147) and (8.148), as well as the reaction constant kg in the
expression (8.169), for the exchange current Iy. Pharr et al. (2014) and Bucci et al. (2014)
have recently reported on their novel experiments in which a half-cell based on an a-Si thin-
film anode deposited on a quartz substrate is galvanostatically cycled against a Li electrode,
while the curvature of the substrate is simultaneously monitored. We have calibrated the
plastic properties and the reaction constant by conducting finite-element simulations of the
substrate curvature experiments and adjusting these material parameters so that pertinent
numerical results match those which were measured experimentally by Pharr et al. (2014).
In the experiments of Pharr et al. (2014), a 100nm amorphous silicon film was deposited
on a quartz substrate and first lithiated/delithiated galvanostatically against a Li-electrode
in a half cell at a C-rate of 1/8 for one cycle. During the second cycle the lithiation rate was
varied in order to induce different strain rates in the silicon film to probe the rate sensitivity
of plastic flow of a-Si. During their experiment a substrate-curvature measuring technique
was used to estimate the nominal stress in the a-Si film by using the classical Stoney formula
(Stoney, 1909)
1 E, R
61—, En’

On

(9.3)
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where k is the experimentally-measured curvature of the substrate, F; and v, are the Young’s
modulus and Poisson’s ratio of the substrate, and hs; and h; are the thicknesses of the
substrate and the film layers, respectively.

As noted by Pharr et al. (2014), in their experiments there is loss of Li to the formation of
SEI on the silicon anode. Thus, what is experimentally controlled during their galvanostatic
experiments is the total flux of lithium into the system, jiot, and not the flux of lithium,
Jjsi into the silicon anode; a portion jsgr of the total flux in the system is consumed in the
formation of the SEI. Thus,

Jsi = Jtot — JSEI- (9.4)
In our simulations we prescribe the flux of lithium into the silicon js;. Thus, in order to
compare our simulations to the experimental results of Pharr et al. (2014), we need to
estimate jsgr. Following recent models of SEI formation (cf. e.g. Smith et al., 2011b; Pinson
and Bazant, 2013), and based on our previous paper on modeling SEI growth, Rejovitzky
et al. (2014), we assume that the rate of loss of Lithium is inversely proportional to the
square-root of time?

jSEI = B/\/Ev (95)
where B is a proportionality constant. Thus, combining (9.5) with (9.4), we obtain

Jsi = et — B/ VL. (9.6)

The total flux ji,; depends on the charging rate and is determined by the experimental
conditions. From the experiment results of Pharr et al. (2014) we have estimated that?

B =1.3364 - 107 mol/(m?sec'/?).

For later use we introduce the quantity

A 375 [t
Tiot = 15 / Jtot d7'> (9-7)
1]

V cR,max

which represents a normalized measure of the total amount of Li going into the system; here
A and V are the initial area and volume of the a-Si anode respectively.

The simulation domain used to numerically represent the substrate curvature experiments
of Pharr et al. (2014) is shown in Fig. 9-2. In order to minimize computational effort, we
have only considered a small section of an axisymmetric plate adjacent to the axis of radial

'Bucci et al. (2014) have accounted for Li lost to SEI formation in a similar manner; however, they
accounted for the flux of Li lost to SEI formation using a model which also depends on the applied voltage.
Here, for simplicity, and since modeling SEI formation is not the main objective of this paper, we simply
model loss of Li to SEI formation through (9.6).

2Specifically, from their voltage versus SOC plot, we estimate the difference in concentration at 1V before
and after the first cycle, and based on the experimental C-rate, determine how much Li was lost in one full
cycle.
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symmetry as the simulation domain, and meshed it with a single column of elements.® The
silicon layer was meshed with 20 user-elements whose constitutive behavior is described by
the coupled diffusion-deformation theory summarized in Sect. 8.11. The glass layer is meshed
with 20 built-in Abaqus elements whose constitute behavior is taken to be linear elastic with
a Young’s modulus of F; = 72 GPa and Poissons ratio v, = 0.165.

The boundary/initial conditions used for the substrate-curvature simulations are as fol-
lows:

e Mechanical boundary conditions: With respect to Fig. 9-2(b), consistent with
radial symmetry, the nodes along edge AB are constrained to have zero radial dis-
placement. All nodes along the edge CD are constrained to remain on a straight line
as defined by the nodes at points C and D. The line formed by these nodes is free
to move and rotate, and it is from the rotation of this line with respect to its initial
vertical position that we compute the simulated curvature of the plate. Finally, the
node at point B is constrained to have zero vertical displacement to prevent any rigid
body motions.

e Flux boundary conditions: With respect to Fig. 9-2(b), on the nodes along edge
AC we prescribe the flux of lithium according to (9.6). As in the experiment of Pharr
et al. (2014), the total flux jio is set to correspond to a C-rate of 1/8 for the first full
cycle. During the second cycle, the C-Rate was set to 1/8 for 1h followed by a number
of segments with different C-rates. The time of each segment was chosen such that the
total flux into the system during each segment was equal. Specifically, C-rate jumps
from 1/8 to

C-rate € [1/2,1/4,1/16,1/32,1/64,1/128], (9.8)

were considered.

The results from our material parameter calibration procedure are shown in Figs. 9-3
and 9-4. Fig. 9-3(a) compares the simulated nominal stress (solid line) as a function of
the total lithium content z, against the corresponding experimental measurement (dashed
line) (Pharr et al., 2014). The simulation captures the experimentally-observed behavior
relatively well. In obtaining this fit the material parameters

ép=23-10"1/sec and m =2.94,

for the material rate-sensitivity were taken directly from Pharr et al. (2014), and only the
the parameters

{YE), Yéata E*}
in (8.148) were adjusted to fit the data.

3In the experiments of Pharr et al. (2014), there is also a 15nm layer of Ti and a 300nm layer of Cu
between the glass substrate and the silicon film. Since these layers are relatively stiff, and much thinner than
the glass substrate, we do not include them in our finite element model.
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Fig. 9-3(b) shows the simulated voltage V' (solid line) versus the total lithium content
Ttot, against the corresponding experimental measurement (dashed line) (Pharr et al., 2014).
Note that in the simulation shown in Fig. 9-3(b) we maintained a C-rate equal to 1/8;
accordingly we have cropped the experimental data before the start of the C-rate jumps.
The simulated voltage was computed using equation (8.173) by appropriately adjusting the
parameter ko in the expression (8.169), for the exchange current I,. We adjusted ko so that
the total dissipation of energy in one full cycle (i.e. the area inside the curves encompassed
by the second and third half-cycles) in the simulation was approximately equal to that in
the experiment.

With respect to the comparisons shown in Fig. 9-3, we make the following observations:

e In Fig. 9-3(a), the onset of plasticity, followed by plastic softening, occurs earlier in
the simulation than in the experiment. This is likely due to the fact that we have
underestimated the amount of Li lost to SEI formation in the early stages of lithiation.

e The functional form (8.148) for the variation of the yield strength with species concen-
tration in the simulation captures the experimentally-observed plastic softening with
increasing concentration, relatively well. During delithiation, the model as well as the
experiments predict an increase in flow resistance due to a decrease in the concentration
of lithium.

e The simulated elastic unloading after the first half-cycle matches well with the corre-
sponding experimental results. This suggests that the mixing rule (9.2), combined with
the elastic constants listed in Table 9.1, are well suited to characterizing the variation
in elastic properties with changing Li concentration.

e As shown in Fig. 9-3(b), the simulation, using the reaction kinetics described in
Sect. 8.13, gives a fairly good approximation of the experimentally-measured voltage
VErSUS Tiot IeSponse.

Finally, Figs. 9-4(b) and (c) compare the simulated and experimentally-measured stress-
jumps due to changes in C-rate. Note that the axes in the two figures are identical in order to
provide an accurate visual comparison of the stress increments and decrements with changes
in C-rate. The simple power-law strain-rate-sensitivity for the a-Si in the theory produces
stress-jumps which are comparable to those measured experimentally by Pharr et al. (2014).

The final list of calibrated values for a-Si is summarized in Table 9.1. Note that only the
three material parameters {Yp, Ysas, G} for the rate-independent part of the plastic deforma-
tion resistance, and the reaction kinetics parameter ky for the exchange current have been
fitted in this work; all the other parameters have been obtained from values published in the
literature. With all the material parameters in the theory fixed to the values shown in this
Table, in the next Section we apply our numerical simulation capability to model the hollow
double-walled Silicon anodes developed by Wu et al. (2012).
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Table 9.1: Material properties for our fully-coupled elastic-plastic deformation-diffusion model for
amorphous Silicon anodes

Parameter Value Source
Dy 10716 m?/sec Ding et al. (2009)
Chemmical Qcr max 2.625 Obrovac and Krause (2007)
emica. 4 3
. . 106 3 psi = 7.874-10% mol/m® from
Cr,max = 3.75 * ps; 0.295 - 10° mol/m Mohr et al. (2008)
[ p 0.8735,07185, 4504, (010
,03,04, 05,06, & ucci et al.
42,03, 44, G5, 86, AT T 6 876, —4.6272,1.1744] V “
Easi 80 GPa
Elastic Va-Si 0.22 Sethuraman et al. (2012)
‘ Ey; 4.91GPa
VL 0.36
. . . _3
Plastlcd €o 2.3-107%1/sec Pharr et al. (2014)
Rate-Dependent m 2.04
Plastic Yo L6 GPa
Rate-Independent Yius 0.4GPa, Fitted to Pharr et al. (2014)
Cx 0.04
Reaction Kinetics ko 3.25-10""mol/sec  Fitted to Pharr et al. (2014)
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Figure 9-1: Variation of the elastic constants in Li,Si as a function of (a) the fraction of Li
atoms (number of Li atoms/total number of atoms), and (b) as a function of the normalized Li
concentration c.
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Figure 9-2: (a) Plate geometry showing simulation domain at the axis of radial symmetry, and
(b) schematic of the single-column finite-element mesh used in the substrate curvature simulations.
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Figure 9-3: Fit of our substrate curvature simulation to the experiments of Pharr et al. (2014)
showing (a) the nominal stress in the Si film, and (b) the voltage, both as functions of the total

lithium content.
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Figure 9-4: Nominal stress jumps produced by varying the C-rate from (a) our finite-element
simulation, and (b) the experiments of Pharr et al. (2014).



Chapter 10

Modeling a hollow double-walled a-Si
nanotube anode

As discussed in the introduction, in order to mitigate failure of the SEI, various research
groups have proposed the use of novel Si anode designs which restrict the deformation in-
curred by the SEI during cyclic lithiation. One such design, experimentally-realized by Wu
et al. (2012), involves fabricating an anode which consists of an ensemble of hollow a-Si
nanotubes whose outside has been oxidized; see Fig. 10-1(a) for a TEM image. These struc-
tures are referred by the authors as double-walled nanotubes, where the two walls refer to
an interior Si core and an exterior silicon-dioxide shell; see schematic Fig. 10-1(b). Since the
electrolyte contacts the anode only on its exterior surface — the exposed surface of silicon-
dioxide, the SEI will also grow only on the exterior of the nanotube. During cycling, the
relatively stiff silicon-dioxide shell acts as a mechanical constraint layer which prevents the
outward expansion of the nanotube, effectively restricting the deformation incurred by the
SEIL

In this Section we apply our calibrated fully-coupled theory for a-Si to model such a
geometrically-complex anode design. We do so with all material properties for a-Si fived at
the values shown in Table 9.1, which were calibrated from independent erperiments. In our
simulations, the mechanical properties of the SiO, layer are simply taken to be linear elastic
with a Young’s modulus of £ = 90 GPa, and a Poisson’s ratio of v = 0.17.

In modeling the hollow nanotubes of Wu et al. (2012), we assume that they are axisym-
metric and have a length much larger than their diameter, so that diffusion of Li occurs
entirely in the radial direction. In accordance with these assumptions, and in order to save
computational effort, we take a sliver of the hollow tube, cf. Fig. 10-1(b), as our simula-
tion domain, and mesh it with a single row of elements; cf. Fig. 10-1(c). With respect to
Fig. 10-1(c) we apply the following boundary:

e Mechanical boundary conditions: The nodes along the edge AC are constrained
to have zero-displacement in the vertical z-direction. Consistent with our assumption
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of a long thin tube, the nodes along edge DF are constrained to remain flat but are
allowed to displace in the z-direction. The edges AF and CD are traction-free.

e Chemical potential boundary conditions: Consistent with our assumption of
radial diffusion only, we constrain the chemical potential of the nodes on edge AC to
equal the chemical potential of the nodes on edge DF.

e Flux boundary conditions: In these simulations we neglect the transport of Li
through the SiO, layer. Then, consistent with the experiments which were done at a
constant current, we prescribe a flux of Li into the Si directly on the nodes on edge
BE. The magnitude of the flux is computed based on a desired C-rate through

j = — (V/A) (C-rat6/3600)ck,maxa

where V' and A are the initial volume and area of the Si anode respectively, and cg max
is the maximum molar concentration given in Table 9.1. In these simulations, for
simplicity, we do not consider any loss of Li to SEI formation. As in the experiments
of Wu et al. (2012), the simulated anode is cycled between voltage limits of 0.01 V and
1V, where the simulated voltage is computed during the simulation using (8.173).

For later use, we define the state-of-charge (SOC) of the a-Si anode at a given time by

SOC = /BEdV//B av. (10.1)

Remark. As reported by Wu et al. (2012), and recently studied in detail by Zhang et al.
(2014), it is expected that during cycling the SiO, film will react with Li to form a silicon-
oxygen-lithium compound. This reaction, which is believed to be non-reversible, will con-
sume lithium and also lead to an expansion of the SiO, film. In our simulations we do not
attempt to model the uptake of Li, and the consequent expansion of the SiO, film during
cycling. We make this purposeful choice for two reasons: (i) We would like to maintain
our focus on the theory for a-Si and its response in the geometrically-complex anode under
study; and (ii) It is unclear at present what the product of the reaction involving SiO, and
Li is; and as such, attempting to model this would result in a number of additional fitting
parameters which cannot — at this stage of available experimental data — be independently
determined. O

10.1 Typical simulation output

A typical result of our simulations is shown in Fig. 10-2, where we cycled a hollow double-
walled nanotube anode at a C-rate of 1 for three half-cycles between voltage limits of 0.01
and 1V. On the left in Fig. 10-2 we show contours of the normalized concentration ¢ (top),
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and contours of equivalent plastic strain € (bottom) in the a-Si. These contours are plotted
at states (A) and (B), which respectively represent the states at the beginning and end of
the last half-cycle; see the figure on the right, where these states are marked by dashed lines.
From the contours of equivalent plastic strain we note that at the end of 3 half-cycles, the
anode has accumulated a very large amount of plastic deformation — up to 210% plastic
strain.

On the right of Fig. 10-2 we show plots of the equilibrium U (blue), and the voltage
V (red), both as functions of the SOC. The difference between these two curves is the
overpotential, n = V — U, which arises entirely due to the surface reaction kinetics described
in Sect. 8.13. The equilibrium potential represents the intrinsic response of the Si anode,
and visualizing it together with the voltage allows us to discern the contribution from the
mechanical deformation of the Si anode to the overall voltage versus SOC behavior. The
dissipation due to plastic deformation is evident in the hysteretic behavior of the equilibrium
potential versus SOC curve. In this particular simulation, plasticity accounts for =~ 15% of
the total dissipation during one cycle.

10.2 Comparison between our simulation results and
the experiments of Wu et al. (2012)

Next, we compare our simulation results to the experimentally-measured voltage versus
capacity curves of Wu et al. (2012). To convert the capacity data reported by these authors
to SOC, we assume, as reported by the authors, that Si comprises 60% of the total mass of
the active material, and that the maximum capacity of Si is 3.579 Ah/g. In order to compare
the results from our simulations to those obtained experimentally, we ignore the results from
the first half-cycle in our simulations, and shift the minimum SOC achieved in subsequent
cycles to be zero. Fig. 10-3 (a) compares our simulated results (solid lines) for voltage versus
SOC, against the experimental results (dashed lines) of Wu et al. (2012) at two C-rates — a
C-rate of 1 (red) and a C-rate of 20 (blue). Although there are some discrepancies between
the simulated and experimental results, our theory is capable of qualitatively reproducing
the overall experimentally-measured response reasonably well.!

In order to get a more quantitative comparison between simulations and experiments,
we may calculate two additional quantities from the voltage versus SOC curves at different
C-rates:

e First, the total dissipation in one full cycle at a given C-rate is given by the corre-
sponding area inside the voltage versus SOC curve.

1Tn our simulations we have considered only a single nanotube, while the experimental results of Wu et al.
(2012) were obtained from an anode which was made up of an ensemble of nanotubes of various dimensions.
Some of the differences between the simulated and experimental results shown in Fig. 10-3 are clearly due
to the fact that we are considering only a single nanotube. In future work we aim to simulate an anode
composed of many nanotubes of various dimensions.
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e Second, the mazimum capacity at a given C-rate corresponds to the capacity when the
voltage hits the lower cutoff limit of 0.01V.

We have carried out such calculations for several different C-rates. Fig. 10-3(b) shows the
total dissipation as a function of C-rate — the simulations are shown as red circles, and
the corresponding experiments are shown as black squares; note that the abscissa for the
C-rates is logarithmic. It is clear from Fig. 10-3(b) that our simulations overestimate the
total dissipation; however, our simulations correctly predict the experimentally-observed
trend that the total dissipation is the largest at a C-rate = 1, and decreases as the C-rate
increases. The maximum capacity as a function of C-rate is shown in Fig. 10-3(c) — again
the simulations are shown as red circles, and the corresponding experiments are shown as
black squares. We obtain a good quantitative prediction of the experimentally-measured
maximum capacity as a function of C-rate.

We emphasize again that the results shown in Fig. 10-3 were obtained by using material
properties for a-Si which were were calbrated from independent experiments. This shows
that the theory and simulation capability presented in this part of the thesis is capable, with
reasonable accuracy, of modeling the electrochemical response of a geometrically-complex Si
anode.

10.3 Role of plastic deformation on the electrochemical
response of the a-Si anode

The simulation capability developed here allows us to explore the role of plastic deformation
on the voltage versus SOC behavior of the anode during cycling. We expect, as noted by
Sethuraman et al. (2010b), that plasticity will play a role both in determining the energy
dissipated during cycling of the anode as well as in determining the realizable capacity of
the anode.

First, we estimate the contribution of plasticity to the overall dissipation during cyclic
lithiation/delithiation. Fig. 10-4(a) shows the plastic dissipation per cycle as a function of
the C-rate. The dissipation due to plasticity is larger at low C-rates than at high C-rates.
There are two factors that contribute to this behavior: First, since the plastic response of
a-Si is rate-dependent, it exhibits a lower flow resistance at lower C-rates. Second, at low
C-rates the voltage cutoff of 0.01V is reached at higher values of SOC, and therefore the
anode is deformed to a greater extent than at high C-rates.

Fig. 10-4 (b) shows the plastic dissipation normalized by the total dissipation (in percent)
as a function of the C-rate. This figure clearly shows that at low C-rates plasticity plays a
major role in the total dissipation of the anode over one cycle; it accounts for over 30% of
the total dissipation at a C-rate of 1/10.

Although plasticity can contribute significantly to the total dissipation of energy of the
anode per cycle, it also has the beneficial effect of relieving the build-up of elastic stresses in

the material. This in turn reduces the voltage required to lithiate the anode to a particular
SOC.
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To illustrate this important effect we have performed simulations suppressing plastic
deformation, while maintaining all other parameters constant. The results are shown in
Fig. 10-5, where we compare a simulation with plasticity (red lines) to a simulation without
plasticity (blue lines), both at a C-rate of 1. Fig. 10-5(a) compares the voltage V versus
SOC for the two simulations. This figure clearly shows that the simulation without plasticity
reaches the cutoff voltage of 0.01 V at a SOC of ~ 0.3, whereas the simulation with plasticity
reaches the cutoff at a much higher SOC of = 0.7. The point in the first half-cycle where
the two curves deviate indicates the onset of plasticity in the simulations with plasticity.
Fig. 10-5(b) compares the equilibrium potential U versus SOC from the two simulations.
Note that there is no discernible hysteretic behavior in the simulation without plasticity,
since there is almost no dissipation of energy in the intrinsic behavior of the Si anode when
plasticity is suppressed.?

We have carried out such calculations for several different C-rates. Figs. 10-5(c) and (d),
respectively, show the total dissipation per cycle as a function of C-rate, and the maximum
capacity (SOC at V = 0.01V) as a function of C-rate. Clearly, the simulations without
plasticity produce significantly different results than those with plasticity.

2 There are two possible dissipation mechanism in the electrode, one due to plastic deformation, and
one due to gradients in the chemical potential (c.f. eq. (8.11) in Anand, 2012). In our simulations, due to
the nano-metric size of the anodes considered, the gradients of the chemical potential are very small and
consequently the dissipation due to gradients in the chemical potential is very small.
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Figure 10-1: Modeling hollow double-walled nanotubes. (a) Shows a TEM of the experimentally-
realized nanotubes reproduced from Wu et al. (2012). (b) Shows a representative hollow double-
walled nanotube where, consistent with our assumptions of axisymmetry and radial diffusion, we
take a sliver of the tube on the e,-e, plane as our simulation domain. (c¢) Shows a schematic of the
simulation domain (not to scale) and a representative finite-element mesh.
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Figure 10-2: Simulation of a hollow double-walled nanotube anode cycled at a C-rate of 1 between
voltage limits of 0.01 and 1V for 3 half-cycles. Contours of normalized concentration ¢ (top) and
equivalent plastic strain & (bottom), in the a-Si anode, at (A) the start, and (B) the end of the
last half-cycle. On the right we plot the voltage V', and equilibrium potential U, as functions of
SOC, for the same simulation.
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Figure 10-3: Comparison between simulated hollow double-walled nanotubes and the experiments
of Wu et al. (2012). (a) Voltage versus SOC at C-rates of 1 and 20, (b) total dissipation over one
full cycle as a function of C-rate, and (¢) maximum capacity (i.e. SOC at cutoff of V' =0.01V) as
a function of C-rate.
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Figure 10-4: Simulations of hollow double-walled nanotubes. (a) Plastic dissipation over one full
cycle as a function of C-rate. (b) Plastic dissipation normalized by total dissipation, in percent, as
a function of C-rate. Note the logarithmic x-axis.



129

With Plasticity

Without Plasticity |

=
)

= = 08
=

= £ 06}

& &

<

P £
= 02
5
=

. ; ; o9 . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
SOC S50C
(a) (b)

1 " 4 - - —
= . —@— With Plasticity
= o0
§ i:" =——ab— Without Plasticity |
g z
2 S
A :
= ><
=

-1 I 1 0 o R

10 10 10 10 10 10

C-Rate C-Rate
(c) (d)

Figure 10-5: Simulations of hollow double-walled nanotubes with and without plasticity. (a)
Voltage versus SOC, (b) equilibrium potential versus SOC, (c) total dissipation over one cycle
versus C-rate, and (d) maximum capacity (i.e. SOC at cutoff of V' = 0.01 V) versus C-rate. Note
the logarithmic x-axis.
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Chapter 11

Concluding remarks

We have formulated and numerically implemented a fully-coupled diffusion-deformation the-
ory, which accounts for transient diffusion of lithium and accompanying large elastic-plastic
deformations of a-Si. The material parameters in the theory have been calibrated to results
from experiments reported in the literature. We have applied our numerical simulation capa-
bility to model galvanostatic charging of hollow a-Si nanotubes whose exterior walls have been
oxidized to prevent outward expansion (Wu et al., 2012). We have shown that the results
from our numerical simulations are in good agreement with the experimentally-measured
voltage versus SOC behavior at various charging rates (C-rates). Through our simulations,
we have identified two major effects of plasticity on the performance of a-Si-based anodes:

e First, plasticity enables lithiation of the anode to a higher SOC for a given voltage
cut-off. This is because plastic flow reduces the stresses generated in the material, and
thus reduces the potential required to lithiate the material.

e Second, plastic deformation accounts for a significant amount of the energy dissipated
during the cycling of the anode at low C-rates. For the particular geometry of the anode
considered in Chapter 10, plasticity accounts for over 30% of the total dissipation per
cycle at a low C-rate of 1/10.

Hence, plasticity can have either a beneficial effect — that is, a higher SOC for a given voltage
cut-off, or a detrimental effect — that is, significant energy dissipation at low C-rates, on
the electrochemical performance of a-Si-based anodes.

The design of a-Si-based anodes for optimal performance is non-trivial. The fully-coupled
diffusion-deformation theory and simulation capability reported in this thesis should be useful
in developing a detailed understanding of the electro-chemo-mechanical operation of a-Si-
based anodes, and optimizing their design for future applications. Furthermore, the favor-
able comparison between the predictions from our continuum theory and the experimental
results shown in this work, demonstrates the applicability and importance of continuum-
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level models in making meaningful predictions of the electrochemical response of a-Si based
nanostructured anodes.

Finally, the theory and numerical simulation tools developed in this work will help one
to formulate models at the porous-electrode-scale, where one must consider the interactions
between anode particles and binder and between anode particles themselves. Using the
foundations developed here, such a (non-trivial) extension of this work will allow one to
study how the stresses generated within an anode particle affects its interaction with other
particles, as well as study how the stresses generated in the microstructure might affect loss
of conductivity due to failure of the anode-particle/binder interfaces.



Part III

Modeling growth of a solid electrolyte
interphase
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Chapter 12

Introduction

12.1 Introduction

One of the major concerns in Li-Ion batteries is the mitigation of “aging” of the battery —
which refers to electro-chemo-mechanical degradation, capacity fade, and power loss of the
system.

Amongst the many mechanisms which cause aging in Li-ion batteries, a major mechanism
is the formation, due to decomposition of the electrolyte, of a thin solid electrolyte interphase
(SEI) layer on the surface of anode particles. The SEI layer is electronically insulating which
prevents further decomposition of the electrolyte, but it is ionically conductive and allows
the diffusion of Li ions through it. However, the formation of SEI consumes Li-ions, which
competes with the desired amount of Li for intercalation in the active anode material, and
this causes capacity fade. In addition, since Li-ions must diffuse through the SEI layer, the
formation of a SEI layer is accompanied by an increase of cell resistance. Often, the cyclic
volume changes of an anode particle during Li-ion intercalation and deintercalation can cause
the SEI layer to crack, delaminate, and spall from the surface of the anode particle. New
SEI is then formed on the freshly exposed particle surface, which consumes more Li-ions and
causes additional capacity fade. Both the chemical and mechanical integrity of the SEI are
critical to the safety and performance of Li-ion batteries (cf., e.g., Lee et al., 2007; Verma
et al., 2010; Barré et al., 2013).

The purpose of this work is develop a new theory and finite-element-based capability
for the simulation of growth of a solid electrolyte interphase layer at an anode particle in
a Li-ion battery. The theory attempts to account for the generation of stress due to the
growth of a SEI layer, as well as the stress that arises due to the lithiation and delithiation
of the anode particle. In the literature, the stress generated due to the growth of the SEI
layer is often called “irreversible” while the stress related to the swelling/de-swelling of the
anode particles during lithiation/delithiation is called “reversible.”
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12.2 Substrate curvature experiments of Mukhopadyay
et al. (2012)

In a recent novel paper, Mukhopadyay et al. (2012) presented experimental measurements of
the reversible and irreversible stresses during SEI formation on a thin-film graphite anode. In
their experiments they used a 250 um thick, 1in diameter quartz substrate on which, using
chemical vapor deposition (CVD) techniques, they deposited (i) a 15 nm thick Ti layer; (ii)
a 200 nm thick Ni layer; and finally (iii) a 200 nm layer of c-axis oriented graphite. The Ti
and Ni were deposited to act as a catalyst for graphitization and as a current collector. This
multilayered plate was then assembled into an electrochemical cell which was charged and
discharged under galvanostatic conditions against a Li-metal cathode to develop a SEI layer
on the graphite anode. The TEM micrograph in Fig. 12-1, reproduced from Mukhopadyay
et al. (2012), shows a ~ 100nm-thick SEI layer which has formed on the graphite (CVD C)
anode after 50 cycles of charging and discharging. After the initial deposition of the graphite
layer, as well as during electrochemical cycling during which the SEI layer was formed,
Mukhopadyay et al. measured the curvature of the plate using an array of parallel laser
beams focused on the back side of the quartz substrate. The results from their experiments
are schematically shown in Fig. 12-2:

e Fig. 12-2 (a) shows the undeformed quartz substrate.

o After CVD deposition of the graphite layer at 1000°C and cool-down to room tem-
perature, the graphite contracts more than the substrate and this results in a positive
curvature, Fig. 12-2 (b).

e At the end of the first half-cycle of charging the authors observed a reduction in the
positive curvature of the plate; cf. Fig. 12-2 (c) relative to Fig. 12-2 (b). This reduction
in curvature occurs due to the expansion of the graphite upon lithiation, and also due
to the growth of the SEI layer.

e After the first complete lithiation/delithiation cycle, the graphite contracts to its ini-
tial delithiated state. However, the authors observed a reduction in the curvature
of the plate with respect to the curvature at the beginning of the first lithiation, cf.
Fig. 12-2(d) relative to Fig. 12-2(b). This reduction in curvature is an important
indicator of the expansion strain during the growth of the SEI layer.

e At the end of the second charging half-cycle the authors observed a further decrease
of curvature due to expansion of the graphite and the SEI, cf. Fig. 12-2 (e) relative to
Fig. 12-2(d).

o After the second complete lithiation/delithiation cycle, they observed an increase in
curvature, cf. Fig. 12-2 (f) relative to Fig. 12-2(e). This slight increase in curvature is
driven by the contraction of the graphite, while the continued formation and expansion
of the SEI layer counteracts the graphite contraction. Note that due to the growth
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strain in the SEI, the observed curvature at the end of the second cycle was lower than
the curvature at the end of the first cycle, cf. Fig. 12-2 (f) relative to Fig. 12-2(d).

In subsequent cycles the authors observed a steady decrease in curvature due to the formation
of SEI, superimposed by cyclic curvature changes due to the lithiation/delithiation of the
graphite.

From their experimental measurements of the curvature changes of their multi-layered
plate, Mukhopadyay et al. calculated the changes in a nominal equi-biazial stress, o,, in
the combined graphite/SEI “film” on the quartz substrate using the classical Stoney formula

(Stoney, 1909),
_ (1 _Eq h3\
Op = (EWE K; (121)

here, x is the curvature of the plate, Ey and vg are the Young’s modulus and the Poisson’s
ratio of the quartz substrate, and hg and hg are the thicknesses of the quartz and graphite
layers. Fig. 12-3 from their paper shows the cyclic electrical potential which was imposed
in their battery for the first 20 cycles of charging/discharging, together with the results
for the nominal stress that they inferred from their curvature measurements. The stress
levels corresponding to the peaks of the cyclic stress profile represent the “irreversible” stress
generation due to the growth of the SEI layer, while the stress levels during cycling represent
the “reversible” stress due to lithiation and delithiation. Fig. 12-3 shows that in the course
of 20 charge/discharge cycles the initially high ~ 0.9 GPa tensile nominal-stress, which is
introduced due to the deposition of the graphite on the quartz, reduces by a factor of two to
~ 0.4 GPa due to the growth of the SEI and the attendant generation of compressive stresses
in this layer. Reversible stresses in anodes due to lithiation/delithiation have been extensively
addressed in the literature — however, to the best of our knowledge, Mukhopadyay et al.
are the first group to report on experimental measurements of “irreversible” stresses due to
" growth of SEI on an anode.

As mentioned above, the purpose of this work is to report on our new continuum-
mechanical theory and finite-element-based capability for the simulation of growth of a solid
electrolyte interphase layer at an anode particle in a Li-ion battery. In formulating our the-
ory we attempt to account for (i) the stress generation due to the lithiation and delithiation
of anode particles, and (ii) the stress-generation due to the growth of an SEI layer. We have
applied our theory and simulation capability for:

1. A study of the problem of SEI formation on the surface of a flat anode undergoing cyclic
lithiation and delithiation, as in the study of Mukhopadyay et al. (2012). We demon-
strate that we can reproduce their experimental results with reasonable gquantitative
accuracy.

2. A study of the problem of SEI formation on the surface of spherical and spheroidal
graphite particles undergoing cyclic lithiation and delithiation. The stress state in the
SEI layer and at the SEI-particle interface are calculated and the propensity of potential
delamination of the SEI layer from the particle is identified. We show that the interplay
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between reversible particle swelling/deswelling and irreversible SEI growth has a crucial
effect on the magnitude of the stress levels that are generated, and consequently on
the mechanical integrity of the SEI layer.

12.3 Modeling of lithiation/delithiation of anode par-
ticles

In order to properly simulate the growth of an SEI layer on the surface of an anode particle
of a Li-ion battery, we must of course account for the chemo-mechanical deformation during
charging and discharging of the anode itself — a process during which commonly used anode
materials undergo substantial volume changes. As we shall show, such volumetric changes
of an anode particle can have a significant effect on the stress distribution that is developed
within the SEI layer. In order to model the intercalation of Li in an anode we will use
our recently published theory for species diffusion coupled with large elastic deformations
(Di Leo et al., 2014), discussed in detail in Chapter 3. Since this Li intercalation theory
is not the main subject of this part of the thesis, we defer a brief summary of this theory
to Section 13.3, and in the next section we turn our attention to the main subject, viz.,
modeling the growth of an SEI layer.
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TEM image
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Figure 12-1: TEM micrograph of a SEI layer on a graphite anode. From Mukhopadyay et al.
(2012).
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Figure 12-2: A schematic of the observed plate-curvature changes in the experiments of
Mukhopadyay et al. (2012): (a) the initially straight plate; (b) the curved plate after carbon
deposition; (c) the curved plate, with the charged graphite at the end of the first half-cycle; (d)
the curved plate at the end of the first charging/discharging cycle; (e) the curved plate, charged
graphite after one and a half cycles; and (f) the curved plate, discharged at the end of two cycles.
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Figure 12-3: Variation of electrical potential and nominal stress with time for the first 20 cycles
of lithiation and delithiation, as reported by Mukhopadyay et al. (2012).



Chapter 13

Theory and simulation capability for
the growth of a solid electrolyte
interphase

The process of growth of an SEI layer involves the addition of new mass onto the surface
of an anode particle which is accompanied by a growth strain in the SEI — as a result,
the newly-deposited SEI layer and the anode contain balanced residual stresses. Although
the deposition of the layer and the associated strain generation occur simultaneously, we
conceptually idealize the growth of an SEI layer on a surface of interest as a two-step process
shown schematically in Fig. 13-1:

e The first step, which we refer to as deposition, results in the formation of a strain-
free layer of SEI on the surface of interest, cf. Fig. 13-1 (a) to (b). This process
controls the rate of increase of the thickness of the SEI layer perpendicular to the
surface of interest.

e The second step, which we refer to as in-plane expansion, models the evolution of
strain mismatch between the SEI layer and the substrate, cf. Fig. 13-1 (b) to (c). Note
that the reference configuration for the start of the expansion process is the “strain-free”
layer created during the deposition step.

Taken together, this idealized two-step process serves to model the experimentally observed
growth of a SEI layer on a substrate.

In the next two sections we detail the theory and the numerical modeling of each of these
two conceptually-separated sub-processes.

Remark. The intrinsic mechanism for the growth strains in the SEI and the attendant
large growth stresses (of the order of -1 GPa) is not completely clear. Based on their recent
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experimental study on the chemical and morphological changes, and stress generation during
SEI formation on c-axis oriented graphitic carbon electrodes, A. et al. (2014) have suggested
that it is the disruption of the surface of the graphite caused by solvated ions during the
initial stages of formation of the SEI which is the dominant cause of stress at high potentials
(above 0.5V).

Our continuum model for SEI growth does not explicitly account for any specific mech-
anism for the formation and growth of the SEI. Rather, it assumes only that SEI formation
occurs and is accompanied by growth strains which can results in stress generation at the
SEI/anode interface. O

13.1 Numerical modeling of SEI deposition

Fig. 13-2 shows a schematic of our numerical simulation scheme for modeling the deposition of
an SEI layer by the sequential conversion of multiple layers of finite elements — from elements
with properties representing the electrolyte, to elements with properties representing the SEI.
Fig. 13-2(a) shows three rows of elements representing the electrolyte (colored blue) adjacent
to three rows of elements representing the graphite (colored gray); the electrolyte elements are
sequentially converted to strain-free SEI elements (colored pink) at three prescribed times

(t((it)p,téze)p, tg‘o;)p). Fig. 13-2 (b) shows the resulting profile of the total SEI layer thickness
h versus time t. In our numerical simulations we will choose the conversion times ¢ €
[téle)p, tffe)p, t((i?p, e ,t((gp) ] for the different electrolyte layers so that the resulting thickness h(t)
of the total SEI layer approximates the experimentally-observed square-root growth profile
(Smith et al., 2011a). That is, we will choose the times when the electrolyte layers convert

to SEI such that SEI total thickness growth approximates
h(t) o V. (13.1)

We emphasize that this square-root growth profile is something that we shall prescribe — it
s not an outcome of a diffusion-controlled chemical reaction model.

The electrolyte is modeled as a linear elastic material with a very low Young’s modulus
of E = 0.5MPa, and a zero-valued Poisson’s ratio, » = 0. Thus, any deformation of the
graphite/electrolyte system produces stresses in the graphite which are essentially unaffected
by the presence of the electrolyte elements. The specific constitutive behavior of the newly-
formed strain-free SEI layer for times ¢ > t4¢p is described in the next section.

Prior to the conversion of an electrolyte element to an SEI element, that is for ¢t <
taep, the standard deformation gradient F(¢) is used for the constitutive calculations for an
electrolyte element. The stress-free reference configuration for an SEI element of interest is
its configuration at the time ¢ = t4ep, when it is first converted from an element representing
electrolyte to an element representing SEI. Thus, to model the subsequent in-plane expansion
of a newly-deposited SEI element, the appropriate deformation gradient that is to be used
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for constitutive calculations is the relative deformation gradient,

Fei(r) & Foy, (1) = F(N)F(taep) ™" for 7 > taep- (13.2)

13.2 Modeling of in-plane expansion of SEI

In this section we detail our constitutive theory for modeling the in-plane expansion of the
SEI layer once it has been deposited on the surface of an anode. This theory is based — in
major part — on the theory of “growing matter in living systems” (cf., e.g., Kuhl, 2014, for
a recent review of the substantial literature on this topic), which employs the widely-used
Kroner (1960)-Lee (1969) multiplicative decomposition of the deformation gradient,

F = F°FY. (13.3)
Here, for modeling the in-plane expansion of the SEI,

e The deformation gradient in (13.3) is to be interpreted as the deformation gradient
FSEI defined in (132),
F= FSEI- (134)

e Also, we shall take F9 to be of the specific form given in eq. (13.14), which restricts
the “growth” to an in-plane expansion (more on this below).

For economy of notation we shall continue to use the standard notation in (13.3), with the
understanding that the deformation gradient F in what follows in this section is Fggj, and
that F9 will have the form (13.14), so that the “growth” represented by F9 refers only to
in-plane expansion of the SEI.

13.2.1 Kinematics

We denote by B the reference configuration for the SEI. An arbitrary material point of B
is denoted by X, and a motion of B is a smooth one-to-one mapping x = x(X,t) with
deformation gradient, velocity, and velocity gradient given by!

F=Vx, v=%  L=gradv=FF1 (13.5)

INotation: We use standard notation of modern continuum mechanics Gurtin et al. (2010). Specifically:
V and Div denote the gradient and divergence with respect to the material point X in the reference config-
uration; grad and div denote these operators with respect to the point x = x(X,¢) in the deformed body; a
superposed dot denotes the material time-derivative. Throughout, we write Fe~1 = (F¢)~1 Fe~7 = (F°)~7,
etc. We write trA, sym A, skw A, Ao, and symyA respectively, for the trace, symmetric, skew, deviatoric,
and symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and B is denoted by
A: B, and the magnitude of A by |A| = VA:A.
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Following modern developments of large-deformation plasticity theory (cf., e.g., Gurtin et al.,
2010) and growth theory (cf., e.g., Kuhl, 2014), we base our theory on the multiplicative
decomposition (13.3) of the deformation gradient. Where, suppressing the argument ¢:

(i) F9(X) represents the local distortion of the material neighborhood of X due to growth;
and

(ii) F¢(X) represents the subsequent stretching and rotation of this coherent but distorted
material neighborhood, and thereby represents a corresponding elastic distortion.

We refer to F9 and F¢ as the growth and elastic distortions, respectively, and we refer to the
local space at X represented by the range of F9(X), as the intermediate space at X.
As is standard, we assume that

J & det F > 0, (13.6)

and hence, using (13.3),
J=JJ9,  where J % detFe>0 and  J9 EdetFU >0, (13.7)

so that F¢ and F9 are invertible.
The right polar decomposition of F¢ is given by

F°¢ = R°U°, (13.8)
where R€ is a rotation, while U°® is a symmetric, positive-definite tensor with
U°® = VFeFe. (13.9)

As is standard, we define the elastic right Cauchy-Green tensor by

C¢ =U® =F“F° (13.10)
By (13.5);3 and (13.3),
L = L¢ + FeLIF* !, (13.11)
with - .
L¢ = F°F!, LI =FIF9 L, (13.12)

We define the elastic and growth stretching and spin tensors through
D¢ = sym L¢, W€ = skw L¢,

(13.13)
D9 = sym L9, W9 = skw L9,

so that L = D¢ + W¢ and LI = D9 + W¥.



145

Since an increase in thickness of the SEI layer in a direction perpendicular to the anode
surface does not result in generation of “growth stresses”, we have modeled SEI growth as
two separate processes (cf. Section 3): (a) deposition, which results in a stress-free increase in
thickness, and (b) area growth which gives rise to growth stresses because of the constraint
of the substrate. Accordingly, we make the following additional kinematical assumptions
concerning SEI growth. Let Il (X) denote a plane through an infinitesimal neighborhood of
X on the surface of the anode oriented by a unit normal vector mg(X). Then, as a specific
model for F9 we consider isotropic area growth, described by

FI =my; @ my + A (1 — mp ® my), (13.14)

where X\ represents the growth stretch in the plane Il; perpendicular to mg. Futher, we
define

¢ €in ), (13.15)

as a corresponding growth strain, and introduce an
area growth ratio ©9,

which represents the ratio of the area normal to my in the intermediate configuration to the
area normal to mg in the reference configuration. Due to our assumption of pure in-plane
growth, ©9 is identically equal to J¢ and related to A] as follows:

Q= J9 = (\))> (13.16)
Thus, note that .
Q7 = 209%¢. (13.17)
Since, . )
FI =X (1 -mz®@my), (13.18)
and ]
Fg—l =mR®mR+)\_g(1—mR®mR), (13.19)
i

using (13.12),, (13.19), and (13.15) we obtain

L = €] (1 — mp @ my). (13.20)

Upon using (13.17) in (13.20) gives
LI = (690971 S, (13.21)

where

g -;-(1 — My ® my). (13.22)
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We restrict attention to circumstances in which

e >0, (13.23)
so that in-plane growth is irreversible. Note that LY is symmetric, so that

LI=DY, (13.24)
and

W9 = 0. | (13.25)

13.2.2 Free energy imbalance

Introducing the Helmholtz free energy ¥ per unit reference volume, the classical local free-
energy imbalance under isothermal conditions is (Gurtin et al., 2010),

tn— T F <0, (13.26)

where, with Ty denoting the standard Piola stress, the term Ty : F in (13.26) represents the
stress-power per unit reference volume.
Recall that the Piola stress Ty is related to the symmetric Cauchy stress T by

Tp =JTF. (13.27)
Thus, using (13.3), (13.12),, (13.16), and (13.27), the stress-power may be written as
Tr:F =Ty (FFY + FeF9),
= (TRF7): F® + (F“Ty): F?,
Y ((JeFe‘lTFe‘T): (FEF®) + (C°JeFe1TF* ). Lg) . (13.28)
In view of (13.28), we introduce two new stress measures:

e The elastic second Piola stress,
e def yerne—1 e—T
T¢ = J°FTF* ', (13.29)

which is symmetric on account of the symmetry of the Cauchy stress T.

e The Mandel stress,
Me & ceTe, (13.30)
which in general is not symmetric.

Further, from (13.10) ' ) .
Ct = FF° + FF°. (13.31)



147

Thus, using the definitions (13.29), (13.30) and the relation (13.31), the stress-power (13.28)
may be written as

To:F = 09 (%Te LCe + Me:Lg) . (13.32)

Using (13.32) in (13.26), and using (13.21) allows us to write the free energy imbalance
as

n — ©I(3Te: C°) —OIM*: S < 0. (13.33)

Remark. For brevity we have not discussed invariance properties of the various fields
appearing in our theory. However, such considerations are straight-forward and extensively
elaborated upon in the context of plasticity theories, which have a similar structure, by
Gurtin et al. (2010). Here, we simply note that all quantities in the free energy imbalance
(13.33) are invariant under a change in frame. O

13.2.3 Energetic constitutive equations

Guided by the free-energy imbalance (13.33), we first consider the following set of constitutive
equations for the free energy 1y and the stress T¢:

U = Pa(C", 99),}

_ (13.34)
T® = T*(C*, 09).

Substituting the constitutive equations (13.34) into the dissipation inequality, we find that
the free-energy imbalance (13.33) may then be written as

9Yn(C, ©9)
(e

_ 8a(Cr,09)

— e %Te(ce,eg))) . Ce _ ( T

+ Me:s) ©9<0. (13.35)

This inequality is satisfied provided that the free energy determines the stress T through

the “state relation”
_ 61,5 (Ce,09)
Te=@9 1 (g2 " -/ 13.36
© (2 50% , (13.36)

together with the dissipation inequality

FOI >0, (13.37)

where ]
FEA+M:S (13.38)
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represents a thermodynamic force conjugate to ©9, with
_ 8’(;13(08, @g)
009 ’

representing an energetic constitutive contribution to 7 — called the affinity (cf., e.g., Loeffel
and Anand, 2011).

A(Ce,09) & (13.39)

13.2.4 Dissipative constitutive equation

Guided by (13.37), we presume that the area expansion rate ©9 is given by a constitutive
equation

&9 = §9(09, F) > 0, (13.40)
such that F ©9 > 0 holds whenever 9 > 0.

13.2.5 Specialization of the constitutive equations
Free energy

Next, restricting ourselves to an isotropic elastic response for the SEI, the free energy function
Yr(C*, ©9) is taken as an isotropic function of its arguments. An immediate consequence is
that the free energy function has the representation

Yr(C*, 09) = Y (Zce, ©9), (13.41)

with Tee = (11(06),12(08),13(Ce))

the list of principal invariants of C¢. Next, the spectral representation of C¢ is
3
C°=> wiri@rf, with wf=Ax?2 (13.42)
i=1

where (r§,r$,r5) are the orthonormal eigenvectors of C* and U®, and (\$, \§, \§) are the
positive eigenvalues of U®. Let

3
B S U =Y Efrf@r, with Ef ), (13.43)

i=1

denote the logarithmic elastic strain. With the logarithmic elastic strain defined by (13.43),
for isotropic materials we henceforth consider a free energy of the form

wR = Q;ZR(IEE) 69)7 (1344)
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with Zg. a list of principal invariants of E¢, or equivalently a list of principal values of E°.
Then, straightforward calculations (cf., e.g., Anand and Su, 2005, Section 7.2) show that the
Mandel stress is symmetric and given by

o
Me = @91 (2@({%—5—@)) ) (13.45)

and the corresponding Cauchy stress is given by
T = J*'R*M°R*". (13.46)
Next, we consider the free energy to be a separable function of the form
Pr(Tge, 09) = ¥(Tge, ©9) + ™ (09). (13.47)

Here:

(i) ¢° is an elastic energy given by

2
*(Tge, ©9) = ©9 (LE©:CE?), C¥ 261+ (K - -G) 1®1, (13.48)
——— 3

5
where C is the elasticity tensor, with I and 1 the fourth- and second-order identity
tensors, and the parameters

G >0, K >0, (13.49)

are the shear modulus and bulk modulus, respectively. The term 9§ in (13.48) is an
elastic energy measured per unit volume of the intermediate space; multiplication by
©9 converts it to an energy measured per unit volume of the reference space. This is
a simple generalization of the classical strain energy function of infinitesimal isotropic
elasticity to moderately large elastic strains (Anand, 1979, 1986).

(ii) ¥he™ is a chemical energy related to the SEI reaction. We assume the following simple
linear relation (cf., e.g., Loeffel and Anand, 2011)

chem — H(1 - @9), (13.50)

where the parameter H > 0 represents a chemistry modulus. Thus, as ©Y increases
from unity the free-energy decreases, which implies that area growth is energetically
favorable.

Thus
Y = 69 [%Ee: CEe] + H(1-—©9). (13.51)
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Then, by (13.45), (13.39), and (13.48), the Mandel stress and the affinity are given by

M? = CE° = 2GE¢ + K(trE°)1,

(13.52)
A=H - [%Ee:CEe] .
Using (13.52)1, (13.46), and (13.43) the Cauchy stress T is given by
T =J7' (2GES + (K — (2/3)G)(tr E§)1)  with  E{ & R°E°R®,  (13.53)
where Ef, is Hencky’s spatial logarithmic strain.
Also, from (13.52), and (13.38) the “driving force” F for ©9 is
F=H+M*:3 - ;E°:CE". (13.54)
Evolution equation for ©9
Guided by Kuhl (2014), we choose a simple special form for (13.40),
k|1 o F ifF>0
. — > U,
&9 = < @?nax) ' (13.55)
0 otherwise,

where, k£ > 0 is a positive-valued (possibly temperature-dependent) parameter with units of
m3/(J-sec), and ©Y,, is the maximum area growth.

This completes the constitutive theory for modeling the in-plane expansion of the SEI.

13.3 Summary of a theory for lithium intercalation
coupled with large elastic deformation

In order to model the diffusion of Li in the anode, and the resulting volumetric expansion/-
contraction of the anode due to Li intercalation, we make use of our recently published theory
for species diffusion coupled with large elastic deformations (Di Leo et al., 2014), which is
discussed in detail in Chapter 3. The theory of Di Leo et al. (2014) was formulated to also
account for phase separation. Here we restrict our attention to a simplified version of the
theory which neglects phase separation. The simplified version of the theory, using notation
and terminology essentially identical to that of the previous section, is summarized below:
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13.3.1 Constitutive equations

1. Kinematics. The deformation gradient is multiplicatively decomposed into an elastic
distortion F¢, and a chemical distortion F¢ through

F=F°F, J=JJe. (13.56)

2. Chemical distortion. We take the chemical distortion to be spherical and to depend
on the Li concentration,

FC=(J9"%1 with J°=1+Q(ca —co) > 0, (13.57)

where (2 is a constant partial molar volume of the intercalating Li in the body, with cq
the initial concentration.

3. Stress. The Mandel and Cauchy stress tensors are given by

M® = 2GE® + (K — (2/3)G)(trE®)1,
(13.58)

T = J*1 (2GES + (K — (2/3)G)(trtES)1),  with  E¢ < R°E°R*".

4. Chemical Potential. The chemical potential of the Li in the anode is given by

p=p’+RIIn (1 < _) - Q%trMe, (13.59)

where ¢ & Cr/Crmax is the normalized Li concentration, with cgmax the maximum
Li concentration, R is the gas constant, ¥ is the temperature, and u° is a constant
reference chemical potential. In our calculations we consider only isothermal conditions
at ¥ = 300K.

5. Species flux. The flux ji of the intercalating Li is taken to be linear in the gradient
of the chemical potential,

Jr = —mVy, (13.60)
where the mobility m of the Li is a function of the concentration given by
D
m = R—;ca(l - 2), (13.61)

with Dy a constant diffusion coefficient.
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13.4 Governing partial differential equations. Bound-
ary conditions

In the absence of non-inertial body forces and neglect of inertial forces, standard consider-
ations of balance of forces, when expressed spatially in the deformed body B = x(B), give
that the symmetric Cauchy stress tensor T satisfies the force balance

divT = 0. (13.62)

With S, and &; denoting complementary subsurfaces of the boundary 0B of the deformed
body, we consider a pair of boundary conditions in which the displacement u = x — X is
specified on S, and the surface traction on S; for a time interval ¢ € [0, T:

u=1u onSux[O,T],} ( )
13.63

Tn=t on&, x[0,7T].

Then (13.62), the constitutive equations for T expressed in terms of the deformation, to-
gether with (13.63) yields a boundary value problem for the displacement field u(x,t). The
field equation (13.62) and boundary conditions (13.63) are taken to hold for the anode, the
electrolyte, and the SEI, with the stress T given by their respective constitutive equations.

We neglect diffusion of Li in the SEI. Mass balance for diffusion of Li in the anode requires
that the balance equation

¢p = —Div (jr) (13.64)
hold in the anode, with the flux given by (13.60). The initial condition for cy is taken as
CR(X,O) == CR,O' (13-65)

Letting S, and S;; denote complementary subsurfaces of the boundary 0B of the reference
body B describing the anode material, we consider a pair of simple boundary conditions in
which the chemical potential is specified on S, and the species flux on Sj;:

p=f onsS,x [O,T],}

. y (13.66)
Jr-ng =7 onS x[0,T).

13.4.1 Numerical implementation of the theory

We have implemented our SEI growth theory, described above in Sections 13.1 and 13.2,
in the implicit finite element program Abaqus (2010) by writing a a 2D axisymmetric 4-
node linear isoparametric quadrilateral user element subroutine (UEL).2 We have coupled

2We have also implemented a 2D plane-strain 4-node linear isoparametric quadrilateral element, and a
3D 8-node linear isoparametric brick; however, we do not show any simulations using these elements in this
paper.
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this numerical capability for SEI growth with our previously developed user element subrou-
tine(UEL) for simulation of lithiation and delithiation of electrode particles, Section 13.3.
For brevity, we omit all details of our numerical implementation.
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Figure 13-1: Idealization of SEI growth as a two-step process: (i) A “deposition” process in the
direction normal to the substrate, from (a) to (b), which involves the addition of mass to the system
to create a “strain-free” SEI layer. (ii) The “in-plane expansion” of the newly-deposited SEI layer,
from (b) to (c).
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Figure 13-2: Schematic of the numerical simulation scheme for the deposition of an SEI layer.



Chapter 14

SEI formation on the surface of a flat

anode undergoing cyclic lithiation and
delithiation

The purpose of this chapter is to use the novel experimental results of Mukhopadyay et al.
(2012) to calibrate the material parameters in our theory and to verify whether our theory
is able to reproduce their experimental results with reasonable quantitative accuracy.

In their experiments Mukhopadyay et al. (2012) did not continuously monitor the thick-
ness of the SEI layer as it grows, they only reported that the thickness of the SEI layer after
811 hours of cyclic lithiation was A = 100nm. Thus, guided by the experimental results
of Smith et al. (2011a) who showed that the loss of Li in the battery (capacity fade) is
proportional to the square root of time, we assume (as discussed previously in Section 13.1)
that

h(t) = h(ts)4/t/ts, with ¢y =811hours and h(ty) =100nm. (14.1)

In order to estimate the material parameters in our in-plane SEI growth model, we
carried out a finite-element simulation of the experiments of Mukhopadyay et al. (2012),
which we describe below. Their physical experiment was performed on a 1 in-diameter quartz
substrate, as shown schematically in Fig. 14-1(a). In order to minimize the computational
effort, we considered a small section of the axisymmetric plate immediately adjacent to the
axis of radial symmetry as our simulation domain, and meshed it with a single column of
elements, as shown schematically in Fig. 14-1(b). The electrolyte/SEI layer was meshed with
150 elements whose constituve behavior is described by the deposition and expansion model
developed in Sects. 13.1 and 13.2. The graphite layer was meshed with 40 elements whose
constitutive behavior is described by the coupled deformation-diffusion theory summarized
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in Sect. 13.3. Finally, the quartz layer was meshed with 30 elements which are prescribed a
simple linear isotropic elastic constitutive behavior.

In our simulations we neglect the diffusion of Li-ions through the SEI, which effectively
means that we neglect any resistance offered by the SEI to the diffusion of Li in the graphite.
Henceforth, for brevity, we will use the terms “fully delithiated” and “fully lithiated” to
describe the graphite layer when it has an average normalized Li concentration of ¢ = 0.05
and ¢ = 0.95, respectively.

The boundary/initial conditions that we used in our simulations are as follows:

¢ Mechanical boundary conditions: Consistent with the radial symmetry of the
problem, the nodes along the edge AD in Fig. 14-1(b) are constrained to have zero
radial displacement. All nodes on the edge EH are constrained to remain on a straight
line as defined by the nodes at points E and H. The line formed by the nodes along
edge EH is free to move and rotate, and it is from the rotation of this line with respect
to its initial vertical position that we computed the curvature of the plate.

e Initial concentration of Li in the graphite: The initial concentration of lithium
in the graphite layer is taken as a low value of ¢ = 0.05. In order to model the
experimentally-observed stress generated during the chemical vapor deposition of the
graphite, we use an alternative form of (13.57), viz.,

J¢ =1+ Q(ch — co) + JE, (14.2)

where J§ accounts for the initial strain mismatch in the graphite. This is used purely
as a numerically-expedient tool for achieving a residual stress mimicking the stress
developed during the chemical vapor deposition of the graphite layer on the quartz
substrate in the experiments.

e Chemical boundary conditions for the graphite: The nodes on the edges BC,
CF, and GF in Fig. 14-1 are prescribed to have zero outwards flux, i.e. j =0 (cf. eq.
(13.66)2). As mentioned above, we neglect the diffusion of Li-ions through the SEI
and directly prescribe a constant flux of Li on the edge BG. Further, in order to study
the effect of the lithiation/delithiation of the graphite on the process of SEI deposition
and growth, in this particular geometry, we consider two separate cases:

(a) Simulation with lithiation/delithiation of the graphite: In their exper-
iments, Mukhopadyay et al. used a charge rate (C-rate) of C/10, which in the
absence of capacity fade would yield a lithiation/delithiation cycle with a duration
of 10 hours. Due to the capacity fade, the duration was shorter and changed from
cycle to cycle. Since we do not model capacity fade in the graphite, we adjusted
the C-rate to C/8.1, which corresponds to 50 cycles over the entire 811 hours of
their experiment. The magnitude of the flux was then computed accordingly to
get from the fully delithiated state to the fully lithiated state in a time #,, = 8.1
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hours. That is,

v ) —1.8-10""mol/(m?sec) 2n—2 < t/th. <2n—1, (14.3)
J 1.8-10""mol/(m3sec)  2n — 1 < t/ty. < 2nm, '
where n € [1,...,N] is the cycle number. Such an idealized square-cyclic value

for the boundary flux is schematcally shown in Fig. 14-2.

(b) Simulation without lithiation/delithiation of the graphite: In this case
we ignored the lithiation and delithiation of the graphite and simply prescribed

7=0 (14.4)

along the edge BG. Without any changes in Li concentration, the graphite re-
sponds as a purely elastic solid.

14.1 Material parameters

Using (13.54) in (13.55) we recall next the evolution equation for the area ratio ©9:

9
, k(1—e—?—) (H+M°:$ - lE:CE°) if F >0,
69 = max /S o - (14.5)

0 otherwise.

At this stage of research in the field, not enough is known to fully characterize the material
parameters appearing in such an evolution equation. In our simulations, for pragmatic
reasons, we choose a sufficiently large value of the chemical modulus H so that H > (M*®:
S — %Ee : CE®), and the steady state at which the evolution of ©9 stops, occurs when
©9 = ©9,.. Thus, the rate at which the evolution of area growth strains occurs within the
SEI is then primarily controlled by 1/(kH), which represents a characteristic time for the
evolution of ©9. Specifically, we choose values of

H=8x10°MJ/m®* and k=10""m?®/(MJ-sec), (14.6)
so that the characteristic time is
1/(kH) = 1.25sec. (14.7)

With this choice for the parameter pair (k, H), the area swelling ratio ©7 in a particular layer
of SEI elements reaches its mazimum value ©Y_ ., before the next layer of SEI elements s
deposited according to the deposition scheme described by (14.1).
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With k£ and H fixed at the values in (14.6) above, the rest of the material parameters for
the SEI, as well as the parameters for the graphite and the quartz that we have used to fit
the experiments of Mukhopadyay et al. (2012), are summarized in Table 14.1.

Table 14.1: Material parameters for SEI, graphite, and quartz used to fit the experiments of
Mukhopadyay et al. (2012)

Layer Parameter Value Source
Eg 25 GPa
SEI Vg 0.3 Fitted
O ax 1.088
Eg 100 GPa
Ve 0.3 Ql et al. (2010)
Graphit
raphite Q 1.249 - 10" m?/mol
CR,max 2.914 - 10* mol/m3
Do 10~13m?/s Christensen and Newman (2006)
Quartz Eq 12GPa De Jong et al. (2000)

vQ 0.165

Remark. The values for Eg and (2 for graphite used here are an adaptation of the results
from a density functional theory (DFT) calculations by Qi et al. (2010). In their density
functional theory analysis, Qi et al. (2010) predicted a 1.2% stretch of all material fibers in
the basal plane. A corresponding value for isotropic swelling which yields 1.2% stretch of all
material fibers is Qcg max = 3.63-1072. Further, they found the stiffness in the basal-plane to
vary with respect to composition, with an average of C1; ~ 1047 GPa. However, we find these
DFT-based calculated values to be too high, and inconsistent with the experimental results
of Mukhopadyay et al. (2012). Accordingly, in our simulations we have chosen substantially
reduced values for the stiffness Eg and the total swelling Qcgmax — values which, when
compared to those based on Qi et al. (2010), are lower by a factor of ten. a

14.2 Simulation results

As summarized in Section 12.2, Mukhopadyay et al. (2012) interpreted their experimentally-
measured curvatures in terms of a nominal stress which was calculated using Stoney’s formula
(12.1); cf. Fig. 12-3. Since our numerical simulations directly give us the results for the
curvature changes, we have converted their reported stress values back to curvature values
by using (12.1), the material parameters for the quartz in Table 14.1, and the thicknesses of
the quartz and graphite layers presented in Fig. 14-1. Their experimental curvature versus
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time results are shown as a blue line in Fig. 14-3 (a). The corresponding curvature versus
time from our finite element simulation results are also plotted in this figure as a red line. The
two important experimentally-observed phenomena are clearly captured by our numerical
simulations:

(i) First, there as an overall decrease of the curvature k as a function of time — this is
due to the growth of the SEI layer.

(ii) Second, overlaid on the overall decrease in curvature, there is a cyclic oscillation of the
curvature — this is due to the lithiation/delithiation cycles of the graphite layer.

Highlighted in Fig. 14-3 (a) by blue dots are the experimental curvature measurements
after a complete lithiation/delithiation cycle. These points correspond to instances when
the graphite layer is essentially free of Li. These experimental curvature measurments after
full lithiation/delithiation cycles are replotted in Fig. 14-3(b) as blue dots. In this figure we
also show the results of our numerical simulations without the lithiation/delithiation of the
graphite, that is, the case corresponding to the boundary condition (14.4); this result is shown
as a red line. The drop in curvature with time in the numerical results in Fig. 14-3 (b) is due
entirely to the growth of the SEI layer. This numerically-predicted curvature history agrees
well with the experimental curvature measurements taken after full lithiation/delithiation
cycles.

In in Fig. 14-3 (a) the experimental results show an increase in the amplitude of the cyclic
oscillations of the curvature which, as noted by Mukhopadyay et al. (2012), are consistent
with an increase in the capacity of the graphite. In our simulations, we have not considered
any variation in the capacity of the graphite during cycling. Thus, the amplitude of the
oscillations in the stress in our simulations remain constant during cycling.

The results in Fig. 14-3 are extremely encouraging, they show that our theory and nu-
merical simulation capability — with suitable choices for the material parameters — can
reproduce the sophisticated experimental results of Mukhopadyay et al. (2012) with reason-
able guantitative accuracy.
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Figure 14-1: Plate geometry and a schematic of the single-column finite element mesh used in
the simulations.
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Figure 14-2: Schematic of the prescribed flux used in simulating galvanostatic charging/discharg-
ing. Here tp,. denotes the time for a half cycle of charging/discharging.
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with corresponding results from finite element simulation: (a) Experimental data and simulations
including lithiation/delithiation of the graphite layer. (b) Experimental data for curvatures mea-
sured only at the end of a complete lithiation/delithiation cycle compared against a numerical

simulation without lithiation of the graphite.
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Chapter 15

SEI formation on the surface of
spherical and spheroidal graphite
particles undergoing cyclic lithiation
and delithiation

In this section we numerically simulate SEI growth on a spherical-shaped anode particle
during cyclic lithiation/delithiation, and compare the results obtained for a spherical particle
against those for a particle geometry which is spheroidal rather than perfectly spherical.

Andersson et al. (2008) have reported on their measurements of SEI growth on graphite
particles with an average diameter of ~ 3 um. In their experiments they performed two full
lithiation/delithiation cycles at a C-rate of C/7. After cycling and washing of the anode, they
measured an SEI thickness of ~ 45nm. Guided by the experiments of these authors, in our
simulations we choose the dimensions of the graphite particles to have a diameter of ~ 3 ym.
Specifically, we consider the spherical- and spheroidal-shaped particles schematically shown
in Fig. 15-1: the spherical particle is taken to have a radius of 1.5 yum, and the spheroidal
particle to have a major axis of 2 um and a minor axis of 1 yum. Due to the symmetries in the
geometry, we mesh only one-half of the axisymmetric profile of each particle. Both particles
are meshed using 7500 elements, together with an electrolyte/SEI layer which is meshed
using 5000 elements — with 50 elements in the direction normal to the anode surface and
100 elements along the surface of the anode particle. The properties for the SEI are taken
as those calibrated in Chapter 14 and listed in Table 14.1. However, following Christensen
and Newman (2006), for an “isotropic” graphite anode we use,

Eg =15GPa, vg=0.3,

(15.1)
Q=2.745- 10" m®/mol, cgmax = 2.914 - 10*mol/m®, Dy = 1073 m?/s.
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Further, based on the work of Andersson et al. (2008), we prescribe the thickness of the SEI
to evolve according to (cf., eq. (14.1))

h(t) = h(ts)\/t/t;, with t;=28h and h(t;) =45nm, (15.2)

With reference to Fig. 15-1, the boundary and initial conditions that we used in our
simulations are as follows:

e Mechanical boundary conditions: Symmetry conditions are prescribed on edges
BE and BD, where the nodes along BE are constrained to have zero radial displacement
while the nodes along BD are constrained to have zero vertical displacement. The
exterior boundary DE is taken to be traction-free.

e Chemical initial conditions: The initial concentration of Li in the graphite particles
is taken to have a low value of ¢; = 0.05.

e Chemical boundary conditions: In accordance with the symmetry conditions on
edges BA and BC, the nodes along these edges are prescribed to have zero outwards
flux, i.e. j = 0. As in Chapter 14, we neglect diffusion of Li-ions through the elec-
trolyte/SEI layer, and prescribe a constant flux of Li ions on the edge AC. We consider
the following two cases:

(a)

(b)

Simulations with lithiation/delithiation of the graphite particle: First,
we account for the lithiation and delithiation of the graphite anode particle, con-
currently with SEI growth, by considering a non-zero value of the flux prescribed
on the anode edge AC. Specifically, consistent with the experiments of Andersson
et al. (2008) we prescribe a flux according to a C-rate of C/7; viz., a flux which
takes the particle from a fully delithiated state into a fully lithiated state in 7
hours and vice verse:

v ] —=5.20-10""mol/(m?sec) 2n—2 < t/ty, <2n—1 (15.3)
~ 15.20-10""mol/(m2sec)  2n —1 < t/ty. < 2n '
for the spherical particle, and
v ) —4.26-10""mol/(m?sec) 2n—2 < t/th. <2n-—1 (15.4)
~ 14.26-10""mol/(m%sec)  2n —1 < t/ty. < 2n '

for the spheroidal particle, with t,. = 7 hours. The difference in the prescribed
fluxes for the spherical and spheroidal particles is due to their different surface-
area-to-volume ratios. As in the experiments of Andersson et al., in our simula-
tions we carry out two full lithiation/delithiation cycles.

Simulations without lithiation/delithiation of the graphite particle: In
order to study the effect of graphite swelling on the stresses in the SEI layer
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we have also performed simulations with no lithiation of the graphite by simply
prescribing a zero normal flux along the edge AC,

7=0.

We have applied the same SEI growth rates in order to have results comparable
to the simulations with lithiation/delithiation.

The results from the numerical simulations for the spherical and spheroidal-shaped particles
are discussed in the next two subsections.

15.1 Simulation results for SEI growth on a spherical
anode particle

As described above, the simulations were run for two complete cycles of lithiation and delithi-
ation of the anode particle, with simultaneous deposition and expansion of the SEI. The two
full cycles of lithiation/delithiation are of course equivalent to four half-cycles — each half-
cycle consisting of either fully lithiating or fully delithiating the anode particle. Figs. 15-2(a)
and (b) show plots of the variation of the hoop stress Tgy = eg - Tey (in a cylindrical co-
ordinate system, cf. Fig. 15-2) within the SEI layer at the north-pole of the particle, as a
function of the outward distance from the surface of the anode; cf. the schematic on the left
of Fig. 15-2(a). These figures thus show the variation of the “hoop-stress” in the SEI as a
function of the outward distance from the surface of the anode.

Fig. 15-2(a) compares the result for the hoop stress variation in the SEI for a simulation
with two complete (or four half-cycles) of lithiation/delithiation of the graphite (solid line),
against the result for a simulation in which the graphite is not lithiated (dashed line). At the
end of the two full-cycles the graphite is delithiated, as it is in the case when the graphite is
never lithiated. In the case of no lithiation of the graphite the hoop stress in the SEI layer
is almost uniform at a value of approximately —1.5 GPa, whereas with cyclic lithiation the
hoop stress varies in the approximate range —2.3 GPa to —1.5 GPa across the thickness of
the SEI layer. '

The variation in hoop stress within the SEI thickness for the case of cyclic lithiation
arises due to the fact that as the SEI deposition and growth is occurring, the underlying
graphite is also undergoing relatively large volumetric changes due to the intercalation of
Li. This result is easily understood using the schematic shown in Fig. 15-3. Consider a fully
lithiated particle shown in Fig. 15-3(a) onto which an SEI layer forms, Fig. 15-3(b). The SEI
layer which forms will be in compression due to the inherent growth hoop stress which arises
during the process of SEI expansion. Once the particle delithiates, see Fig. 15-3(c), the SEI
layer will develop higher compressive stresses due to volumetric shrinking of the graphite
particle onto which the SEI layer is attached. The regions of the SEI in Fig. 15-2(a) which
have the largest compressive stresses of ~ —2.3 GPa thus correspond to layers of SEI which
were formed when the particle was fully lithiated.



166

To further illustrate the importance of accounting for stress generation due to both the
SEI growth and the lithiation/delithiation of the underlying graphite particle, Fig. 15-2(b)
shows the results of the simulation with cyclic lithiation of the graphite at two different
times: (i) at the end of 4 half-cycles when the anode is delithiated (solid line), and (ii) at
the end of 3 half-cycles when the anode is fully lithiated (dashed line). As expected, when
the graphite is fully lithiated, the overall hoop stress profile through the thickness of the SEI
exhibits lower levels of compressive hoop stress than at the state when it is fully delithiated,
since some of the compressive stress is relieved by the volumetric swelling of the graphite
anode when it is lithiated.

Of significant interest for judging the tendency for the SEI layer to delaminate from the
anode particle is the normal component of the traction, 7, = n- Tn, where n is the outward
unit normal to the anode/SEI interface; cf. schematic on the left of Fig. 15-2(c). Figs. 15-2(c)
and (d) show the variation of T, at the anode/SEI interface as a function of the normalized
distance along the circumference of the particle, starting from the north-pole of the particle.
As before, Fig. 15-2(c) shows the result from a simulation with cyclic lithiation/delithiation
of the graphite (solid line) versus the result from a simulation in which the graphite is not
lithiated (dashed line). The normal stress profiles in this figure are computed at the end
of four half-cycles when the graphite is equally devoid of Li in both simulations. Note that
the addition of cyclic lithiation/delithiation of the graphite leads to the development of
larger tensile normal stress 7,, at the anode/SEI interface. The larger value of T, in the
simulation with cyclic lithiation of the graphite is consistent with the observation of the
larger compressive hoop stress in the SEI layer for the same simulation, cf. Fig. 15-2(a).

Finally, Fig. 15-2(d) shows the results for T;, for the simulation with cyclic lithiation of the
graphite at two different times: (i) at the end of 4 half-cycles when the anode is delithiatated
(solid line), and (ii) at the end of 3 half-cycle when the anode is fully lithiated (dashed line).
When the particle is lithiated (dashed line) the normal interface stress is ~ 55 MPa, whereas
at when the particle is delithiated (solid line) the normal stress is ~ 115 MPa. This illustrates
the contribution of the delithiation of graphite anode to the formation of additional normal
stress along the anode/SEI interface.

15.2 Simulation results for SEI growth on a spheroidal
anode particle

In this section we present the results of our simulations for a spheroidal graphite particle
and compare (i) the hoop stress distribution in the SEI layer, as well as (ii) the normal stress
distribution at the anode/SEI interface, against the corresponding results for a spherical
particle. The results in this section are presented in the same fashion as was done in Sect. 15.1
for the case of a spherical particle.

Figs. 15-4(a) and (b) show plots of the variation of the hoop stress at the north-pole of
the spheroidal particle in the SEI layer as a function of the distance from the surface of the
anode. These results are similar to those in Figs. 15-2(a) and (b) for a spherical particle.
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Figs. 15-4(c) and (d) show the normal traction 7}, at the anode/SEI interface as a function
of the normalized distance along the circumference of the particle. These results differ
significantly from those obtained using a spherical particle; compare with Figs. 15-2(c) and
(d). In the spheroidal particle the normal traction along the anode/SEI interface in the
vicinity of the north-pole of the particle, is substantially higher than the normal traction
in a spherical particle. Focusing on the normal traction after 4 half-cycles — when the
particle is fully delithiated — we see that the normal traction for the spheroidal particle,
Fig. 15-4(d) (solid line), reaches a maximum value of ~ 320 MPa at the north-pole. In
contrast, the normal traction in the sphere, Fig. 15-2(d) (solid line), reaches a maximum
value of ~ 120 MPa, which is constant along the circumference of the particle.

The substantial increase in normal tensile traction at the anode/SEI interface for a
spheroidal (non-spherical) particle — as compared to a spherical particle — is important
in developing a more complete understanding of the role of particle shape in increasing (or
decreasing) the potential for delamination of a SEI layer from an anode particle.

Remark. In order to determine whether the SEI delaminates from the anode, the maxi-
mum calculated value of T;, must be compared with the cohesive strength of the interface.
However, to the best of our knowledge, measurements of cohesive strengths of SEI/anode
interfaces have not been reported in the literature. Still, examining the evolution of the
normal stress T, at the interface provides some insight as to when the SEI might delami-
nate. Fig. 15-5 shows the evolution of 7;, near the north pole of the spheroidal particle for
two full lithiation/delithiation cycles. In the first half-cycle of lithiation the normal stress
T, increases, while in the second half-cycle of lithiation 7, decreases. However T, increases
during both delithiation half-cycles — which is to be expected because the graphite shrinks
away from the SEI layer during delithiation. Thus, once an SEI layer has been formed,
delamination of this layer from the anode is most likeley to occur during delithiation. |
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Figure 15-1: Geometry and finite-element mesh of the spherical and spheroidal particles used in
the simulations. Due to the symmetry of the problem. only a quarter of the cross-section is meshed
with axisymmetric elements.
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Figure 15-2: Simulation results for a spherical anode particle: (a) and (b) show the hoop stress
Tpe in the SEI layer as a function of the distance from the anode surface. (c) and (d) show the
normal stress 7T}, at the anode/SEI interface as a function of the normalized distance along the
circumference of the interface. (a) and (c) show results after 4 half-cycles (two full-cycles) for
simulations including the cyclic lithiation/delithiation of the anode (solid lines) and for simulations
without lithiation of the graphite anode (dashed lines). (b) and (d) show simulations with cycling
of the anode after 3 half-cycles (dashed lines) when the graphite is lithiated and after 4 half-cycles
(solid lines) when the graphite is delithiated.
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Figure 15-3: Schematic of SEI growth on a lithiated graphite anode followed by delithiation of
the anode. The development of a compressive growth hoop stress, (a) to (b), is followed by further
compression of the SEI layer due to delithiation of the graphite, (b) to (c).
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Figure 15-4: Simulation results for a spheroidal anode particle: (a) and (b) show the hoop stress
Tye in the SEI layer as a function of the distance from the anode surface. (c) and (d) show the
normal stress T), at the anode/SEI interface as a function of the normalized distance along the
circumference of the interface. (a) and (c) show results after 4 half-cycles for simulations including
the cyclic lithiation/delithiation of the anode (solid lines) and for simulations without lithiation of
the graphite anode (dashed lines). (b) and (d) show simulations with cycling of the anode after 3
half-cycles (dashed lines) when the graphite is lithiated and after 4 half-cycles (solid lines) when
the graphite is delithiated.
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Figure 15-5: Variation of the normal interface traction 7;, near the north pole of the spheroidal
particle versus time.



Chapter 16

Concluding remarks

We have formulated a new continuum-mechanical theory and a finite-element-based capa-
bility for the simulation of growth of a solid electrolyte interphase layer at an anode particle
in a Li-ion battery. Our simulation capability accounts for the stress-generation due to the
growth of a SEI layer, as well as the cyclic stresses that are generated due to the lithiation
and delithiation of the anode particle.

We have calibrated the material parameters in our theory by using available data from the
literature, and by using results from the substrate curvature experiments of Mukhopadyay
et al. (2012). The results that we have presented in Section 14 are extremely encouraging;
they show that our theory and numerical simulation capability — with suitable choices for
the material parameters — can reproduce the novel experimental results of Mukhopadyay
et al. (2012) with reasonable quantitative accuracy.

The calibrated theory has been used to simulate SEI growth on a spherical and a
spheroidal graphite anode particle. Our simulations show that large non-uniform compres-
sive hoop stresses are generated within the SEI due to both the growth of the SEI and the
lithiation/delithiation of the anode particle. Our study shows that SEI layers which are
formed on the anode while it is in an expanded/lithiated state will develop higher compres-
sive hoop stresses once the anode is subsequently delithiated. These findings are especially
important since they in turn affect the large normal tensile tractions which develop along
the anode/SEI interface — tractions which can lead to the delamination-type failure of the
SEI and thus to accelerated capacity fade. Our study of spheroidal versus spherical particles
shows that spheroidal particles develop much larger (order 3 times larger) normal tractions
at certain points at the anode/SEI interface than spherical particles do. As such, spheroidal
particles are at a higher risk for potential delamination failure of the SEI.

Our work presents a first step in the modeling of SEI growth at active anode particles,
and carrying out a detailed stress analysis of the process. Much remains to be done; some
important items that need attention in the future include:
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e The square-root of time growth for the thickening of the SEI in our model is something
that has been prescribed a-priori. In a more complete future theory the square-root
of time growth might be the outcome of more completely modeled diffusion-limited

chemical reaction processes which involve the electrolyte, electrons, and the resulting
SEI (cf., e.g., Pinson and Bazant, 2013).

o Diffusion of Li through the SEI needs to be accounted for.

o Effects of anisotropic elasticity and anisotropic diffusion in the anode particles need to
be accounted for.

e Arbitrary three-dimensional particle shapes need to be studied.

e SEI growth on other types of anode particles, such as those made from silicon — which
exhibits significantly larger volume changes — needs to be studied.

Finally, there is a pressing need for the direct experimental measurement of the material
properies of the anode particles, the SEI layers, and the SEI/anode interfaces. This state-
ment regarding experimental measurement of material properies is true also for all other
microscopic (and macrscopic) components of Li-ion batteries.



Chapter 17

Conclusion

17.1 Summary

The development of simulation-based tools for the design, life-prediction, and optimization
of Lithium-Ion batteries (LIBs) is of crucial importance to the advancement of clean energy
storage, and largely remains an open issue of research. In this thesis, we have developed such
simulation-based tools with a focus on the the interaction between mechanical deformation
and diffusion in single active particles of LIB electrodes.

This thesis has addressed the theoretical formulation, numerical implementation, and
application of diffusion-deformation theories aimed at two different classes of electrode ma-
terials: (i) phase-separating electrodes, and (ii) elastic-plastic deforming electrodes. Further,
we have developed a theory and simulation capability for modeling growth of a solid elec-
trolyte interphase at the surface of an electrode. To conclude, we briefly summarize the main
contributions of each part of this thesis:

Part I: Modeling phase-separating electrode materials

e We formulated a thermodynamically-consistent theory which couples Cahn-Hilliard
species diffusion with large elastic deformations of a body. The theory was formulated
using the principle of virtual power, which yields two coupled second-order partial
differential equations which are amenable to being solved with a standard finite element
implementation.

e The theory has been implemented in the finite-element program Abaqus (2010) by
writing custom user-element subroutines.

e Using our simulation capability, we studied the chemo-mechanically-coupled problem
of lithiation of isotropic spheroidal phase-separating electrode particles. We showed
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that the coupling of mechanical deformation with diffusion is crucial in determining
the lithiation morphology, and hence the Li distribution, within these particles.

Part II: Modeling amorphous Silicon electrodes

e We have formulated and numerically implemented a fully-coupled diffusion-deformation
theory which accounts for transient diffusion of lithium and accompanying large elastic-
plastic deformation of amorphous Silicon.

e The theory was calibrated to results from electrochemical cycling experiments of a-Si
thin films deposited on quartz substrates performed by Pharr et al. (2014) and Bucci
et al. (2014). By choosing appropriate material parameters, our simulations reproduce
the experimentally measured voltage vs. state-of-charge and substrate curvature vs.
state-of-charge curves.

e We have applied our numerical simulation capability to model galvanostatic charging
of hollow a-Si nanotubes whose exterior walls have been oxidized to prevent outward
expansion. We have shown that the results from our numerical simulations, without any
parameter adjustments, are in reasonable agreement with the experimentally-measured
voltage versus SOC behavior at various charging rates (C-rates).

e Using our numerical simulation capability we identify, and quantify, two major effects
of plasticity on the performance of a-Si-based anodes of the type under consideration
here:

— First, plasticity enables lithiation of the anode to a higher SOC for a given voltage
cut-off. This is because plastic flow reduces the stresses generated in the material,
and thus reduces the potential required to lithiate the material.

— Second, plastic deformation accounts for a significant amount of the energy dissi-
pated during the cycling of the anode at low C-rates.

e We have demonstrated the applicability and importance of continuum-level models in
making meaningful predictions of the electrochemical response of a-Si based nanos-
tructured anodes.

Part III: Modeling growth of a solid electrolyte interphase

e We have formulated a new continuum-mechanical theory and a finite-element-based
capability for the simulation of growth of a solid electrolyte interphase layer at an
anode particle in a Li-ion battery.

e We have calibrated the theory to results from electrochemical cycling experiments of
graphite thin films deposited on quartz substrates performed by Mukhopadyay et al.
(2012). By choosing appropriate material parameters, our simulations reproduce the
experimentally measured cyclic stresses, due to graphite lithiation/delithiation as well
as the experimentally measured growth stresses.
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e We have shown that SEI growth on spherical and spheroidal particles, as they are being
charged/discharged, can lead to large non-uniform compressive hoop stresses within the
SEL Our finding that hoop stresses within the SEI remain compressive throughout the
cycling of the anode, have important consequences for predicting failure of SEI. They
suggest that SEI is not likely to fail through radial cracking but is prone to failure
through delamination from the anode surface.

17.2 Outlook

While progress has been made in this thesis towards modeling deformation-diffusion pro-
cesses in LIBs, much remains to be done. We list below, for the main parts of this thesis,
as well as for the broader topic of modeling batteries as a whole, some directions for future
work which have not been addresses in this thesis:

Outlook on modeling phase-separating electrode materials:

e Many cathode and anode materials currently used in Li-ion batteries are highly anisotropic.
The general chemo-mechanically-coupled phase-field theory derived in this thesis is
amenable to be specialized to account for such necessary anisotropies, however such
work has not yet been performed.

e Boundary conditions are of major importance in modeling battery electrodes and need
to be carefully considered. For nanometer-sized particles, there might also be a need to
properly formulate and account for possible surface energy effects (i.e. surface-wetting),
as recently studied by Cogswell and Bazant (2013). This is a non-trivial extension of the
work in this thesis which requires careful theoretical as well as numerical considerations.

Outlook on modeling amorphous Silicon electrodes:

e The simulations considered in this thesis for hollow double-walled nanotubes include
only a single nanotube, while the experimental results of Wu et al. (2012) were obtained
from an anode which was made up of an ensemble of nanotubes of various dimensions.
One extension of this work that is important, is the ability to model a variety of
nanotubes with a statistical distribution of geometrical and material properties. Such
an extension is non-trivial, from a computational implementation perspective, since
it requires a highly non-linear multi-point constraine between the displacement and
chemical potential degrees of freedom on the exterior surfaces of all of the tubes (cf.
the Remark leading to (8.175)).

e In the modeling of the Si/SiO; double-walled nanotubes, the SiO; film is treated as
a linear-elastic film through which diffusion of Li is neglected. This model needs to
be extended to account for the fact that the SiO, film will react with Li to form a
silicon-oxygen-lithium compound, which will consume some of the available Li, and
which will affect Li diffusion to the a-Si anode.
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e Recently, McDowell et al. (2013) and Wang et al. (2013) have experimentally observed
that the first lithiation half-cycle of a-Si nanoparticle appears to proceed by a quasi-two-
phase mechanism and not by single-phase diffusional insertion of Li. Such a mechanism
has been neglected in this thesis with respect to modeling a-Si, however including such
a mechanism would be a natural extension of this work, since two-phase mechanisms
have been considered in detail when modeling phase-separating electrodes in Part I of
this thesis.

e Finally, the simulation-based tool developed here for modeling nanostructured a-Si-
based anodes should be further tested against other anode geometries. Some specific
anodes of interest would be the “yolk-shell” structure of Liu et al. (2012a), and the
Silicon-Copper nanolattices being developed by Xia and Greer (2015).

Outlook on modeling growth of a solid electrolyte interphase:

e In our model, the square-root of time growth for the thickening of the SEI is something
that has been prescribed a-priori. In a more complete theory, the square-root of time
growth might be the outcome of a diffusion-limited chemical reaction process which

involves the electrolyte, electrons, and the resulting SEI (cf., e.g., Pinson and Bazant,
2013).

e Diffusion of Li through the SEI needs to be accounted for.

e Effects of anisotropic elasticity and anisotropic diffusion in the anode particles need to
be accounted for.

e SEI growth on other types of anode particles, such as those made from silicon —
which exhibits significantly larger volume changes — needs to be studied, both from a
numerical as well as from an experimental perspective.

Overall outlook:

o A broader extension of this work, equally applicable to all parts discussed above,
involves the up-scaling of our single active particle models to the porous electrode scale.
One potential realization of such an up-scaling would be to fully discretize a portion
of the porous-electrode scale including detailed discretizations of the active particles,
binder, and conductivity enhancing particles. Further, to properly account for the
chemical and mechanical connection between these various materials, we suggest the
development of fully-coupled chemo-mechanical cohesive zone elements. Such “zero-
thickness” elements could account for the electrochemical reaction kinetics at these
interfaces (i.e. Butler-Volmer-type reaction kinetics), as well as account for possible
failure of the mechanical interfaces through appropriate traction-separation relations.
Finally, these fully-coupled elements could account for how mechanical damage affects
loss of chemical connectivity as manifested through a loss of the flux of Li through the
interface.
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There are other approaches to modeling the porous-electrode scale. Notably, porous
electrode theory (cf., e.g., Ferguson and Bazant, 2012), which introduces notions of
porosity and tortuosity to effectively average across the porous-electrode scale, can be
used as a predictive, and computationally efficient tool for modeling LIBs. However,
it is unclear at this time how porous electrode theory might be extend to introduce
notions of mechanical damage, such as fracture, within the active particles, and at the
particle binder interfaces. The aforementioned approach, involving a full discretization
of a portion of the porous-electrode scale, might help elucidate how damage mechanisms
can be incorporated in regular porous electrode theory.

Mechanical damage, for example through fracture of the active particles or through
fracture or delamination of the SEI layer, is also of critical importance to understanding
degradation in LIBs. Theoretical models and numerical tools need to be developed to
extend the work in this thesis to include fracture mechanisms. Cohesive zone models,
as detailed in the bullet point above, could also provide useful in the development of
such fracture models.

There is a pressing need for the experimental measurement of the material properties of
the electrode particles, the SEI layers, and the SEI/electrode interfaces. This statement
regarding experimental measurement of material properties is true also for all other
microscopic (and macrscopic) components of Li-ion batteries.

Other components of a LIB, such as the polymer membrane separating the anode and
cathode materials, are also critical in the stability of the battery over its lifetime. Fu-
ture work should also focus on understanding and modeling the mechanical behavior of
the polymer membrane separator in order to better understand how such a component
might fail under regular operation or due to mechanical abuse of the cell.

Finally, we would like to note that the theoretical formulations, and numerical tools,
developed in this thesis are broadly applicable to a large number of problems in energy
production, transportation, and storage. For example, similar ideas to to the ones
developed in this thesis have been applied to modeling hydrogen diffusion in metals (Di
Leo and Anand, 2013), oxide growth in thermal barrier coatings (Loeffel and Anand,
2011), and dielectric elastomers (Henann et al., 2013) amongst others. Some example
future applications might include developing deformation-diffusion models for: (i) high-
temperature ceramic ion-transport membranes for fuel cells and air purification, (ii)
hydrogen storage in metal-hydride systems, and (iii) catalysis.



180




Bibliography

A., T., Sheldon, B., Ku, P., Xiao, X., 2014. The origin of stress in the solid electrolyte
interphase on carbon electrodes for li ion batteries. Journal of the Electrochemical Society
161, A58-A65.

Abaqus, 2010. Abaqus reference manuals.

Anand, L., 1979. Hencky’s approximate strain-energy function for moderate deformations.
ASME Journal of Applied Mechanics 46, 78-82.

Anand, L., 1986. Moderate deformations in extension-torsion of incompressible isotropic
elastic materials. Journal of the Mechanics and Physics of Solids 34, 293-304.

Anand, L., 2012. A cahn-hilliard-type theory for species diffusion coupled with large elastic-
plastic deformations. Journal of the Mechanics and Physics of Solids 60, 1983-2002.

Anand, L., Aslan, O., Chester, S., 2011. A large-deformation gradient theory for elasticplastic
materials: Strain softening and regularization of shear bands. International Journal of
Plasticity 30, 116-143.

Anand, L., Su, C., 2005. A theory for amorphous viscoplastic materials undergoing finite
deformations, with application to metallic glasses. Journal of the Mechanics and Physics
of Solids 53, 1362-1396.

Andersson, A., Henningson, A., Siegbahn, H., Jansoon, U., Edstrom, K., 2008. Electrochem-
ically lithiated graphite characterized by photoelectron spectroscopy. Journal of Power
Sources 119, 522-527.

Bai, P., Cogswell, D., Bazant, M., 2011. Suppression of phase separation in lifepos nanopar-
ticles during battery discharge. Nano Letters 11, 4890-4896.

Barré, A., Deguilhem, B., Grolleau, S., Gefare, M., 2013. A review on lithium-ion battery
aging mechanisms and estimations for automotive applications. Journal of Power Sources
241, 680-689.

181



182

Bazant, M., 2013. Theory of chemical kinetics and charge transfer based on nonequilibrium
thermodynamics. Accounts of Chemical Research 46(5), 1144-1160.

Berla, L., Lee, S., Cui, Y., Nix, W., 2014. Robustness of amorphous silicon during the initial
lithiation/delithiation cycle. Journal of Power Sources 258, 253-259.

Bower, A., Guduru, P., 2012. A simple finite element model of diffusion, finite deforma-
tion, plasticity and fracture in lithium ion insertion electrode materials. Modeling and
Simulation in Materials Science and Engineering 20, 045004.

Bower, A., Guduru, P., Sethuraman, V., 2011. A finite strain model of stress, diffusion, plastic

flow, and electrochemical reactions in a lithium-ion half-cell. Journal of the Mechanics and
Physics of Solids 59, 804—-828.

Bruce, P., Scrosati, B., J-M, T., 2008. Nanomaterials for rechargeable lithium batteries.
Angewandte Chemie International 47, 2930-2946.

Bucci, G., Nadimpalli, S., Sethuraman, V., Bower, A., Guduru, P., 2014. Measurement
and modeling of the mechanical and electrochemical response of amorphous si thin film

electrodes during cyclic lithiation. Journal of the Mechanics and Physics of Solids 62,
276-294.

Cahn, J., 1961. On spinodal decomposition. Acta Metallurgica 9, 795-801.
Cahn, J., 1977. Critical point wetting. Journal of Chemical Physics 66, 3667-3672.

Cahn, J., Hilliard, J., 1958. Free energy of a nonuniform system-i: Interfacial free energy.
The Journal of Chemical Physics 28, 258-267.

Cahn, J., Hilliard, J., 1959. Free energy of a nonuniform system-iii:nucleation in a two
component incompressible fluid. The Journal of Chemical Physics 31, 688-699.

Chester, S., 2011. Mechanics of amorphous polymers and polymer gels. Ph.D. thesis. Mas-
sachusetts Institute of Technology.

Chester, S., Di Leo, C., Anand, L., 2015. A finite element implementation of a coupled
diffusion-deformation theory for elastomeric gels. International Journal of Solids and
Structures 52, 1-18.

Christensen, J., Newman, J., 2006. Stress generation and fracture in lithium insertion ma-
terials. Journal of Solid State Electrochemistry 10, 293-319.

Cogswell, D., Bazant, M., 2013. Theory of coherent nucleation in phase-separating nanopar-
ticles. Nano Letters 13, 3036-3041.

De Jong, B., Beerkens, R., van Nijnatten, P., Le Bourhis, E., 2000. Glass, 1. Fundamentals.
Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Ltd.



183

de Souza Neto, E., Peric, D., Dutko, M., Owen, D., 1996. Design of simple low order finite
element for large strain analysis of nearly incompressible solids. International Journal of
Solids and Structures 33, 3277-3296.

DeHoff, R., 2006. Thermodynamics in Materials Science. CRC Press, Boca Raton.

Di Leo, C., 2012. A coupled theory for diffusion of hydrogen and large elastic-plastic de-
formations of metals. Master’s thesis. Massachusetts Institute of Technology. Cambridge,
MA.

Di Leo, C., Anand, L., 2013. Hydrogen in metals: A coupled theory for species diffusion and
large elasticplastic deformations. International Journal of Plasticity 43, 42—69.

Di Leo, C., Rejovitzky, E., Anand, L., 2014. A cahn-hilliard-type phase-field theory for
species diffusion coupled with large elastic deformations: Application to phase-segragating
li-ion electrode materials. Journal of the Mechanics and Physics of Solids 70, 1-29.

Ding, N., Xu, J., Yao, Y., Wegner, G., Fang, X., Chen, C., Lieberwirth, I., 2009. Deter-
mination of the diffusion coefficient of lithium ions in nano-si. Solid State Ionics 180(2),
222-225.

Ferguson, T., Bazant, M., 2012. Nonequilibrium thermodynamics of porous electrodes.
Journal of the Electrochemical Society 159(12), A1967-A1985.

Forest, S., 2009. Micromorphic approach for gradient elasticity, viscoplasticity, and damage.
Journal of Engineering Mechanics 135, 117-131.

Germain, P., 1973. The method of virtual power in continuum mechanics. part 2: microstruc-
ture. SIAM Journal of Applied Mathematics 25, 556-575.

Gomez, H., Calo, V., Bazilevs, Y., Hughes, T., 2008. Isogeoemetric analysis of the cahn-
hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering 197,
4333-4352.

Gomez, H., Hughes, T., 2011. Provably unconditionally stable, second-order time-accurate,

mixed variational methods for phase-field models. Journal of Computational Physics 230,
5310-5327.

Gurtin, M., 1996. Generalized ginzburg-landau and cahn-hilliard equations based on a mi-
croforce balance. Physica D 92, 178-192.

Gurtin, M., 2002. A gradient theory of single-crystal viscoplasticity that accounts for ge-
ometrically necessary dislocations. Journal of the Mechanics and Physics of Solids 50,
5-32.

Gurtin, M., Fried, E., Anand, L., 2010. The Mechanics and Thermodynamics of Continua.
Cambridge University Press, Cambridge.



184

He, Y., Xu, X., Wang, Y., Ki, H., Huang, X., 2011. Alumina-coated patterned amorphous
silicon as the anode for a lithium-ion battery with high coulombic efficiency. Advanced
Mater 23, 4938-4941.

Henann, D., Chester, S., Bertoldi, K., 2013. Modeling of dielectric elastomers: Design of

actuators and energy harvesting devices. Journal of the Mechanics and Physics of Solids
61(10), 2047-2066.

Kroner, E., 1960. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen.
Archive for Rational Mechanics and Analysis 4, 273-334.

Kuhl, E., 2014. Growing matter: a review of growth in living systems. Journal of the
Mechanical Behavior of Biomedical Materials 29, 529-543.

Kuhl, E., Schmidt, D., 2007. Computational modeling of mineral unmixing and growth.
Computational Mechanics 39, 439-451.

Lee, E., 1969. Elastic plastic deformation at finite strain. ASME Journal of Applied Me-
chanics 36, 1-6.

Lee, M., Lee, J., Shim, H., Lee, J., Park, J., 2007. Sei layer formation on amorphous si thin
electrode during precycling. Journal of The Electrochemical Society 154, A515-A519.

Li, H., Huang, X., Chen, L., Wu, Z., Liang, Y., 1999. A high capacity nano-si composite
anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters
2(11), 547-549.

Liu, N., Wu, H., H.,, M., M.T., Y., Wang, C., Cui, Y., 2012a. A yolk-shell design for stabilized
and scalable li-ion battery alloy anodes. Nano Letters 12(6), 3315-3321.

Liu, X., Zhong, L., Huang, S., Mao, S., Zhu, T., Huang, J., 2012b. Size-dependent fracture
of silicon nanoparticles during lithiation. Acs Nano 6(2), 1522-1531.

Loeffel, K., Anand, L., 2011. A chemo-thermo-mechanically coupled theory for elastic-
viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction.
International Journal of Plasticity 27, 1409-1431.

Malik, R., Burch, D., Bazant, M., Ceder, G., 2010. Particle size dependence of the ionic
diffusivity. Nano Letters 10, 4123-4127.

Maxisch, T., Ceder, G., 2006. Elastic properties of olivine li,fepos from first principles.
Physical Review B 73, 174112-1 — 174112-4.

McDowell, M., Lee, S., Harris, J., Korgel, B., Wang, C., Cui, Y., 2013. In situ tem of
two-phase lithiation of amorphous silicon nanospheres. Nano Letters 13, 758-764.



185

McDowell, M., Ryu, I, Lee, S., Wang, C., Nix, W., Cui, Y., 2012. Studying the kinetics
of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy.
Advanced Mater 24, 6034-6041.

Mohr, P., Taylor, B., Newell, D., 2008. Codata recommended values of the fundamental
physical constant. Rev. Mod. Phys. 90, 633-730.

Mukhopadyay, A., Tokranov, A., Xiao, X., Sheldon, B., 2012. Stress development due to
surface processes in graphite electrodes for li-ion batteries: A first report. Electrochimica
Acta 66, 28-37.

Newman, J., Thomas-Alyea, E., 2010. Electrochemical systems. John Wiley & Sons.

Obrovac, M., Krause, K., 2007. Reversible cycling of crystalline silicon powder. Journal of
the Electrochemical Society 154, A103—A108.

Pharr, M., Suo, Z., Vlassak, J., 2014. Variation of stress with charging rate due to strain-rate
sensitivity of silicon electrodes of li-ion batteries. Journal of Power Sources 270, 569-575.

Pinson, M., Bazant, M., 2013. Theory of sei formation in rechargeable batteries: capacity
fade, accelerated aging and lifetime prediction. Journal of The Electrochemical Society
160(2), A243-A250.

Qi, Y., Guo, H., Hector, L., Timmons, A., 2010. Threefold increase in the young’s modulus
of graphite negative electrode during lithium intercalation. Journal of The Electrochemical
Society 157, A558—-A566.

Rejovitzky, E., Di Leo, C., Anand, L., 2014. A theory and simulation capability for growth
of a solid electrolyte interphase layer at an anode particle in a li-ion battery. Journal of
the Mechanics and Physics of Solids 78, 210-230.

Ros, A., 2005. The isoperimetric problem. chapter in global theory of minimal surfaces.
Amer. Math. Soc 2, 175-209.

Rousse, G., Rodriguez-Carvajal, J., Patoux, S., C.Masquelier, 2003. Magnetic structures
of the triphylite lifepos and of its delithiated form fepos. Chemistry of Materials 15,
4082-4090.

Ryu, I., Choi, J., Cui, Y., Nix, W., 2011. Size-dependent fracture of si nanowire battery
anodes. Journal of the Mechanics and Physics of Solids 59, 1717-1730.

Scrosati, B., Garche, J., 2010. Lithium batteries; status, prospects and future. Journal of
Power Sources 195, 2419-2430.

Sethuraman, V., Chon, M., Shimshak, M., Winkle, N.V., Guduru, P., 2012. In situ measure-
ment of biaxial modulus of si anode for li-ion batteries. Electrochemistry Communications
12(11), 1614-1617.



186

Sethuraman, V., Srinivasan, V., Bower, A., Guduru, P., 2010a. In situ measurements of
stress-potential coupling in lithiated silicon. Journal of the Electrochemical Society 157,
A1253-A1261.

Sethuraman, V., Srinivasan, V., Bower, A., Guduru, P., 2010b. In situ measurements of
stress-potential coupling in lithiated silicon. Journal of the Electrochemical Society 11,
A1253-A1261.

Shenoy, V., Johari, P., Qi, Y., 2010. Elastic softening of amorphous and crystalline lisi
phases with increasing li concentration: a first-principles study. Journal of Power Sources
195, 6825-6830.

Smith, A., Burns, J., Xiong, D., Dahn, J., 2011a. Interpreting high precision coulometry
results on li-ion cells. Journal of The Electrochemical Society 158, A1136—-A1142.

Smith, A., Burns, J., Zhao, X., Xiong, D., Dahn, J., 2011b. A high precision coulometry
study of the sei growth in li/graphite cells. Journal of The Electrochemical Society 158(5),
A447-A452.

Stoney, G., 1909. The tension of metallic films deposited by electrolysis. Proceeding of the
Royal Society A 82, 172-175.

Tang, M., Carter, W., Chiang, Y.M., 2010. Electrochemically driven phase transitions in
insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines.
Annual Reviews of Materials Research 40, 501-529.

Tarascon, J., Armand, M., 2001a. Issues and challenges facing rechargeable batteries. Nature
414, 359-367.

Tarascon, J., Armand, M., 2001b. Issues and challenges facing rechargeable lithium batteries.
Nature 414, 359-367.

Ubachs, R., Schreurs, P., Geers, M., 2004. A nonlocal diffuse interface model for microstruc-
ture evolution of tin-lead solder. Journal of the Mechanics and Physics of Solids 52,
1763-1792.

Verma, P., Maire, P., Novdk, P., 2010. A review of the features and analyses of the solid
electrolyte interphase in li-ion batteries. Electrochemica Acta 55, 6332-6341.

Wang, J., H.Yu, Feifei, F., Liu, X., Xia, S., Liu, Y., Harris, C., Li, H., Huang, J., Mao, S.,
Zhu, T., 2013. Two-phase electrochemical lithiation in amorphous silicon. Nano Letters
13, 709-715.

Weber, G., Anand, L., 1990. Finite deformation constitutive equations and a time integration

procedure for isotropic, hyperelastic viscoplastic solids. Computer Methods in Applied
Mechanics and Engineering 79, 173-202.



187

Wells, G., Kuhl, E., Garikapati, K., 2006. A discontinuous galerkin method for the cahn-
hilliard equation. Journal of Computational Physics 218, 860-877.

Wodo, O., Ganapathysubramanian, B., 2011. Computationally efficient solution to the cahn-
hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3d
isoperimetric problem. Journal of Computational Physics 230, 6037-6060.

Wu, H., Chan, G., Choi, J., Yao, Y., McDowell, M., Lee, S., Jackson, A., Yang, Y., Hu, L.,
Cui, Y., 2012. Stable cycling of double-walled silicon nanotube battery anodes through
solid-electrolyte interphase control. Nature Nanotechnology 7(5), 31-315.

Xia, X., Greer, J., 2015. Personal communication.

Zeng, Y., Bazant, M., 2014. Phase separation dynamics in isotropic ion-intercalation parti-
cles. SAIm Journal on Applied Mathematics 74, 980-1004.

Zhang, Y., Li, Y., Wang, Z., Zhao, K., 2014. Lithiation of sio; in li-ion batteries: In
situ transmission electron microscopy experiments and theoretical studies. Nano Letters
14(12), 7161-7170.

Zhao, K., Pharr, M., Cai, S., Vlassak, J., Suo, Z., 2011. Large plastic deformation in
high-capacity lithium-ion batteries caused by charge and discharge. Journal of American
Ceramic Society 94, S226-S5235.

Zhao, K., Pharr, M., Hartle, L., Vlassak, J., Suo, Z., 2012. Fracture and debonding in
lithium-ion batteries with electrodes of hollow core-shell nanostructures. Journal of Power
Sources 218, 6-14.



188




Appendix A

Numerical methodology for Part I:
Modeling phase-separating electrode
materials.

A.1 Introduction

Following the framework developed by Chester et al. (2015), in this Appendix we present
the details of our numerical implementation of the constitutive model developed in Part I
for the coupled diffusion-deformation behavior of phase-separating electrode materials. In
particular, we present here the “Residual” vector and “Tangent” matrix which must be
implemented in order to solve the coupled set of equations in the finite element program
Abaqus/Standard through the use of the user element (UEL) subroutine. Details on how
to implement the residuals and tangents developed here within the UEL fortran subroutines
can be found in Chester et al. (2015), and are thus omitted from this Appendix.

In Sect. A.2 we begin by recalling the governing partial differential equations and bound-
ary conditions, and then formulate the variational statements which will serve to develop the
residual necessary in the finite element implementation. In Sect. A.3 we derive the tangents.
We summarize our results in Sect. A.4.

A.2 Variational formulation. Residuals

We begin by recalling the governing partial differential equations (3.106), (3.107), and
(3.108), along with the equation for the stress potential (3.117), and their boundary condi-
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tions:

divl+b=0 in B, )
Macroforce balance u=1u on &,

Tn=E on St,

Mass balance c=c¢ on &,

Microforce balance t=¢ on S
AMVE)-ng =€ on &.

1
Uo = —Q=trM°® in B,
Equation for the stress potential 3

Ho = fjlc on S, . )

Note that in writing (A.1) we have made the following choices:

The macroforce balance in (3.106) is stated in the reference configuration, whereas here
we have stated it in the deformed configuration and will also numerically implement
it in the deformed configuration. Such a choice is made following the finite element
developments of Chester (2011), on which this development is based. We note that
this choice will not affect the accuracy of our results.

The mass balance is written in terms of the normalized concentration ¢ = cg/cg max,
and the degree of freedom (dof) used in the numerical implementation is also the
normalized concentration ¢. In doing so, using (3.107) we have defined

m L moe(1 — @) (A.2)
Similarly, the microforce balance is written in terms of the normalized micromorphic
concentration € which is also the dof for this pde.

With

Wi, Wy, Wz, Wy, (A.3)
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denoting weighting (or test) fields which vanish on Sy, S;, S¢, and S,,, respectively, the weak
forms corresponding to (A.1) are given by

/(T:gradwl—wl-b) dv— | wy-tda=0,
B St

/ (wet + Vwy - (MVp)) dug + / we) dan = 0,
B Sj

’ (A4)
/ (w3B(€ — ¢€) + A\Vws - VE) dvg — / waé dagy, = 0,
B

Se

/w4 (,ua + QltrMe) dvg = 0. J
B 3

The body is approximated using finite elements, B = UB®, and the trial solutions for the
displacement, the concentration, the micromorphic concentration, and the stress potential
are interpolated inside each element by

u=S"u'N4, =Y N4, o= et Z pe N4 (AB)
, A A

A

with the index A = {1,2,..., M} denoting the nodes of the element, u# denoting the nodal
displacements, ¢* denoting the nodal concentrations, €* denoting the nodal micromorphic
concentrations, j, denoting the nodal stress potentials, and N4 the shape functions. Using
a standard Galerkin approach, the weighting fields are interpolated by the same functions,
that is

W1=ZW14NA, w2=Zw§1NA, w3=ng4NA, w4=waNA. (A.6)
A A A A

Using (A.5) and (A.6) in (A.4), yields the following element-level system equations.

o )
/ (TgradN* — N*b) dv — / N*tda =0,

e
t

/ (N4 + VNA - (mVp)) dva+ | N*jdas =0,
€ Sje

/ (N4B(€ - €) + \VN“ - VE) dug — / NA€ dag = 0,

¢
/e N4 (uo + Q%trM"’) dvg = 0.
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This system of coupled equations is solved using a Newton procedure in Abaqus by defining
element-level residuals and tangents. Using (A.7), the element-level residuals for the dis-_
placements, the concentration, the micromorphic concentration, and the stress potential are
given by

R = / (TgradN4 — N4b) dv — [ N*tda,
e Ste

RA = / (N4&+ UNA - (mVp)) dv + | NAF dag,
e S¢

! > (A.8)

RA = / (N4B(@ — ) + \UNA - V) dug — | N4Eda,
e SE

1
RA = / NA (uo + QgtrMe) dv.

Next, recall equation (3.96) for the chemical potential y which may be written as

/

C

p= f(&) — BT+ po, with f(¢)=RdIn ( — E) + x(1 — 2¢) + Be. (A.9)

Using (A.9), we may write the residual RZ for the concentration in terms of all other degrees
of freedom as

RA = / (NAé+ m (VNA : ?iva — VN4.8Ve+ VNA. vug)> dvg

oc
y (A.10)
+ | N%jdag,
S
with
of RY Dy _
== —2 n= =21 - 2). .
5~ -9 x+p8, and m Rﬂc(l ) (A.11)
A.3 Tangents
In addition to the residuals, the following tangents are also required:
an_ _ORA T T T e
uu duB’ B ORZ aB _ _ORg A
ORA & - _8(1_3B’ €& 9cB ) ( 12)
KA-B - u A A
ue ocB’ AB __ _8R5 AB __ aRa‘:

eue OuB’ T _3MGB’
g
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and
AB aRﬁa
Ho o - aﬂ? )
ORA
AB __ o
KAB = — BEZ , (A.13)
KAB _ aRf'flo
Kou SuB

First, the tangent of the displacement residual with respect to the displacement dof, in
indicial notation, is given by (cf. Chester et al. (2015))

ONA ONB ot
KAB — _ A, ANB 2 ¢ .
Ui Be axj ikl a.'L‘l dv + s¢ N aUk a, (A 14)
with o
Aijuy = J 1 Fjm Frn— 2. (A.15)

In our numerical implementation we make the simplifying approzimation that the spatial
tangent modulus (A.15) is equal to the elasticity tensor (3.90), that is

AwC=2GH+(K—§G)1®1, (A.16)

where G and K are the shear and bulk moduli respectively, and I and 1 are fourth- and
second-order identity tensors.

Remark. As detailed in Chester et al. (2015), to accommodate compressible and nearly
incompressible material behavior and mitigate volumetric locking behavior, we use the so
called F-bar method (de Souza Neto et al., 1996). In such a method, the deformation gradient
is suitably replaced such that the incompressibility constrained is enforced as an approximate
average throughout the element, rather than point wise at each integration point. The use
of the F-bar method does not change the integration point residuals, simply the modified
deformation is used. However, the tangent (A.14), and all tangents which involve residuals
being derived with respect to the displacement degrees of freedom, must be modified. The
necessary modifications are discussed in detail in Chester et al. (2015), O

The tangent of the displacement residual with respect to the concentration dof is given
by

KAB = — nedk grad N4 dv + / NANEE g, (A.17)
Be oe e oe
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We make the approrimation that
oT OM°

Tl (A.18)
Recalling (3.93) and (3.82), and using the fact that tr E® = In(J/J¢), we may write
Me = ZGES + Kln (—(}—2) 1, JC =1+ QECR’max, (Alg)
which yields M N
__K Crymex ;- (A.20)

oz Je

Next, the tangent of the concentration residual (A.10) with respect to the concentration
dof is given by

KAB — _ / (NANBa—f + 9 (VNA O Ge N4 gve + VN4 wa)

oc Oc oc Aol

+mNBVNA%2é§va+mVNA-%VNB> dvg, — /S ; NANB—g%daR, _—

e Om _ Do o gpg Zf _EIRE-1) (A.22)
0¢ RY ’ acz  2(1-c¢c)?’ '

The tangent of the concentration residual (A.10) with respect to the micromorphic concen-
tration is given by

KAB = _/ —mVNA. BYNE du, — / NANBZ—OJ_: dax. (A.23)
e SJ‘?

The tangent of the concentration residual (A.10) with respect to the stress potential dof is
given by

KB = — [ mUNA . UNB dug - /

NANEDL 4o (A.24)
Be S; a,ua

The tangent of the micromorphic concentration residual with respect to the micromorphic
concentration dof is given by

KAP = — / (BNANE + AVN4 . VNB) dug + / NANB-gf_; dax. (A.25)
‘ ;
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The tangent of the micromorphic concentration residual with respect to the concentration
dof is given by

KAB = — | —BNANBdv, + | NAN® ‘;5 (A.26)
Be Se

The tangent of the stress potential residual with respect to the stress potential dof is
given by

K28 = — / e NANE du,. (A.27)

The tangent of the stress potential residual with respect to the concentration dof is given by

1 8tr Me

KA =— | NANBQZ A
Hot Be N Q3 oec @n, (A.28)
where, using (A.19), we have that
otrM®  3KQcq max (A.29)

oc  Je

The tangent of the stress potential residual with respect to the displacement dof in indicial
notation is given by

1 otr M® OF;;
AB _ _ NAQ= ik ] A3
Kliau /e 3 E7k au dUR ( 0)
which using the identity
BN OF;; ON?B
ij — U4 =0k < A3l
Ri=0y+ TS, o =t (A31)
may be written as 5
10trMe® ON
AB . _ A . A.32
Ko, BeN 93 T oX, ——duy (A.32)

From (A.19) we have that

dtrM®  3K9J 3K . . -
—F == 7 JFT =3KF (A.33)

A.4 Summary

We may summarize the element-level residuals and tangents for the displacements u, nor-
malized concentration ¢, normalized micromorphic concentration €, and stress potential p,
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degrees of freedom as

R} = / (TgradN* — N“b) dv — / N4t da,
e Ste

RA = / (NAC*+ m (VNA : %va— VN4 .BVe+ VNA. wa)) dvg

+ [ N*da,,  (A.34)
Sj
R = / (N*B(€ ~ &) + AVNA - V&) duy — / NA€ dag,
e Sg

1
R;la = / NA (,ua + QgtrMe) dvug,
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and
ON4 ONB ot;
KAB _ _ A AnB
Uiuk Be 6:13]' Wk 83:, dv+ S¢ NTN 3 U d
gas— _ [ yeOTadNT, / vane2h g
e Be oc ij e oec’ ’

KAP = — / (NANB gz aamNB (vzvf‘ : %Vé — VN4. BVe + VN - Vu,,>

2 v
+mNBVYNA. %va +mVNA. %VNB> dvg — / NANBa—J dag,

< oe
K& =- / —mVN4 . BVN® dug — / NANB-g% dax,
KB =— [ mVN“*.VN®dv, — / NANB-aai da, (A.35)
Be H o
Ky = / (BNANB + AVNA . VNB) du,, + / NANE 85 n,
AB __ A nrB A Bag
K&B =— | —BNANBdvy+ [ NANE 2 da,,
Be se 8
K/?UB;JU = —/ NANB dUR)
10tr M*®
AB __ AnrB
K28 = — /eN NPQz——— dus,
e B

Haths Be 3 Fy an



198

with

Dy,
m—ﬁc(l—c),

om Dy i}

5% " ReL T
of RV

% -y X

8%f  Ro(2e—1)

oz 2(1-¢2’

AzC=2G]I+(K—-§G>1®1,

OT _OM°  KQcqmax

— = = 1
5 ot g
Otr M* _ 3KQCR,max

o Je
QM _ s,

OF

(A.36)



Appendix B

Split methods for solving the
Cahn-Hilliard equation

As mentioned in Chapter 2, the Cahn-Hilliard equation for the diffusion of a species involves
solving a partial differential equation (pde) which contains fourth-order spatial derivatives.
From a practical engineering application, the use of the finite-element method to solve such
equations is often preferable since it allows for modeling in arbitrary geometries. However,
if solved using the finite-element procedure, such fourth-order equations necessitate basis
functions which are piecewise smooth and globally C!-continuos. In order to use standard
CC-continuos finite-elements, one often employs a split method formulation to reduce the
fourth-order equation into two second-order partial differential equations. In reducing the
fourth-order equation of interest into two second-order equations, two distinct split method
formulations may be used:

e The first method involves introducing an additional pde which governs an internal
variable of the model, usually one whose gradients are necessary for computation of
the original equation. As we shall see in Sect. B.1, when the two second-order pdes in
this method are combined they recover the classical Cahn-Hilliard equation. We thus
refer to this method as the classical formulation.

e The second method, involves the introduction of an additional variable, not present in
the original model, to serve as an additional kinematical degree of freedom (DOF) on
which to formulate the split method. We refer to this method as the micromorphic
formulation since we will refer to the additional variable as the micromorphic variable.

The classical formulation has the clear advantage that it does not introduce any additional
variables or material/simulation properties. However, in some applications the classical for-
mulation can lead to stiff and numerically difficult to solve equations. Thus, in certain cases,

it may then be useful and numerically convenient to use the micromorphic formulation to
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reformulate the fourth-order equation as two coupled second-order pdes. However, the micro-
morphic formulation does not directly solve the physical problem of interest, and introduces
an additional parameter which must be appropriately determined.

The Cahn-Hilliard equation is ideal for studying the aforementioned split method formu-
lations since it is amenable to being formulated with both classical and micromorphic split
methods and has been studied extensively in the literature. Wodo and Ganapathysubrama-
nian (2011) and Gomez and Hughes (2011) both solve the Cahn-Hilliard equation using a
classical split method formulation approach with a focus on new and novel time-stepping al-
gorithms. Gomez et al. (2008) solve the fourth-order Cahn-Hilliard equation using the novel
and non-standard isogeometric analysis which, although it does not require a split method,
involves complicated numerics which are difficult to implement in commercially available
FEA codes. Wells et al. (2006) solve the problem using a classical split method formula-
tion as a reference for their development of a discontinuous Galerkin method. Ubachs et al.
(2004), in the context of modeling the microstructural evolution of tin-lead solder, solve the
Cahn-Hilliard equation using a micromorphic split method formulation similar to previous
formulations of micromorphic theories (cf. e.g. Forest, 2009).

The Cahn-Hilliard theory for diffusion of a species within‘ a body may be summarized by

¢ = Div (m(é)v (Q%c—é(—Q — AA&)) , (B.1)

which is a nonlinear partial differential equation for the normalized concentration of the
diffusing species ¢ € [0,1], and involves fourth-order derivatives of & In (B.1), ¢¢ is the
chemical free energy of mixing and the term (—AAg¢) is the contribution of the the interfa-
cial free energy to the chemical potential, with A\ a gradient energy parameter and A¢ the
Laplacian of the normalized concentration. Further, m(¢) > 0 is the mobility of the diffusing
species.

In the classical formulation the fourth-order equation (B.1) is described by the follow-
ing two second-order equations

adjc @) classical formulation (B.2)

where the two solution variables are the concentration ¢ and the chemical potential p.

In the micromorphic formulation an additional variable € is introduced, which we
refer to as the micromorphic variable. Using a microforce balance, and suitable constitutive
equations, we may show that formulating the diffusion theory with this additional kinemati-
cal degree of freedom yields a split method formulation with the following governing partial
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differential equations

¢ =Div | m(e)V i _(E) +8E-¢e)) |,
ac micromorphic formulation (B.3)

AAT + B(c—¢€) =0,

where the additional second-order pde is a Hemholtz-type equation governing the micromor-
phic variable €. We note that:

e The micromorphic formulation introduces an additional parameter, 3, which we refer
to as the penalty modulus.

As briefly introduced here, and further elaborated on in Sect. B.2, it is not immediately clear
when the micromorphic formulation produces suitable results when compared to the classical
formulation; specifically how the parameter § should be chosen. In Chapter 4 we performed
a limited set of simulations aimed at illustrating how the micromorphic formulation of the
Cahn-Hilliard equation should converge as the penalty modulus S is increased. However, no
comparison was performed between the micromorphic (B.3) and classical (B.2) split methods
for soliving the Cahn-Hilliard equation. Such a comparison, along with some theoretical
details for completeness, is presented in this Appendix. ‘

The purpose of this Appendix is thus as follows:

e First, we derive the classical split method formulations (B.2) in a thermodynamically
consistent fashion by using the principle of virtual power. Unlike derivations based
on the variational derivative, the formulation shown here clearly distinguishes between
balance laws and constitutive equations. Further, from the formulation it is clear what
the appropriate boundary conditions for the resulting pdes are.

e Second, we investigate through numerical simulations the two different split method
formulations aimed at solving the Cahn-Hilliard equation using finite-elements. Specifi-
cally, we show that the micromorphic formulation converges to the classical formulation
for appropriately chosen simulation parameters.

e Finally, we present in detail the numerical procedures used to implement the afore-
mentioned split methods in the commercial FEA package Abaqus (2010).

Finally, we remark that in this Appendix we consider only the diffusion problem and do not
account for the deformation of the body. Hence, we do not distinguish between spatial and
referential quantities (i.e. vectors, operators, etc.), and all quantities should be considered
to be defined with respect to the reference body.
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B.1 Cahn-Hilliard diffusion theory derived using the
principle of virtual power

In contrast to a standard derivation of the Cahn-Hilliard equation based on a variational
derivative of the total energy, see egs. (2.1) through (2.7), following Gurtin (1996) and Anand
(2012), this derivation is based on using the principle of virtual power. The derivation is
similar to that presented in Chapter 3, however here we do not introduce an additional
kinematical variable. Further, here we will consider only diffusion of a species, without any
consideration for mechanical deformation.

B.1.1 Mass balance

With &X, t) € [0, 1] denoting a normalized concentration, the local mass balance law for the
concentration is given by (cf. Sect. 3.1)

& = —Div(j), (B.4)

where j is the species flux.

B.1.2 Microforce balance derived via the principle of virtual power

Consider a part P of the body B within which the species is diffusing. The virtual power
principle is based on a fundamental power balance between the internal power Wiy (P)
expended within the part P, and the external power Wex(P) expended on P. Specifically, we
allow for power expended internally by

(i) a scalar microscopic force m power-conjugate to ¢;
(ii) a vector microscopic force & power-conjugate to the gradient V§;

and take Wi, (P) to be given by

Win(P) = /

i (mi»+ ¢ vf:) av, (B.5)

where 7 and & are defined over the body for all time. We also allow for power to be expended
externally by

(i) a scalar microscopic traction ¢ that expends power over ¢ on the boundary of the part;

and take Wey (P) to be given by

Wexe(P) = . CEdA. (B.6)
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Assume that at some arbitrarily-chosen but fixed time, the field ¢ is known, and consider
¢ as a virtual velocity. Then, denoting the virtual field by ¢ to differentiate it from the field
associated with the actual evolution of the body, we may use (B.5) and (B.6) to write the
internal and external expenditures of virtual power as

Win(P, &) = / (775+§-V5) av,

r (B.7)
Wext(P, €) = / (CdA.
oP
The principle of virtual power then consist of the requirement that
Wint (P, €) = Wext(P,€) for all virtual velocities ¢. (B.8)
which using (B.5) and (B.6) yields
/ (71'6 +E- va) dv = [ (EdA. (B.9)
P oP

Next, using the identity Div(aa) = Div(a)a + a- Va and the divergence theorem, we may
write (B.9) as

/ap (¢-&n)zdA- /P (v - Div(e))zav =0, (B.10)

where n is the outward unit normal on the boundary dP. Since this relation must hold for
all P and for all ¢, standard variational arguments yield the traction condition

((m)=¢-n, (B.11)

and the microforce balance
7w — Div€ = 0. (B.12)

B.1.3 Free energy imbalance

Let 1 denote the Helmholtz free energy per unit volume, and consider a material region
P. Then, under isothermal conditions, the first and second laws of thermodynamics may be
combined to form the free energy imbalance as

/ WAV < Wee(P) — / 4j-ndA, (B.13)
P oP

where i represents the chemical potential of the diffusing species, and j is the species flux.
Thus, since Wex(P) = Win(P), recalling (B.5) and applying the divergence theorem to the
term involving an integral over the boundary 0P of P, we may write the free energy imbalance



204

(B.13) as
/(zb—wé—ﬁ-Vé+uDiv(j)+j~Vu) dv <0, (B.14)
P

Finally, using mass balance (B.4), and the fact that (B.14) must hold for all parts P, the
local form of the free energy imbalance is

Y — e —€E-VE+j - Vu <0, (B.15)

where we have defined st
Thet = u+m (B16)

for a net microforce. Finally, for later use, using (B.6) and (B.11) we may also write the
free-energy imbalance (B.13) as

WS/@Pé(g.n)dA“/w,u(j.n)dA, (B.17)

B.1.4 Constitutive theory

Guided by the free energy imbalance (B.15) we consider energetic constitutive equations for
the free energy 9, the net microforce myet, and the vector microforce & of the form

¢ = 1&(5, va):
Tnet = 7Arnet:(E’ VE)? (B18)
§= é(é’ Vé)

Substituting the constitutive equation (B.18); into the free energy imbalance (B.15), we find
that it may be written as

8% . 9 .
<%—ﬂm)c+ <8V5_ >~VC+J-V,USO. (B.19)

This inequality must hold for all values of ¢ and Vc. Since ¢ and V¢ appear linearly,
their “coefficients” must vanish, for otherwise they may be chosen to violate (B.19). We
are therefor led to the thermodynamic restriction that the free energy determine the net
microforce e, and the vector microscopic force £ through the “state relations”

~

oY(e, Vi)
Thet =“‘“5:"""a
¢ (B.20)
¢ _ (e Vo)

ove
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and we are left with the following dissipation inequality
D=-j-Vu=0. (B.21)
Based on the dissipation inequality (B.21), the flux is constitutively prescribed to obey
j=—-m(e)Vy, (B.22)
and the dissipation inequality is given as
D = m(c)|Vu| > 0, (B.23)

which imposes the restriction that the mobility m(¢) > 0.
Then, using (B.20) and (B.16) in the microforce balance (B.12), we arrive at the following
partial differential equation for the chemical potential

u = 8—6' — Div (-6—%) . (824)

Finally, recalling mass balance (B.4), using (B.22), and the governing pde for the chemical
potential (B.24) we may, without specifying the specific form of the free energy 1, summarize
the gradient diffusion theory through the equations

¢ = Div (m(e)V (n)) ,
) Di (e, Ve) (B.25)
~ T U\ Toave )

and to complete the theory we are left only with specifying the form of the free energy
function (¢, Ve), and the form of the concentration dependent mobility 712(€).

B.1.5 Boundary Conditions

Egs. (B.25) must also be accompanied by appropriate boundary and initial conditions. The
boundary conditions are based on the external mechanisms which may result in changes to
the free-energy. Recall the free-energy imbalance, viz. (B.17)

/P«pdVg/apé(ﬁ-n)dA—/aPu(j-n)dA, (B.26)

then, based on this imbalance, we define the following boundary conditions for a time interval
te[0,T):

e With S; and S; denoting complementary subsurfaces of the boundary 0B of the body
B, we consider first a pair of boundary conditions in which the normalized species
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concentration is specified on S; and the species flux on S;:

¢=¢ on Sax[O,T],} (B2
B.27

j'n=-m@Vu-n=3 on & x|[0,T).

e With S, and S; denoting complementary subsurfaces of the boundary 9B of the body
B, we consider a pair of boundary conditions in which the chemical potential is specified
on S, and the scalar microscopic traction is specified on S;:

p=p on S, x][0,T],

I3 n——a—q’g n=_ on S¢ x [0,T] (5.28)
T ave ¢ 7D

where in writing (B.28), we have used the state relation (B.20),. Note that the specified

quantities 7 and ¢ may be functions of time as well as functions of the variables ¢ and

u at the point where the boundary condition is specified.

Finally, the initial conditions are taken as
¢(X,0) =¢(X), and u(X,0)=pwm(X), in B. (B.29)

Together, the coupled set of equations (B.25), with boundary conditions (B.27) and (B.28),
and initial conditions (B.29), yield a boundary-value problem for the normalized concentra-
tion ¢(X, t) and the chemical potential p(X, t), and form the basis of the classical formulation
split method discussed in this work.

Remark. In writing (B.27) and (B.28) we made an implicit assumption that mass balance
(B.25); will be the pde governing the normalized concentration ¢ dof, hence allowing us to
prescribe (B.27);, and that the microforce balance (B.25); will be the pde governing the
chemical potential p dof, allowing us to prescribe (B.28);. This choice is reflected in Section
B.7, where we detail our numerical methodology.

This choice is not unique. In fact, the first term on the right-hand-side of (B.26) suggests
that ¢ and £ - n should be conjugate, while the second term suggests that p and j - n
should be conjugate. This could easily be achieved by choosing mass balance (B.25); as the
governing pde for the chemical potential 1 dof, and choosing the microforce balance (B.25),
as the governing pde for the normalized concentration ¢ dof. In such an implementation, the
boundary conditions would be as follows

p=p on S,x[0,T],
g (B.30)

jon=—-m@Vu-n=3 on & x[0,T).
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and- y
¢=c¢ on &;x|[0,7T],
b (B.31)

0 v
§n—-ﬁn—g on 8¢X[0,T],

where §,US; =0B, S, NS =0, S;US; =B, and S;NS; = 0.

In the numerical results presented in this appendix, we will only consider periodic bound-
ary conditions which are implemented as constrains on the concentration ¢ and the chemical
potential 4, and hence either of the two aforementiond implementation choices is equivalent.

However, from a physical point of view, based on (B.26), the second choice, whereby
mass balance (B.25); is the pde governing the chemical potential 1 dof, and the microforce

balance (B.25), is the pde governing the normalized concentration ¢ dof, is more appealing.
O

B.2 Micromorphic Cahn-Hilliard diffusion theory de-
rived using the principle of virtual power

In addition to the classical split method formulation developed in Sect. B.1, one may use
a similar procedure, to derive another set of two coupled second-order PDEs describing the
Cahn-Hilliard equation. In this formulation however we introduce an additional variable,
which we define through the symbol € and refer to as the micromorphic concentration.
The variable € serves as an additional kinematical degree of freedom in developing a gradient
theory for species diffusion. Specifically, in contrast to the a formulation based on ¢ and Ve,
see Sect. B.1, this formulations is based on ¢, €, and the gradient V&.

Since the theoretical derivation using the additional variable € has been developed in
Chapter 3 in the context of a coupled diffusion-deformation framework, and since it is similar
to the derivation detailed in Sect. B.1, we present here only a summary of the resulting pdes
and their boundary and initial conditions.

A diffusion theory based on the additional kinematical variable €, and derived using
the principle of virtual power, yields the following two coupled second-order differential
equations:

= Div ((@vw), 4= DEEYD
- o oveE ’

where we note that that the free energy 1&(6, ¢, V¢) is now a function of the concentration ¢,
the micromorphic concentration & and the gradient of the micromorphic concentration V€.
The additional pde (B.32); is a hemholtz-type equation governing the micromorphic variable

C.
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For the mass balance pde (B.32);, we have the boundary conditions

¢=¢ on S x[0,T),
y (B.33)
-mVp-n=j on & x|[0,T],
and for the microforce balance pde (B.32), we have the boundary conditions
c=¢ on & x[0,7],
G y (B.34)
m'l’l:C on Scx[O,T].

In (B.33) S; and Sj are complementary subsurfaces of the boundary 9B of the body B, while
similarly in (B.34) Sz and S, are complementary subsurfaces of the boundary 8B of the body
B. Finally, the initial conditions are taken as

&(X,0) =¢cp(X), and &(X,0)=¢&(X), in B. (B.35)

Together, the coupled set of equations (B.32), with boundary conditions (B.33), (B.34), and
initial conditions (B.35), yield a boundary-value problem for the normalized concentration ¢
and the micromorphic variable €, and form the basis of the micromorphic formulation split
method discussed in this work.

We must now specify the free energy functions required to complete the diffusion theories
derived in Sects. B.1 and B.2. Recall that the free energy function in the classical diffusion
theory depends on ¢ and its gradient V¢ while the free energy function in the micromorphic
diffusion theory depends on ¢, € and the gradient V&.

B.2.1 Free energy for the classical formulation

In the classical diffusion theory we employ the standard free energy proposed by Cahn and
Hilliard. The free energy is of the form

'Q;(E, VE) — &chemical(é) + ,l[}interface(vé). (B36)
Here

(i) gpehemical jg the free energy of mixing for the species in the body (also known as the
coarse-grain or configurational energy), and it is taken to be given by

yehemical — % 1 R (eInc+ (1 - &) In(1 - 5)) + x&(1 - o), (B.37)
which represents a regular solid solution model. The second term in (B.37), involving

the gas constant R and the absolute temperature ¥, represent the entropy of mixing;
while the last term in (B.37), involving yx, is an energetic interaction between the
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diffusing species and the host material which accounts for the mixing being non-ideal.
For a two-phase material, as is of interest in this work, the free energy ichemical g
a double-well potential whose wells (known as the “binodal points”) define the two
phases of the material.

(i) qpinterfce jg an interfacial free energy which depends on the gradient of the concentration
Ve. It is taken to be given by

pirertee = (1/2)A|Vel?, (B.38)
with A > 0 a gradient energy coefficient.

Thus, using (B.37) and (B.38) in (B.36), the total free energy in the classical formulation is
given by

¥ = p0c+ Ro(cng+ (1 - &)In(1 - &) ) + xe(1 — ) + (1/2)A| Vel (B.39)

Finally, for a regular solid solution model as described through (B.37), the appropriate

mobility is given by
m= moé(l - E), mg = % > 0, (B40)

which represents the physical requirement that the mobility vanish for the pure phases ¢ =0
and ¢ = 1.

Using the free energy (B.39) and the mobility (B.40) in (B.25), we have the following
specialized governing pdes for the classical formulation

¢ = Div (mo2(1 — &)Vp), classical

G . . (B.41)
= NO + Rd1n (1 i a) + x(1 = 28) — A\AG, split formulation.
Further, using (B.39) in (B.27) and (B.28), the boundary conditions are
¢=¢ on & x[0,7],)
—mVy-n=j on & x[0,T], S;:US;=0B, S:NS;=190,
g s > 10.7] \  with ’ . (B.42)
p=j on S,x][0,T], S,US;=0B, S,NS;=0.
AVe-n=¢ on & x[0,7T],)

B.2.2 Free energy for the micromorphic diffusion theory

In the micromorphic diffusion theory we consider a separable free energy of the form

1/7(5, g, V(]_Z) — ,([)chemical(é) + Q&penalty(é, q";) + ,‘;interface(v(ﬁ). (B.43)
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Here

(i) gychemical i the free energy of mixing and is identical to that used in the classical
formulation (B.37), viz.

gehemical — 07 4 Ry (Elné +(1-2)In(1 - E)) + x&(1 - o). (B.44)

(ii) PP accounts for an energetic penalty incurred by the micromorphic variable & being
different from the concentration field ¢. We take this energetic penalty to be given by
the following simple quadratic form

d)penalty — (1/2)ﬁ(5 — @)27 (B45)

with § > 0 a penalty modulus.

(iii) yp'nterface is an interfacial free energy, similar to (B.38) in the classical formulation,
however here taken to depend on the gradient of the micromorphic concentration V&.
It is thus taken to be given by

,winterface — (1/2)A|V@|2, (B46)

with A > 0 a gradient energy coefficient.

Thus, using (B.44), (B.45), and (B.46) in (B.43), the total free energy in the micromorphic-
formulation is given by

¥ = ple+ Rﬁ(élné+ (1-¢)ln(1— r:)) +x2(1 =)+ (1/2)B(c—&)* + (1/2)A|Ve|®. (B.47)

Finally, the mobility in the micromorphic formulation is identical to that used for the classical
formulation (B.40) since the chemical free energies of the two formulations are also the same.

Using the free energy (B.47) and the mobility (B.40) in (B.32), we have the following
specialized governing pdes for the micromorphic diffusion theory

¢ = Div (moc(L = ) o = i+ R9 (5 ) +x(1 = 20) + Ble ), | micromorphic
split
0= \Ag + B(c — &). formulation

(B.48)

e
1-¢
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Using (B.47) in (B.33) and (B.34), the boundary conditions are
€=¢ on & x|[0,T))
on &% [0,T], S:US;=0B, S:NS; =0,

J
’ \ with (B.49)
C on S@ X [O,T], S@US( =8B, S@OSC =@

Remark. The free energy used in the micromorphic diffusion theory (B.47), is similar to
the classical free energy proposed by Cahn and Hilliard used in the classical formulation
(B.39), however there are two important differences:

e First, the interfacial energy in the micromorphic theory depends on the gradient of the
micromorphic concentration V& and not on the gradient of the concentration Ve.

e Second, the micromorphic theory includes a penalty free energy 1Pe"!¥y (B.45), which
effectively enforces that the micromorphic € mimic the behavior of the real concentra-

tion c.

It is this penalty energy which introduces an additional parameter into the model, the penalty
modulus B. It is clear from (B.47) that larger values of f will result in a greater energetic
penalty being paid for by € being different from ¢. Thus, one aim of this work is determining
what an appropriate value of the penalty modulus £ is such that we obtain solutions using
the micromorphic formulation which are in some sense close to those obtained with the
classical formulation which does not have any additional parameters. d



B.3 Summary of the theoretical framework

The two formulations presented in Sects. B.1 and B.32, and specialized in B.2 may be succinctly summarized as follows:

N

"2)(57 v—c—) — 1/;chem(é) + 1/:,inter(vé)’

free energy gchem

= e+ R0(51n5+ (1-&n(l— a)) +x&(l - o),
PR = (1/2)A\Ve?, A >0,
¢ = Div (moc(1 — &)Vp),

governing equations

’

N=u°+Rz91n(1i6> + x(1 = 26) — Mg,
Ezé on S@X [O,T], SEUSj:aB,
—mVu-n=; on S x 0,T], S:NS; =0,
boundary conditions # 7 i< (0.7] wit o
p=p on S, x[0,T], S, US; = 0B,
AVe-n=C( on S x[0,T), SunS¢=0.
(4(e,&, VE) = e (3) + P (e, ©) + ™ (Ve), )
freo onorgy | phem — 9z + RY(éIné+ (1 — &) In(l — &) + xé(1 — &),
PPt = (1/2)B(c - ¢)®, B >0,
{ YT = (1/2)A|VE]2, A >0,
. . ¢ =Div (moe(1 —&)Vp), p=p’+RY ('{“‘-) +x(1 -2¢) + Be - ),
governing equations 1-c¢
0=)AG+ B(E— &),
€=¢ on S;x][0,T], Sz U S; = 0B,
—mVp-n=j on & x|[0,T], S:NS; =0,
boundary conditions a i 3% (0,71 with ©
C=C on SEX[O,T], S@U54=6B,
AVe-n=( on S x[0,T], SeNS;=0. )

classical
split (B.50)

formulation

micromorphic
split (B.51)

formulation

[qré
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B.4 Numerical implementation

The two theories summarized in Sect. B.3, have been numerically implemented in the com-
mercially available implicit finite element program Abaqus (2010) through the writing of a
set of user element subroutines (UEL). For each of the two theories, we have developed two
different elements: (i) a 2D 4-node linear isoparametric quadrilateral which we refer to as
U2D4; and (ii) a 3D 8-node linear isoparametric brick which we refer to as U3D8.

In the case of the classical split formulation, the degrees of freedom for these elements are
the normalized concentration ¢ and the chemical potential ;. In the case of the micromorphic
split formulation, the degrees of freedom for these elements are the normalized concentration
¢ and the normalized micromorphic concentration €. Details of our numerical methodology,
and some specifics regarding its implementation in Abaqus, are provided in Sect. B.7.

B.5 Simulations of spinodal decomposition by diffusion

The aforementioned theoretical and numerical framework was applied to modeling spinodal
decomposition by diffusion in a similar fashion as described in Sect. 4. Spinodal decompo-
sition is a process in which an initially homogeneous binary mixture phase segregates into
distinct regions which are characterized by being either rich or poor in their concentration
of a particular component. This phase segregation results in the creation of interfaces with
sharp concentration gradients which introduce additional energy into the system. The sys-
tem then evolves by coarsening of the phases such that the interfacial energy is minimized
until a steady-sate morphology is achieved.

The purpose of this section is two-fold.

1. First, we perform a brief mesh refinement study using one-dimensional simulations to
compare steady-state concentration profiles in simulations with varying mesh densities.
Such a study is not performed in Sect. 4.

2. Second, we investigate the effect of varying the penalty modulus 8 in the micromorphic
split method implementation. Specifically, using the classical formulation as a basis
for comparison, we aim to find appropriately high values of the penalty modulus 3
such that the micromorphic formulation converges to the classical formulation and
thus recovers a solution of the original Cahn-Hilliard equation.

There are several criteria which one might use in order to compare the two split methods
and determine if the penalty modulus f is appropriately large. In this work we consider the
following methods:

(i) First, from simulations using the micromorphic formulation, we measure the maximum
difference between the concentration ¢ and the micromorphic concentration € at steady-
state as a function of 8.
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(ii) Second, we consider measurements of the interface width d at steady-state. Here,
spinodal decomposition simulations of isolated periodic systems are performed until a
steady-state morphology is reached at which point a phase interface width d can be
measured. We then compare the interface widths computed using the micromorphic
formulation with varying 8 to that computed using the classical formulation.

(ii) Third, we consider the free energy of the system as it evolves from an unstable con-
figuration until steady-state is reached. This criteria is important since it compares
the transient behavior of the two formulations. Comparison of this measure between
the two formulations, demonstrates that the transient behavior of the micromorphic
formulation is also suitably converged to that of the classic formulation.

We begin by writing the free energies of the two formulations in a normalized fashion.
For the classical formulation, the free energy (B.39) may be written normalized as

P = ]—;% = (Elné—!— (1-2¢)In(l —&)+ xe(1 - é))/+ 5(1/2)|VE|21 , (B.52)

(-

g v

chemical energy tpchem interfacial energy iinter
gy P ey

and for the micromorphic formulation, the free energy (B.47) may be written normalized as

J= 'h% = (eme+(1-)In(1 - &)+ x(1 - )+ MU2IVe! -+ 3(1/2)(e-e)

P ~ | P —
chemical energy ¢chem interfacial energy '™’  penalty energy Pen
(B.53)

In writing the normalized free energies (B.52) and (B.53), we have set the reference chemical
potential u® = 0, and have defined the following “normalized” material parameters

X 5 A a_ B

e -, A = ——-—-, d = - B. 4

X~ Ro re' 4 P= gy (B:54)
The quantities ¥ and B are dimensionless, while the normalized gradient energy coefficient
A has units of length squared.! Henceforth, we focus only on the normalized quantities ¥,
A, and .
_ Further, we are only interested in studying the effect of the normalized penalty modulus
B, we thus fix the value of all other relevant material parameters at

Xx=3, A=25x10""um? (B.55)

The diffusivity is set to Dy = 2.5 x 10—3 um?/sec and acts only the set the time scale within
which phase-segregation evolves — it has no effect on the actual morphology of of the phase
segregation, and is thus arbitrarily set to its given value.

!When prescribing the normalized quantities X, ), and 3, the thermal energy R is effectively removed
as a material parameter and has no effect on the physical problem. That is, any variations of R¥ — for fixed
value of ¥, A, and 3, have no effect on the simulations. We thus arbitrarily chose ¥ = 300K for this work.
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Remark. In both (B.52) and (B.53), for values of ¥ > 2, the normalized chemical en-
ergy 9™ is a double-well potential which governs phase segregation. A plot of ¥"™ for
X = 3 is shown schematically in Fig. 4-1. When the initial concentration ¢ is within the
spinodal region ¢ € (&,,&;) (i.e. regions where 9%¢*™/8¢? < 0), the system may spinodally
decompose into multiple phases of equilibrium concentrations ¢, and &g, called the binodal
concentrations. a

B.5.1 Consistent definition of an interface width

For completeness of this Appendix, we repeat our definition of an interface width which was
previously presented in Sect. 4.

In order to consistently define the width of an interface between two phases, we consider
the specific method shown schematically for a one-dimensional phase-separation situation
in Fig. 4-2 (c.f. Wodo and Ganapathysubramanian, 2011). With respect to this figure, the
interface width d is defined by the intersection of the tangent to the concentration profile at
the mean concentration &, = |y — Cs|/2 with the binodal concentrations. That is,

def oo 4C
d = (G4 Cﬂ)(dx

é >_1. (B.56)

Further, in order to chose an appropriately fine finite-element mesh, it is important that
we have an a-priori estimate of the interface width d. To this end, we recall from Cahn and
Hilliard (1958) that an estimate of the concentration gradient at the mean concentration

may be obtained through

_ ~chem \ 1/2

de| _ (odgar)” (B.57)
dr|, A ’ '

where the quantity §¢'™ is shown schematically in Fig. 4-2. Combining (B.57) with (B.56)
we have the following important estimate for the width of the interface separating two phases

5\ 1/2
des = = ) (5735 ) (B.58)
which we note also depends on ¥ through the binodal concentrations ¢, and cg. Finally, for
the values of the material parameters ¥ and X given in(B.55), we obtain a numerical estimate
of the front width as

dest = 40 nm. (B.59)

B.5.2 Mesh refinement

In simulations involving spinodal decomposition and phase-segregation, the interface width
is an important physical parameter of the system. From a numerical perspective, this in-
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terface width must be discretized with a sufficiently large number of elements in order to
achieve accurate results. Here we briefly investigate the effect of mesh refinement using
one-dimensional simulations and the classical formulation split method.

To quantify the resolution of our finite-element mesh, we define the normalized quantity

= det (B.60)

lelem

where dg is the estimated interface width _(B.58), and lgem is the edge length of a single

element in the simulation. The quantity R is thus simply the number of finite-elements
across a potential phase interface of size des;. Further:

e With respect to Fig. B-1(a), we performed one-dimensional simulations by using a
single row of 2D elements in which all of the degrees of freedom on the nodes on face
AB are constrained to equal those of the nodes on face CD.

e For all of the simulations in this section, regardless of mesh density, the initial concen-
tration ¢ is taken to vary linearly between ¢ = 0.4 on the boundary AC and ¢y = 0.6
on the boundary BD, see Fig. B-1(a).2

e The simulation domain size is kept constant at 0.2 um, which is sufficiently large com-
pared to the estimated front width desy = 40 nm computed in (B.59).

e Finally, we consider mesh resolutions in the range
R €[5, 10,20, 40, 80, 160].

We note that we increase the mesh resolution R always by a factor of two such that
when comparing two simulations with different mesh resolutions we can compare con-
centrations at the same physical locations.

In all simulations, we allow the system to equilibrate until a steady-state concentration profile
is formed, see Fig. B-1(b) for an example of the steady-state profile with R = 10.

In order to measure convergence of the numerical solution as we refine the mesh, we chose
as an “exact” solution the numerical simulation with R = 160. Fig. B-2 shows the maximum
difference between the steady-state concentration profile and the “exact” concentration pro-
file computed with R = 160 as a function of varying mesh resolution R in a log-log scale.
As shown in Fig. B-2, the quantity max|¢ — €z_,60| converges with increasing resolution R .
Further, in accordance with other mesh refinement studies in the literature (cf. Wodo and
Ganapathysubramanian, 2011), a resolution of R = 5 or higher produces less than 1% error.
Based on this brief analysis we may now chose appropriately fine finite-element meshes in
our subsequent studies.

2 The initial chemical potential pg is computed using (B.41)s using the initial concentration & and
assuming no gradients of concentration, i.e. A¢ = 0.
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B.5.3 Convergence of the micromorphic formulation split method
with increasing values of the penalty modulus 8

We now focus on investigating the effect of the normalized penalty modulus 3 on the mi-
cromorphic formulation split method. For all of the simulations presented in this section we
make the following specific choices:

e With respect to Fig. B-3, which shows simulation domains for one-, two-, and three-
dimensional simulations of spinodal decomposition, we apply period boundary condi-
tions on all exterior surfaces. One-dimensional simulations are achieved by using a
single row of 2D elements and constraining all degrees of freedom on the nodes on face
AB to equal those of the nodes on face CD.

e Unless otherwise specified, the initial normalized concentration in the domain &, was
given as a random uniform distribution with a mean of ¢, = 0.75 and a maximum
fluctuation of 0.05, see Fig. B-3. For simulations using the classical formulation, the
initial chemical potential uo was computed based on the initial normalized concentra-
tion according to

- G ~(1 — 98
ug—Rﬁlog(l_éo)—i-x(l 26p).

For simulations using the micromorphic formulation, the initial micromorphic concen-
tration & is set equal to the initial normalized concentration &.

e To quantify the physical size of the simulation domain we define the dimensionless

quantity
= D
D=—,
dest
where d. is the estimated interface width (B.58), and D is the physical edge length
of the domain in either one, two, or three dimensions as defined in Fig. B-3.

In order to illustrate the spinodal decomposition process, Fig. B-4 shows three represen-
tative simulations of spinodal decomposition in one, two, and three dimensions using the
classical formulation split method at different stages in the spinodal decomposition process.
In these simulations, the normalized domain size is D = 20, while the resolutions are R =5
for the one- and two-dimensional simulations and R = 2.5 for the three-dimensional simu-
lation.? For the one-dimensional simulation, Fig. B-4(a) shows both contours of normalized
concentration ¢ as well as the concentration profile as a function of the normalized distance
T = z/D from from the left edge of the simulations domain. For the three-dimensional
simulation, Fig. B-4(c) shows iso-surfaces of the normalized concentration c.

Fig. B-4 illustrates the spinodal decomposition process — from the early stages of spin-
odal decomposition, when the components are well-mixed and the concentration is nearly

3We chose a lower resolution for the three-dimensional simulations in order to reduce the computational
time. These simulations, using R = 2.5, are purely for illustration and thus the accuracy is not of particular
concern.
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homogeneous, until a steady-state morphology is reached, at which time two distinct phases
are observed. In the 2D simulation, Fig. B-4(b), the steady-state morphology consists of a cir-
cular concentration-poor region surrounded by a concentration-rich domain. Similarly, in the
3D simulation, Fig. B-4(c), the steady-state morphology consists of a spherical concentration-
poor region surrounded by a concentration-rich domain.

Similar simulations were performed using the micromorphic formulation, keeping all pa-
rameters constant, and varying the normalized penalty modulus in the range

B € [5,10,25,50,100, 250, 500, 1000].

These simulations, in order to maximize their accuracy, were performed using a normalized
domain size of D = 5, and a resolution of R = 20. Fig. B-5 shows the difference ¢ — & at
steady-state for one- two- and three-dimensional simulations with varying 3. In all cases we
see that as we increase the value of 5 towards 103, the difference ¢ — & decreases to a low
value of |¢ — &| £ 5 x 10~%. Further, from the simulations shown in Fig. B-5, in Fig. B-6 we
plot the maximum absolute value of the difference, max|¢ — €|, for increasing values of 8 on
a log-log scale. From this figure we observe that max|¢ — €| tends to zero as the normalized
penalty modulus 8 is increased. Thus, as f is increased, the micromorphic concentration
€ approaches the real concentration ¢ and we expect the solutions from the micromorphic
formulation split method to converge to those that would be obtained using the classical
formulation split method.

As an alternative measure of convergence, one which compares the micromorphic and
classic formulations directly, we measure the interface widths d, defined in Sect. B.5.1, at
steady-state using the same simulations shown in Fig. B-5. The results for the interface
width measurements from the simulations using the micromorphic formulation are shown
in Fig. B-7(a); note that the x-scale is logarithmic. In Fig. B-7(b) we plot the variation
Of |dmicro — dlassic|/dclassic @ a function (3 on a log-log scale. This plot clearly shows that
for values of B > 100 the difference |diicro — delassic| /delassic 18 approximately 2% and the
micromorphic formulation is clearly converging to the classical formulation with regards to
the interface width.

Remark. The second PDE in the micromorphic formulation (B.48),, namely the microforce
balance for the micromorphic concentration &, may alternatively be written as

=P AT+ (c-¢e), £=+)\B, (B.61)

where the quantity ¢ is a parameter with units of length. In Ubachs et al. (2004) this
parameter is incorrectly determined as being critical in controlling the interface width d
which forms in the process of spinodal decomposition. We have shown here, see Fig. B-7,
that at a fixed temperature and for fixed values of the material parameters x and ), which
are also properties in the original Cahn-Hilliard formulation, as we increase the modulus
we converge to a fixed interface width d. That is, for appropriately high values of 3, the
interface width d is solely controlled by the material parameters x and A. Further, we need
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not concern ourselves with properly discretizing the length ¢ since it has no effect on the
actual length scale of the solution. O

Our third measure of convergence for the micromorphic formulation is based on conver-
gence of the system free energy as the process of spinodal decomposition takes place. For
simplicity, in this convergence criteria we consider only two-dimensional simulations with a
normalized domain size of D = 20 and a resolution of R = 5.

Fig. B-8(a) shows the average chemical ¢*™ interfacial ¢)'"*", and penalty ¥P*" normal-
ized free energies*, as a function of time for simulations using the micromorphic formulation
with 8 = 5 and B = 1000; note that the x-scale is logarithmic. First we note the overall
behavior of the free energies. When spinodal decomposition first occurs, at ¢ ~ 10sec, the
chemical free energy is significantly reduced as distinct phases of lower chemical free energy
are formed. Simultaneously, the interfacial free energy increases since sharp gradients in
concentration are present at the various interfaces which form between distinct phases. The
system then evolves, reducing its total free energy, by coarsening of the morphology through
the coalescence of the different phases. Finally, a steady-state is reached at ¢t Z 3 x 10%sec
when the system energy reaches a steady minimum. We also note in Fig. B-8 that as 3 is
increased from 5 to 103, the penalty free energy is reduced, and the chemical and interfacial
energies also change.

Fig. B-8(b) compares average normalized chemical 1/*"*™ and interfacial 1™ free energies
as a function of time for a simulation using the classical formulation (dashed red line) and
simulations using the micromorphic formulation with 3 € [5, 10, 10%] (solid blue lines). We
can clearly see that as f is increased to 8 = 10%, both the chemical and interfacial energies
from the micromorphic formulation match those obtained using the classical formulation not
just at steady-state but also throughout the transient response of the system. This figure
serves to show that the solutions obtained using the micromorphic formulation converge to
those obtained using the classical formulation not just at steady-state but also throughout
the transient response.

Remark. As we have shown in this Section, it it essentially that one chose a sufficiently large
value of the normalized penalty modulus 3, however one is not free to chose an arbitrarily
large vale of B. Large values of 8 result in ill conditioned matrices for the finite-element
problem, see App. B.7. It has been our experience that increasing the value of B to arbitrarily
high numbers (i.e. B = 10°) in fact results in non-convergence of the simulations under the
same convergence criteria which result in converged simulations with B = 10%. Thus, one
may not simply chose an arbitrarily high value of 3, rather one should chose the value of the
penalty modulus only as large as necessary in order to achieve the desired accuracy. a

4The average free energy is computed as Ef;l ¥;/N where ; is the free energy of interest computed at
the i-th integration point and N is the total number of integration points in the simulation domain.
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B.6 Steady-state morphologies in three dimensions

As a demonstration of the robustness and efficiency of the numerical methodology developed
in this work, similar to Wodo and Ganapathysubramanian (2011), in this section we present
various three-dimensional steady-state solutions to the Cahn-Hilliard equation computed
using our numerical implementation.

The three-dimensional simulations discussed in this Section are computed with the clas-
sical formulation split method with D = 10, R = 5, and with different initial concentrations
having a uniform distribution with a mean of ¢, and a maximum fluctuation of 0.05. Fig. B-9
shows steady-state morphologies for simulations with different initial mean concentrations
Co; note that the simulations have been translated within their periodic simulation domains
to provide the best visualization of the resulting morphology.

Fig. B-9(a) uses ¢ = 0.625 and the resulting interface is representative of a Lawson
surface (cf. Ros, 2005), while (b) uses ¢ = 0.75 and the resulting interface is spherical.
Figs. B-9(c) through (e) were all computed using a mean of & = 0.5 however each one with
a different initial distribution. In (c) the interface is representative of a P-Schwarz surface
(cf. Ros, 2005), while (d) and (e) are representative of Lamella and cylindrical surfaces
respectively. As illustrated by Fig. B-9, with the use of the numerical method provided in
this work we have been able to, with relative ease, compute the shown possible solutions to
the Cahn-Hilliard equation in a periodic three-dimensional domain.

Further, as noted by Wodo and Ganapathysubramanian (2011), the process of simulating
spinodal decomposition over long terms, including up steady-states, involves a large variation
in temporal scales. The time scales associated with reaching a steady-state solution are orders
of magnitude larger than the time scales associated with an event in which a rapid coarsening
of the concentration morphology occurs through the merger of two distinct phases. As such,
an adaptive time stepping algorithm is required in order to efficiently compute steady-state
solutions of simulations involving spinodal decomposition. An additional benefit of solving
within the Abaqus (2010) framework is that the built-in adaptive time-stepping algorithm has
proven effective in transitioning between the multiple time scales associated with simulating
spinodal decomposition, and has thus enabled efficient simulations of spinodal decomposition
up to steady-sate.

To illustrate this feature, Fig. B-10 shows the evolution of the simulation time step
At as a function of simulation time ¢ in a log-log scale for the particular three-dimensional
simulation shown in Fig. B-9(b). In Fig. B-10, the drastic reduction in time steps At observed
at multiple times (i.e. at ¢ = 4 x 10sec), correspond to events during the simulation where
two phases merge in order to coarsen the concentration morphology and lower the system
energy. Following the coarsening event, the built-in adaptive time stepping in Abaqus is
able to quickly increase the simulation time step until another coarsening event occurs, thus
effectively switching between the different temporal scales — which from Fig. B-10 we note
can span 3 orders of magnitude, involved in simulating spinodal decomposition. Finally, as
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a benchmark for computational time required, the simulation shown in Fig. B-9(b) had a
total (wall-clock) computation time of 21.4h using 22 CPUs (CPU time of 10.6 h).5

B.7 Numerical methodology

Following Chester et al. (2015), for each of the two split methods summarized in Sect. B.3
we present here the numerical methodology employed in this work.

B.7.1 Numerical methodology for the classical formulation split
method

We begin with the solution procedure for the classical formulation (B.50);., the strong form
of which is given by

¢—Div(mVu)=0, m=mec(l—¢) in B,

mass balance { ¢=¢ on &g
—mVy-n=j on S&;,
_ 4
/.L—uo—Rﬂln< é)—x(l—zé)—l—)\AE:O s in B,
microforce balance pw=p on S,
AVE-n=( on . |
(B.62)

Then with w; and ws denoting two test fields which vanish on S; and S, respectively, the
corresponding weak forms are

/B (wy (& = Div(mVp))) dv = 0,

/B <w2 (“‘“O‘Rmn(lfé) - x(1 —25)+)\A6)) dv = 0.

5Significant computational time improvements can also be achieved by using the build-in iterative solver
provided in Abaqus (2010)

(B.63)
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Using the identity Div(ca) = Va - a + aDiv(a), the divergence theorem, and the boundary
conditions on &; and S¢ we may simplify the weak form (B.63) to

/ (1€ + Vw, - (mVpu)) dv + / wyj da =0,
B S5

/B(wz (u—uO—Rmn(lf6> —X(1—25)> —ng-(w@)) dv+/s<w25d“=0'

(B.64)

The body is approximated using finite elements, B = UB®, and the trial solutions for the
concentration and the chemical potential are interpolated inside each element by

c= ZEANA, and p= Z,LLANA, (B.65)
A A

with the index A = 1,2,..., M denoting the nodes of the element, ¢* denoting the nodal
normalized concentrations, u# denoting the nodal chemical potentials, and N4 the shape
functions. We employ a standard Galerkin approach, in that the test fields are interpolated
by the shame shape functions, that is

wy = Z wiN4, and wy= Z wy N4, (B.66)
A A
Using (B.65) and (B.66) in (B.64) yields the following element-level system of equations

/ wi (N4 + VN4 - (mVp)) dv+/ wiN4j da = 0,
B s

e

/ w (NA (u —u’ — RYIn <1 ¢ E) —x(1 = 25)) — VN4. (Wa)) dv +/ wiNA¢ da = 0.
B - Sg
(B.67)

The system of equations (B.67) is solved using a Newton procedure. Thus, since w; and ws
are arbitrary, we define the element-level residuals for the concentration and the chemical
potential as

e
R = / (N4 + VNA- (mVp)) dv+ [ N%jda,

B S5

Rf}:/e (NA (u—,uO—Rﬁln (1 c _) —x(1 —25)) —VNA~()\VE)) dv+ | NACda.

B —C
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In addition to the residuals (B.68), the following tangents are also required for the Newton
procedure

OR: .5 ORA ..  ORA .  ORA
—8—6%’ w = gum K =—_3_N_g, and K =-—¥g-. (B.69)

AB __
KAP = —

Using (B.68) the tangents (B.69) may be evaluated as

KE‘%B:—\/ NANBaC NBamVNA V/J dv—/ NANB_-Zda’
B 8C a je

e -
K{P = — / (VNA. (mVNB)) dv— [ NAN® 9 g,
B S5 ou

\ N
KjP=— / NANE dv — / NANBE g,
B e op

€ R3¢ 8{
AB _ _ AnB _ Anrb
KME = /BN N ( _(1_c)+2x> dv seN Nac

Finally, the term ¢ in (B.68); is computed using the approximation ¢ = (€,4+1 — €,)/At, and
to complete the evaluation of the tangents (B.70) we have

(B.70)

oc 1 om _
%= A and 55 = mo(1 — 2¢). (B.71)

B.7.2 Numerical methodology for the micromorphic formulation
split method

Below we present the solution procedure for the micromorphic formulation (B.51),, the
strong form of which is given by

iv(mVu)=0 in B, )
mass balance c=¢ on &,
—mVp-n=j on &;j,
} (B.72)

AME+f(c—¢c) =0 in B,
microforce balance g==¢ on &g,
AVE-n= C on S(> )
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where the chemical potential p is given by

Cc

u’ + RY (TE) +x(1 —2¢) + B(c — &), (B.73)

and the mobility is given by m = my&(1 — €). Then with w; and w, denoting two test fields
which vanish on S; and Sz respectively, the corresponding weak forms are

/ wy (€ — Div (mVp)) dv =0,
B (B.74)

/ ws (AAE + B(6 — €)) dv = 0.
B

Using the identity Div(ca) = Va - a + aDiv(a), the divergence theorem, and the boundary
conditions on S and S; we may simplify the weak form (B.74) to

/ (wlé + Vuw; - (m?—’léVé) + Vw, - (ma—’lfVcﬁ)) dv + / wyjda =0,
B oc oc s

/ (weB(¢ — &) — Vws - (AVE)) dv —I—/ wyl da = 0,
B

S¢

(B.75)

where we have used (B.73) to write (B.75), in terms of the gradients of the solution vari-
ables ¢ and €. The body is approximated using finite elements, B = UB®, and the trial
solutions for the normalized concentration and the normalized micromorphic concentration
are interpolated inside each element by

c=) e'N* and ©=) &'N4 (B.76)
A A

with the index A = 1,2,..., M denoting the nodes of the element, &* denoting the nodal
normalized concentrations, @ denoting the nodal normalized micromorphic concentrations,
and N4 the shape functions. We employ a standard Galerkin approach, in that the test
fields are interpolated by the shame shape functions, that is

wy = Z wiN*  and w, = Z wi N4, (B.77)
A A
Using (B.76) and (B.77) in (B.75) yields the following element-level system of equations

/ wit (NAE + VN4, (m%—éV@) + VNA. <mg—gvcﬁ)> dv + / wiN4j da =0
s g (B.78)

/ wy (N4B(e— ) — VN4 (AVE)) dv + / wiN4da =0
B 82
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The system of equations (B.78) is solved using a Newton procedure. Thus, since w; and w,
are arbitrary, we define the element-level residuals for the normalized concentration and the
normalized micromorphic concentration as

R =/ (NA + VN4 (m%Vé) + VN4 (mQ@V@)) dv+ | N*jda,
B oc oc s

R = / ) (N4B(c— &) — VN (A\VE)) dv+ [ N4Cda.
B Sg

(B.79)

The term ¢ in (B.79); is computed using the approximation ¢ = (€,41 — &,)/At, and using
(B.73), we have

o RY ou

2o -9 g _ .

oc ¢l-¢ x+#, and ac = P (B.80)
which, along with the mobility m = meé(1l — ¢), are necessary to evaluate the residuals
(B.79). In addition to the residuals (B.68), the following tangents are also required for the
Newton procedure

ORA ORZ ORA ORZ
KiP = — o K4P = —oeh &= ~5e5 and K&P = ~o5 (B8l

Using (B.68) the tangents (B.81) may be evaluated as

oc om ou o“u _
AB _ _ A 7B om oy A
KZ° = /B(NNac N(6c6c+ 8c)VN - Ve

wmPuNA . wNE 4+ nBOMOLG A e gy — / NANBa—J_da=O,
ac 9z OF . oc

KAP — _/ m2ona. o) av- [ NANT da=o,
B a(C Se 803

KAB — _/ (=NANBB — AVNA.VUNB) dv — / NANB% da =0,

B oe
AB AnrB A 33C
K& = - (NNﬁ NNada-O
B e
(B.82)
Finally, to complete the evaluation of the tangents (B.82) we require
2 C—
Fp_ BH2e-1) and (—9—@ = mp(1 — 22). (B.83)

o2 - 2(1-02 a¢
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B.7.3 Implementation in Abaqus

We have implemented both the classical, Section B.7.1, and the micromorphic, Section B.7.2,
formulations of the Cahn-Hilliard equation by writing user-element subroutines (UEL) in
Abaqus (2010). During an analysis in Abaqus/Standard, the user subroutine UEL is called
for each iteration. Passed into the subroutine are the current guesses for all nodal quantities,®
and the user is required to evaluate and/or update two matrices denoted, in Abaqus’ nota-
tion, RHS and AMATRX, which represent matrices of the nodal residuals and nodal tangents.
Specifically:

e The matrix RHS, as defined by the Abaqus documentation, is “An array containing
the contributions of this element to the right-hand side vectors of the overall system of
equations.” In the classical formulation, referring to (B.68), RHS is the overall elemental
residual which in matrix form is given by

R=[R. R, R? R. ... R¥ RM]". (B.84)

where M is the total number of nodes per element. Similarly, for the micromorphic
formulation, referring to (B.79), RHS is the overall elemental residual which in matrix
form is given by

R=[R. R, R! R: ... RY RM]". (B.85)

e The matrix AMATRX as defined by the Abaqus documentation is “An array containing
the contribution of this element to the Jacobian (stiffness) or other matrix of the
overall system of equations.” In the mixed formulation, referring to (B.70), AMATRX is
the overall element tangent which is given by

(K Ko K KiK' K
Ku Ky K@ Ky oo Kg' K
Kz K, K@ K3 - KR KLY
(o | KB KD KR OKE . KK (B.56)
Ké]\éjl Ké\‘/{l Ké]lé[? Ké\ﬁ? KEI\ElM K%M
_K%I K/%l K%2 Kﬁfﬁ K%M K;%M_

SIn the case of the mixed formulation the nodal quantities are the normalized nodal concentrations &4

and nodal chemical potentials 4. In the case of the micromorphic formulation the nodal quantities are the

normalized nodal concentrations ¢4 and the normalized nodal micromorphic concentrations &4.
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Similarly, for the micromorphic formulation, referring to (B.82), AMATRX is the overall

element tangent which is given by

- 11 11
K; Kz
K11 gl

ee e
21 21
Kz Kz

KM KM
cC

cc
M1 M1
Ki* Kz

M2
Kéa”:

M2
Ka‘:f:

1M
KY

1M
K

2M
K%

2M
KEE

MM
KEE

MM
Ka‘:é

MM
KE«‘:

MM
Kd—:tf:

(B.87)

We have implemented the aforementioned theory and numerical procedure in Abaqus

(2010) by writing user element subroutines (UEL) for two different elements:

e a 2D 4-node linear isoparametric quadrilateral, which we refer to as U2D4;

e a 3D 8-node linear isoparametric brick which we refer to as U3D8.
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Figure B-1: One-dimensional simulation used in studying mesh refinement with R = 10 elements
across a potential phase interface width. (a) shows the initial concentration &, while (b) shows
contours of concentration at steady-state.
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Figure B-2: Convergence of the maximum difference between the steady-state concentration
profiles and the “exact” concentration profile computed with B = 160 as a function of varying
mesh resolution R.
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Figure B-3: Simulation domains for one- two- and three-dimensional simulations of spinodal
decomposition. Contours show the initial concentration ¢y which has a uniform random fluctuation
of 0.05 about a mean of 0.75.
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Figure B-4: Phase-separation and morphology evolution for (a) 1D simulations showing contours
of concentration and concentration vs. normalized distance plots, (b) 2D simulations showing
contours of normalized concentration, and (c) 3D simulations showing iso-surfaces of normalized
concentration.
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Figure B-5: The difference ¢ — @ at steady-state for various values of 3 for (a) 1D simulations
showing contours of the difference, (b) 2D simulations showing contours of the difference, and (c)
3D simulations showing iso-surfaces of the difference.
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Figure B-6: Convergence of the maximum of the absolute difference of ¢ — € as a function of
the normalized penalty modulus 3 in one, two, and three dimensions using the micromorphic
formulation.
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Figure B-7: (a) Interface width dpicro for simulations using the micromorphic formulation with
varying normalized penalty modulus B. Convergence of the front width dmiecro computed from
simulations using the micromorphic simulation to the front width djassic computed from simulations
using the classical formulation for increasing values of /3.
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Figure B-8: (a) Evolution of the chemical ¢*"®™ (red), interfacial /™" (green), and penalty
{P*" (blue) normalized energies (B.53) for a simulation with 3 = 5 (dashed line) and a simulation
with 3 = 1000 (solid line). (b) Convergence of the micromorphic formulation (red solid lines)
chemical ¥"™ and interfacial /"¢ normalized energies to those computed using the classical
formulation (blue dashed lines).
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Figure B-9: Steady-state phase separation morphologies in three dimensions for simulations with
D = 10, R = 5. The simulations have a uniformly distributed initial concentration with mean
¢o and maximum fluctuation of 0.05. (a) with ¢y = 0.625 results in a Lawson surface. (b) with
¢op = 0.75 results in a spherical surface. (¢) through (d) all have a ¢y = 0.5 but have different initial
random fluctuations, (c) results in a P-Schwarz surface, (d) results in Lamella, and (e) results in a
cylindrical surface.
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Figure B-10: Evolution of the simulation time steps At as a function of the simulation time ¢
for the 3D simulation shown in Fig. B-9(b). The drastic reduction in time steps at certain points
correspond to periods in the simulation where two phases merged to coarsen the morphology of the
system.
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Appendix C

Numerical methodology for Part II:
Modeling amorphous Silicon
electrodes

C.1 Introduction

Following the framework developed by Chester et al. (2015), in this Appendix we present the
details of our numerical implementation of the constitutive model developed in Part II for the
coupled diffusion-deformation behavior of amorphous Silicon (a-Si) electrodes. In particular,
we present here the “residual” vector and “tangent” matrix which must be implemented in
order to solve the coupled set of equations in the finite element program Abaqus/Standard
through the use of the user element (UEL) subroutine. Details on how to implement the
residuals and tangents developed here within the UEL fortran subroutines can be found in
Chester et al. (2015), and are thus omitted from this Appendix.

In Sect. C.2 we begin by recalling the governing partial differential equations and bound-
ary conditions, and then formulate the variational statements which will serve to develop the
residuals necessary for the finite element implementation. In Sect. C.3 we derive the tan-
gents. The residuals and tangents are summarized in Sect. C.4. In Sect. C.5 we summarize
our constitutive time integration procedure, and in Sect. C.6 we derive an algorithmically
consistent approximation for the spatial tangent modulus.
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C.2 Variational formulation. Residuals

We begin by recalling the governing partial differential equations (8.151), and (8.152), and
their boundary conditions:

‘divI+b=0, in B, )
Force balance u=1 on &,

Tn=%t on &,

’ Cl1
¢g = —Jdivj, in B, (C.1)
Mass balance p=p on S,

—mgradp-n=j on S;.

Note that in this numerical implementation, the degrees of freedom are the displacements
u, governed by force balance, and the chemical potential i, governed by mass balance.
The choice of using the chemical potential as the degree of freedom for the mass balance
equation, rather than the concentration cg, is made for two reasons. First, it allows us to
prescribe, if needed, chemical potential boundary conditions. Second, it negates the necessity
of introducing an additional variable to capture the effect of stress on the chemical potential,
as was necessary in our the numerical implementation for Part I, see Sect. 8.14.
With
wi, and we (C.2)

denoting weighting (or test) fields which vanish on S, and S, respectively, the weak forms
corresponding to (C.1) are given by

/(T:gradwl—wl-b) dv— | wy-tda=0,
B St

/ (waén(J 1) + grad wy - (mgrad p)) dv + / woj da = 0.
B .

Sj

(C.3)

The body is approximated using finite elements, B = UB®, and the trial solutions for the
displacement and the chemical potential are interpolated inside each element by

u=ZuANA, and /L=Z,LLANA, (C.4)
A A

with the index A = {1,2,..., M} denoting the nodes of the element, u# denoting the nodal
displacements, p denoting the nodal chemical potentials, and N4 the shape functions. Using
a standard Galerkin approach, the weighting fields are interpolated by the same functions,
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that is
Wy = wa‘NA, and wp = ZwélNA, (C.5)
A A
Using (C.4) and (C.5) in (C.3), yields the following element-level system equations.

(TgradN* — N*b) dv — / N*tda =0,
Be 8¢

(C.6)
/ (NAéx(J7Y) + grad N4 - (mgrad p) dv + N4jda =0.
e S;

This system of coupled equations is solved using a Newton procedure in Abaqus/Standard
by defining element-level residuals and tangents. Using (C.7), the element-level residuals for
the displacements and the chemical potential are given by

R = / (TgradN* — N4b) dv — / N4t da,
€ Se
” (C.7)

Ry =/ (N4a(J7Y) + grad N* - (mgrad p)) dv+ | N%jda.
. s

In the solution procedure, in order to compute the residuals above and the tangents that
follow, one needs to compute the concentration ¢y at every increment. Recall, the chemical
potential (8.141), which may be written in the following dimensionless form

O —_
©—u c B Q .
3 +In (71 — 5) —3R19trM =0. (C.8)

Further, using (8.140) and (8.137), we may write the trM¢ term in (C.8) as

0 _
u = pu c _ QK J _
Ry D (71 - 5) Ro (1 ¥ Q- ao)cR,max> =0, (C.9)

which serves as an implicit equation for ¢ = cg/cr max Which may be solved given a value for
J, which is computed from the displacement degrees of freedom, and a value for the chemical
potential degree of freedom. The term ¢ in (C.7), is computed using the approximation,

in = W (C.10)
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C.3 Tangents

In addition to the residuals, the following tangents are also required:

KAB — _3R3 AB _ _ER:}

uu 3113 ’ up auB ’
A

_ORy ., ORA

A

(C.11)
K3l =

First, the tangent of the displacement residual with respect to the displacement dof, in
indicial notation, is given by (cf. Chester et al., 2015)

ON4 ONB ot
KAB — _ A d / NANB 2 d .
it Be 8333 gkl a(L'l vt e aUk @ (C 12)
with
0w
ik = J TV Fyy .
Ajiy = I FymFy BF,. (C.13)

The spatial tangent modulus A, will depend on the elastic-plastic constitutive response of
the material. An approximation for A is specified in Sect. C.5.

Remark. As detailed in Chester et al. (2015), to accommodate compressible and nearly
incompressible material behavior and mitigate volumetric locking behavior, we use the so
called F-bar method (de Souza Neto et al., 1996). In such a method, the deformation gradient
is suitably replaced such that the incompressibility constrained is enforced as an approximate
average throughout the element, rather than point wise at each integration point. The use
of the F-bar method does not change the integration point residuals, simply the modified
deformation is used. However, the tangent (A.14), and all tangents which involve residuals
being derived with respect to the displacement degrees of freedom, must be modified. The
necessary modifications are discussed in detail in Chester et al. (2015), O

The tangent of the displacement residual with respect to the chemical potential dof is
given by

oT ot
KAB = — [ NB_—gradN4dv + / NANB— da. C.14
s R o B (C.14)

Based on (8.140)2, we make the approzimation that

OT _ emaOMC

o S (C.15)
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Recalling (8.140); and (8.136), and using the fact that tr E¢ = In(J/J*®), we may write
M?® = 2GEj + K In (:—}é) 1, JP=1+Q(cx —crp), (C.16)

which yields
oMe KQ Ocy

o J: op

where the term Ocg /Ou is computed numerically using a finite difference scheme as detailed
in Sect. C.5.

1, (C.17)

Next, the tangent of the chemical potential residual with respect to the chemical potential
dof is given by

KJP = —/e (NANB%?J gmNBgradNA grad . + m grad N4 - gradNB> dv

- NANBai da
Ss ou
(C.18)

where the term 9¢g /Op is computed numerically using a finite difference scheme, and where,
using (8.150), we may write

om _ Om OCR
En 8cR En

acR

Do ,
= Zg/ (1 -20= (C.19)

The tangent of the chemical potential residual with respect to the displacement dof is given
by

AP _ / Al ONZ N4 ON® oy
pus . oJ Ozx; Ox; 33:0 0y

+3NA3mR%8NB Ou ON* ONP ou p
Oz, Ocn 0J Oz; Oz, Oz, " Oz, 05;) ¥ (C20)

/ NANBZ) 9j da,
e au,

where

& ( 1 _) 8mR DO
RO T 8ey T RO
Ocr _ OcaOp  Op QK

8J  opdJ oJ  J

my = Jm = —(1 — 2¢),

(C.21)
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Note that in deriving (C.20) we have assumed that the deformation gradient is computed
from the displacements in the standard fashion. Additional terms will appear when using a
modified deformation gradient as discussed in the Remark following (C.13).

In our particular numerical implementation we have simply taken the tangent (C.20) to
be equal to zero, that is we use
K48 = . (C.22)

g
Although this will affect our convergence rate, it does not affect the accuracy of our solutions.
We also note that convergence, even with the tangent (C.20) set to zero, has been found to
be sufficiently fast for the problems under consideration in this thesis.

C.4 Summary

We may summarize the element-level residuals and tangents for the displacements u and
chemical potential u degrees of freedom as

R = / (TgradN* — N“b) dv — / N4t da,
e Ste

(C.23)
R} =/ (N4¢a(J71) + grad N4 - (mgrad p)) dv + . N4j da,
and
ON4  ONB ok,
KB =— Ay d / NANB 4
we = 7 Jo By M G T o Bz
oT ot
K28 =— [ NB——gradN*dv+ / NANP—da,
s Be ou & St op
Oég 1~ Om (C.24)
AB _ AnrB9CR B A
K, ——/e (N N mj +_87ZN grad N* - grad u
+ mgradNA-gradNB> dv — NANBa—Jda,
S¢ ou
KAB =0 ’
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with
_ Dy _
m= Rﬂc(l c),
am _ DO -1 — aCR
O, _ K9 dex
p  JeJs du

and where at each increment, the concentration cg = €cg max is computed through the implicit
equation (viz. C.9),

0 -
w—pu c QK J _
g T (71 - a) Ro © (1 oG- ao)ck,m,,x) =0 (C.26)

Finally, the term ¢y is computed through (viz. C.10)

by = B (C.27)
and the terms i
9 g %
ou’ Op

are computed numerically through a finite difference scheme as elaborated on in the next
Section.

C.5 Time integration procedure
The time integration procedure may be phrased as follows:
- Given {uns1,Fni1 } and {F? },
- Solve for {Tnt1,Fh 1, cans1}-
This integration procedure has three steps:
1. Compute cg n+1;
2. Compute F7_; and Tp,;; and

3. Compute
and — (C.28)

using a finite difference scheme.
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We begin by recalling the implicit equation (C.26), which on account of the fact that the
swelling distortion is spherical and the fact that plastic deformation is incompressible, is a
relationship only between the chemical potential pny1, which is known, the volume ratio
Jus1 which is known from F,;;, and the unknown concentration cg nt+1 = Cn+1 Cr,max. Hence
we may solve

0 _
M — Hngt Cn+1 OK Jnst
P 1 _ 1 _ '

RY o (’Yl — Cn+1 > RY t (1 + Q(Gpp1 — EO)CR,max) 0, (C.29)

for the unknown ¢ n+1 = Cnt1 Crmax- Note that with cg 41 known, we may compute

Fio = (Jon )3, Jop1 =14+ Q(crn+1 — Cro)- (C.30)

Next, the evolution equation FP = DPFP?, reiterated from (8.144), is integrated by means
of the exponential map (cf. Weber and Anand, 1990), as

Fi.1 = exp(AtD],, )FT, (C.31)
and the inverse F2.] is given by
FoU1 = F' exp(—AtDY ) ). (C.32)
Using F = FeF?F*, the fact that F* = (J*)1/31, and (C.32), we may write
Fri =Fgexp(-AD ). (C.33)
where we have defined the trial elastic distortion F{,, a known quantity, through
Fe ¥ F, ., Fol(Jo)~13, (C.34)
The tensors F¢_; and F{, admit the polar decomposition
Fig =Ri,Un,, and Fi=RLUG. (C.35)
Using (C.35) in (C.34), and rearranging, we obtain
R, Uny exp(AtDy,, ) = RGUG. (C.36)

Since the principal directions of D} ; are the same as those of U¢,; , and on account of the
uniqueness of the polar decomposition, from (C.36) we may write

e — e
Rn+1 - Rtr’

(C.37)
U¢,, exp(AtDY ) = Ug,.



245

Taking the natural logarithm of (C.37), we obtain
E:,, =E{ — AtD?,,, where E; € InUg
Using plastic incompressibility, (C.38) may be written as

trE;,, = trEg

try

Eg,n+l = Eg,tr - At]:)g+1 .
Recalling the stress-strain relation (8.140),, we may write (C.39) as

trM;,; = trMg

try

e — e _ D
O,n+1 — MO,tr 2G’A‘t:[)n+1 )
where we have used

trMg, = 3KtrEg, and Mg, = 2GEj,,.

Recall that the plastic stretching is given by

D = \/gapr sz\/gMS.
2 ’ 2 G

Using (C.42); in (C.40), yields

Mg,n—{—l = Mg,tr - \/6G€Lg+1 AthH—l

which using (C.42), and rearranging yields

(V 2/36n41 + \/géfxﬂ At) Nﬁ+1 = Mg -

Defining

_ def [3 Mg,
Otr = \/;'Mg,trl’ and Nzt)r = |M§ trl,
,tr

we may write (C.44) as

(\/2/3 Gurr +VBE,, At) NP,, = v/2/35,NE,
which yields
Nﬁ-&-l = Nfr?

Fnt1 = Oy — 3G(E11 At).

(C.38)

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)
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Thus, the direction of plastic flow at the end of the increment is determined from the trial
direction of plastic flow.

Next, during plastic flow € > 0, the equivalent tensile stress is given by the flow strength
(viz. 8.146)

R e;p 1/m
nt1 =Y (Coy1 ) + Vs ( “6.“) : (C.48)
0
Finally, using (C.48) in (C.47),, gives the following implicit equation for &
. 2.\ .
g=20u—Y(Cyt1) — Ya ( “6_“ ) —3G(é ., At). (C.49)
0

Once a solution for & _, has been found we can update all necessary quantities as follows.
First the plastic stretching, plastic distortion, and elastic distortion may be updated as

Di =+3/2 éﬁ“ Nf, Fhy =exp(AtDL,)F;, Foy, =Fg exp(—ADf,;), (C.50)
from which Eg,, may be computed. The Mandel stress is then computed as
M;,, =2GEg,; + K(trE; )1, (C.51)
and finally the Cauchy stress is given by

Tn+1 = ( r?—_}:i )Rfr §+1 R‘g (052)

The only remaining part of this time integration procedure is to compute

Ocy OCr

-5/—;, and a_/J,

To do this we use a simple numerical perturbation and finite difference scheme. We define
positively and negatively perturbed chemical potentials as

pt = pny1 +6p, and g = pay — O, (C.53)

where the perturbation dyu is given by

ni1]-1078 if || > 1,
5u={|ﬂ+1| i1 | (C.54)

108 i || < 1.

Using the perturbed values of the chemical potential in the implicit equation (C.29), we then
solve for the positively perturbed concentration ¢t and the negatively perturbed concentra-
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tion ¢;, and compute
Ocpmi1 _ Cf —Cq
Opns1  20p
Further, we compute positively and negatively perturbed time rate of changes of the con-
centration through

(C.55)

, ¢ — ca, . Ch —cCg,
&= RT;‘"’ and ¢ = _R__A?R_", (C.56)
from which we then compute

0(3R’n+1 — CK - CR
On+1 20p

(C.57)

C.6 Spatial tangent modulus

In order to complete the tangents developed in Sect. C.3, we must compute the spatial
tangent modulus (viz. C.13)

Aijkl = J—l-Fjjm-Fln_ (058)

In this section we develop an estimate for this modulus. Specifically, we approximate (C.58)
by a derivative of the elastic Mandel stress with respect to the trial elastic strain, that is

M,
OE¢.

An+1 =

(C.59)

We will make use of different spatial tangent moduli for steps in which the deformation is
purely elastic, and steps in which there is plastic deformation, that is

celastic if & tr S 07
Apyr = . (C.60)
Chlastic if >0 and € >0,

where the elastic Celastic, and plastic Cplastic moduli are defined next.

C.6.1 Elastic tangent

During a computational increment in which the deformation is purely elastic, B¢, = E¢,
and we may write the stress strain relation (C.51) as

Me,, =2GES + (K - ga) trE°. (C.61)
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The elastic tangent modulus is then simply equal to the standard elastic stiffness

Mz, _ 2
Celastic = aEfr = 2GI + (K - §G> 1®1, (062)

where I and 1 are the fourth- and second-order identity tensors.

C.6.2 Plastic tangent

We begin by writing M¢_; in terms of its deviatoric and trace parts

1
Mi =M+ §trM§+1 L. (C.63)
which, using
Mg,n+1 = ‘Mg,n-i—l'Ng-i—l ) Ng+1 = Ni)rv and trMi-&-l = tngm

and the definitions (C.42) and (C.45), may be written as

0 3

Otr

6-11 e ]' e
Me,, = ( + ) Mg, + -trME 1. (C.64)

Taking the derivative with respect to the trial elastic strain yields

o OMpy1  (Garn | OMG, | 10trMg 1
plastic ™ "5Ee, ~ \ 6, ) OEL 3 Eg
) 96 _ o5 (C.65)
G los log
— M n+l n+1 Me tr )
S ( 77 ) oS omg,
Noting that E¢ enters the update equation through &, we may write
a5'n+1 = aa'n+1 aa'tr
OEt. 05, OE:&’
and (C.65) may thus be written as
Ont1 ) OMGy  10trMg nt1 Onp1 \ MGy _ 0G4
C astic = — . a5 1 — — == ’ . C.66
plast ( O¢r ) BE% 3 Egr + 80tr Oty 6tr ® 3E§r ( )
Then using (C.41) we may write
- 0 g M; 0.
C astic = Celasti n+l n+1 0,tr tr ) )
plast lastic + < 85_“ _o__tr 5_tr &® BEgr (C 67)
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where for conciseness we have defined a modified elastic modulus as

éelastic = (Ux:+1 ) 2G (I[ - %1 &® 1) + K1®1. (068)

Otr

Next, using the definition of ., and the fact that N? is deviatoric we may write
054 \/’5 i,

=575 (/Méui M3, )
6E€r 9 aEgr ( 0,tr 0,tr

- \/§ 8:[\/I'S,tr Mg,tr
T V2 OE; Mg,

(C.69)
—\/EZG ]I—ll®1 NP
- 2 3 tr
3
_ \[5201\1{;.
Using the result (C.69) and the fact that
Me
Np, = g 6‘3’“, (C.70)
we may write (C.67)
5 0y 0,
Cplastic = Celastic +2G < 85'—:1 - ;—1_:_1 ) Ngr Y Nfra (C71)

and all that remains is to determine 95,41 /95

Recall the flow strength (C.48) and the update equation (C.47); which may be written
as

Ont+1 = ?(5n+1) + S(Eﬁ-l—l ))

. (C.72)
Ong1 = Ot — 3G(€g+1 At),

where

2p 1/m
$@,0) =Y. () , (C.73)

€o
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is the portion of the flow strength which depends on the equivalent tensile plastic strain rate.

Taking the derivative of (C.72) with respect to &y, yields

OBl e e
n =H =D n+1
861;1* (Eﬂ-’rl) aa‘tr ]
OGny1 0&p41
— =1-3G—="-At
85tr aa’tr ’

where we have defined

&y = . 1
g (e SEn) Yl (G )\" !
(Gh41) = 2 . em\ o .
n+1 0 0

Eliminating 9€-, /8y, from (C.74), we may solve for

a5'n+1 _ ﬁ(€g+l
85w H@E,,)+3GAt

Finally using (C.76) in (C.71) yields

5 H&,,) Ont1
C ic = Celastic + 2G = ntl - f I\TPr &® Npr,
plastic last, (H(€ﬁ+1)+3GAt Gur t t

(C.74)

(C.75)

(C.76)

(C.77)

In summary, recalling (C.60), (C.62) and (C.77), the spatial tangent modulus is given by

Celastic if 5'tr S 0,
An+1 = . _ .
Colastic if 64¢>0 and & >0,

with

2
Celastic = 2GT + (K - §G) 1® 1; and

5 I:I(ép 1 ) On+1
C ic = Celastic + 2G ~ ot — Npr ® Npra
plast fost (H #.,,)+3CGAt  n ¢ k

with Celastic given by (C.68), and ﬁ(éﬁﬂ ) given by (C.75).

(C.78)



