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Abstract

Understanding vehicle kinematics is essential in allowing autonomous guidance al-
gorithms to accurately assess short range encounters. Low cost, reconfigurable au-
tonomous vehicles motivate using in-field online techniques rather than tow tank test-
ing or Computational Fluid Dynamics (CFD). While the parameters of many physical
dynamic models can be obtained using System Identification (SI) techniques, these
models require knowledge of the vehicle actuators, which may not be the case in
a "backseat driver" architecture using payload autonomy. Even when an identified
physical model is available, using it to simulate trajectories requires insight into the
design of the relevant controller, which may be proprietary or otherwise unknown
to the back seat. This thesis develops a data collection procedure to obtain empiri-
cal kinematic trajectories for unmanned surface vehicles (USVs). A linear black box
model of the USV yaw system is also developed, using only data available in the
backseat. A prediction table for the M200 USV is developed with both techniques.
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Chapter 1

Introduction

1.1 Motivation

As Autonomous Marine Vehicle (AMV) technology proliferates, there is an ever in-

creasing demand for improving their performance. Improvements to endurance, sens-

ing, and intelligence are actively researched and continuously implemented.

One of the core subsystems of any autonomous vehicle is Navigation, Guidance,

and Control (NGC). The navigation component can be as simple as obtaining data

from GPS for a simple USV or as complex as fusing information from a compass, in-

ertial navigation system, and data from fathometers and acoustic positioning systems

to maintain an accurate estimate of position for the duration of a UUV mission.

Vehicle guidance consists of choosing the vehicle's course and speed. Often, the

vehicle's path for an entire mission or portion of a mission is determined at once,

a process called path planning in the literature. Guidance functions may also in-

clude reactive components, either determining the desired heading instantaneously or

modifying a pre-planned path when new information is obtained.

With the vehicle's trajectory determined by the guidance component, the vehicle

control system must determine how to command the vehicle's actuators in order to

achieve the desired course and speed. Most AMV's are underactuated and nonholo-

nomic and research into various control methodologies remains highly active.

A huge variety of NGC approaches are available to AMV designers and opera-
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tors, and the optimal solution varies based on the desired budget, capabilities, and

flexibility. One gap in the existing options is the capability to provide accurate ve-

hicle guidance for short range encounters on low cost vehicles using an architecture

known as payload autonomy. The goal of this thesis is to develop data collection

techniques needed to enable guidance algorithms operating in payload autonomy sys-

tems to improve short range decision making by considering approximations of vehicle

kinematics.

1.2 Overview

Chapter 2 reviews existing guidance and control methodologies and addresses why

a new approach is pursued for payload autonomy. Chapter 3 describes a system to

provide short term predictions of vehicle kinematics using either explicitly measured

trajectories or a black box system model. The primary product of this thesis is

software developed for MOOS-IvP, a modular, behavior based autonomy system.

MOOS-IvP is described in Chapter 4 as are the algorithms and data collection mission

developed in this work to collect kinematic data. Chapter 5 describes the validation

of the data collection mission in simulation and on Kingfisher M200 USV's. Finally,

Chapter 6 discusses some limitations of the current implementation and potential

approaches to improve on these limitations.
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Chapter 2

Background

2.1 Guidance

2.1.1 Path Planning

Path planning has its roots in early land based robots. Given a starting position,

goal position, and some knowledge about obstacles, the robot must select a path to

travel. Choosing a path is an optimization problem. The most obvious criterion to

optimize is distance: what is the path that gets to the goal, avoiding the obstacles,

while traveling the least distance? [12]

The basic problem formulation translates well to marine autonomy. The guidance

component of many AMV missions can be framed as choosing or following a path

while avoiding obstacles. Obstacle avoidance for other moving vessels imposes ad-

ditional constraints on path planners, especially when there are protocols the AMV

should respect. Woerner [18] discusses a variety of reasons to pursue AMV guidance

approaches that incorporate the collision avoidance regulations (COLREGS) used by

human steered ships [9].

2.1.2 Path Smoothing

Depending on the path planning method used, the resulting optimum path may be

piecewise linear. For underactuated vehicles, a piecewise linear path cannot be accu-

15



rately followed. Various approaches exist in the literature to generate smooth paths.

The simplest approach is to generate a smooth path that passes through the way-

points determined by a simple path planning algorithm. This approach is generally

implemented by smoothing after a path has been selected rather than being part of

the optimization process [8].

One simple smoothing method is the cubic spline. It is straightforward to fit a

cubic spline through path planner waypoints. This guarantees that the curvature

of the path is continuous, which is an improvement. Cubic splines suffer from the

fact that the entire path is affected by each waypoint. This may mean that the

smoothed path may be significantly different from the path originally determined by

the planner, potentially sacrificing optimality or even being unsafe. It also means

that the entire path must be recalculated if a local modification is performed (say, for

obstacle avoidance). Finally, although the cubic spline path has a continuous second

derivative, it is not necessarily dynamically feasible. [8]

One alternative to cubic splines is B splines. B-splines have an advantage over

cubic splines because each control point only has local influence. Moving a control

point, for example to conduct local path modifications, only modifies a portion of

the path. Despite this advantage, B splines still do not explicitly account for the

maneuvering characteristics of the vehicle. However, one guidance algorithm can

dynamically change the order of a B-spline used to smooth the path between planned

waypoints [13]. Higher order splines were found to be tracked more easily by the

vehicle.

Rather than modifying a path to make it smooth, many path planning algorithms

explicitly consider a dynamic constraint as part of the planning algorithm. For ex-

ample, some path planning approaches include curved segments with limited radius

of curvature, accounting for the vehicle's turning capability [15]. This simplifies the

vehicle's turning kinematics to a combination of straight line motion and constant

radius of curvature turns. While turning radius is an important constraint, it can

only represent the kinematics of a vehicle that has achieved a steady state turn.

While smoothing techniques and curvature constraints can generally produce dy-

16



namically feasible paths, their application in the literature is limited to cases where

standoff ranges to obstacles are sufficient that the transition from straight travel to

steady state turning is not significant.

2.1.3 Short Range Avoidance

In general, good seamanship (in practice) and the Collision Regulations' 191 (by

statute) dictate that avoidance maneuvers be taken early and should result in comfort-

able passing distances rather than more "efficient" maneuvers which might narrowly

avoid collision. Nevertheless, there are cases where understanding the limits of the

vehicle's maneuvering capabilities is necessary to take appropriate action. While the

notion of "short" range depends in general on vehicle size, it depends more specifically

on the vehicle's maneuvering characteristics. There is no precise definition for short

range, but several cases are presented where range to obstacles is on the order of the

vehicle's turning radius. These cases certainly qualify as short range.

Formation control for multiple cooperating AMVs is an active area of research.

Depending on the application, it may be desirable to maintain very short ranges

between members of the swarm.

In some complex interactions, it may be necessary to delay taking avoidance action

because of a second obstacle. Figure 2-1 depicts one such possibility. In this and other

cases, must know their maneuvering capabilities to determine the correct maneuver.

Guidance algorithms that seek to employ COLREGS protocols for vessel interac-

tions must handle situations where course and speed are constrained as the "stand on"

vessel2 . If the other vessel, required to "give way"3 , does not take appropriate action,

the stand on vessel may have the option (Rule 17.a.ii) or obligation (Rule 17.b) to

take avoidance action at short range. As in Figure 2-1, the correct maneuver in any

given situation may depend on the maneuverability of the vessel in question.

Finally, autonomous sensing and classification of obstacles still has significant

'See Rule 8.
2See Rule 17.
3See Rule 16.
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G

G 0

Figure 2-1: Motivation for Short Range Avoidance: Remaining to the left of obstacle 0 means

that vessel G is unable to maneuver to avoid vessel S until close range. G's maneuvering capabilities

may make it impossible to keep clear of S while turning (path K), in which case she should slow

and allow S to pass ahead rather than maintaining speed and trying to maneuver. Assuming an

instantaneous turn (path I) will incorrectly make a collision free turn appear feasible

challenges. Advances in radar, LIDAR, and stereo vision are enhancing sensing capa-

bility, and methods to fuse data from multiple sensors are improving. Nevertheless,

delays in sensing obstacles may require an AMV to take avoidance action at short

range.

While research into techniques such as model predictive control is ongoing and

practical implementations are used on some aircraft, most algorithms employed in

currently fielded AMVs do not consider the kinematics associated with the initiation

of a turn. As underactuated vehicles, any AMV with an initial forward speed will

have some "advance4 " in the original direction of travel while turning to a new course.

In one autonomy system, obstacle and contact avoidance behaviors consider a straight

line from the vehicle's position to the obstacle [4]. Candidate courses are evaluated

based on the CPA resulting from this straight line, effectively assuming that the

vehicle can make instantaneous turns. A similar approach uses behavior voting for

candidate trajectories - arcs laid out such that each cell in a grid is covered[11]. In

both of these cases, the evaluation criteria do not consider the advance required to

4The term "advance" refers to translation in the original direction of motion during a turn.

Advance and its counterpart transfer are discussed in more detail in Section 3.1.
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achieve the new course.

These approaches and others currently in use benefit from the fact that obstacles

and collision avoidance standoff ranges are typically much larger than the advance

distance associated with a particular course change. Furthermore, the NGC system

updates decisions and control action many times while approaching such an obstacle.

A small error in estimation of the vehicle's trajectory can typically be compensated

for with future guidance and control decisions.

Consider, however, an obstacle detected at close range, as shown in Figure 2-2.

Without knowledge of the expected vehicle kinematic trajectory, the first course would

be selected and a collision could occur. Buffer zones around obstacles help compensate

for this, but this is limiting in a crowded obstacle field such as a minefield. Buffers

would also be inadequate to enable accurate navigation in a narrow channel.

A A

0 0

Figure 2-2: Inadequacy of assuming Instantaneous Turns: A vehicle driving to waypoint
A must avoid obstacle 0. At close range, collision may occur due to the difference between an
instantaneous turn and actual vehicle trajectory. If an offset is added to the obstacle, a larger turn
is executed and collision is avoided.

Alternatively, consider the scenario shown in Figure 2-3. Assuming instantaneous

turn capability results in an inaccurate expectation of reversing course to pass to the

opposite side of an obstacle. This type of difficulty was encountered in [11], which

describes an issue with decision making fluctuating between alternate sides of an

obstascle. Similar issues have occurred in obstacle avoidance algorithms in the MOOS-
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IvP autonomy software used in this thesis. In both cases, a sort of decision making

hysteresis was introduced to "commit" to passing on one side of an obstacle. An

algorithm that considers the expected vehicle kinematics would inherently recognize

the impossibility of immediately changing course to cross to the other side and would

make the correct decision without artificial coping mechanisms.

0B

0 0

Figure 2-3: Motivation for Short Range Avoidance: Initially, the vehicle has decided to pass

to the right of obstacle 0 to reach waypoint A. Later, some other factor has updated the waypoint to

B and passing to the left of the obstacle is preferable. Assuming either instantaneous course change

or instantaneously achieving a maximum turn rate makes this option appear possible. In reality, the

vehicle cannot reverse course without colliding with the obstacle.

Given these types of challenges, it is clear that guidance algorithms cannot be

assured of taking the right action in short range engagements without knowledge of

the turning kinematics.

2.2 Dynamics and Control

Models of vehicle dynamics have been used extensively in the field of control theory.

If the necessary parameters are known, the equations of motion can be used directly

to solve for the vehicle's motion based on the applied forces. This leads directly to a

prediction of the vehicle's kinematics for a given force input. This type of kinematic

prediction would be suitable for enhancing guidance algorithms to better handle short

range encounters.
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2.2.1 Notation

Notation in this this thesis follows the conventions given in [10], summarized in Table

2.1. Additionally, AO is used to denote the discrete heading change associated with

a specific intended turn.

Table 2.1: Summary of notation used for kinematics and dynamics in six degrees of freedom.

Direction Translation Force Velocity Position
x Surge X u x
y Sway Y v y
z Heave Z w z

Axis Rotation Moment Angular Velocity Angle

x Roll K p
y Pitch M q 6
z Yaw N r

2.2.2 System Models

The 6 DOF motion of a marine vehicle on the surface (such as a USV) is usually

simplified to plane motion for steering models, neglecting the influence of roll, pitch,

and heave. With these simplifications, both linear and nonlinear approaches exist to

treat the motion of the vehicle with varying degrees of accuracy. After simplifying to

3-DOF the equation of motion is given [101 by

Mu + D(u)u = f(u) (2.1)

u = [u, v, r]T is the planar velocity, M is the inertia matrix (including added mass),

and D is the hydrodynamic drag matrix. f(u) is the vector of forces on the vehicle,

including actuators and environmental forces. This model might prove inadequate

when substantial pitch and roll motions occur (in heavy seas, for example), but is

sufficient for many situations where out of plane motions are not significant.

Simplifying assumptions such as neglecting external forces and off-diagonal entries
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in M and D gives a planar model for vehicle dynamics

m1 1 it - m 22vr + diu = f

m 22 i + 'mur + d2 v = 0 (2.2)

m 3 3r + mldUV + d3r = T

While some applications may require models with less assumptions and simplifications

(for example, including external forces), it has been noted that the majority of USV

heading controllers are based on this model [2].

Determining the added mass and hydrodynamic drag coefficients in M and D is a

form of system identification (SI). Traditionally, SI for a large ship would be performed

experimentally. Computational Fluid Dynamics is also capable of estimating the

requisite coefficients. Both of these approaches can be expensive. A complete set of

SI experiments requires extensive time in a tow tank [1]. Commercial CFD software,

as an alternative, is itself costly and can require specialized computing hardware.

Research and other activities are increasingly relying on larger numbers of small

low cost AMVs. In this environment, it may not always be realistic to expect this

type of analysis to be done. Furthermore, mission specific payloads have the potential

to significantly change the identified properties. This could be as simple as changing

the mass and displacement of the vehicle or could be more complex if the payload

includes some type of sensor in the water [14]. SI, however performed, would have to

be repeated for each configuration of the vehicle.

2.2.3 On Line Identification

An alternative to tow tank experiments and CFD is "on-line" system identification.

This allows determining approximate hydrodynamic properties in the course of op-

erating the vehicle in the real world. The flexibility afforded by this technique is

an attractive solution when low cost vehicles and mission reconfigurability make it

impractical to utilize other SI techniques.

Regardless of whether SI is performed online or offline, any dynamic system model

22



will require some knowledge of the vehicle's actuators: rudder angle, propeller speed,

etc. Depending on the type of model used, SI may also require measurements such

as sway velocity. This follows from the idea of parameter identifiability 13]. This will

become significant in Section 2.3 where sufficient measurements required to ensure

system identifiability may not always be available.

2.2.4 Control vs Trajectory Prediction

The typical use for dynamic models is in vehicle control - determining desired actuator

motion to achieve a guidance objective. As discussed in Section 2.1.3, considering the

turning kinematics in higher level control functions on AMVs is primarily necessary

for short term path planning, typically in support of obstacle or collision avoidance.

These objectives require predicting the vehicle's trajectory based on future control

action. By predicting trajectories, guidance algorithms can be restricted to consider

only dynamically feasible paths. Additionally, by more accurately understanding the

expected kinematics associated with a given decision, algorithms can more effectively

determine if that decision will actually achieve the intended objectives.

Given a dynamic model with the appropriate parameters identified, such a trajec-

tory could be generated by simulating the actuator commands and resultant vehicle

motion for a suitable guidance input. Note that this requires knowledge of both the

physical properties of the vessel and also the design and parameters of the low level

controller generating the actuator commands.

2.3 Payload Autonomy

Payload autonomy is an approach to autonomous vehicles that decouples high and

low level control. A "front seat" vehicle computer handles low level control of the

vehicle's actuators. The front seat controls actuators to achieve goals such as "desired

heading" or "desired speed" that are requested by a separate autonomy "back seat".

This has also been referred to as the "backseat driver design philosophy" [5].

One of the benefits to payload autonomy is that an autonomy mission can be
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agnostic to the hardware where it will be executed. This can provide logistical ad-

vantages for organizations that deploy multiple different AMV's. Furthermore, an

autonomy mission can be designed and implemented entirely on a payload computer.

Provided with a payload interface, that mission should then be usable on any specific

AMV. The notion of hardware agnostic payload autonomy imposes several limitations

that make it challenging to allow the back seat autonomy system to use a dynamic

system model for kinematic predictions.

The first challenge is limitations on the front to back seat interface. Increasing

requirements beyond navigation data and simple goals like heading, depth, and speed

complicates the interface. This is clearly not insurmountable, but leads to the next

problem. Obtaining hardware independence means that a dynamics model in the

backseat should work regardless of whether the autonomy mission is running on a

differential drive catamaran or a monohull with a fixed propeller and rudder. This

means that both the additional interfaces and the dynamics model used depend on

the vehicle type.

Finally, even if the front to back seat interface were expanded to include all of the

actuators and the dynamics model in the backseat where flexible enough to accom-

modate all vehicle types, the front seat still has a controller that will influence the

vehicle's kinematics. Predicting kinematics from the back seat would require modeling

not just the physical behavior of the vehicle, but also the behavior of the controller.

Model predictive control does exactly this (albeit without the restriction of payload

autonomy). Work in [17] and [16] takes this approach, conducting path planning that

explicitly models future control actions and vehicle dynamics to restrict path planning

to dynamically feasible paths. While this is possible when the design of the control

system is known, many commercial vehicles use proprietary controllers. An approach

that approximates kinematics without requiring explicit knowledge of the controller

is still desirable.

This chapter has reviewed some existing techniques used to account for realistic

vehicle kinematics in guidance algorithms, as well as approaches to rigorously account

for the vehicle dynamics in control theory. The next chapter will describe a new
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approach that does not depend on the controller being used.
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Chapter 3

Approximate Vehicle Kinematics

With the goal to provide platform independent short term prediction of turning kine-

matics, a new approach is necessary. Given the limitations imposed by payload auton-

omy (Section 2.3), an empirical approach is warranted to provide broad applicability

even when specific actuator movements are unknown. This means approximating the

vehicle kinematics without the aid of a physical dynamic model (Section 2.2.2). Two

alternatives are presented. First, in Section 3.3, an approach utilizing direct measure-

ments of trajectories is described. This is approach is termed Approximate Vehicle

Kinematics (AVK). An alternative approach, utilizing a black box model of the ship

yaw system is described in section 3.4.

3.1 Advance and Transfer

Approximate kinematics have long held wide acceptance by human mariners. Coastal

piloting has many of the same challenges described in Section 2.1.3. In general, over-

lapping constraints require the ship's crew to execute very precisely timed maneuvers.

A prime example is maneuvering a large ship to remain within a channel. The ve-

hicle's kinematics are approximated by two linear distances: advance and transfer

(Figure 3-1). These are defined as the distance traveled parallel and perpendicular

to the vehicle's original course [7]. These distances are a function of vehicle speed u,

initial rudder angle 60, and heading change AV):
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(3.1)

Knowing these distances allows a ship's Navigator to conduct detailed advance

planning for a turn, determining the exact point to initiate the turn ("Start of Turn"

in Figure 3-1).

- Transfer -- SO t

End of Turn

-- Start of Turn

Figure 3-1: Advance and Transfer as considered by typical navigation practice on ships. The
helmsman deflects the rudder at the point labeled "Start of Turn". At some point during the turn,
the helmsman shifts the rudder, and makes fine adjustments as necessary to steady the ship on the
new heading. If the desired "End of Turn" point is known, the Advance and Transfer (known in
advance for a given ship based on the intended speed and rudder angle) can be used to calculate the
"Start of Turn" point. Image borrowed from [7].

Although advance and transfer are referenced to the rudder angle used to initiate

the turn, 6(t) is not constant. The helmsman manipulates the rudder as appropriate

to achieve the new course precisely ("End of Turn" on Figure 3-1). The expected

rudder manipulation is implicit in the kinematic approximation. Furthermore, while

the end of turn point is calculated, the trajectory between start and end is just an

approximation made by drawing a fair line between the points [7].

Just as traditional navigation practice abstracts the actions of the helmsman,

the payload autonomy approach abstracts the actions of the front seat controller.

Where the goal of this technique in traditional navigation is essentially advance path

planning (where exactly to execute a pre-planned maneuver), approximate kinematics

are intended here to aid in evaluating the suitability of various maneuvers to achieve
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reactive collision avoidance goals.

3.2 Kinematics Lookup Table

Just as advance and transfer for a large ship are functions of rudder angle, speed, and

heading change (equation 3.1), the kinematic trajectory for a USV turn is a function of

similar inputs. Where a ship's Navigator could direct differing amounts of rudder for

one heading change, it is assumed here that the payload autonomy interface provides

no provision for such a request. Therefore the actuator motions used to produce a

certain heading change are assumed to be a single valued function of the guidance

input and initial state:

[N(t), K(t)] = f(u, A0, r) (3.2)

where the yaw moment N(t) may be due to a rudder, differential propulsion, or

some other method and the thrust K(t) may also change during a turn. Under this

assumption, the vehicle's kinematics are then a function of initial state and turn

parameters

x(t) f(X4, XO) (3.3)

where x = [X, y, b, v, r]. For the present work, consideration is restricted to initial

states xO where vo = ro = 0. This is a strong assumption and is discussed further in

Section 3.4 and Chapter 6.

In the absence of external influences such as current, the global position [X, y]

and heading 4 of the vehicle have no influence on the resulting trajectory. The

turn trajectory can then be referenced to the body fixed reference frame P. from

the moment the turn is initiated. JV has an origin [XN, YN] = [xO,o, yo,o] with the

positive y-axis oriented at Oo where (-)o represents the value at the start of the turn.

The resulting trajectory starts at the origin of K, traveling initially in the positive y

direction and is denoted XN-

As long as the vehicle is symmetric about the longitudinal axis, the kinematics for
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a left and right turn will be the same. Right turns are chosen to be the reference. For

a given combination of (uo, AV), the corresponding left turn -AV) can be recovered

by reflecting the kinematic trajectory XN across the y axis of AP.

Under these assumptions, k = (uo, AO) with 0 < A@i K 180 uniquely identifies a

turn trajectory. As a practical matter, the space k can be discretized into appropriate

intervals for data collection and vehicle planning. The discretization of k is referred

to as a Cached Kinematics Table (CKT), where each cell in the table kij contains

the trajectory x(t) associated with the turn (i = uo, j = AO). This structure fits very

naturally with a data collection mission and is consistent with the existing structure

of the guidance decision space. Furthermore, the notion of caching this information

may offer practical advantages for computational performance when used in guidance

algorithms.

The specific discretization of the AVK table may vary. In a data collection mission,

for example, it might be appropriate to choose a 20 degree A@ spacing to minimize

the time associated with the mission. In guidance algorithms, on the other hand, it

might be necessary to discretize to 1 degree to match the candidate headings being

considered.

3.3 Measuring Kinematic Trajectories

3.3.1 Data Collection

In order to populate the table, each turn kij must be performed and the resulting

trajectory recorded. This is achieved through a data collection mission, described

in Section 4.5. Essential to this effort is controlling vehicle initial conditions and

controlling the guidance input (i.e. keeping the desired heading constant).

One challenge in executing this mission is the presence of external influences such

as wind and current. These have the potential to substantially influence vehicle

turning characteristics. Accounting for these factors is complicated further on vehicles

where the navigation system is not capable of determining both speed through the
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water and speed over ground. Further discussion of possible techniques to exclude

the influence of external forces is given in Section 6.3.

3.3.2 Fitting, Approximation, and Interpolation

An AVK trajectory collected in this manner is not directly useful. First, the position

data recorded may be noisy. While the vehicle's speed generally changes during a turn,

it is assumed here that the kinematic trajectory can be adequately approximated by

assuming a constant speed during the turn, equal to the average speed required to

traverse the recorded trajectory in the observed time. This assumption means that

only the geometric shape of the input data needs to be retained, not the discrete

time history. As a result, the input data can be simplified by approximating it with a

function y = f(x) over an appropriate domain of x. Accompanying work to this thesis

examines the suitability of various data fitting techniques. A fourth order polynomial

was chosen, fit to the data using least squares regression.

To improve the computational efficiency of guidance algorithms using the AVK

trajectory, the trajectory is further simplified by approximating the polynomial as a

piecewise linear function.

Section 3.2 discussed possible discretizations of the CKT. If the experimentally

collected data is sparse, trajectories in the table can be interpolated to provide data

for cells in the fine discretization used for guidance.

3.4 Black Box Modeling

3.4.1 Black Box Yaw System

While AVK trajectories stored in a kinematics lookup table offer a significant im-

provement in the predictive capability of a back seat guidance algorithm, the utility

of the approach is severely limited by the restrictions on initial vehicle state intro-

duced in Section 3.2. A system model, on the other hand, includes the current state

explicitly and has fewer restrictions on applicability.
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The physical dynamics models discussed in Section 2.2.2 predict vehicle motion

on the basis of physical properties of the vehicle and its actuators. In the case of yaw

dynamics, a simple example of this approach is the 1st-order Nomoto steering model

[101.

1 K
S= -- r + - (3.4)

T T

where J is the rudder angle and i is the derivative of yaw rate (i.e. ). Some

technique must be used to identify the parameters T (a time delay factor) and K

(a proportionality constant for the effectiveness of the rudder). Once identified, this

model (either in conjunction with a speed model or by assuming some speed profile)

could be used to predict a vehicle's trajectory for some known rudder input 6(t) by

simulating the system shown in Figure 3-2 (replacing the actual vehicle dynamics

with the model).

Heading Controller Actuators - Dynamics - KinematicsReference

Observed
Heading

Figure 3-2: The USV yaw motion as a system. The guidance component determines the heading
reference. The navigation system provides feedback to the controller. In response to changes in
the heading reference and feedback signal, the controller produces actuator motions. The actuators
exert forces and moments on the vehicle, resulting in a certain kinematic profile depending on the
inertial and hydrodynamic properties of the vehicle (i.e. the dynamics).

To avoid the need to simulate the controller and know actuator positions, a differ-

ent model is considered. If the boundaries of the model are expanded to include both

the control layer and the actuator dynamics, a black box model of the entire system

is obtained as shown in Figure 3-3. The inputs are desired and observed headings

and the output is vehicle's heading.

A simple linear model of this system is

l = AE + Bl (3.5)
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Black Box Model

Re e Controller +ib Actuators -No Dynamics -i-Kinematics

Observed
Heading

Figure 3-3: Black box model of USV yaw motion. The behavior of the controller and the actua-
tors are modeled together with the vehicle dynamics. The resulting model can make a trajectory
prediction without knowledge of the controller design or the actuator positions.

where E is a vector of the difference between the desired heading given by the heading

reference and the measured heading (Id - 0) at previous time steps. Similarly, / is

a vector of previous vehicle headings. Given a sample data set from the vehicle, a

simple least squares fit of the parameters A and B serves to perform SI for the black

box model.

It is noted that the choice of input data can have significant impact on the quality

of the produced model. For example, if E and V) are monotonically increasing, then

A = 0 and B = [B 1, 0, ... , 0] where B1 > 1 and the exact valuedepends on the input

data. Such a model is obviously inadequate and can never predict heading decreasing

(i.e. left turns). An alternating set of left and right turns, like those shown in Figures

3-5 and 3-6 results in values for each element in A and B and can predict both right

and left turns. Finally, it is noted in [10] that persistent excitation is preferred for

system identification. This is addressed further in Section 3.4.2.

With A and B identified, the model can be used to predict turning trajectories

by simulating coordinates and heading changes.

" Begin with desired and actual heading for last n steps

" Construct error and heading vectors

" Use current x and y position, heading, and speed

" For each time step:
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- Given x, y, heading, and speed

- Estimate next x and y position from heading and speed

- From previous heading data, predict next heading using model

- From next heading, calculate e at next step

- Update error and heading vectors

A modeling approach has several advantages compared to the approach described

in Section 3.3. First, it nominally requires less data collection time. Rather than

fully discretizing the kj domain with data collection points, an appropriate sequence

of input data is collected at each speed.

A significant weakness that arises from the CKT structure and the direct mea-

surement AVK approach is that the stored turn trajectories can only be used to

directly predict trajectories that match the vehicle's behavior during data collection

(i.e. the conditions associated with a certain CKT cell). In the present work, this

means the vehicle is on a steady course. Once the vehicle has started turning, the

trajectories stored in the table cannot accurately predict the vehicle's path. Despite

potential options to allow the CKT/AVK approach to more robustly handle varied

vehicle initial conditions (Section 6.2), incorporating these changes into the system

increases complexity and may also require changes to the data collection mission.

A system model, by nature of considering the system state and recent state history,

is able to generate a prediction anywhere along the trajectory of a turn. This avoids

the need to classify the vehicle's current state (steady vs. turning) and have special

cases to build a trajectory prediction accordingly.

Despite these advantages, obtaining an adequate model is not trivial. The model

proposed in Equation 3.5 does not explicitly consider nonlinearities such as actuator

saturation and nonlinear hydrodynamic forces. Additionally, although a well identi-

fied model may generate a reasonably accurate heading prediction, any error will be

propagated at each time step over the course of a trajectory prediction.
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3.4.2 Black Box Modeling of M200 Using In-Water Data

In water experiments were performed to evaluate the viability of this sort of black

box model. This work was tested at the Battelle Autonomy Lab at the MIT Sailing

Pavilion. While some early work was performed on Kingfisher M100's, the major-

ity of the field testing was performed on Kingfisher M200's. The M200 is a small

autonomous catamaran (see Figure 3-4). Propulsion is provided by two waterjets.

Steering is controlled using differential drive. The frontseat contains interface layers

to the thrusters and navigation equipment. Although the front seat can accept indi-

vidual thruster commands from the backseat, it lacks heading and speed controllers.

These functions are instead performed by pMarinePID, a MOOS application imple-

menting a basic PID controller for heading and speed. Key configuration parameters

affecting vehicle maneuvering characteristics are listed in Table 3.1.

Table 3.1: Key M200 configuration parameters affecting maneuverability. In tests for this work,
the following parameters were used unless otherwise specified.

App Parameter Values
iM200 MAXTHRUST 100
iM200 AppTick 10
pMarinePID YAWPIDKP 0.5
pMarinePID YAWPIDKD 0
pMarinePID YAW_PID_KI 0-0.05
pMarinePID YAWPIDINTEGRALLIMIT 10-20

pMarinePID SPEED_PID_KP 1
pMarinePID SPEEDPIDKD 0
pMarinePID SPEEDPIDKI 0
pMarinePID MAXRUDDER 40

pMarinePID AppTick 4

Figure 3-4: Kingfisher M200

Trajectory predictions for the M200 were generated by identifying a linear black
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box yaw model like that described in 3.5. Two sets of input data were used. The

first, shown in Figure 3-5, consisted of several discrete turns. The second, shown in

Figure 3-6, was a persistent excitement of the vehicle's heading. In both data sets,

the desired vehicle speed was constant at 1.5 m/s.

No filtering was performed on the data. For the discrete turns in particular, non-

trivial low frequency noise is apparent in the heading data. This is attributed to

environmental effects. Filtering the input used for parameter identification might

improve the performance of the model; this was not investigated.

The asynchronous nature of MOOS publications (see Chapter 4) means that data

logged from a vehicle must be resampled to be suitable for use in linear least squares

identification of the model coefficients. The minimum relevant application frequency

was 4 Hz (pMarinePID). Other relevant applications, such as iM200 (providing the

navigation data) and pHelmIvP (publishing desired heading) were operated at 10 Hz.

To remain within the limits of the actual publications, data was resampled to 4 Hz.

To resample, each relevant variable was linearly interpolated between logged values

to obtain a value for each synchronous time step.

Ten seconds of history was used, corresponding to 40 samples in E and 4. Further

discussion of model form is given in Section 3.4.3.

Trajectories simulated by modeling heading changes (as described in Section 3.4.1)

are given in Figures 3-7 and 3-8. Both predictions are calculated from the point where

the desired heading has changed but the control system has not yet responded (i.e.

the first sample where DESIREDHEADING changes). In both cases the model is stable

and eventually converges to the new desired heading. While it under predicts the

heading change at each time step, resulting in a wider turn than actually observed,

the predicted response is generally similar to the actual trajectory.

The speed at the beginning of the turn was assumed to be constant and was used

to propagate the predicted position. If a suitable speed model were also developed

and identified, a more accurate prediction could be developed. Both models were also

tested using the actual speeds from the resampled logs instead of an assumed constant

speed. While this provided minor improvement, the M200 speeds in this data were
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Figure 3-5: Using M200 In-Water Data to Identify Model Parameters: Input data for the

black box system identification process. Here discrete turns are used, like those used to record AVK

trajectories

relatively constant during the turns and the trajectories using actual speed data were

not significantly different than those shown here using a constant speed assumption.

For other cases where speed changes significantly during a turn, an accurate speed

model would prove essential in developing accurate predictions.

While the model was able to predict some of the turns in its input data with some

accuracy, it still needs refinement to adequately predict turns over the full range of

heading changes. A comparison of results from this black box model and the AVK

measured trajectory is given in Section 5.2.

3.4.3 Model Improvements

The black box approach described meets the goal of providing a predictive tool for

cases where models of the vehicle's dynamics or low level control cannot easily be

obtained. However, further work is necessary to evaluate whether a different mod-
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Figure 3-6: Using M200 In-Water Data to Identify Model Parameters: Input data for the

black box system identification process. In this case, vehicle heading was persistently excited by

intentionally varying DESIREDHEADING to prevent the vehicle from steadying on course.

eling approach could more accurately predict trajectories. In particular, techniques

other that least squares should be explored for identifying the values of the model

parameters. A least squares fit minimizes the prediction error for heading at the next

time increment. The actual desire, however, is to minimize error in the predicted tra-

jectory. Parameter estimation techniques that allow an arbitrary cost function would

allow the entire trajectory to be considered in the estimation process.

One parameter which could be systematically varied in a more robust identification

process is the number of time steps included in the model. The best choice for this

parameter should also be informed by the ultimate usage of the model. Predicting

the latter part of a large turn trajectory may require 10-15 seconds of history in

the model. On the other hand, this may have undesirable effects on predicting the

beginning of a turn if the prior 15 seconds have significant changes. An example of the

effect of model history is given in Figure 3-9. A related analysis is to determine how
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Figure 3-7: Poor input data produces poor estimates: Trajectory predictions using black box

model. Model coefficients were identified from the discrete turn data set shown in Figure 3-5. The

initial speed is assumed to be constant throughout the turn. In this case, the model has too much

delay and predicts too little heading change at each time step. The result is a trajectory prediction

with a much larger advance and transfer than the actual vehicle trajectory.

much of the trajectory must be accurately simulated to achieve the desired guidance

results. It may be the case that modeling only the first (say) half of the turn achieves

the necessary guidance algorithm performance. The results of this analysis could be

included in the cost function for an alternative parameter estimation technique, giving

higher weight, for example, to accurately predicting the beginning of the trajectory.

Similarly, smaller turns (up to about 90 degrees) are more relevant to effective obstacle

avoidance and could be given higher weight.

It would also be beneficial to study the model's sensitivity to the size of the time

step. The time step used in the input data is implicit in the coefficients identified for

a model like Equation 3.5. Utilizing a different time step requires changing the model

structure and repeating the identification process.

3.5 Summary

This chapter has presented two potential approaches to allow a payload autonomous

guidance system to estimate the kinematics of a turn. A simple black box model for

USV yaw dynamics was developed and tested on an M200 USV. The AVK approach

for directly measuring turn kinematics serves as the basis for the data collection

procedure outlined in the next chapter.
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Figure 3-8: Persistent excitation improves predictive capability: Trajectory prediction using

black box model. Model coefficients were identified from the persistently excited data set shown in

Figure 3-6. The initial speed is assumed to be constant throughout the turn. Compared to Figure

3-7, the prediction has much better agreement with the observed trajectory, but has a lesser the

same problem under-predicting heading change, resulting in a modest over-estimate of advance.
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Figure 3-9: Evaluation of model time scale in prediction accuracy: The accuracy of the

trajectory prediction generated by the model depends directly on the amount of history included.

The actual (blue) turn shown in Figure 3-8 was predicted by models with varying amounts of history.

The mean squared error between each point on the predicted trajectory and the observed trajectory

is shown for each prediction. It should be noted that the minimum MSE is for only one turn and

does not necessarily imply an optimum choice across all heading changes.
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Chapter 4

MOOS Applications and Behaviors

Data collection for the AVK approach described in Chapter 3 has been implemented

in MOOS-IvP here. A brief general description of MOOS-IvP is given. More detail

is available in [5].

4.1 MOOS-IvP

The Mission Oriented Operating Suite (MOOS) serves as middleware, allowing vari-

ous applications to communicate with each other. For a typical autonomous vehicle

mission, applications for communication, sensing, data logging, and guidance would

communicate and share data through the MOOS database (MOOSDB). In a payload

autonomy architecture, an interface application to communicate with the front seat

computer would also be present.

MOOS applications share data through a publish and subscribe architecture. A

typical exchange of data relevant to this work is as follows: GPS data is processed in

the front seat navigation system and shared to a MOOS interface application such as

iM200. This application does any additional required processing such as conversion to

local grid coordinates and posts a message such as NAVX = 10.5 to the MOOSDB.

An application interested in navigation data subscribes to the variable NAVX and

receives a message from the MOOSDB containing the value of the variable as well

as useful metadata such as the publishing application and time of publication. Some
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discussion of the impacts of this data exchange architecture is given in Section 5.1.

For autonomous vehicles, one of the most important functions for MOOS applica-

tions is vehicle guidance. In MOOS-IvP, this role is fulfilled by pHelmIvP ("the helm"),

a behavior-based architecture where action selection among competing behaviors is

achieved with multi-objective optimization using interval programming [6]. The helm

makes guidance decisions by solving an optimization problem framed by one or more

behaviors. Typical behaviors include waypoint following, (static) obstacle avoidance,

and contact avoidance. Each behavior generates an objective function, assigning a

utility value to each possible combination of speed and heading. (Although simple

behaviors might only produce an objective function for one of these variables).

Of note for this work, the helm is configured with a specific discretization of the

decision making domain. A typical configuration would be discretizing the heading

domain to 1' and the speed domain to 0.1 m/s. Recalling Section 3.3.2, this illustrates

the need for methods such as interpolation to reduce the number of discrete heading

change and initial speed combinations that are empirically tested to populate the

table.

4.2 TurnSequence Class

The TurnSequence C++ class is the fundamental data structure used in this work. It

contains the meta-information needed to identify a turn, namely the turn speed and

heading change. The turn trajectory is recorded using a list of X/Y coordinates.

A TurnSequence has two fundamental purposes. First is to serve as a record

of a turn performed in order to ascertain vehicle kinematics. The TurnSequence is

passed to functions to fit a polynomial to the data (Section 3.3.2). In order to provide

consistent input to the curve fitting functions, the standard orientation described in

Section 3.2 has been applied to TurnSequence's: the turn starts at the origin with an

initial heading of North and the turn is made to the right. The turn records obtained

during a data collection mission will be initiated at arbitrary X/Y coordinates and

could be either left or right hand turns. The class includes functions to rotate,
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translate, and reflect an arbitrary turn to match the orientation convention.

When rotating the TurnSequence to be North facing, the turn is rotated based

on the instantaneous heading at the start of the turn. If the vehicle is steady on the

initial heading, the normalized turn trajectory will initially be perfectly vertical (due

North), whereas if the vehicle had an initial yaw rate, the trajectory will diverge.

The TurnSequence class is also used to express the piecewise linear approximation

of the polynomial fit to the source data (discussed in Section 3.3.2). The meta-data

is the same as the original turn record, but the list of points is simplified. This type

of TurnSequence is generated either by processing raw data or using the interpolation

process described in Section 3.3.2. To evaluate vehicle trajectories with respect to

obstacles, the rotation, translation, and reflection functions are used to match the

TurnSequence to the vehicle's pose.

4.3 pDynamicsMonitor

pDynamicsMonitor is a MOOS App designed to coordinate the data collection mission

run to collect AVK trajectories. It interacts with the ConditionSet, ConstantHeading,

and ConstantSpeed behaviors. These behaviors are described in Section 4.4 and the

overall coordination in the mission is described in Section 4.5. pDynamicsMonitor

is configured with a range of heading changes and speeds directs each combination

to be conducted. As turn data is collected, the resulting TurnSequence is logged for

post processing.

4.4 Behaviors

MOOS-IvP utilizes a behavior based architecture. This allows each goal (such as

waypoint following or collision avoidance) to be expressed individually. While this

architecture generally performs multi-objective optimization from multiple competing

behaviors, the data collection process was utilized several discrete helm modes, with

no competing behaviors active simultaneously. This arose from the need to measure
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the response of the vehicle (controller and physical) with precisely known input from

the backseat. Several existing behaviors were either utilized or modified, and two new

behaviors were written.

4.4.1 ConditionSet

Section 6.2 discusses the importance of defining a specific vehicle state associated

with the start of a particular turn. The ConditionSet behavior exists to establish the

required state. For the simplest case, this means establishing a desired speed and a

steady course. Steady course is determined by calculating yaw rate from NAVHEADING

postings.

tk - tk_1

Differentiating discrete heading readings to determine yaw rate was found to gen-

erate a highly noisy yaw rate, even in simulation. To smooth the data, a moving

average was used to reduce the effect of noisy heading data.

1n-1
/avg = - En-k (4.2)

k=O

Where n is the window size of the filter. It was found that with navigation data

published both at 4 Hz (in simulation) or 10 Hz (on the m200), a window size n = 5

gave good results.

ConditionSet is configured with a desired speed and acceptable speed tolerance

and a maximum yaw rate. On becoming active, ConditionSet notes the current course.

Until the configuration thresholds are achieved, ConditionSet generates an objective

function to maintain course and achieve the desired speed.

4.4.2 Operating Region and Container

The OpRegion behavior is distributed with MOOS-IvP. It is configured with a polygon

that the vehicle is to remain within. If the vehicle exits the polygon, it is shut down.
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In testing, this keeps the vehicle close enough to be recovered by remote if a computer

issue or bug occurs.

The operating region behavior generates no objective function (it is "inactive")

while the vehicle remains inside. In order to remain inside the operating region,

other behaviors in conjunction with the mission structure are required. The OpReg

Container behavior was developed for this work to keep the vehicle inside of the

OpRegion. It is configured with the same polygon used by the OpRegion behavior

as well as a buffer distance. Normally, this behavior is inactive. When the vehicle

enters the buffer region, an objective function is produced with a desired heading

towards the center of the OpRegion polygon. Once the vehicle has exited the buffer

region, the container behavior becomes inactive again. No useful maneuvers can be

performed while the container behavior is active, so it requests a very narrow heading

range to quickly open range from the operating region boundary. It is not intended

to compromise on courses that parallel the operating region boundaries.

4.4.3 Constant Heading and Speed

The ConstantHeading behavior does exactly what the name suggests. For this work,

the notion of a completion threshold was important. When the heading error decreases

below a configured value, the behavior is "complete." If the vehicle was turning to

achieve the desired constant heading, completion indicates that the turn is finished.

Depending on the magnitude of the threshold used, an absolute comparison can be

problematic in real world conditions. It was observed that the test vehicle could "pass"

the target heading without an intermediate heading reading that met the threshold.

This resulted in a non-representative recorded turn trajectory. This problem was

caused at least in part by the relative frequencies of various MOOS applications and

stopped occurring when pHelmIvP's AppTick was raised to 10.

The constant speed behavior is similar to Constant Heading behavior except there

is no notion of completion. It requests a constant speed as long as it is active.
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4.5 AVK Collection Mission

The idea of a table structure to store AVK trajectories was introduced in Section 3.2,

and Section 3.3 addressed directly measuring turns as the means to fill this table. This

section describes a mission where turns with certain heading changes and speeds are

performed sequentially to observe and record their kinematic trajectories. A mission

to collect AVK trajectories involves coordination between pDynamicsMonitor and

the behaviors described in Section 4.4. The primary attribute of the mission is the

turnarray parameter in pDynamicsMonitor, which describes the speed and heading

combinations to be collected. A typical mission is shown in Figure 4-1.

The mission begins the vehicle dockside, just outside of the operating region. On

deployment, the vehicle is initially governed by the OpRegion Container behavior.

The Container behavior is configured with active and inactive flags such that the

MOOS variable CONTAINING is true or false. Once the vehicle is inside of the buffer

region configured in the container behavior, CONTAINING is set to false and the Con-

ditionSet behavior becomes active.

Once speed and yaw rate are within the ConditionSet thresholds, the behavior

posts CONDITIONSSET = true. This message prompts pDynamicsMonitor to post

updates to the Constant Speed and Constant Heading behaviors. To ensure that

the helm does not shift modes and initiate the turn prior to the update postings, an

additional posting from pDynamicsMonitor, TURNING = true, is used to control the

helm mode. Finally, pDynamicsMonitor posts the update variable NEXTCONDITONS

to configure the ConditionSet behavior with the next target speed.

On receipt of TURNING = true, the helm mode shifts to TURNING. This activates

the constant speed and constant heading behaviors. No other behaviors are active,

therefore DESIREDSPEED and DESIREDHEADING are constant. The result is a pure

turn, governed by the vehicle's hydrodynamics, the front seat, and any backseat

layers such as a PID controller that calculate rudder or thrust commands. The turn

is continued until the Constant Heading behavior reaches a complete state.

As the vehicle approaches the new desired heading, the vehicle trajectory is dom-
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inated by the heading PID controller settings rather than by hydrodynamics. This is

generally not relevant for obstacle avoidance decisions: the guidance decision will be

updated many times prior to that portion of the turn, and the trajectory is straight

enough to be reasonably approximated by a ray at the goal heading. To avoid un-

necessary delays to observe this gradual approach, the Constant Heading behavior is

configured with a completion threshold. The turn is considered "complete" when the

vehicle's instantaneous heading is within a configurable threshold of the goal.

At the initiation of the turn, pDynamicsMonitor records initial heading, speed,

time, and the intended magnitude of the turn. During the turn, pDynamicsMonitor

records position data. On receipt of TURNFINISH, an endflag posted when the con-

stant heading behavior completes, pDynamicsMonitor records the final heading and

marks the turn for processing.

During processing, the data recorded by pDynamicsMonitor is stored in a TurnSe-

quence. Error checking is performed to detect any anomalies such as an instantaneous

"turn" (initial and final headings equal). Depending on when the turn start and stop

postings are received relative to navigation mail, it is possible that the number of x

and y coordinates received are mismatched. Any difference is adjudicated by ignoring

the last coordinate received. It is assumed that any error introduced (for example

if the first record was mismatched instead of the last) is small. While the heading

change goal is the primary identifier for the turn, the observed heading change (which

is smaller than the goal due to the Constant Heading completion threshold) is also

stored in case it is needed for analysis.

After the TurnSequence is fully populated, a string serialization of the raw data is

published under TURN_RECORD_RAW. The turn is then normalized and the normalized

string serialization is published as TURNRECORD.

In addition to to posting TURNFINISH, the constant heading behavior posts an

additional endflag to switch the helm mode. The ConditionSet behavior once again

becomes active and starts attaining the speed and yaw rate that were published

under NEXTCONDITIONS at the start of the turn. The process is repeated for each

turn specified by the pDynamicsMonitor configuration parameter turn-array.
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Periodically while performing these turns, the vehicle will enter the buffer specified

for the OpRegion Container behavior. The helm mode shifts to CONTAINING and the

vehicle drives back towards the center of the operating region. The Container behavior

is configured with an "activeflag," CONTAINING = true. If pDynamicsMonitor receives

this posting during a turn, the turn data is discarded. The aborted turn is reported in

the pDynamicsMonitor AppCast. The aborted turn's initial conditions are re-posted

to NEXTCONDITIONS to reset the ConditionSet behavior.

OpRegion

Turn aborted to
avoid OpRegion OpRegion
Bound ry -0 Container

buffer

0.5 m/s turns

1.5 m/s turns

1 mn/s turns

Figure 4-1: Simulation of Basic Mission: The mission shown consists of 10, 40, 70, 100, 130,
and 160 degree turns performed at 0.5, 1.0, and 1.5 m/s. The heavy lines show the recorded turns

while the thin shows the path between turns. Between turns, there is a small delay while the vehicle

regains steady speed. The OpReg Container behavior activates during the 1.5 m/s turns to keep

the vehicle within the OpRegion. The Container behavior is deactivated at the end of the mission

to allow the vehicle to return to the starting point.
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4.6 Summary

This chapter has given a basic introduction to the MOOS-IvP autonomy software

and described the applications and behaviors developed in this work to obtain AVK

trajectories. A typical turn collection mission has been described. Variations of this

basic turn collection mission will be used in the next chapter to obtain simulation

and in-water AVK data.
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Chapter 5

Experimental AVK Results

5.1 Results from Experimental Simulations

Simulations of the mission described in Section 4.5 were performed for debugging

and analysis. In the simulation, the vehicle's dynamics are replaced by the MOOS

application uSimMarine. The yaw characteristic in uSimMarine is given by:

0i+1 = K (i + C6) (5.1)

where 1000 = turnrate (a configuration parameter) and K is a modification factor

based on the percentage of full thrust requested at step i. K ranges from 0.5 at

0% thrust to 1.5 at 100% thrust, effectively making the vehicle turn faster at high

speed. Key configuration parameters affecting the simulated yaw performance of the

simulated vehicle are given in Table 5.1.

The nature of an AVK trajectory prediction is that it is a point estimate of a vari-

able process. In simulation, variation is relatively small, introduced only by variations

in inter-process communications. The asynchronous nature of the MOOS publish and

subscribe architecture (Section 4.1) introduces a stochastic element into the vehicle's

behavior, even in simulation. For example, PID control, performed by pMarinePID,

was run at 4Hz, as was the propagation of the vehicle's position and pose, performed

by uSimMarine. If pMarinePID runs immediately after uSimMarine, it will have rel-
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Table 5.1: Key simulation parameters affecting maneuverability. In simulations for this work, the
following parameters were used unless otherwise specified. A change in desired thrust is calculated
once during every pMarinePID AppTick. The contribution from proportional gain is independent
of time. If pMarinePID runs repeatedly with the same navigation information (i.e. if pMarinePID's
AppTick is faster than uSimMarine's AppTick), it effectively raises the proportional gain of the
speed controller.

App
uSimMarine
uSimMarine
pMarinePID
pMarinePID
pMarinePID
pMarinePID
pMarinePID
pMarinePID
pMarinePID
pMarinePID
pMarinePID

Parameter
turnrate
AppTick

YAWPIDKP
YAWPIDKD
YAWPIDKI

SPEED_PID_KP
SPEEDPIDKD
SPEEDPIDKI
MAXRUDDER
MAXTHRUST
AppTick

atively "new" navigation data available to calculate the next control action. If, on

the other hand, pMarinePID runs immediately before uSimMarine, the navigation

data may be as much as 1/AppTick old (0.25 sec in this case). To quantify these

interactions, a series of simulations were run where the AppTick of key applications

(uSimMarine, pHelmlvP, and pDynamicsMonitor) was varied. Results are given in

Figure 5-1. The main conclusion is that some degree of variation is expected, even

in a simulation environment, simply due to the MOOS architecture. Variations in

advance and transfer for simulated turns were small and can be attributed to this

effect.

The variation shown in these results manifests primarily

results, with very minor variation in each discrete result.

Figure 5-2.

through several discrete

An example is given in

Given the relative consistency of simulated turns, the AVK table resulting from a

simulated turn collection mission accurately represents the expected trajectories for

turns initiated with constant heading.
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AppTick of Key Applications

Figure 5-1: AppTick influence on simulation consistency: For each value of AppTick, ap-
proximately 70 turns (all 90 degrees and 1 m/s) were simulated. The varying nature of the turn
trajectories is well summarized by differences in the advance for the turn. The y value is the co-
efficient of variation (mean/standard deviation) for turn advance at each AppTick. The results at
AppTick = 2 and 3 are attributed to changes in the effective proportional gain in the speed controller.
The increase at AppTick=8 is suspected to occur because it is an even multiple of pMarinePID's
AppTick (4), but this was not verified.

5.2 In-Water Observed Characteristics

The data collection mission described in Section 4.5 was performed several times on

an M200. There were several goals for this testing. First, testing served to verify

that the ConditionSet behavior described in Section 4.4.1 works as intended with

real world environmental effects and sensor noise. Second, testing was performed to

evaluate the variability in observed turning characteristics over repeated trials.

With appropriate values for configuration parameters, the ConditionSet behavior

performed as intended in real world conditions.

It is again important to stress that an observed trajectory, used as an AVK pre-

diction, is a point estimate. The accuracy of the prediction depends on the variability

of repeated turns. Unlike simulation, where only small variations from process com-

munications were observed, variability in the M200 data was much higher. This is

attributed primarily to environmental effects. Wind and current influence the turns,

but are not constant in magnitude or direction. Furthermore, the vehicle's orientation

with respect to the current varies between repeated evaluations of a given heading
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Figure 5-2: Variation in simulation results: A 90 degree turn at 1 m/s was simulated 77 times.

Each result is plotted here in a separate color. Key applications used an AppTick of 4. Four discrete

paths resulted, with minor variations in each path.

change. An example is given in Figure 5-3. These results are

Similar figures for all measured turns are given in Appendix A.

typical for all turns.

C
0
0
U

8

7

6

5

4

3

2

1

-1 0 1 2 3 4 5 6 7

X coordinate (m)

Figure 5-3: M200 in-water result: Observed trajectories for several 70 degree, 1 m/s turns. Each

line shows the turn as observed in a separate mission.

The variability can be summarized in a few different ways. Figures 5-4 and 5-5

present advance and transfer values observed during test runs of the M200. This type

of summary benefits from simplicity: each turn is reduced to these two numbers. An

alternate possibility is to determine a "mean" turn. One challenge in defining a mean
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Table 5.2: M200 in-water result: The average (pt) and standard deviation (-t) of the time spent

establishing turn initial conditions for several data collection runs. The speed tolerance is given

in the last column; in all case the maximum yaw rate was 1 deg/s. These results are considered

adequate and validate the performance of the ConditionSet Behavior with these settings.

Mission
24-Apr
24-Apr
27-Apr
27-Apr
27-Apr
27-Apr
27-Apr
27-Apr
27-Apr

At -t Vtol
0930
0943
1010
1051
1102
1115
1152
1209
1223

7.10
7.62
6.79
4.81
7.14
3.83
5.30
5.04
5.41

6.87
6.60
7.62
5.90
7.30
3.89
5.80
5.56
6.32

0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2

turn is choosing a domain over which to average. One option would be averaging

both X and Y position at each time step. For the present analysis, the trajectories

were resampled to a constant X spacing and an average Y coordinate found for each

X. In order to provide a consistent X domain across individual turns, each turn was

extended along the final heading goal to the maximum X value in the set. An example

showing the calculated mean turn is given in Figure 5-6.

18

16 -

14 -

12 -
E

10

8

6

4

2

0
0 20 40 60 80 100 120

Heading Change (degrees)

0.5 m/s - 1.0 m/s

140 160 180

1.5 m/s -- *

Figure 5-4: M200 in-water result: Observed advance characteristics from 7 experiments on the

M200 operating at various speeds. The mean advance from the 7 runs is shown with error bars

indicating the standard deviation in the observed measurements. Several outlier turns contributed

significantly to the overall statistics. (For example, at 50 deg/1.5 m/s)

As a basis for comparison between techniques, the calculated mean turns are
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Figure 5-5: M200 in-water result: Observed transfer characteristics from 7 experiments on the

M200 operating at various speeds. The mean advance from the 7 runs is shown with error bars
indicating the standard deviation in the observed measurements.

considered to represent the true characteristics of the vehicle. Comparisons are made

using mean square error (MSE) between y values using an x domain like that described

above to find the mean turn. The AVK approach, as described, relies on a single

observed trajectory. The average MSE between each of the measured turns and the

corresponding mean turn is therefore an appropriate error metric. For the black box

yaw model, a trajectory is simulated using a discrete change in desired heading. The

MSE between the modeled trajectory and the mean turn follows. Finally, the current

practice is to simply assume instantaneous turns. MSE between the mean turn and

the instantaneous turn (a straight line) can also be calculated. An example is given

in Figure 5-7. Results for 1 m/s turns are given in Figure 5-8. Results for 0.5 m/s

and 1.5 m/s are included in Appendix A.

5.3 Summary

This chapter has described analysis performed on simulation and in-water AVK data.

The inherent variability in an AVK trajectory, even in simulation, has been demon-

strated. The performance of the basic data collection mission developed in this thesis

has been validated by in-water experiments using the M200 USV. Data from sev-
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Figure 5-6: Analysis of in-water results: The experimentally observed turns shown in Figure

5-3 (shown here in blue) were extended along the goal heading angle (70 degrees) and sampled every

0.01 m in the x domain. The resulting mean turn is shown in red. The average MSE between the

input turns and the mean turn is 0.23 m2

eral data collection missions was aggregated and used to show the variability of turn

kinematics when real world factors such as environmental forces are included. Mean

kinematic trajectories associated with certain turns on the M200 USV have been de-

termined from this data. Finally, the accuracy of the AVK approach and the black

box model developed in Chapter 3.4 were compared to the current instantaneous turn

assumption.
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Figure 5-7: Comparison of prediction methods: The mean turn determined from the exper-
imental data in Figure 5-6 is compared against the model prediction and the current practice of
assuming an instantaneous turn. The 0.23m2 average MSE between the source turns and the mean
reflects the expected accuracy of an AVK estimate (if measured under reasonable conditions). The
MSE between the model prediction and the mean turn is 3.2 m 2 . The MSE between the instanta-
neous assumption and the mean turn is 16.8 m 2 . This suggests that the prediction accuracy can be
improved by 80% using the model and over 98% (on average) using an observed AVK trajectory.
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Figure 5-8: Comparison of prediction methods: The MSE of the experimental data (blue)

shows the inherent variability in simply measuring a turn in the presence of environmental forces.

Note that the significant error in assuming an instantaneous turn for large turns requires using a

log scale to compare values. The trend in MSE for instantaneous turns is as expected - larger turns

have longer trajectories before steadying on course, resulting in very large errors during the latter

part of the turn trajectory. The trajectories determined using the black box model offer substantial

improvements over the current practice, but still have non-trivial errors, especially for smaller turns.
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Chapter 6

Future Work

6.1 Utility of AVK

The present work has focused on collecting and processing AVK data. The examples

given in Section 2.1.3 show notional cases where this knowledge could be directly

useful in improving guidance actions. Work to integrate AVK predictions into decision

making is ongoing, and the effects on decision making will be studied and reported

in separate work.

In particular, clear test cases where poor guidance decisions result from the as-

sumption of instantaneous turns must be identified. This would provide a clear basis

for evaluating the benefit afforded by adding accurate kinematic predictions. Fur-

thermore, it could provide insight into appropriate weights used for better parameter

estimation cost functions as described in Section 3.4.3.

6.2 Vehicle State

In Section 3.2, the initial vehicle state prior to a turn was restricted to b = 0. This

is adequate for initial assessments of potential maneuvers for a vehicle on a steady

course. However, the utility of the resulting kinematic trajectories is significantly

limited by this assumption. Two separate cases are considered, with consideration for

how to extend the AVK approach.

61



First is the ongoing evaluation of a maneuver. Typical obstacle avoidance maneu-

vers (AV) < 90) are on the order of 30 seconds long. The typical guidance system

operates multiple times per second, and once a maneuver is chosen must continually

monitor whether it is adequate. As the vehicle proceeds along the turn trajectory,

a new trajectory prediction cannot be made under the existing set of AVK assump-

tions. However, provided that the goal heading has not changed, the original trajec-

tory prediction remains valid. The position of the vehicle along the trajectory can be

estimated as time passes, and the remaining portion of the trajectory remains useful.

However, in many cases a new maneuver may be considered when the vehicle is

not steady on course. If 4b is in direction as the intended direction of turn, the ' = 0

trajectory, although not accurate, could still be used as a conservative estimate with

respect to evaluating obstacle avoidance. On the other hand, if initial yaw rate is

opposite to the intended direction of turn, the vehicle's advance will be larger than

the case where 4 = 0 and therefore non-conservatively predicts the ability to avoid

obstacles.

To handle situations where 4 # 0, the CKT could be expanded into a third

dimension. Just as trajectories resulting from certain [u, A$b] combinations were

recorded with 4 = 0, similar data can be obtained with 4' 6 0. Similar interpolation

techniques to those used in the Ai/ domain could be used across the 4 domain to

minimize the additional data collection requirements to obtain this third dimension.

The black box model, if refined to improve accuracy, offers a convenient alternative

to attempting to gather high quality data to fill a three dimensional CKT. Even if

model-based trajectory prediction is too slow to run in real time inside the guidance

algorithms, it could be used to easily populate a 3D CKT.

The current approach also assumes that the commanded speed is constant through-

out a turn. In reality, it may often be appropriate to slow down while turning, espe-

cially for close quarters situations where the turn kinematics are significant. Future

work should include a technique to approximate the kinematics of a simultaneous

speed and heading change.
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6.3 Dealing with External Forces

Vehicle kinematics in the presence of wind and current can vary substantially from the

case with no external forces. This influences both data collection and use of kinematic

approximations. As with complicating factors like yaw rate and speed change, the

use of a dynamics model would simplify generating accurate predictions with external

forces.

An additional challenge for low cost vehicles is that they often lack the navigation

equipment necessary to determine the influence of external forces. For example, a

vehicle with only GPS navigation data can only determine course and speed in the

earth fixed reference frame. A compass and speed measurement (or at least estimate)

on the vehicle are necessary to quantify external forces.

Finally, if an accurate AVK table has been established, a vehicle could compare

actual trajectories to the AVK predictions and use the differences to estimate external

forces.
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Chapter 7

Conclusions

A new approach to estimating the kinematics of marine vehicles has been described.

This approach affords the ability to approximate a vehicle's kinematics and can pro-

vide improved accuracy in determining expected standoff distance from a close range

obstacle or contact. The AVK table can be determined in the field with any ve-

hicle configuration and using data available to the backseat driver and is therefore

compatible with payload autonomy.

As an alternative to explicitly measuring each turn trajectory, a simple black box

model for the yaw kinematics of the vehicle was developed. As with the AVK table

approach, this model only requires data available in the backseat.

Performance of the data collection mission was verified with on water testing. Both

the AVK approach and the black box model were capable of significantly reducing

the error in short range turn predictions.
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Appendix A

M200 Summary Data

The following figures present the collected M200 data. The individual turns are shown

in blue. The "mean turn" developed using the procedure outlined in Section 5.2 is

shown in red.
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Figure A-1: M200 in-water results: M200 turns at 0.5 m/s. From left to right and top to bottom,

heading changes of 30, 50, 70, 90, 110, and 130 degrees
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Figure A-2: M200 in-water results: From left to right and top to bottom, 0.5 m/s turns at 150

and 170 degrees, then 1 m/s turns at of 30, 50, 70, and 90 degrees
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Figure A-5: M200 in-water results: Turns with outlier data removed. This is the same data
given above, but with the x domain bounded or outlier turns removed.
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Figure A-6: Analysis of M200 in-water results at 0.5 m/s: The MSE of the experimental data

(blue) shows the inherent variability in simply measuring a turn in the presence of environmental

forces. The trend in MSE for instantaneous turns is as expected - larger turns have longer trajectories

before steadying on course, resulting in very large errors during the latter part of the turn trajectory.

The trajectories determined using the black box model offer substantial improvements over the

current practice, but still have non-trivial errors, especially for smaller turns.
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Figure A-7: Analysis of M200 in-water results at 1.5 m/s: The black box model had better

performance at 1.5 m/s, but still tends to over-estimate small turns.

73

1000

100

10E

0

0

I I I I I I I

1000

100

cn 10

I I I I



74



Bibliography

[1] A. Alessandri, M. Caccia, G. Indiveri, and G. Veruggio. Application of LS and

EKF techniques to the identification of underwater vehicles. In Proceedings of the

1998 IEEE International Conference on Control Applications, 1998, volume 2,

pages 1084-1088 vol.2, September 1998.

[2] Hashem Ashrafiuon, Kenneth R. Muske, and Lucas C. McNinch. Review of non-

linear tracking and setpoint control approaches for autonomous underactuated

marine vehicles. In American Control Conference (ACC), 2010, pages 5203-5211.

IEEE, 2010.

131 Karl Johan Astr6m and C. G. Kdllstr6m. Identification of ship steering dynamics.

Automatica, 12(1):9-22, 1976.

[41 Michael R. Benjamin. MOOS-IvP Online Documentation Helm - Behav-

ior Avd Collision. http://oceanai.mit. edu/ivpman/pmwiki/pmwiki.php?n=

Helm.BehaviorAvdCollision, 2015.

[51 Michael R. Benjamin, Henrik Schmidt, Paul M. Newman, and John J. Leonard.

Nested autonomy for unmanned marine vehicles with MOOS-IvP. Journal of

Field Robotics, 27(6):834-875, 2010.

[6] Michael Richard Benjamin. Interval programming: a multi-objective optimization

model for autonomous vehicle control. PhD thesis, Brown University, 2002.

[7] N. Bowditch. The American Practical Navigator: An Epitome Of Navigation.

The National Imagery and Mapping Agency, bicentennial edition, 2002.

75



[8] S. Campbell, W. Naeem, and G. W. Irwin. A review on improving the autonomy

of unmanned surface vehicles through intelligent collision avoidance manoeuvres.

Annual Reviews in Control, 36(2):267-283, December 2012.

[9] U. C. G. Commandant. International regulations for prevention of collisions at

sea (COLREGS). US Department of Transportation, US Coast Guard, COM-

MANDANT INSTRUCTION M16672, 1999.

[10] Thor I. Fossen. Guidance and control of ocean vehicles, volume 199. Wiley New

York, 1994.

[11] Jacoby Larson, Michael Bruch, Ryan Halterman, John Rogers, and Robert Web-

ster. Advances in autonomous obstacle avoidance for unmanned surface vehicles.

Technical report, DTIC Document, 2007.

[12] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[13] P. Miotto, J. Wilde, and A. Menozzi. UUV on-board path planning in a dy-

namic environment for the Manta test vehicle. In OCEANS 2003. Proceedings,

volume 5, pages 2454-2461 Vol.5, September 2003.

[14] Nikola Miskovi6, Zoran Vukid, Marco Bibuli, Gabriele Bruzzone, and Massimo

Caccia. Fast in-field identification of unmanned marine vehicles. Journal of Field

Robotics, 28(1):101-120, January 2011.

[15] Clement Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane. Path

Planning for Autonomous Underwater Vehicles. IEEE Transactions on Robotics,

23(2):331-341, April 2007.

[16] P. Svec, B.C. Shah, I.R. Bertaska, J. Alvarez, A.J. Sinisterra, K. von Ellen-

rieder, M. Dhanak, and S.K. Gupta. Dynamics-aware target following for an au-

tonomous surface vehicle operating under COLREGs in civilian traffic. In 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 3871-3878, November 2013.

76



[171 Petr Svec, Atul Thakur, Eric Raboin, Brual C. Shah, and Satyandra K. Gupta.

Target following with motion prediction for unmanned surface vehicle operating

in cluttered environments. Autonomous Robots, 36(4):383-405, November 2013.

[18 Kyle Woerner. COLREGS-compliant autonomous collision avoidance using

multi-objective optimization with interval programming. Thesis, Massachusetts

Institute of Technology, 2014.

77


