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Abstract

One of the long term goals of Autonomous Underwater Vehicle (AUV) minehunting is to
have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acous-
tic methods for target classification using AUV-based sensing, such as sidescan and synthetic
aperture sonar, require an expensive payload on each outfitted vehicle and expert image
interpretation. This thesis proposes a vehicle payload and machine learning classification
methodology using bistatic angle dependence of target scattering amplitudes between a fixed
acoustic source and target for lower cost-per-vehicle sensing and onboard, fully autonomous
classification. The contributions of this thesis include the collection of novel high-quality
bistatic data sets around spherical and cylindrical targets in situ during the BayEx'14 and
Massachusetts Bay 2014 scattering experiments and the development of a machine learning
methodology for classifying target shape and estimating orientation using bistatic amplitude
data collected by an AUV. To achieve the high quality, densely sampled 3D bistatic scat-
tering data required by this research, vehicle broadside sampling behaviors and an acoustic
payload with precision timed data acquisition were developed. Classification was successfully
demonstrated for spherical versus cylindrical targets using bistatic scattered field data col-
lected by the AUV Unicorn as a part of the BayEx'14 scattering experiment and compared
to simulated scattering models. The same machine learning methodology was applied to the
estimation of orientation of aspect-dependent targets, and was demonstrated by training a
model on data from simulation then successfully estimating the orientations of a steel pipe
in the Massachusetts Bay 2014 experiment. The final models produced from real and sim-
ulated data sets were used for classification and parameter estimation of simulated targets
in real time in the LAMSS MOOS-IvP simulation environment.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Motivation

A growing application for Autonomous Underwater Vehicle (AUV) technology is the local-

ization, classification and mitigation of underwater hazards in shallow harbor environments.

The classification problem has attracted particular attention in recent years with the de-

velopment of visual and acoustic AUV-based sensors for remote data collection. Because

visual inspection of targets can be difficult or impossible in murky harbors and requires

precise target localization, acoustic sensors such as sidescan sonar and synthetic aperture

sonar (SAS) are used more extensively for AUV-based Mine Countermeasures.

At the current level of technology, these techniques can provide rich images of targets

and the environment but produce data that are difficult to use for real-time target classifica-

tion. Sidescan sonar systems are generally too high frequency for buried target localization

and classification. SAS images are usually computed in post-processing so that naviga-

tion corrections may be applied [1]. The current operational paradigm for the use of both

technologies requires a human in the loop for expert image interpretation. In addition to

these challenges to fully autonomous real-time classification of data from these systems, the

sensors themselves are too expensive to be practical in multi-vehicle operations.

To achieve plausible, real-time AUV-based target classification that is expandable to

distributed vehicle networks, two key advancements are required: an inexpensive sensing

payload and a classification method that can be run in real-time on an AUV computer

using onboard processing of sensor and navigation data. The advantages of such a sensing

system would be the ability to deploy multiple AUVs to carry out the target localization
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Figure 1-1: Multi-vehicle operation mission, where a fixed source insonifies a target field
while multiple AUVs sample the bistatic scattering fields around various targets.

and classification missions with immediate classification and confidence estimates to inform

prosecution decisions without having to recover and redeploy vehicles.

The goal for this thesis was to develop a payload and processing chain for target classifi-

cation using only bistatic acoustic data collected on an AUV's linear hydrophone nose array

cut for low-frequency acoustic sensing (1-15kHz). The bistatic configuration and hydrophone

array were selected to limit sensing system cost: in the multi-vehicle scenario, a fixed acous-

tic source insonifies a target field while multiple vehicles with inexpensive payloads collect

bistatic scattering data around targets, as shown in Figure 1-1.

This thesis presents the AUV payload required to perform bistatic acoustic data collec-

tion, real-world bistatic acoustic data sets collected around spherical and aspect-dependent

seabed targets with that payload, and a machine-learning methodology that utilizes bistatic

angle dependence of amplitude features from the scattered field to classify target shape and

estimate the orientation of aspect-dependent targets. This approach was highly successful

for the classification of spheres versus cylinders and for the estimation of target orientation.

The results from real and simulated data for simple target geometries suggest that using fea-

tures of the bistatic acoustic scattering radiation pattern for target classification in real time

on AUVs is a plausible solution to the real-time target classification problem and warrants

further study.
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1.2 Historical Background

1.2.1 Bistatic Scattering from Seabed Targets

The vast majority of target scattering literature is focused on backscattering data from

monostatic sensing. However, there is a small body of theoretical and experimental work

looking at the bistatic scattering problem.

Bistatic scattering theory and models have been developed for simple target geometries

(sphere, spheroid, cylinder) in simple environments. The theoretical and numerical work on

bistatic scattering from spheres includes that by Gaunaurd and Uberall 12], which discusses

the free field bistatic form function of spherical targets and gives an example numerical

calculation. Hackman and Sammelmann describe the theoretical scattering from a spheroidal

target in an ocean waveguide, and include numerical results for the bistatic case [3]. While

the backscatter from finite cylinders for various aspects has been described analytically

[4] [5], the additional dimensionality of the bistatic problem means that the approach to

finding the bistatic scattered field is numerical. The analytical bistatic sphere scattering

formulation and Rumerman's scattering model for cylinders [6] are used in the OASES-

SCATT acoustic simulation package developed by Schmidt and Lee [7] 18]. This acoustic

package was used to explore effects of environment, bottom composition and target geometry

on bistatic acoustic fields in Lee's thesis, "Multi-static Scattering of Targets and Rough

Interfaces in Ocean Waveguides" [9]. Virtual scattering experiments using the OASES-

SCATT scattering simulator influenced this work by showing clear distinctions in bistatic

target scattering field characteristics.

Most of the limited experimental work on bistatic target scattering has been conducted

in the small scale, in water tanks and test ponds. For example, Baik, Dudley, and Marston

conducted an experiment where they looked at the bistatic response of different cylinders in

a test tank for the purposes of holographic imaging [10]. Kargl et. al. looked at the bistatic

scattering response of aspect-dependent targets in a test pond as a part of the PondEx10

experiment [11].

These experiments used moveable arrays that are not easily adapted to a harbor environ-

ment, and there have been very few attempts to collect bistatic acoustic data in situ with

AUVs. The GOATS'98 experiment is a rare example of a successful AUV-based bistatic

scattering experiment: it included an AUV with a nose array, and produced data on the
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bistatic scattered fields off of fully buried, partially buried and proud spheres. Lepage and

Schmidt [12] and Edwards et. al. [131 describe the AUV experiment and using the array data

for Synthetic Aperture Sonar imaging. Synchronization was achieved using a vehicle-based

acoustic signal to trigger the source. The data was collected using lawnmower patterns

through the target field, which had the disadvantage of giving non-uniform data quality

and few data with the array at broadside to each target. The significant advances in many

areas since 1998 made a new experiment to collect bistatic data with an AUV valuable.

These areas of tremendous advancement include the computational power for real-time tar-

get tracking and classification, adaptive autonomy to allow more efficient data collection, the

existence of small, low-power, high-accuracy clocks for synchronization timing, and vehicle

navigation with less than 0.5% drift per distance travelled.

1.2.2 Target Classification

The more recent literature on using AUVs for Mine Countermeasures classification tasks

focuses on the use of monostatic and imaging techniques, often in high frequency. Examples

of these techniques include Synthetic Aperture Sonar (SAS) and sidescan sonar. These

methods have been shown to be effective for many target types and circumstances, but

the expense of developing and deploying these systems as well as the difficulty of using

the resulting data for real-time classification justifies investigation into alternative methods.

The AUV-based SAS work does not utilize the true bistatic field, but uses an array and

source together on an AUV to get a synthetic aperture, simplifying navigational constraints.

There are very few examples of using a SAS imaging approach with bistatic data: it was

attempted by Edwards et. al. as a part of the GOATS'98 experiment 1131 and discussed

in a paper by Dudley and Marston, for experimental data collected using a rail source and

receiver [141.

Monostatic target classification using probabilistic methods is discussed in [15], which

attempts to classify targets using multiaspect backscatter, wave-based signal processing and

Hidden Markov Models (HMMs). In this method, a model is trained and then used to

classify new targets. This work demonstrates an empirical model-based approach to target

classification with a geometric feature space, though methods described use only backscatter

data, utilize a different aspect of the acoustic signal, and do not use a machine learning

approach to the classification.
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Several machine learning based target classification methods using backscatter informa-

tion and a frequency or time-frequency analysis of the target return have been published.

Kaminsky and Barbu looked at classification of buried cylindrical targets (such as cables)

using simulated data and a discriminant analysis method applied to a time-frequency im-

age [161. Malarkodi et. al. investigated using Neural Networks for classification of target

type using a features space that was a statistical representation of the target return power

spectrum for a 40-80kHz Linear Frequency Modulation (LFM) chirp [17]. These techniques

differ from those described in this thesis in that they use features that include temporal or

phase information and only look at monostatic data.

1.3 Contributions

There are two important contributions of this thesis. The first is the bistatic data set

collected during the BayEx'14 and Massachusetts Bay experiments and the development of

the AUV payload for collecting that data. The second is the use of bistatic angle dependence

of scattering amplitudes with a machine learning methodology for target characterization,

which was demonstrated on simulated and real bistatic scattering data for the classification

spheres versus cylinders and for the estimation of rotation angle for aspect-dependent targets

and sand ripple fields.

Initial simulation studies provided the inspiration for using the relationship between

scattering amplitude and bistatic angle as a basis for target classification. Chapter 2 explains

some of the basic principles of target scattering, with supporting examples from simulation.

As discussed in the Historical Background section, very few bistatic scattering experi-

ments have been conducted in real harbor environments with AUVs. The challenges to a

successful AUV-based bistatic scattering experiment included timing, navigation, and col-

lecting uniform-quality data. Chapter 3 describes the acoustic payload designed and built

for precision timing of data acquisition on the AUV Unicorn for bistatic scattering experi-

ments and the characterization experiments undertaken to ensure that timing requirements

were met. Chapter 4 then explains the combination of hardware, signal processing, and

vehicle behaviors used to collect dense, high-quality bistatic scattering data sets around

spherical and simple aspect-dependent targets during the BayEx'14 and Massachusetts Bay

experiments using the AUV Unicorn. The resulting data sets are presented and compared
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to predicted scattering results from simulation. Chapter 5 explains the machine learning

classification methodology developed to use the geometric pattern of bistatic scattering am-

plitudes to distinguish spherical from cylindrical targets. The results from applying this

methodology on real and simulated data are then described, including features space and

parameter selection algorithms.

Chapter 6 describes the extension of the machine learning classification methodology to

regression problems for the estimation of cylinder rotation angles and seabed ripple field

anisotropy.

Finally, Chapter 7 presents the conclusions of this thesis and suggestions for future work.

26



Chapter 2

Object Scattering In The Ocean

2.1 Overview

When a target on the ocean bottom is acoustically insonified, the target re-radiates the

signal (Figure 2-1). This reradiation consists of multiple time delayed echos that interfere

in the frequency domain.

For the problem of classifying underwater targets in real time using data collected on an

AUV, it was critical to identify features that were robust to several meters of error in vehicle

location, source location, and target location. The combined navigational uncertainty, plus

the computations limitations for data processing on an AUV, made using sensitive time and

phase information for target classification impractical. While these features are frequently

used for SAS imaging, they would be difficult to use in real time on a bistatic AUV system

because of the navigation errors inherent in an AUV system.

The interference of the time-delayed echos from target scattering result in frequency-

dependent minima and maxima in the bistatic radiation pattern from the target. These

scattering radiation patterns are distinct for different target types and are mostly dependent

on the bistatic angle of an amplitude measurement, showing range and depth independence

over meters or tens of meters. Bistatic angle is the angle between the source and the receiver

relative to the target. The concept for the classification techniques discussed in this thesis

is that these interference patterns in a given frequency band are stable and can be used to

characterize seabed targets.

The technology required for getting data on the bistatic radiation pattern is an AUV with

a linear hydrophone nose array, a data acquisition system, and signal processing software to
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Figure 2-1: Insonification of a target results in acoustic scattering, as the target re-radiates
the signal in multiple echos that interfere to form the radiation pattern exploited by the
characterization techniques discussed in this thesis.

calculate target scattering amplitude as acoustic data is collected around a target. Imaging

techniques are not required, as the dependence of scattering amplitude on bistatic angle can

be analysed directly.

2.2 Modelling Target Scattering with Wavenumber Integra-

tion

The wavenumber integration computational approach involves decomposing the acoustic

field in frequency and wavenumber, which makes it a good technique for propagation of target

scattering fields, as the dependence of the scattering radiation pattern is in the frequency

domain. While the models do not include multiple scattering or elastic scattering effects, real

scattering data showed the simulations to be generally effective at predicting the radiation

pattern for different targets and environments.

The OASES-SCATT scattering simulation package was used extensively in this thesis for

modelling target and bottom roughness scattering fields [71 181. This simulation package uses

the single scattering approximation 118], assumes an incident plane wave, and approximates

the target as a virtual point source with a specific radiation pattern[9]. The single scattering

approximation could be insufficient for accurately modelling temporal features of target

scattering, but is adequate for modelling minima and maxima of the interference pattern,
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of greatest interest in this thesis [7]. The plane wave approximation is appropriate for the

scenarios considered here as the source is in the far field from the target. Effects due to

layers in the medium are taken into account in the wavenumber integration approach, so

waveguide effects are included in the resulting models.

The simulation package uses 2-D wavenumber integration to propagate a plane wave from

the source to the target location. The equivalent virtual source radiation pattern is then

calculated for the target. For spheres, a volume scatterer approximation is used to directly

calculate the scattered pressure field from the incident pressure and boundary conditions.

Rumerman's scattering model [6] is used to calculate the effective source function for finite

cylinder shells. 3-D wavenumber integration is then used to compute the full 3-D scattering

field from the spectral radiation pattern of the target at a set of ranges and depths for the

specified environment. The final output includes the azimuthal Fourier orders for a series of

ranges and depths from the target. In addition to target simulation, the scattering package

can model rough bottom scattering. This was used for modelling of anisotropic sand ripple

field bottom scattering to provide a second example of regression for parameter estimation

Section 6.3.

To interface the scattering simulation package with classification and regression soft-

ware, the custom AutoGen code was written. This code has a database back end that

allows reconstruction of all simulation experiments based on input parameters, and was

used for automatic generation of scattering fields based on target, source and environment

configuration. Appendix C describes this code in detail.

2.2.1 Target Scattering

The target scattering simulator was used to generate scattering models for the simple target

geometries used in this thesis. The assumptions about the target radiation patterns that

underlie this thesis were based on simulation data. The most important of these are the

persistence of radiation pattern features between ranges and depths for a given frequency.

Figure 2-2 shows the simulated scattering amplitudes for spherical and cylindrical targets

in a 6.5m deep waveguide for multiple depths, generated using the BayEx'14 configuration

shown in Appendix A. The source is 3m deep, 8kHz, and 60m from the target. The simulated

water depth is 8m, with a mud bottom over sand.

For both target types, the clearest and most robust features are the bistatic angles of
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Figure 2-2: Simulated scattered field data at several depths.
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Figure 2-3: Simulated scattering amplitude dependence on angle 0 for spherical and cylin-

drical targets. 6 is calculated by setting the target at (0, 0) and the source at (-60, 0) such

that the source is at 1800.

amplitude minima and maxima in the scattered field. These features are only slowly changing

with depth and generally consistent in range from the target. The lobes of the radiation

pattern are also meters wide in the far field. Figure 2-3 shows the dependence of scattering

amplitude on bistatic angle, 6, across all depths and 20-40m range for the sphere and cylinder

case. The general location of minima and maxima within the pattern remains consistent with

different depths and ranges. These properties would make sensing of the overall radiation

pattern robust to several meters of AUV navigation error. Utilizing scattering amplitude

information has the additional advantage of being more robust to noise and interference than

temporal or phase information. Figure 2-4 shows the intensity-averaged radiation pattern

for spherical and cylindrical targets versus bistatic angle. Represented in this fashion, the

difference between the two target types is very clear, providing a good basis for AUV-based

target classification.

The aspect-dependence of cylindrical targets also causes distinct features in the bistatic

angle dependence of the radiation pattern. Figure 2-5 shows several cylinder rotations to

aspect angle -y relative to the source and the resulting simulated radiation patterns versus

azimuthal angle relative to the source. The location of minima and maxima shift with aspect

angle, suggesting that the orientation of a cylinder could be estimated using a regression

model.
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2.2.2 Ripple Field Scattering

Similarly, the scattered fields from anisotropic bottom ripple fields have their most major

features in azimuth, rather than range and depth. Figure 2-6 shows the impact on the

radiation pattern of the anisotropy angle. Like with cylinder orientation, the radiation

pattern shifts consistently in a way that suggests the anisotropy angle could be estimated

using a regression model. These scattering simulations assumes a 100m waveguide with

a source at 30m depth, 100m from the insonified bottom patch. Within a 20-50m set of

ranges and 20m of depth, the location and strength of minima and maxima are consistent

and persistent. The mean or median scattering amplitude dependence on anisotropy angle

is distinctive.

2.3 Conclusions

Simulation experiments using a wavenumber integration-based scattering simulation pack-

age suggested that the dependence of target scattering amplitude on bistatic angle provides

robust features that could be used for target characterization. The use of these features,

rather than time or phase-based information, loosens navigation accuracy requirements to

what is plausible on an AUV. Additionally, target scattering amplitudes can be calculated

directly from acoustic data collected on a line array carried by an AUV. Utilizing the de-

pendence of target scattering amplitude on the bistatic angle of sampling does not require

sophisticated imaging techniques for classification, and could provide a basis for onboard

target characterization.
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Figure 2-4: Simulated radiation patterns for spherical and cylindrical targets. The pattern
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and depth (20-4Oim range, 1-4m depth), converting to dB and subtracting the minimum

intensity. These polar plots are shown as looking from above on the target, with the target
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Figure 2-5: Mean radiation patterns for different cylinder rotations. The location of minima
and maxima within the patterns shift with the angle y.

34



90 15
12 0

10

15 - 5 0

is 0

21 30

240 300
270

(a) Simulated scattered field amplitudes for
anisotropic ripple field with -y = 00.

90 10
12 60

15 5 0

18 0

210 30

240 300
270

(c) Simulated scattered field amplitudes for
anisotropic ripple field with -y = 30'.

90 15
12 0

10

15 0

180

21 30

240 300
270

(e) Simulated scattered field amplitudes for
anisotropic ripple field with -y = 60'.
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(b) Simulated scattered field amplitudes for
anisotropic ripple field with -y = 15'.
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(d) Simulated scattered field amplitudes for
anisotropic ripple field with -y = 45*.
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(f) Simulated scattered field amplitudes for
anisotropic ripple field with - = 75*.
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(g) Simulated scattered field amplitudes for
anisotropic ripple field with -y = 90*.

Figure 2-6: Intensity-averaged radiation patterns for acoustic scattering from anisotropic

rough bottom patches with varying values of -y = 450, depths 10-50m, ranges 20-50m.
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Chapter 3

Acoustic Payload

To show that reliable bistatic scattering data collection by an AUV was feasible, an acoustic

payload had to be designed and built that solved the problem of time synchronization

between the acoustic source and vehicle. There were a number of obstacles to achieving

the required data logging accuracy. First, while many surface-based systems use global

position systems (GPS) to synchronize a local clock to the satellite pulse-per-second (PPS)

signal, this microsecond-precise clock was not available underwater. Second, the computer

clock, even synchronized via Network Time Protocol (NTP) to a precise PPS signal, has

accuracy only in milliseconds, and therefore could not be used to trigger data collection

when desired accuracy was in microseconds. Third, delays introduced by analog filters and

analog-to-digital conversion were in the tens to hundreds of microseconds, and had to be

taken into account in system calibration to achieve sufficient system accuracy. This chapter

presents the implementation of an accurate and precise data acquisition system for bistatic

acoustic data collection on an AUV using off-the-shelf hardware and a set of test routines

for calibration. First, the application is explained and the commercial off-the-shelf hardware

is described. The payload architecture is then laid out, including hardware and software

implementation needed for a functioning precision-timed data acquisition system. Next,

the test procedures used in the characterization and calibration of the system to eliminate

system delays are explained. Finally, the results and conclusions, including total system

accuracy, are reported.
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3.1 Background

In general, one of the greatest challenges to remote sensing in the ocean is the problem of

maintaining adequate time synchronization between the shore and any submerged system

119). Similarly, one of obstacles to the practical collection and use of bistatic scattering data

was vehicle-source time synchronization. The absolute start time of each acoustic data file

had to be known so that the target scattering signature could be identified within the time

series. This required synchronizing the firing schedule of the acoustic source with the data

acquisition system on-board the vehicle. There were two types of accuracy required of the

data acquisition system for this acoustic experiment: accuracy in arrival time of a contact

and accuracy in phase between channels in the hydrophone array. The desired resolution in

range for this system was 0. im, which corresponds to a 70 microsecond difference between the

true and estimated time that the file begins recording. Less accurate time synchronization

would results in poor resolution of target range, which could cause misestimation of target

scattering strength by onboard signal processing. Similarly, the 16 channels need to start

recording at the same time so that the phase shifting between the channels is introduced

by the signal directionality rather than recording delays. The maximum permissible delay

between channels in the system was one percent of a wavelength amount, approximately

1 microsecond at 9kHz, to ensure that phase shifts introduced by recording delays did not

affect beamforming operations used to calculate the arrival direction of the signal.

3.2 Payload Architecture Overview

The acoustic payload used in the AUV Unicorn for this experiment consisted of the 16

element linear nose array used to collect acoustic data, a preamplifier for filtering and am-

plification on the raw signal, two 24DS112-PLL data acquisition boards (DABs) [201 for

analog-to-digital conversion and an Advantech 3363 computer [211 with Intel Atom dual

core processor for data logging, signal processing, and vehicle autonomy. A Quantum Chip

Scale Atomic Clock (CSAC) SA.45s provided an accurate on-board time reference, and was

synchronized using the time reference from a Garmin 15xLW GPS while on the surface.

Figure 3-1 shows how these parts of the data acquisition and timing system interact. The

analog signals from the 16 elements of the hydrophone array were filtered and amplified by

the preamplifier, then synchronously recorded as 24-bit digital by the DABs. This recording
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was triggered by the rising edge of the CSAC PPS signal. The digital data is sent in the

form of a first-in-first-out (FIFO) buffer over PCI bus to the Advantech 3363 computer,

which ran a daemon that controls the DABs and logs the data to a timestamped file.

Payload

16 Channels
From y-> Preamp -*Data Aquisition_

Boards

CSAC PPS FIFO Stream

Nose Array Section
AUV Unicorn

Figure 3-1: Block Diagram of the data aquisition and timing system.

3.2.1 Real-Time Clock Synchronization

The Quantum CSAC SA.45s is a high-precision, low-cost, low-power clock well suited for

underwater sensing platforms, including autonomous underwater vehicles. A CSAC, prop-

erly aged, can be considered a reliable time source with precision limited by its drift rate

and an accuracy limited by the accuracy of the global time source it uses as a synchroniza-

tion reference. The aging rate of the CSAC is 3.OE-1/month [22], which far exceeds the

requirements of this application, where vehicles are deployed for less than a day at a time.

A CSAC and CSAC development board were integrated with the computer and acoustic

data acquisition systems in the AUV payload to provide a precision pulse-per-second time

reference while the AUV was submerged. The addition of a Garmin 1xLW GPS to the

payload, connected to an external GPS antenna, provided a time of day and PPS reference

for CSAC synchronization on the surface. Synchronization set the rising edge of the CSAC

Board's PPS output to match the rising edge of the GPS PPS so that the start-of-second

time reference was the same.

This synchronization between the global time reference and the local time reference
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was managed using a custom daemon, which ensured that the vehicle and source time

references were the same. This daemon had two critical functions: to perform GPS-CSAC

synchronization on startup (if satellites are available), and to provide a GPRMC NMEA

message to the vehicle computer. The NMEA sentence was used by the generic NMEA

GPS Receiver (reference clock 20 123]) for setting the LinuxPPS [24] reimplementation of

the NTP server on the computer. Since the timing of the recording relative to the start of

the second was known, if the computer clock was on the correct second when the data was

recorded the file's timestamp was correct.

A backup power system for the CSAC was built so that the system could remain contin-

uously on. This was important because the CSAC's performance improves as it ages [22].

Four hot-swap circuits provided automatic switching between three power sources: an on-

board battery pack containing 3 AA batteries, the regular vehicle power source, and an

externally accessible CSAC-only 5V power line. In ordinary operations, the vehicle could

be shut off and the external CSAC power then connected without opening the payload or

removing it from the vehicle. The battery pack, which lasts for more than 24 hours as the

only power source, kept the CSAC running during this changeover.

3.2.2 Data Acquisition

To achieve the level of accuracy in time synchronization required by this experiment, data

recording and logging had to properly implemented, using the CSAC PPS as a hardware

trigger. This was necessary because NTP provides, in the best-case, 1 millisecond accuracy

due to the drift in the real-time clock and the general delays in a non real-time operating

system.

8 channels from the preamplifier passed into each of the system's two DABs. These

boards converted the analog voltages into 24 bit digital data at a sampling rate of 37500Hz,

and wrote the resulting binary data to the PCI bus FIFO buffer to be read on the payload

computer.

The DABs were configured to run synchronously across all channels and to use the GPS

lock feature. This meant that all channels were recorded at the same time, such that the

first 8 samples in the FIFO buffer correspond to the voltage level received on 8 elements

in the same time bin. GPS lock mode guaranteed that exactly the configured samples per

second were recorded each second, re-setting the lock state if there was a drift of more than
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one sample and adding or subtracting a sample if a sample drift occurred. In this mode,

after 3-5 seconds to confirm that a PPS signal was present, the buffer on each DAB was

cleared and recording began on the rising edge of the PPS signal. Each second thereafter,

the rising edge of the PPS signal was used to confirm that the number of recorded samples

matched the desired sample rate. The bytes read by the computer from the DABs were

tracked and the buffer never allowed to overflow so that the sample corresponding to the

start of each second was known.

This sampling method made on-the-second data recording possible. Each second, the

start of the data recording corresponded to the rising edge of the CSAC PPS signal used for

GPS lock on the DABs. When the CSAC PPS signal was synchronized with the GPS PPS

signal, this resulted in the first sample of each data recording corresponding to the time that

the ping was sent out from the acoustic source.

3.3 Delay Characterization Methodology

The payload system, as described, would have resulted in precise data acquisition, but had

accuracy limitations due to timing lags introduced by analog and digital systems. The analog

filters in the preamplifier introduced some delay into the system, as did the analog-to-digital

conversion in the DAB. These delays changed the estimated range to the source and targets,

and were on the order of tens to hundreds of microseconds. To build a data acquisition system

that was both precise and accurate, these delays had to be quantified so that they could be

incorporated into data recording timestamps. Two sets of experiments were undertaken to

characterize these delays: in the first, the magnitude of the delays was estimated using a

PPS signal, and in the second a constant waveform (CW) was used to get a more precise

estimate of the delays using phase. Additionally, the manufactuer claim of synchronous data

acquisition was tested between channels on the DABs, as introduced lag between channels

could significantly affect the phase information in the signal. These characterization steps

resulted in estimates for analog delay, digital delay, and between-channel recording delay.

Analog and digital delay estimates were used to calibrate the system by adjusting the time

stamp on each recording. To further improve on this calibration, a method was developed

for dynamically estimating the digital delay.

Table 3.1 shows the timing variables used to describe the system characterization. r
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Figure 3-2: Experimental setup with test points.

variables describe delays, x variables represent time series data, k constants and </ phases.

Subscripts indicate the location of measurements (either in reference to Figure 3-1 or chan-

nel) or are descriptive of a calculated quantity. Estimated quantities from measurements are

indicated with a tilde, for example ?analog would represent the estimated value of ranalog.

An accurate estimate of the propagation time, -prop, was necessary for successful tar-

get localization in the bistatic scattering experiment. However, when the onboard signal

processing chain estimated a target's location, it could not directly measure the value of

Tprop. Instead, it calculated the value of TA, the delay observed in the recording from the

DAB. Three delays contributed to TA: the actual propagation delay rprop, the analog de-

lay introduced by analog filtering in the preamplification stage Tanalog and the digital delay

introduced by analog-to-digital conversion in the DABs, Tdigital.

TA - Tprop + Tanalog + Tdigital (3-1)

One of the important factors in the payload implementation was therefore system calibra-

tion so that the propogation delay could be estimated from the value of rA such that the

range resolution requirements were exceeded. In the final system, the estimated value of

propagation delay, tprop, had to be be within 70ps of the actual propagation delay.

rprop - TpropI < 70ps (3.2)
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Table 3.1: Timing characterization variables

00 Phase of constant waveform signal recorded on
channel 0.

#1 Phase of constant waveform signal recorded on
channel 1.

OA Phase of a constant waveform signal at point A.
OB Phase of a constant waveform signal at point B.

qc Phase of a constant waveform signal at point C.
OD Phase of direct input constant waveform signal.

Tanalog Analog delay, introduced by pre-amplification.

Tdigital Digital delay, introduced by analog-to-digital
conversion in the DABs.

Tdigital,d Dynamically estimated digital delay.

rprop Propagation delay, introduced by the signal
propagation between sound source and hy-
drophone element.

Tchannel Time delay between adjascent channels, intro-
duced by the synchronous data recording on the
DABs.

TA Arrival delay of the signal at point A, includes
propagation, analog and digital delays.

TB Arrival delay of the signal at point B, includes
propagation and analog delays.

TC Arrival delay of the signal at point C, includes
propagation delay.

kcal Calibration constant, used to eliminate mean
analog and digital delays from the system.

kcal,d Calibration constant, calculated using dynami-
cally estimated digital delay.

x Time series recorded using Delta M44 audio
card.

XB Time series of a recorded signal from point B.
xc Time series of a recorded signal from point C.

XD Time series of direct-recorded PPS signal.

That is, the shift in arrival time as the signal passes through the analog and digital systems

had to be less than 70 ps after calibration to estimate analog and digital delays.

Figure 3-3 shows a visualization of the accumulating propagation, analog and digital

delays as a PPS signal passes through the system from point D to C to B to A. In Figure

3-3a, the input PPS signal at point D is shown. The rising edge of this signal corresponds to

the start-of-second reference at the acoustic source and onboard the AUV. Figure 3-3b then

shows the normalized signal received at Point C. At this point, the signal has been delayed
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Figure 3-3: PPS signal recorded starting at rising edge of PPS at points D, C, B and A.

by TC T -prop relative to the PPS start-of-second reference. It is this delay that we would

like to measure. However, the signal is further delayed by ranalog, such that the rising edge

of the PPS signal occurs at rB Tanalog + 7prop if a recording were made at point B, as

shown in Figure 3-3c. Analog to digital conversion further delays the signal, such that in the

recording on the DAB the PPS signal arrives with a delay of TA = rdigital + Tanalog + Tprop

after the PPS referenced start-of-second, as shown in Figure 3-3d.

We need to accurately estimate rprop using the measured value of rA and a calibration
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constant such that the range resolution requirement is met(3.2). We therefore define the

calibration constant kc1l to be:

kcal = tanalog + tdigital (3.3)

This value was used to estimate the propagation delay.

Tprop =T-A - kcal (3.4)

Two arrival time experiments were used to measure the values of Tanalog and rdigital and

therefore to estimate the calibration constant, kcal, used to correct for the system delays in

the estimation of Tprop. A third experiment was used to demonstrate that the phase delay

introduced by the DAB was small enough to meet the phase requirement, which can be

directly expressed in terms of Tchannel.

Tchannel < lPS (3.5)

3.3.1 Delay Characterization with GPS PPS

To get a coarse estimate of analog and digital delays, a GPS PPS signal was played through

a speaker and also connected directly into the DAB as an input. The arrival times of the

input PPS signal were measured at the points noted in Figure 3-2, giving estimates for

delays rA, rB and TC. These delays were used to calculate the system delays. The speaker

was kept in the same location for all three measurements.

Tprop TO (3.6)

(3.7)Tanalog = TB - iprop
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Tdigital TA - Tprop - Tanalog (3.8)

To calculate the analog and propagation delays through the system, the signals from

points B and C were input into a Delta M44 audio card, along with the direct PPS signal.

This resulted in time series showing the direct PPS signal, XD, and either the time series

from point B, XB, or point C, xc. A sampling frequency of 96kHz was used, and the channels

recorded synchronously so that the time difference could be quantified. The digital delay

through the Delta M44 could be neglected because it was the same for both channels.

The values of delays Tc and TB were estimated using cross-correlations between the

input PPS signal (XD) and the signal measured at point B or point C (xc or XB)[25]. To get

more samples, each signal was broken down into snapshots of length N samples, such that

a snapshot started at index n and ended at index n + N - 1, where n= 0, N/2, N.... The

cross-correlation was then taken between x = xc(n : n + N - 1) and y = xD(n : n + N - 1)

to get the delay associated with propagation delay and between x = XB(n : n + N - 1)

and y = XD(n : n + N - 1) to get the delay associated with the propagation plus analog

delays. The two vectors used in calculating the cross-correlation Rxy are therefore x

{21,..., I i, .. , NI and y = (yi,. ... , yi, ... ,yN}-

Rxy(m) = ENm-l Ximyi* (3.9)

The maximum value of this cross-correlation was found for each snapshot, resulting in a

maximum value for the correlation for the snapshot and an associated index number. This

index number was multiplied by the sampling frequency to get the value of TB or TC. These

values were then used to calculate Tprop (3.6) and 'Tanalog (3.7). An example correlation plot

is shown in Figure 3-4.

A similar method was used to calculate the full system delay, rA, and used to estimate

the digital delay rdigital. Recordings from the DAB were used to determine the value of rA.

The data recording each second was initialized using the rising edge of the CSAC PPS signal.

One of the recordings used in this experiment is shown in Figure 3-5. Note that, while the

recording starts on the second, and the PPS replica signal starts on the second, the AC

coupled PPS signal shows up after some delay. This delay represents the combined analog,
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Figure 3-5: Example recording of signal measured at point A versus the direct PPS Signal.

digital, and transmission delays (3.1). To determine the combined delay, 250 recordings were

taken, and the value of rA was determined by finding the maximum of the cross-correlation

between the replica PPS signal and the recorded signal. Finally, the value of rTdigitai was

determined using (3.8).

3.3.2 Phase characterization with Constant Waveform

The precision of using the GPS PPS signal for calculating delays was limited to a sampling

frequency bin. To get a better estimate, a CW with a frequency of fcw = 8kHz was used

as the input signal in Figure 3-2. Measurements were taken at points B and C and recorded

using the Delta M44 audio card along with the input waveform. The phases were then

calculated for each time series x.

arctan(I -4-) (3.10)q5=arct Retxj
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The difference between the phases of the recorded 8kHz CW signal (OD) and the recorded

signal measured at points B or C (OB, 0c) was then used to calculate the phase shift

introduced by the signal passing through the system to point B or C to get more accurate

estimate for analog and propagation delays [251. The measurement of TC using delay of

the PPS signal as described in Section IV-A resulted in an estimate of 0, indicating that

the delay was shorter than the recording bin size of 10.4ps. The value of Tprop =Tc was

therefore estimated directly from the phase delay.

O C -OD (311)Tprop 2 7rfcw

The analog delay, on the other hand, was longer and therefore was calculated as a phase

difference plus some number of cycles M. The value of M that resulted in a value of ianalog
closest to that calculated in the PPS system characterization was chosen.

_ 27rM+B-OD - p (3.12)analog -~ 27rfcw - prop-

3.3.3 Characterization Lags Between Channels

Characterizing the delays between channels recorded onto the DAB required the use of phase

information because the delays of interest are much smaller than the size of the sampling

bins on the analog to digital converter. To find Tchannel, a CW of frequency fcw=8kHz was

input directly into two adjacent channels on one of the DABs, as shown in Figure 3-6.

The phase was then estimated for each channel using (6.5). The total time delay was

then calculated using difference between the phases measured on channel 0 and channel 1.

Tchannel = abs(4o - 1)/(27rfcw) (3.13)

3.4 Results

The calculated delays and calibration constants are shown in Table 3.2. No error is noted

for Tdigital because the measured variance of TA described the combined analog and digital

delays, not the digital delay alone. A description of how these numbers were calculated
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Figure 3-6: Measuring phase difference between channels.

Table 3.2: Delays and Calibration Constants

follows.

3.4.1 Analog Delay

The value of the analog delay using the GPS PPS characterization was found to be 72.95 ps

+/- 5.21 Ms. There was zero variance in the measurement of rB and therefore ~ranalog using

this method, but the accuracy of the characterization was limited to half of a time bin, 5.21

ps.

A more accurate estimate of analog delay was calculated using (3.12). The resulting

analog delay, -analog, was found to be 77.38 ps with a standard deviation of 0.875 ps. This

means that the calibrated system had a timing error introduced by the analog delays of less

than 1.75 ps with 95% accuracy.
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Variable Mean Error

[ps]
Tanalog 77.38 < 1.75ps, 95%
Tdigital 620.0

Tchannel 0.0074 < 0.000223ps, 95%
kcal 697.38 < 21.2ps, 95%
kcal,d 77.38 + < 16.375ps, 99.7%

_Tdigital,d
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Figure 3-7: Plot of measured rA versus Ping Number.

3.4.2 Digital Delay

The digital delay was calculated using cross-correlations of recordings at point A to find the

value of rA and then subtracting the analog and propagation delays. The value of rA is far

more variable than the rB and TC, with a mean of 705.6 ps, a standard deviation of 9.00

ps and a range of 90 ps. Each measurement is only known to +/- 13.3 ps because of the

digitization of the incoming data. A plot of the measured values of rA is shown in Figure

3-7. The mean digital delay, Idigital, was calculated from this as 620.0 11s.

3.4.3 Lag Between Channels

The lag between adjacent channels was found to have a mean of 7.40 ns and a standard devi-

ation of 0.223 ns. This exceeds the requirement of lys phase accuracy, and confirms that the

DAB board's synchronous data acquisition is adequately synchronous for this experiment.

3.4.4 Calibration

The value of kal was determined using these digital and analog delays. The standard

deviation from the rA data for the digital delay estimation was used to calculate the error

in the timing system, statically calibrated to eliminate the analog plus digital mean delays,

as less than 21.2 ps with 95% accuracy. Tprop therefore meets the requirement in (3.2).

The calibration was performed by subtracting kcal from the beginning of the second in the

timestamps for the recorded acoustic files. The final timestamp, therefore, is corrected using

the mean and has an error of less than 21.2 ps with 95% accuracy.
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3.4.5 Calibration using Dynamic Estimation of Digital Delay

While the system error with static estimate of the digital delay exceeded the requirements

for this system, it might be desirable to further reduce this error by dynamically estimating

the digital delay and therefore reduce uncertainty. The large uncertainty in the digital delay

was introduced by the process of analog-to-digital conversion on the DABs. Measurements

showed that this process caused additional signal delays with a standard deviation of 9ps

but with a range of 90 ps. Dynamic estimation was performed by passing the CSAC PPS

signal directly into one of the channels on each DAB, running a cross correlation between

the replica PPS and the recording, then finding the maximum correlation value in real-time.

This dynamically estimated digital delay, idigital,d, was then used in the calculation of kcaI,d

(3.14).

kcal,d = Tanalog + Tdigital,d (3.14)

With the two calibration steps, finding Tanalog and dynamically estimating Tdigital, the

range accuracy of the system becomes 16.375 ps with 99.7% accuracy, eliminating the source

of the greatest time estimation error. This calculation can be done in real-time alongside

the logging of data, and the data timestamp is adjusted to become the current second minus

the dynamically estimated value of kcal,d to accommodate the relative timing.

3.5 Conclusions

Successful development of the described acoustic data acquisition system was dependent on

the selection of a clock, synchronous analog-to-digital converter and amplification/filtering

systems, and on the characterization of the delays inherent in those systems. The use of the

Quantum CSAC SA.45s, synchronized to GPS, assures a clock precision of 10ps and a clock

accuracy relative to GPS of lys. The data acquisition of the DAB analog-to-digital converter

is synchronous to within 7.4 ns, surpassing phase accuracy requirements for this application

by several orders of magnitude. Characterization and calibration of the analog and digital

delays in this system make the data acquisition accurate as well as precise. The measured

analog delay was 77.38 ps. If this delay is not taken into account the range estimation will
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be off by more than 0.1m. The digital delays were even more significant: 620.0 Ps, which

would result in a range error of nearly im. When the system was calibrated using a fixed

estimate of the analog and digital delays, the system's arrival time error became less than

21.3ps with 95% accuracy. It was demonstrated that this accuracy can be further improved

by using the static analog delay and a real-time dynamic estimation of digital delay, in which

case the system's arrival time error became 16.375 ps with 99.7% accuracy. The precise and

accurate timing in the final data acquisition system was one of the primary factors in the

successful data collection in the BayEx'14 and Massachusetts Bay experiments, discussed in

the next Chapter.
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Chapter 4

Data

The goal of this research was to investigation the plausibility of characterizing underwater

target geometry using amplitudes calculated by an AUV sampling the bistatic scattered

field between source and target. Four data sets are used for this investigation: A bistatic

scattering data set that includes spherical and cylindrical target data from the BayEx'14

experiment in May 2014, a bistatic scattering set that includes two aspects of a steel pipe

from a Massachusetts Bay experiment in November 2014, and two scattering simulation

data sets matched as closely as possible to the experiment conditions. In both real world

experiments the Bluefin 21 AUV Unicorn, fitted with a 16 element nose array and payload

described in Ch. 3, was used to collect acoustic data with the goal of finding target scattered

radiation patterns like those discussed in Ch. 2.

This chapter first describes the hardware and software configurations on the AUV Uni-

corn used for the bistatic scattering experiments. The BayEx'14 experiment is then ex-

plained, including the environment, source, and vehicle deployment, and the resulting acous-

tic data set. Next, the Massachusetts Bay experiment and data set are described. Finally,

the methods used to create the simulated acoustic scattering models are explained and the

simulated scattered fields compared to the real-world data.

4.1 AUV Unicorn

The Bluefin 21-inch AUV Unicorn was used for data collection (Figure 4-1). Unicorn is a

3m long, 21 inch diameter AUV that was outfitted for these experiments with an acoustics

and autonomy payload that included a 16 element nose array with 0.05m element spacing,
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Figure 4-1: The AUV Unicorn being lifted from the water by the crane of the PCS-12 during
the BayEx'14 experiment.

calibrated precision timing/data acquisition hardware described in Ch. 3, and a computer for

autonomy and signal processing. The vehicle also carried a Sea-Bird Electronics model SBE

37-SI CT sensor [261 and a pressure transducer used for depth measurements. The vehicle

ran under a front-seat/ back-seat control architecture, with basic navigation and sensor fusion

handled by the front-seat computer and vehicle autonomy, acoustic communications, and

acoustic processing handled on the back-seat computer with processes in MOOS, IvP Helm

1271 and Goby 1281.

4.1.1 Navigation

Good navigation and adaptive autonomy were critical for vehicle safety in the BayEx'14

experiment because the safe operational area was only 300 meters by 300 meters with a

water depth of 6 to 7 meters, and the sampling area for each target less than 40 meters

by 50 meters. The vehicle's navigation sensors included a Doppler Velocity Log (DVL),

Global Positioning System (GPS), a Leica DMC-SX Magnetic Compass, and a Honeywell

HG1700 Inertial Measurement Unit (IMU). The Honeywell IMU was recently installed to

improve the navigation of the vehicle while submerged: the previous system resulted in
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a navigational drift of 1% to 5% of distance travelled[29]. The navigational drift with the

improved instrumentation was between 0.3% and 0.5% of the distance travelled between GPS

fixes. The vehicle surfaced for GPS every 10 minutes to prevent drift from accumulating

significantly.

4.1.2 Acoustic Payload

To collect high-quality acoustic bistatic data in these experiment, Unicorn's acoustic payload

was updated and calibrated to ensure timing error of less than 70pIs. Precision timing was

required for bistatic data collection because the source and vehicle are not co-located. The

source was triggered directly by a GPS Pulse Per Second (PPS) signal, but GPS signal

is not available underwater so Unicorn required a separate precise and accurate on-board

time source for hardware-triggered data acquisition. A PPS signal indicates the start of a

second with the rising edge of a duty-cycled square wave and is used as a trigger for clock

synchronization.

The timing and data acquisition hardware included a Quantum SA.45 Chip Scale Atomic

Clock (CSAC) [221, two 24DS112-PLL analog to digital data acquisition boards (DABs)[20],

and a Garmin 15LxW GPS for synchronization on the surface and is described comprehen-

sively in Ch. 3. Binary files, including data from all 16 hydrophone channels, were recorded

on the computer using this system. These files started exactly at the start of each second

as triggered by the CSAC PPS signal. To further improve accuracy, the analog and digital

delays in the system were characterized and used to calibrate the timestamps of the recorded

binary files.

4.1.3 Signal Processing

The recorded data files on the Advantech computer were read into MOOS-IvP, which pro-

vided a convenient framework for signal processing in real time on the vehicle and for pro-

cessing in simulation using navigation and acoustic data logged during an experiment. A

MOOS process, pActiveTargetProcess, was used to extract the amplitudes for targets at

specified locations from a recorded data files. The operations of this process are shown in

Figure 4-2. The locations of the target and vehicle for each recorded data file are first used

to identify a time window for processing. This time window is centered around the expected

arrival time, with a length to either side determined by replica length, navigation uncer-
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Figure 4-2: Processing in pActiveTargetProcess used to extract target amplitudes from the
array time-series. The recorded data file, vehicle/target location information, and replica
are used to estimate the target scattering amplitude.

tainty, and uncertainty in soundspeed estimate. The data from all 16 channels is windowed,

then a Fast Fourier Transform (FFT) is taken using FFT length NFFT. Matched filtering

with the source replica is used to identify contacts, and beamforming is used to determine

the bearing to the targets and the error in that estimate. Thresholding eliminates some of

these contacts. The process outputs the band-averaged amplitude from the contact with the

location (based on bearing and arrival time) that is closest to the expected target position.

If the vehicle is in the target's forward scatter region the target contact cannot be distin-

guished from the source's direct blast so the process does not produce an amplitude. If no

target is located within 25m of the expected target location, no contact is reported.

The direct blast is always in the data file and the vehicle is always at least 30m from the

source in this experiment, so ambient noise could be estimated as the band-averaged ampli-

tude from the first NFFT samples in the 7-9kHz band. The estimated noise amplitude was

subtracted from the estimated target scattering amplitude associated with each recording

to get the estimated target scattering amplitudes used for analysis. This process was used

to extract the full amplitude grid around each target from the recorded data.

56



Source
........... .............

Target

% % ~ TrancfOtri.0

Figure 4-3: Full field sampling behavior used with the vehicle Unicorn for collecting target

bistatic data sets. The vehicle circles the target, changing radius in the direct forward-scatter

direction.

4.1.4 Vehicle Sampling Behavior

One of the limitations in previous attempts to collect real-world bistatic scattering data

with AUVs was the non-uniformity of the acoustic data set. Conventional AUV behaviors,

such as lawnmower patterns, are poorly suited for acoustic data acquisition around targets,

as the target's contact moves from endfire to broadside and back to endfire. This results in

inefficient data collection. To correct this, a behavior was written to collect a full grid of

bistatic amplitudes around a target in depth, range, and azimuth. The vehicle completes a

sequence of concentric circles with decreasing radii. By transitioning in radius only in the

forward scatter direction, the vehicle goes out of broadside in the region where the target

contact cannot be distinguished from the direct blast from the source. This sampling layer

is repeated at multiple depths to complete data collection on a target. Figure 4-3 shows

how a single layer of the vehicle path is constructed for this behavior. The behavior is

configured using the number of layers sampled, the number of radii sampled, the minimum

and maximum depths, the minimum and maximum radii, the minimum permitted distance

to the operational boundary, the target location and the source location.

This behavior was made adaptive to prevent the vehicle from leaving the operational

57



Table 4.1: Target Geometry.

Spherical Shell
Diameter 0.6m
Material Steel
Shell density 7.975g/cm 3

Shell bulk compressional speed 5.773x10 5 cm/s
Shell bulk shear speed 3.10Ox10 5 cm/s
Shell thickness (thicknessxlOO/radius) 5.1

Solid Cylinder
Diameter 0.3m
Length 0.9m
Material Aluminum

area. While the vehicle is following a circle, small changes in heading are made to correct

the vehicle's location so it remains at the appropriate radius. However, if the vehicle is within

a configurable distance from the bounding box, these corrections cannot include an increase

in radius. In addition, if the specified maximum radius is greater than the distance from

the target to within 10m of the bounding box or an obstacle, the behavior automatically

rescales to fit within the safe region.

4.2 BayEx'14 Experiment

4.2.1 Experiment Parameters

The geometry of the BayEx'14 experiment site on May 21 is shown in Figure 4-4. Two

targets, a 0.66m diameter spherical shell and a 1 foot diameter, 3 foot long solid aluminum

cylinder, were deployed about 60m from the ends of the source rail. See table 4.1 for the

target geometric and material properties. The RV Sharpe was anchored in a four point

moor, and provided a reference point for the source rail. The directional source was set at

the north end of the rail for the morning to insonify the sphere and the south end of the

rail for the afternoon to insonify the cylinder. The source was set to fire a 10ms, 7-9kHz

LFM chirp on a 1Hz schedule synchronized to GPS PPS. The water depth at the test site

was 6-7m, with a mud bottom over sand.
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4.2.2 AUV Deployment

The AUV Unicorn was deployed off of the PCS-12, which was anchored on the north end

of the operational area shown in Figure 4-4. To ensure Unicorn did not hit anything while

operating in the tight region between the targets and the source rail, an operation area and

obstacle avoidance points were selected to keep it away from the buoys and other collision

dangers. In addition, the acoustic sampling behaviors kept the vehicle moving perpendicular

to intersection with and at least 10m away from the operational boundary. Altitude safeties

prevented the vehicle from nosing into the bottom by aborting the mission when Unicorn

measured an altitude of less than 2m. The MIT LAMSS MOOS-IvP [271 infrastructure with

Goby [281 interface to acoustic communications meant that new commands could be sent

without recovering the vehicle to improve sampling or increase vehicle safety in the tight

operational area.
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4.2.3 Data Description

During the experiment, Unicorn was successfully commanded to 15 target sampling missions

over the course of the day, 5 for sphere sampling in the morning and 10 for cylinder sampling

in the afternoon. As the vehicle trim was not very good and the salinity varied greatly in

the operating area, the vehicle's depth control was not precise, so the data was collected

from multiple depths at each circle around the targets. To adjust, 3 depth levels were used

in sampling and 5 radii, and the full data collection was repeated at least twice around each

target. Commanding data sampling deeper than 3.5m resulted in a depth abort because of

the shallow water depth, so the commanded depths were between 1.5m and 3.5m. Figure

4-5 shows the locations of all acoustic data files collected around both targets in the original

coordinate system. CTD data was collected continuously on the vehicle during acoustic

sampling, resulting in a temporally diverse environmental data set between 0 and 5m depth.

0 Cylinder Sampling
* Sphere Sampling
+ RV Sharpe
* Cylinder
* Sphere

- +
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Local x position (m)
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Figure 4-5: Locations of collected acoustic data files in x and y relative to the position of
the RV Sharpe.
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Environmental Data

Difficulties with vehicle trimming resulted in a yoyo-like depth behavior in the vehicle.

While this was not optimal for uniform sampling of scattering amplitudes, it did provide an

excellent look at the pycnocline through the day and continuously sampled in depth.

Hysteresis was observed in the temperature and salinity measurements taken during

the experiment, seen in the large changes that occur on a single yoyo through the halo-

cline/thermocline. This is identical behavior to that observed in the temperature data

collected in the GLINT'10 experiment as described by Petillo and Schmidt[29], and is due

to the slow acquisition time of the temperature and salinity sensors as compared to the

depth sensor. To correct for this, the environmental data was divided into upward-going

data and downward-going data sets. The two are correlated then averaged to find a cor-

rected depth value for each measurement. The final salinity, temperature, and soundspeed

data are shown in Figures 4-6, 4-7 and 4-8. These figures show the changes in the profiles

through time. Each line in each subplot shows the hysteresis-corrected, averaged profile

over a 1 hour interval. The time on each subplot is the UTC time in the corresponding

log file from the experiment. The average of this collected soundspeed profile was used for

replicating experiment conditions in simulation.
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Acoustic Scattering Data

Each of the collected acoustic data files starts at the beginning of the second with the firing

of the source, and therefore includes the direct blast. The sampling rate on the DABs was

set to 37500Hz, and each data file contained 8000 samples for the 16 channels. 15 of the 16

channels worked properly during the experiment. The data from the broken element was
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ignored during processing.

The noise amplitude was estimated from first NFFT samples in each recording in the

7-9kHz frequency band and subtracted from the target amplitude to correct for varying noise

levels. This correction reduced the effect of noise, including periodic noise, on the data. The

most significant periodic noise source was introduced by the firing of the acoustic modem

every 40 seconds.

The final data sets included 2162 usable scattering amplitude points around the sphere

and 4784 usable points around the cylinder. This excludes data in the forward scatter

direction indistinguishable from the direct blast, data made noisy by surface transport of

the vehicle by the rib boat, data when the vehicle is far from the target, data when the

source is off and data made unusable by other noise sources. The lower number of data

points from the sphere is a result of high levels of noise in approximately one third of the

sphere data set, caused by a line wrapped in the vehicle's tail cone.

Each scattering amplitude represents the processing of an acoustic file consisting of 16

channels of data the MOOS application pActiveTargetProcess. pActiveTargetProcess time-

windows the data around the expected arrival time, performs matched filter and beam-

forming operations, and finally selects the contact coming from the correct direction. For

processing, NFFT was set to 1024, 30 beams were used, and the matched filter operation

was performed with a 90% overlap for high time resolution. The band-average amplitude

over the 7-9kHz frequency band was reported.

The processed scattering amplitudes provided a dense grid between 1.5m depth and

3.5m depth and between 10m radius and 35m radius from the target. There is a region

within +/-10 degrees of the forward scatter direction where the target amplitudes are not

calculated because the direct blast is not distinguishable from the target contact. The

following target scattering plots use a coordinate system that puts the target location (x', yt)

at (0, 0) the source at (x', y') = (-r, 0), where r, is the distance between the source and

target. Constructing the coordinate system in this manner allows the scattering fields to

be compared between the two target types and with the scattered fields from the scattering

simulation package for similar target types and environments.

63



depth= 1

-40 -20 0 20 40
depth=3

-20 0 20 40

depth-2

20

0

-20

20

0

140

120

100

140

120

100

-2(

-40 -20 0 20 40
depth=4

4. 2

-40 -20 0 20 40

Figure 4-9: Sphere scattering amplitudes for depths 1m to 4m versus position in target-

centric coordinate system.
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Figure 4-10: Cylinder scattering amplitudes for depths 1m to 4m versus position in target-

centric coordinate system.

The scattered field grids for the full set of depths are seen in Figure 4-9 for the sphere
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and 4-10 for the cylinder. Depths of various samples are binned in 1m increments to get

a view of the shape of the collected scattered field data, such that data from 0.5m depth

to 1.5m depth are plotted together in the im depth plot, data from 1.5 to 2.5m is plotted

together in the 2m depth plot, and so on. This comprehensive scattering data set shows the

minima-maxima pattern around the respective targets and the depth dependence of that

pattern.

Looking just at the densest of these grids in Figure 4-11, showing the 3m depth slice,

gives a better sense of the angular dependence of the radiation pattern for the sphere versus

cylinder target. Additional comparisons were carried out by looking only at the angular

dependence of the scattering amplitudes. Figure 4-12 shows radiation pattern polar plots of

mean amplitude minus minimum amplitude for the real spherical and cylindrical scattering

grids at 3m depth. The amplitude values were binned in angle using 5 degree increments

and averaged in intensity to determine the amplitude value at each bistatic angle.

The color and polar radiation pattern plots are valuable for comparing the overall pat-

terns in the scattering fields of the targets. Most importantly, the sphere and cylinder data

are easily told apart based on these bistatic scattering patterns, which was the purpose of

collecting this bistatic data set.

The sphere data shows a nearly symmetric pattern, with overall intensity is lower in the

backscatter direction than the forward scatter direction. Maxima are present at 130/230

degrees and 150/210 degrees, with a strong minima at 180 degrees in the direct backscatter

direction. This dip is the Faran-type minima predicted by Gaunaurd and Uberall for ka =

10.9 in their form function versus ka plot in figure 8A for free space bistatic scattering from

a spherical target [2]. ka = 10.9 occurs for the geometry of the 0.33m diameter spherical

target at a frequency of 7.878kHz, near the center frequency of the LFM chirp used in this

experiment.

The cylinder shows a clear specular glint around 45 degrees, a strong lobe at 240 degrees

and stronger backscatter than the sphere. The glint and the source signal should have equal

angles from broadside to the main cylinder axis. The cylinder axis is at 24 +/- 5 degrees in

the experiment, which puts broadside at 114 +/- 5 degrees. This means that the predicted

glint should be at 48 +/- 5 degrees, where it is observed in the data.
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Figure 4-11: Scattering amplitude grid around spherical and cylindrical targets, including

target positioning and cylinder rotation. Amplitudes were averaged between 2.5 and 3.5m

in depth. Note the distinctive specular glint in the cylinder data around 45 degrees caused
by reflection.

Ambient Noise

The data collection vehicle behavior gave a excellent means for determining the directionality

of ambient noise in the local environment. The calculated noise in the 7-9kHz range at the

various vehicle headings was plotted versus the beamforming angle (i.e. broadside to the

vehicle heading) to get a noise "rose" for the region where data was collected. If the surface

effects are ignored (i.e. data from depths less than 1m are neglected), the ambient noise is

nearly omnidirectional for these frequencies, as seen in Figure 4-13.

4.3 Massachusetts Bay Experiment

On November 10, 2014 a second bistatic scattering experiment was conducted in Broad

Sound of Massachusetts Bay using the AUV Unicorn, a 147dB omnidirectional Lubell source,
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Figure 4-12: Polar plot showing angle dependence of mean target scattering amplitude
for spherical and cylindrical targets. Difference between intensity-averaged amplitude and

minimum amplitude is plotted on the r-axis and angle in the source-target coordinate system

on the 9 axis.
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Figure 4-13: Ambient noise in dB re 1 APa versus beamforming direction in degrees, where

beamforming is always conducted broadside to the AUV array. For example, the measure-
ment at 0 degrees represents the noise to the east, 90 degrees to the north, and so on. The

resulting noise "rose" shows nearly omnidirectional ambient noise in the 7-9kHz range.
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and an open-ended steel pipe target deployed off of the R/V Resolution. There were three

main goals of this experiment:

1. Demonstrate feasibility of bistatic scattering data acquisition in a more challenging

configuration, with a ship-based, low-power omnidirectional source and large target

location uncertainty.

2. Collect bistatic scattering data sets around an aspect-dependent target at different

orientations.

3. Run sampling behavior in a location without a target to collect a null bistatic scattering

set to compare with scattering when a target is present.

4.3.1 Experiment Parameters

The configuration for this experiment is shown in Figure 4-14. The ship was first anchored

to the north of the target to collect the null data set and bistatic data for the first target

aspect. The ship was then moved to the south and west of the target to collect bistatic data

for the second target aspect.

Environment

The part of broad sound used for this experiment has a sand bottom and was between 15

and 18 meters deep while we were collecting data.

Target

The 1.5 foot diameter, 5 foot long steel pipe was dropped at an approximate local coordinate

position of (xt, yt) = (170, 155) (Figure 4-15). The location was estimated using ship position

when the target was dropped, but was only accurate within 10-15m. The orientation of the

target was unknown.
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Figure 4-14: Configuration for Massachusetts Bay experiment, including source and target
positions. The R/V Resolution, with the Lubell source deployed at 3m depth, was first
anchored about 100m north of the target, then moved to approximately 100m west of the

target.

Figure 4-15: Open-ended steel pipe used as a target during the Massachusetts Bay experi-
ment, sitting on the deck of the R/V Resolution. The pipe is 1.5 feet in diameter and 5 feet

long.
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Source

A Lubell 916 acoustic source was used to insonify the steel pipe from the ship [30]. The

Lubell source is an omnidirectional underwater speaker capable of outputting 200Hz-2OkHz

in frequency. The source level was calculated as 147dB for this experiment. It was deployed

at 3m depth off of the bow of the R/V Resolution. A CSAC-based PPS software triggering

system was used to fire a 10ms, 7-9kHz chirp from the Lubell each second. Characterization

of this system showed that it fired within 5ms of the start-of-second PPS signal. The jitter

in firing was caused by the USB-to-Serial converter used to communicate with the CSAC.

While this was not ideal, and a hardware triggering system should be developed for future

scattering experiments using this source, the additional uncertainty provided a good test of

the robustness of the signal processing chain to navigation and timing error.

4.3.2 AUV Deployment

The R/V Resolution was first anchored to the north of the target to collect a null scattering

set and bistatic scattering from the first aspect on the target. It was then moved south and

west so that Unicorn could collect a bistatic scattering set from the second aspect of the

target. Like in the BayEx'14 experiment, the vehicle was commanded using MOOS-IvP and

Goby over the WHOI MicroModem.

4.3.3 Data Description

Figure 4-16 shows the AUV sampling, ship and target locations for the three data collec-

tion sequences. In the first, the AUV collects a null data set by sampling about (x, y) =

(170,120). The AUV was then commanded to circle several points near local coordinate

(x, y) = (170, 155), the final estimated target location. Our estimate of the actual target

location changed as the experiment continued, so that the vehicle was giving a sampling

center progressively further north over the course of the experiment.

The second DAB board malfunctioned during data collection, so only the first 8 hy-

drophones could be used for data processing. This was not a major impediment to charac-

terizing the radiation pattern from the two target aspects, as there was still enough resolution

and aperture to distinguish the target contact. In total, 2065 usable acoustic amplitudes

were collected about the first target aspect and 4363 about the second target aspect. Pro-
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cessing of the null data set output only 650 acoustic amplitudes as many pings did not

contain a strong enough contact coming from within 25m of (x, y) = (170,120). A moder-

ately dense grid was collected from depths of 3 to 7 meters and from radii of approximately

15 to 40m to each target. Target location uncertainty means that the exact radii to the

target were unknown, so there is some variation in this between the sampling for the two

target aspects.
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(a) Data collected during null sampling.
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Figure 4-16: Sampling for
data sets.

- AUV Sampling
, Approx.

Source Location
* Approx

Target Location

100 150 200 250
X-position (m)

(b) Data collected for first target aspect.
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(c) Data collected for second target aspect.

null, first and second target aspect bistatic scattering acoustic

Aspect dependent bistatic scattering

The amplitude grid for the two aspects, orientation 1 and orientation 2, are shown in Figure

4-17. The radiation pattern polar plots are shown in Figure 4-18.
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Figure 4-17: Unnormalized scattering amplitude maps for 5m depth for the two target

aspects during the Massachusetts Bay experiment. For both plots, target is located at (0,0)
and source is located at approximately (-100,0).
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Figure 4-18: Radiation pattern for two target aspects sampled during the Massachusetts
Bay experiment. Arrows denote the source arrival and expected glint direction based on
reflection.

Null bistatic scattering

The bistatic scattering pattern calculated for the region circled for null data collection

was significantly different than that for the two target aspects. The contact amplitudes

reported for the region with no target were between 30 and 40dB lower than for the region

approximating the location of the steel pipe. The variation in amplitudes was also much

smaller. Figure 4-19 compares the unnormalized scattering amplitudes between the first

target aspect and the null data set.
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(b) Scattering amplitude map for the null data set.

Figure 4-19: Unnormalized scattering amplitude maps for 5m depth for the first target
aspects during the Massachusetts Bay experiment and a region without a target present.
For both plots, "target" is located at (0,0). The source is located at approximately (-100,0)
for the first target orientation and at (-130,0) for the null target.
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4.4 Comparison to Simulation

The scattering simulation package was used to model the expected bistatic scattering fields

for the BayEx'14 and Massachusetts Bay experiments. Experiment conditions, source and

target geometry were matched as closely as possible given the modelling limitations of the

simulator. These simulations were used to develop signal processing and target character-

ization algorithms in anticipation of real data, to sanity check the measurements collected

in the field, and to train regression and classification models to show robustness between

simulation and real world.

The range-invariant environment was configured as a series of depth layers. Source

frequency, range, and depth are also configured. Bottom parameters were estimated based

on diver descriptions of bottom conditions in the BayEx'14 experiment and based on the

guess that the bottom was sand in the Massachusetts Bay experiment using values from Table

1.3 in Computational Ocean Acoustics [311. Water column sound speeds were matched to

CTD data collected by the AUV.

4.4.1 BayEx'14 Data Comparisons

The scattering simulation package was used to model the approximate expected scattering

fields for the sphere and cylinder in the BayEx'14 experiment. The simulation environment

was matched to the mean recorded soundspeed during the experiment, with a 0.5m deep

mud layer over sand bottom. The sphere model was a steel shell with characteristics exactly

matching those of the sphere in the actual experiment. The scattering simulation package

does not currently include an elastic cylinder model, so the real cylinder data could not be

exactly compared to simulation. A rigid cylinder model with dimensions and angle relative

to the source matching those in the experiment was used instead. The scattering simulation

package simulated scattering amplitudes at the locations that Unicorn sampled during the

experiment around the spherical targets were used to create simulated target scattering data

sets.

Figure 4-20 shows a comparison of scattering amplitudes in the 3m depth bin in sim-

ulation and real data. The normalized amplitudes are similar for real and simulated data

for both the sphere and cylinder, and the cylinder is overall louder. The range of scattering

amplitudes is larger for the real sphere than the simulated, and the opposite is true for the
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Figure 4-20: Comparison of real versus simulated scattered fields between 2.5 and 3.5m

depth for spherical and cylindrical targets.

cylinder.

The sphere real data set shows nearly identical locations of maxima and minima to the

simulation. Important features appear in common to both simulation and real models, such

as the +i/-1500 maxima, 1800 minima and the general pattern from forward to backwards

scattering directions.

The cylinder simulation is less similar to the real data, though general location of minima

and maxima are consistent between the model and the real data. For example, the glint at

450, the maxima around 2400, the relative maxima at 1804 and 120w and relative minima at

300 and 1300 degrees is present in both real and simulated scattered fields. The most obvious

difference between the patterns is the greater backscatter intensity in the real cylinder's

scattered field relative to the forward scatter intensity. This difference is caused by elastic

effects not properly simulated with the rigid cylinder model and multiscatter effects neglected

in simulation.

4.4.2 Massachusetts Bay Data Comparisons

The true orientation of the steel pipe in the Massachusetts Bay Experiment was unknown

during the experiment: the pipe was dropped off of the R/V Resolution without any rotation

control. The orientation for each of the two target aspects was instead estimated using
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the cylinder orientation regression methodology, described in Section 6.2. In this method,

a regression model was trained using scattering simulations of fluid-filled cylinders with

aspects of 0 to 180 degrees in 5 degree increments. The angles are measured clockwise when

looking at the target from above. The simulation-based regression model was then used to

estimate the orientation of the pipe for the two target aspects. The radiation pattern for the

first orientation, compared to a field for a simulated 5 foot long, 1 foot diameter water-filled

cylinder with a 350 degree angle, is shown in Figure 4-21. The radiation pattern for the

second orientation, compared to a field for a simulated 5 foot long, 1 foot diameter water-

filled cylinder with a 110 degree angle, is shown in Figure 4-22. The model's match to the

real data is far closer for the 350 orientation than the 110' orientation. While the forward-

scatter behavior of the scattering pattern diverged in both cases between the simulated

closed-ended cylinder and the real, open-ended pipe, the general radiation pattern in the

backscatter direction has common features. The simulated scattering fields were generated

using a fluid-filled cylinder model, which is only an approximation to the scattered field from

a steel open-ended cylindrical shell. The exact bottom type and depth for the experiment site

were also unknown, as was the pitch of the target. However, the match between simulated

and real data was sufficiently close for a regression model trained on simulation data to be

used to estimate the orientation of real data.
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(a) Real scattering field data for target orientation 1.
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(b) Simulated scattering field data for target orientation 1.

Figure 4-21: Radiation pattern for the first aspect of the real steel pipe, estimated to have
rotation 1100, versus a simulated fluid-filled cylinder with a rotation of 1100. The match is
visually not very close, though there are some similarities visible in the positioning of minima
and maxima. The SVM regression model was, despite the differences, able to determine that
the real steel pipe was closest in orientation to the modelled 1100 fluid-filled cylinder.
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(a) Real scattering field data for target orientation 2.
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(b) Simulated scattering field data for target orientation 2.

Figure 4-22: Radiation pattern for the second aspect of the real steel pipe, estimated to have

rotation 36 degrees, versus a simulated fluid-filled cylinder with a rotation of 35 degrees.
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4.5 Summary

The two scattering experiments demonstrated the navigation, timing, and vehicle behaviors

necessary for high quality 3D bistatic scattering data collection by an AUV. Navigation

problems were addressed with a new IMU that improved drift to less than 0.5% of distance

travelled, and by surfacing frequently for GPS. The time synchronization issues were solved

using a Chip Scale Atomic Clock as a time source, a Phase Locked Loop data acquisition

system, and characterizing all delays to achieve better than 70ps accuracy. Finally, AUV

sampling behaviors were developed to keep the vehicle broadside to the target, resulting in

more uniform data quality through the sampling region.

The final system was successfully deployed in two experiments with different environ-

ments, source configurations, and targets. During the BayEx'14 experiment, the vehicle

acquired sufficient sphere and cylinder scattering data in one day of data collection to com-

pare real data to existing bistatic scattering models. Additional aspect-dependent data was

successfully collected in Massachusetts Bay on a steel pipe target using a more realistic

configuration, with a ship-based, software triggered omnidirectional source 100m from the

target and large uncertainties in target and source locations. The similarity of the real-world

processed amplitude data from both experiments to scattering simulation models gave addi-

tional confidence that the experimental work was valid. These successful bistatic scattering

experiments demonstrated the viability of the AUV payload and behaviors for bistatic acous-

tic data acquisition in the real ocean and provided real-world data for the classification and

regression work discussed in Chapters 5 and 6.
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Chapter 5

Classification

As described in the Introduction for this thesis, one of the long term goals of AUV mine-

hunting is to be able to deploy a number of inexpensive AUVs in a harbor and have them

autonomously classify hazards. Schmidt and Lee 171 showed using simulations that there

are distinguishing characteristics of bistatic scattered fields from different targets. These

distinctive radiation pattern features were also observed in the data collected during the

BayEx'14 experiment between the spherical and cylindrical targets. This chapter describes

the methodology and results of a supervised machine learning approach to target classifica-

tion that uses geometric mapping based on bistatic angle of scattered acoustic amplitudes

collected by an AUV between a fixed source and the target. The classification process was

demonstrated for sphere versus cylindrical targets with data collected by the MIT Bluefin

21" AUV Unicorn as a part of the BayEx'14 experiment conducted in St. Andrews Bay off

of Shell Island near Panama City, FL in May 2014.

This chapter first discusses the methodology for classification, consisting of an offline

training and analysis phase and the subsequent onboard classification of targets. Simulation

and real-world procedures are then presented, along with feature selection and confidence

estimation methods. The results are shown from applying this methodology for the clas-

sification of real-world spherical versus cylindrical targets using machine learning models

generated with data from the BayEx'14 experiment and simulation.
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5.1 Methodology

The goal of this research was to demonstrate the plausibility of classifying underwater using

bistatic scattered amplitudes calculated by an AUV from acoustic data collected between the

source and target. Two data sets were used for this demonstration, a real bistatic scattering

data set collected around spherical and cylindrical targets during the BayEx'14 experiment

(see section 4.2), and a simulation data set matched as closely as possible to the experiment

conditions (see section 2.2).

5.1.1 Machine learning approach

Supervised machine learning was selected to address the challenge of classifying targets using

amplitude-only bistatic acoustic data. In a machine learning approach data is represented

using example vectors in a particular feature space, and used to train a model that can be

used to classify subsequent data. This approach has drawbacks and benefits. Because the

method is dependent on well-represented data instead of a physical model, it can be more

susceptible to 'garbage in, garbage out', and poor independent testing can lead to mislead-

ingly good results. However, with sufficient care in problem construction and validation

machine learning can be very powerful, as it accounts for effects that show up in real data

but are neglected in conventional models.

For this problem, I selected a type of supervised machine learning called support vector

machines (SVMs). SVMs were selected for this problem for several reasons. They handle

large feature spaces easily, adapt well to different kernels, and have well-implemented off-

the-shelf optimization packages. Perhaps most importantly for this real time application,

while SVMs can take significant time and memory to train, classification using an existing

model is fast. SVM classification of an example vector also results in a margin which is an

indication of the strength of the classification.

SVM classification works by maximizing the minimum euclidean distance from a sepa-

rating hyperplane to the set of training vectors. The soft-margin SVM classification formu-

lation, originally derived by Vapnik 132], is used:
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argmin llw 2 + C Z- ';

s.t. yi(< w, xi > +b) > ( (5.1)

where w is the normal vector to the separating hyperplane that defines the binary

classification, is the slack variable that allows the optimization to deviate from perfect

classification in the selection of a solution, C is used to adjust the trade-off between the

size of |IwJ and the tolerance for misclassification, and b is the offset from the origin of the

classification solution. xi is the ith example vector and yi its label (1 or -1).

A training data set, Xt, for the SVM is represented as:

Xt = (xi, yi), --- , (xi, y) C xxR. (5.2)

where x represents the space of the input, such that x = Rd if there are d features.

This optimization selects a separating hyperplane that maximizes the minimum distance,

or margin, from the nearest training data points to the hyperplane, subject to the set of

conditions.

The SVM-Light[33] software package was used for this optimization. The trained SVM

model can be represented by w*, which is the normal vector to the separating hyperplane

selected by training. This separating hyperplane can be used to classify new data.

Any new data, xi, is classified by comparing it to the separating hyperplane. This results

in a margin, a, which is the euclidean distance from the test example to the separating

hyperplane, and is calculated as the dot product of w* and the new example xi.

a=< w*,xi > +b (5.3)

If a > 0, the class is positive, if a < 0, the class is negative. A larger margin indicates

that the model ascribes greater confidence to an example vector. For the purposes of this

thesis, a+ will be used to represent margins from examples that come from the positive
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class (spheres), and a- will be used to represent margins from examples the come from the

negative class (cylinders).

Performance Metrics

Assessing the validity of a given model is very important to the success of this methodology.

Two metrics are used in this paper: test accuracy and test minimum margin ratio. Test

accuracy is simply the accuracy of classification of the examples in the test set. The test

set is independent of the training set and the validation set used in selecting SVM model

parameters. Positive margin ratio is the ratio between the largest true positive margin and

the largest false positive margin, i.e. the ratio between the strongest true sphere classification

and worst false sphere classification. The minimum margin ratio is the minimum of positive

and negative margin ratios:

/min = mi fmax(a+ > 0) max(a- < 0) (5.4)
max(a_ > 0)' max(a+ < 0)

If f3 min is less than 1, a classification can always be wrong no matter how large the

margin. The larger the value of /3min, the greater the utility of classification and the better

the confidence model.

A number of steps were required to go from a scattering data set to a SVM-trained model

being used on an AUV. The approach taken for classification of spherical versus cylindrical

targets has two parts: an offline training and analysis segment, and the onboard target

classification, conducted in real time.

5.1.2 Training and Analysis

The training and analysis procedure breaks into several parts, as shown in Figure 5-1. This

process was demonstrated using both simulated and real data.

Data Acquisition

The first step in training and analysis was acquiring or generating data for that full 3D

scattered field used to generate classification and confidence models.

In the real world experiment, the grid of amplitude data was collected around each target

using the AUV Unicorn following a sampling behavior developed for collecting the best
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Conversion to Feature Space

Example Generation

Training Set Validation Set Test Set

Model Training, SVM Model Testing,
Parameter Selection Confidence Modelling

SVM Model Conf Model Performance

Figure 5-1: Training and analysis process for machine learning methodology. Acoustic scat-
tering amplitude data is converted to a feature space and used to construct example vectors.
Independent example vectors form training, validation, and test data sets. Classification
model training is conducted on the training set, and the validation set is used in the selec-
tion of model parameters. The test set is then used to determine the model's generalization
performance and construct a confidence model, used to estimate the probability of correct
classification given the number of samples and the classification margin.
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possible bistatic data set. In this full-field sampling behavior, the vehicle followed concentric

circles around the target so that it remained fully broadside to the target, transitioning in

range in the forward-scatter direction in the region where sampling results in the poorest

target scattering data. This was repeated at a sequence of depths. Each second, the vehicle's

calibrated data acquisition system began recording exactly on the second. The onboard

signal processing chain then extracted the amplitude for each target of interest from the

recorded acoustic data file, subtracting the ambient noise. The signal processing used to go

from 16 elements of array data to an acoustic amplitude is shown in Figure 4-2. This process

uses time windowing based on vehicle/target location, matched filtering, beamforming, and

selection based on estimated contact location to determine the target's scattering amplitude.

The result was a grid of bistatic scattering amplitudes in range, depth and azimuth around

each target.

In simulation, the 3D data was generated using the OASES-SCATT acoustic package

to simulate the scattered fields of both target types in the frequency range of the LFM

chirp used in BayEx'14. Appendix A shows the parameters used in generating the data

from OASES-SCATT. The sphere parameters were able to be matched very closely using an

elastic fluid-filled shell in the model. However, OASES-SCATT does not currently include

a elastic cylinder model, so the cylinder was modelled as rigid with the same dimensions

and orientation as the real solid aluminum cylinder. This gave the closest result given the

limitations of the simulation package. The outputs of this process were files containing

the azimuthal Fourier orders for the sphere and cylinder scattered fields. This data was

converted into a grid of amplitude values in range, depth, and azimuth. It is this grid that

was used in SVM example generation.

Feature Selection

The presentation of the data is one of the critical aspects for successfully using machine

learning for this problem. For SVMs, this takes the form of the feature representation used

for example vectors.

Image-based and other complex feature representations were rejected for this problem

because a sparse sampling from the scattered field had to be effective for classification and

because classification had to take place in real time. Instead, each sample is mapped to a

feature number based on the bistatic angle of the sample. This feature space was motivated
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Figure 5-2: Angularly dependent feature space, configured using parameter AO.

by the observation that the greatest difference between scattering patterns output by the

scattering simulator was in the angular location of minima and maxima within the radiation

pattern. Amplitudes are mapped to features using the bistatic angle of the samples, allowing

the model to exploit the differences between different angles. This feature space was defined

in purely spatial terms, meaning that the model does not take into account sampling order.

A representation of the angular feature space is shown in Figure 5-2.

Each example vector consisted of a sequence of feature-value pairs, where each value is

the median scattering amplitude sampled within the angular region defined by the feature

number. The feature number, Fa, was calculated as a function of the location of a sample's

angle relative to the source-target line, (0,), and a bin size in azimuth, AO.

Fn = [ .(5.5)

When multiple samples are collected from the same feature, the median amplitude is

taken. For example, if there are three samples at points that map to feature Fn, the value

An will be the median of the three amplitude values. This calculation is performed for each

geometric point the AUV has sampled, such that the feature vector is composed of a number
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of feature-value pairs and the label yj is the target's class.

xi = {[F1, A1],..., [FN, AN]

1 if sphere

Yi= -1if cylinder

(5.6)

This is a rapid calculation that can easily be performed on an AUV. The value of param-

eter that describes the feature space, AO, was selected using a design of experiment (DOE)

search shown in Algorithm 1.

Algorithm 1 Calculate AO*

i +- 0
AeO <- [AkOmin, A 0O,min + (AOO,max - A00 ,min)/2, AOO,max]
while max(6,,!p,) - min(01 ) > 1 and AO*! = A6 _ do

A07 = FindBestPointA8s)
A60+ = RefineGrid(AOi, ALO)

end while

Algorithm 2 FindBestPoint(A0)

Vmax +- 0
for AO in A61 do

V = Value(9)
if V > Vmax then

zA9* -A
end if

end for
return AO*

Algorithm 3 RefiineGrid(di, d*)

A = max(di) - min(di)
if d* + A/2 < max(di)and d* - A

dj+1 = [dl - A /4, di, di + A/4]
else if d* + A/2 > max(di)and d*

dj+1 = [d* - A/4, di, d + A/2]
else if d* + A/2 < max(di)and d*

dj+1 = [d* - A/2, di, di + A/4]
else

dj+1 =[d* - A/4, di, d* + A/4]
end if
return di+1

/2 > min(di) then

- A /2 > min(di) then

- A/2 min(di)and d - A/2 > 0 then
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Additional feature spaces were explored but are not discussed here because they resulted

in models vastly inferior to those produced using the angularly dependent feature space. The

algorithms for these additional feature spaces, and a comparison of performance of different

feature spaces, are described in Appendix B.

Example Generation

Once the full grid of scattered field amplitude data is represented in terms of the feature

space, training, validation and test example vectors are constructed. Each example should

represent the data collected by an AUV approximately circling a target for some time -r.

Because the vehicle collects one acoustic file each second, this involves collecting N = r

samples. To properly simulate this while constructing example vectors for simulation data,

each angular feature is sampled either m, m - 1 or m + 1 times, where m = [N/nF] if nF

is the number of features in the feature space defined by AG. The median is taken when

more than one sample is taken for a particular feature. The full set of example vectors was

split into three independent data sets, such that 50% of examples were used for training set

Xt, 25% for validation Xv and 25% for testing X. as suggested by Hastie et. al. in The

Elements of Statistical Learning 134].

For real data, the data set collected during the BayEx'14 experiment for the sphere and

cylinder targets was used to directly create example vectors. The data set was broken into

three parts: half for training, a quarter for validation and a quarter for testing. Examples

were then created from each set by selecting N sequential data points at a time. If the set

of amplitudes designated for training is represented by At = [(0, AO), (01, A 1 ),...(GM, AM)]

the first example would be created using the data ((Go, Ao), (01, A 1 ), ... (ON, AN)] and the

second example would be created using the data [(G1 , A 1 ), (0 2 , A 2 ), ... (ON+1, AN+1)]. This

process is repeated until N+i = M. The training, validation, and test data are kept entirely

independent, such that if the full sphere data set consisted of 2000 data points the first 1000

data points would be used for training, the next 500 for validation and the final 500 for

testing. This ensures that performance is tested realistically, on sequential data collected

by the AUV that is separate from data used in model training. The value of N was varied

to observe the relationship between amount of sampling and classification accuracy. nExt

examples are generated in the manner for training, nEx, for validation and nExc for testing.
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Model Training and Analysis

An SVM model was trained using the training set. SVM-light 133] 135], developed by Thurson

Joachims, was used for the actual model training and data classification.

The parameters for the SVM model were selected using a logarithmic grid search in C,

using the training set to train a model then classifying the validation set. Once a good model

was selected, the test set was used to ensure that model selection did not lead to falsely

positive results. Training sets were generated with different numbers of training examples

and classified on the fully independent test set to confirm that the amount of data being

used to train the model was appropriate.

Confidence Estimation

Confidence estimation is an essential part of target classification: while an SVM outputs

the class (sphere or cylinder) and distance to the separating hyperplane in the classification

margin a, that value does not translate directly into a probability of correct classification.

Specifically, we want to know the probability of correct classification, given the classification

margin and the amount of data collected by the vehicle P(Qj = yj Ia > aj, N), where a is

the margin, j is the estimated class, y is the true class and N is the number of samples

collected by the AUV while circling the target. This probability was calculated empirically

by using the final SVM model to classify sets of example vectors that represent different

values of N. The results were converted into a lookup table for rapid confidence calculation

in real-time.

5.1.3 Onboard target classification

Real-time classification of targets onboard an AUV requires a number of elements. Once

the SVM model and confidence model are trained, they are used perform real-time target

classification. These processes are run within MOOS-IvP, which allows nearly seamless

runtime/simulation trade-off and gives a way to test signal processing on the bench with

simulated or logged data.

The final processing chain (Figure 5-3), using the results from training, includes syn-

chronous and asynchronous components and has been demonstrated in simulation and bench

tests to be able to run in real time on data collected by the AUV-Unicorn using the 16-
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Figure 5-3: Classification processing chain run onboard an AUV.

element array.

Classification Mode Initialized

Each second, the data acquisition system records the first 0.21 s of data, which should

include the direct blast from the source and target contacts that may be of interest. The

target contacts are extracted from the data and tracked. Each target report includes target

locations and confidence. Once a target's location has some confidence, it can be prosecuted

by initiating classification.

Vehicle Behavior

To give the best classification result, the AUV is commanded to approximately circle the

target. This gives sampling of all angular features.

Amplitudes Extracted

The MOOS processes used for the signal processing required to extract amplitudes in simula-

tion and runtime are shown in Figure 6-5. On the real vehicle, data is recorded each second

to a file which is then read by pActiveTargetProcess, which performs the matched filter,

beamforming, and selection to choose the contact amplitude from the target of interest.
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(a) Runtime classification processing chain.
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(b) Simulation classification processing chain.

Figure 5-4: Real-time classification processing chains for runtime and simulation.

Average intensity over the frequency band is used. In simulation, an acoustic simulator, uSi-

mActiveSonarshallow, was developed to simulate multipath bistatic acoustic arrivals on a

simulated array. This multipath is combined with simulated scattering data in uSimSCATT

to simulate amplitudes collected by the AUV as it passes through a scattered field.

Target Classification and Confidence Estimation

The amplitudes in simulation or runtime are converted to the correct feature space by an-

other MOOS process, pProcessSCATT. An SVM model was specified to the SVM interface

application, pSVMClassify, which then ran classification on the amplitude data. The full

process runs continuously as data is collected by a real or simulated AUV, constantly up-
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Figure 5-5: Selection of f:l.() based on the minimum margin ratio , /3min , at increasing values 
of N. f:l.() = go was selected because it converged most quickly to f3min = oo as the accuracy 
reached 1003. 

dating classification and confidence until a confidence threshold was met for the target. 

5 .2 Results 

5.2.1 Feature and SVM Parameter Selection 

Algorithm 1 was used to select the value for f:l.() used in the feature representation for the 

SVM models for this problem. The value of f:l.() = go gave the best performance in terms 

of minimum margin ratio when a model was trained and validated on real data. This value 

also gave good performance for a model trained on simulation data and used to classify real 

data. The relationship between f3min and f:l.() for some of the tested values of N is shown 

in Figure 5-5. Larger values of N are not plotted because as N increases the value of f3min 

approaches infinity as accuracy goes to 1003. The plot clearly shows the best feature space 

at f:l.() = go. 

A linear SVM model performed extremely well with the angularly dependent feature 

space used for classification. The minimized the complexity of the model and meant that 

additional parameters did not need to be selected- adjusting the value of C did not affect 
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Figure 5-6: N versus accuracy for model trained on real and simulated data with feature

space where AO = 9'. As N increases, the accuracy increases until it reaches 100%. This

behavior is expected, as additional data improves the averaging in each feature. After

N = 190 the accuracy goes to 100%. When N = 190, the vehicle has generally completed

two circles of the target.

the model in this case as the complexity was at a minimum.

5.2.2 Training and Analysis Results

Two models were used in training and analysis. The first was trained based on the real

bistatic data collected during the BayEx'14 experiment, the second on simulation data

matched to the environment of the BayEx'14 experiment.

Training on Real Data to Classify Real Data

Data from the real experiment was turned into training examples and then a linear SVM

classification model using the methodology described in Section 5.1.2. The test set was

classified using the resulting trained model. The accuracy of the resulting classification was

highly dependent on the value of N, which translates to the number of seconds of data

acquisition. A plot of accuracy versus N is shown in Figure 5-6. Overall, the SVM model

was very effective for classifying independent test example vectors once the vehicle had
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completed at least one full circle around the target. With two complete circles of the target,

the accuracy of the model in classifying new test examples reaches 100%.

Training on Simulation Data to Classify Real Data

As described in Section 4.4.1, the simulated scattering fields are a good match to those

calculated from the real world BayEx'14 scattering data. To show empirically that this

was the case, a SVM model was trained using the sphere and cylinder simulation scattering

models and used to classify the same sets of example vectors used to test the SVM model

trained on real data. The classification results for the real test examples were very similar

using the simulated-data-based model and the real-data-based model. Figure 5-6 shows the

plot of classification accuracy versus N classifying the test example set using the real and

simulated SVM models. The trend for accuracy v. N is nearly identical in the two cases.

The model based on simulation data slightly outperforms the model based on real data

(higher accuracy with fewer amplitude samples), likely because the simulation data contains

the same major features as the real data but without as much noise. The similarity of these

results suggests that, at least for simple targets, a simulation approach could be used to

augment real data in constructing SVM models used to classify targets in new environments.

However, the power of the machine learning approach remains the flexibility to deal with

targets and environments that are not easily modelled numerically or analytically by using

real data to construct a model.

5.2.3 Confidence Models

The curves describing the empirically determined confidence in correct classification versus

classification margin a for different values of N is shown in Figure 5-7. The general behavior

shows an approximately logistic relationship between a and confidence. As N increases,

the probability of correct classification from a lower output margin also increases. Once N

increases past 190, the confidence of correct classification approaches 100% for all margin

values, indicating no false classifications. The performance at different values of N and

estimated confidence as real scattering data is collected would be used to inform vehicle

behaviors during classification.
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Figure 5-7: Classification confidence versus margin and N for sphere versus cylinder classi­
fication. 

5.2.4 Real-time Classification 

The use of real and simulated models for real-time classification was tested in simulation. 

uSimSCATT passed either simulated scattered field amplitudes or data from the experiment 

to the SVM example synthesis and classification processes , resulting in a classification and 

confidence. Simulation studies and bench tests with the vehicle computer show the full 

processing chain successfully completing each second: pActiveTargetProcess takes around 

0.3s to calculate the target amplitude from an acoustic file , the incorporation of acoustic 

data into the existing SVM example for classification takes less than 0.05s, and the actual 

classification, which is only run when the vehicle exits a feature (about every 5 seconds) , 

takes less than 0.5s. This shows the plausibility of using this method for real-time analysis 

and classification. These numbers were shown on the bench with the Unicorn computer 

when only the classification processing chain was running. Adding the target localization 

processing chain increases processing times significantly so that the acoustic data was fully 

processed only once every 3 seconds instead of every second. To simultaneously run local­

ization and classification processing on Unicorn every second, a more powerful computer 

would be required. 

96 



5.3 Summary

Classification of spherical versus cylindrical targets using scattering amplitude data collected

by an AUV was successfully demonstrated using real and simulated target scattering data.

Furthermore, it was shown in simulation on the bench that all processes required for target

classification using this methodology can be run in less than a second, which means AUV-

based real-time classification and confidence estimation are plausible. While the sphere

versus cylinder classification investigated here is a simplification of the target geometries of

interest in mine countermeasures, this research shows the potential of the combination of

sensing bistatic scattering fields with a linear array payload and applying machine learning

classification of calculated acoustic amplitudes for solving the real-time target classification

problem.
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Chapter 6

Regression

To fully characterize a seabed target based on its bistatic acoustic scattered field, a regression

process is required in addition to classification. For example, in the simple sphere versus

cylinder case, the orientation of the cylinder has a large affect on the positioning of maxima

and minima in the bistatic radiation pattern. In this scenario, a classification model would

be trained to include a range of target aspects. Once the cylindrical nature of a target was

determined, the orientation would be estimated using regression and the target re-classified

using that information for greater confidence. The configuration for the estimation of the

orientation of an aspect-dependent target is shown in Figure 6-1.

Environment can also have a large affect on the scattering pattern. In particular, the

angle of any directional rippling in a sandy bottom can significantly impact the acoustic

scattering field of aspect-dependent targets in the 1-5kHz frequency range. If the source

position relative to the target is adjusted using an estimate of this ridging angle, the effect

of the bottom on the target's bistatic scattering field can be minimized as discussed by Lee

in his thesis 191. A schematic of an AUV performing sampling to estimate the angle of the

bottom anisotropy is shown in Figure 6-2. This effect is not significant in the frequency

range used in the BayEx'14 and Massachusetts Bay experiments, but could have a large

impact for the characterization of buried targets being insonified using lower frequencies.

These two problems are similar enough that the same machine learning regression method-

ology could be applied to both. Simulated acoustic scattered fields were generated using the

scattering simulation package, and used to create training, validation and test sets. SVM

regression was used to train a model, which was evaluated using validation and test example
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AUV sampling scattered
field, trying to estimate
orientation angle
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7-9kHz
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Insonified
aspect-
dependent
target

Figure 6-1: Schematic on the use of an AUV for estimation of a target's aspect using

sampled bistatic acoustic scattered field data. Like in the Massachusetts Bay experiment, a

ship-based source insonifies a target using a 7-9kHz signal as an AUV sampled the resulting

scattered field and uses the collected amplitude data to estimate the orientation angle of the

target relative to the source.
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Source
1-5kHz

AUV sampling scattered
field, trying to estimate
anisotropy angle

Figure 6-2: Schematic on the use of an AUV for estimation of anisotropy using sampled
bistatic acoustic scattered field data. A fixed source insonifies a patch on the bottom using a
1-5kHz signal, an AUV sampled the resulting scattered field and uses the collected amplitude
data to estimate the anisotropy angle of ripple field.
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vectors. In the case of regression for cylinder angle estimation, the simulation model was

then successfully used to estimate the two orientations of the steel pipe in the Massachusetts

Bay experiment.

This chapter first describes the machine learning regression methodology for estimation

of cylinder and sand ripple anisotropy angles. It then describes the data and results for

regression in the cylinder orientation problem and the sand ripple anisotropy problem.

6.1 Machine Learning Regression Methodology

The variables used in this paper to describe the regression process are seen in Table 6.1.

A supervised machine learning technique called support vector machine (SVM) regression

was selected to perform the angle estimations. Like for the classification case, SVMs were

selected because, while training takes time and computational power, regression using an

existing model is fast and computationally efficient[351. This means that regression can be

run in real-time on an AUV computer.

For training and testing SVM regression models, the simulated full bistatic data sets

generated for the range of orientation or anisotropy angles were broken into randomly se-

lected example vectors. An example vector represents the scattering amplitude data to the

machine learning algorithm. For this application, each example vector represented the scat-

tering field amplitudes an AUV collected in several passes around the insonified target or

roughness patch. Independent training, validation, and test sets of these example vectors

were generated. The training set was then used to train a regression model. The valida-

tion and test sets were used to test the ability of the regression model to correctly estimate

cylinder orientation angle or bottom anisotropy angle.

6.1.1 Feature Space Description

In this machine learning approach, a model is trained using real or simulated scattered

field data that have been converted into example vectors in a feature space representation.

The feature space representation. for this problem was selected based on the observation

that the strongest distinction between the scattering fields of cylinders or ripple fields with

different aspect angles is in the angular location of the amplitude maxima. As it circles the

insonified bottom patch or target, the AUV samples each angular feature used to describe
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the scattered field. Amplitudes are mapped to features using the same bistatic angle based

method described for classification in Section 5.1.2. Each example vector consisted of a

sequence of feature-value pairs, where each value is the median scattering amplitude sampled

within the angular region defined by the feature number. This feature number, Fa, was

calculated as a function of the location of a sample's angle relative to the source-target line,

(0,), and a step size in azimuth, AO using Eq. 5.5. The sequence of features-value pairs

and the associated label are combined into an example vector, represented by (xi, yi), where

xi is the set of feature-value pairs constructed using equation 5.5 and yj is the true target

orientation or anisotropy angle for the example, if it is known.

xi= {[Fl, Al],..., [FN, AN] (
(6.1)

Yi -

The label, yi, is the anisotropy angle or cylinder angle for the example vector, yj = Y.

The geometry of this feature space is seen in Figure B-1.

Each example vector (xi, yi) represents the data collected by a vehicle follows some path

approximately circling the insonified bottom patch. The full set of example vectors, {xi, yi},

was used to construct independent training, validation and test data sets, Xt, Xy, X.

X = (x1 , y1 ), ... , (xi, yi) C xxR. (6.2)

Where x represents the space of the input, such that x = RIF if there are nF features.

These data sets are used to train and then test the SVM regression models.

SVM Regression

SVM regression works by maximizing the minimum distance from the normal regression

function w to the set of training vectors. The soft-margin SVM regression formulation is

used [321:
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argmaxHw+ 2  C 1 i+
w,, ,b 2iI

Subject to conditions:

yi-- < w,xi > -b <fe+ i (6.3)

< w, xi > +b -yi <; e + i

Uifi* > 0

where w is the normal SVM regression function, E represents the precision of the system,

( and i* are slack variables that allow the optimization to deviate from E in the selection

of a solution, C is used to adjust the trade-off between the size of ||wfl and the tolerance for

errors greater than E, and b is the offset from the origin of the regression solution. xi is the

ith example vector and yi its label.

New data is then classified by taking the dot product of a new example vector, xn, with

the normal SVM regression function w in y space and adding the offset b. The output is

~(xn), the anisotropy angle estimate.

(xn) =< w, xn > +b, w E X, b E R. (6.4)

where < w, x > represents the dot product in x.

The SVM-Light[33] software package was used to perform the optimization.

6.1.2 Angle Estimation Method

Estimating the angle between source and aspect-dependent target or bottom ridging involves

two components: a training/analysis process, which was conducted off-line to construct a

model, and a real-time signal processing and regression process, which was run on a simulated

vehicle.

Training and Analysis

Figure 6-3 shows a block diagram of the training/analysis process. Each example vector

represents data collected by an AUV approximately circling the insonified bottom patch or

target. These SVM examples were generated for this simulation study by randomly selecting
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ns, ns - 1 or ns + 1 points within each angular feature for all nF features, approximating

the data collected by an AUV circling the target region collecting N = nsnF samples. The

median of the samples within each angular feature is calculated to construct the example

vector, so additional data from a larger value of N introduces additional averaging into the

value estimates for each feature. In an experiment, the source would fire on a 1Hz schedule

and the vehicle would record an acoustic data file from the array each second, calculating the

scattering amplitude for the bottom patch using onboard processing. This means that the

number of amplitude samples can be equated to the number of seconds of data collection.

The full set of example vectors was split into three independent data sets, such that 50%

of examples were used for training set Xt, 25% for validation X, and 25% for testing X,

as suggested by Hastie et. al. in The Elements of Statistical Learning [34]. The training

set of these example vectors was used to train an SVM model. The validation set was used

to select feature space and SVM training parameters. Once feature and model parameters

were set, the test data set was then used to estimate the model's prediction error on new

data. The test data set was necessary because the results from regression of the validation

set were used to select SVM model parameters.

In addition to the actual angle estimate, we are interested in how good that estimate

is. In particular, we need to know the error bars for different confidence values: in the

final system, the AUV will continue to collect data until, for example, the estimate has less

than 10 degrees of error with 95% confidence. For this reason, an additional test set Xc

(independent of Xt and Xv) was created that included examples with different numbers

of samples (i.e. values of N). Xc was used to create an confidence model to estimate the

quality of a regression value in real time based on the amount of data collected by the

AUV. The quantity being estimated by the confidence model is P(D < mjN, ~'), where

m = 1- - j is the magnitude of the error in the estimate in degrees, D is the random

variable associated with the error d =y - ~, N is the number of amplitude datum used

to construct the example vector, and ~' is the estimate for angle. The regression error was

found to be Gaussian in nature, so the probability density function (PDF) of error for a

given number of samples N was represented by a normal distribution of some mean and

standard deviation, D ~ fD(d) =./V(/, a').
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Full 3D Scattered Field Data

Example Generation

Training Data Validation Data Test Data

SVM Train SVM Regression Analysis

SVM Example Model
Model Margins Success

Figure 6-3: raining and Analysis Process. Real or simulated 3D scattered field data is used
to generate sets of example vectors for training, validation and testing. The model trained
with the training set is used along with the validation set to select SVM model parameters.
The test set is used to asses model viability.
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Figure 6-4: Real-time regression process. Once the regression mode is initialized on a vehicle,
the SVM model produced in the training/analysis phase is used to estimate the angle and
the confidence of that estimate.
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6.1.3 Real-Time Regression

The regression model generated in the training and analysis phase is used by a vehicle to

perform real-time angle estimation(Figure 6-4). This was carried out on simulated vehicles

in the LAMSS MOOS-IvP simulation environment. In this real time regression process, the

vehicle approximately circled a aspect-dependent target or insonified bottom patch until

the confidence reached an error of less than 10 degrees with 95% confidence. This took

around 10 minutes for cylinder estimation and 15 minutes for ripple anisotropy estimation

in simulation, with one sample collected each second by the virtual vehicle, corresponding

to a value of N = 600 or N = 900. New scattering amplitudes were combined with existing

data into an example vector, which the regression model used to estimate the angle.

The high fidelity LAMSS MOOS-IvP[27] simulation environment, which includes physics-

based vehicle dynamics, environmental parameters and acoustic simulation, was used to

demonstrate real-time regression on the simulated vehicle. The high-fidelity acoustic sim-

ulation includes interfaces to BELLHOP36] and OASES-SCATT[8]. For the simulation

studies used for cylinder angle estimation, a simulated version of the LAMSS vehicle Uni-

corn with a 16 element nose array at 0.05m spacing was deployed at the site of the Mas-

sachusetts Bay experiment in Broad Sound. For the simulation studies used for bottom

anisotropy estimation, a simulated version of the LAMSS vehicle Unicorn with a 16 ele-

ment nose array at 0.05m spacing was deployed in a virtual ocean in 100m water depth

off of the coast of Massachusetts. An acoustic simulator, uSimActiveSonarshallow, was

developed to simulate acoustic arrivals, including all multipath, on a simulated AUV array.

uSimActiveSonar__shallow used models produced by BELLHOP to produce a time series

across the simulated array. The time series included arrivals due to the direct blast from the

source, source-target-vehicle arrivals and multipath with up to 3 bounces. Another process,

pActiveTargetProcess, took in that time series and output an estimated amplitude for the

insonified patch of bottom. Once the signal processing chain completed, uSimScatt pub-

lished the scattered amplitude for the current location and geometry of the vehicle, source,

and target or bottom patch based on the simulation model. An SVM model was specified to

the SVM interface application, pSVMRegress, which ran real time regression on amplitude

data as it was collected by the simulated AUV, constantly updating estimated anisotropy

angle until all critical waypoints were sampled. Figure 6-5 shows the regression processing
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Figure 6-5: Real-time regression processing chain in MOOS-IvP simulation environment.
Multipath arrivals are simulated on array by uSimActiveSonar. That data is processed
in real time using pActiveTargetProcess to extract target amplitudes. When the selected
target's contact is present, uSimScatt outputs the appropriate scattered field amplitude for
pProcessScatt. pSVMRegress estimates the angle from the resulting example vector as new
data is acquired. It also estimates the probability that that estimate has an error less than
d degrees, where d is configurable.

chain used to demonstrate anisotropy estimation in real time on the simulated vehicle.

6.2 Cylinder Angle Estimation

6.2.1 Background

Zampolli et. al. describe some of the aspect-dependent monostatic scattering features

from targets including pipes and cylinders [37]. Similarly, Williams et. al. explored the

monostatic effects of cylinders in contact with sand sediment with aspects of 0 to 90 degrees

1381. These papers do not use this information for classification, and only look at the

monostatic return, but do observe the changes in scattering strength depending on the

angle between the source and the target axis. Ji et. al. looked at some of the multi-

static scattering effects from aspect dependence in a tank experiment and in simulation [39].

Schmidt and Lee also discussed some of the bistatic scattering characteristics of aspect-

dependent targets [7]. These sources all indicate that the effects of target orientation on the
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scattering pattern are significant, which suggests that they might be used to estimate the

target aspect directly.

6.2.2 Simulated Scattered Field Data

To estimate the angles of the steel pipe target in the Massachusetts Bay experiment, a

regression model was trained using scattering simulations for a water-filled cylinder matching

the dimensions of the cylinder in the experiment, 5 feet long by 1.5 feet diameter, in a 15m

deep waveguide with a soundspeed of 1500 m/s and a fluid sand bottom. The source

was approximated as 8kHz with a range of 100m to the target and a depth of 3m. The

configuration for the simulated targets are shown in Table 6.2. Cylinders at rotations in 5

degree increments were used, such that -y = [0,5, ... , 175]. Values of AO = 50 and ns = 10

were used to generate the example vectors used to train the SVM regression model, giving

a total number of samples per example vectors of N = 720.

The scattering simulation models were only approximate matches to the conditions and

target in this experiment, as discussed in Section 4.4.2. In a real scenario, the information

available for model selection would be similar to what we had in the Massachusetts Bay

Experiment: approximate water depth, mean soundspeed, approximate target and source

locations. The target would also be unknown, and very few targets are perfect solid cylinders.

The importance of the simulation modelling was not to provide a direct comparison to the

real data, but to determine whether a somewhat generic, simplistic simulation of an aspect-

dependent target could be used to estimate unknown characteristics of an actual target.

6.2.3 Results

The scattering data collected during the experiment was converted into example vectors of

N length using the method described for classification in Section 5.1.2. The value of N

was varied to assess the impact of the quantity of data collected on the quality of the angle

estimate. Figure 6-6 shows the probability density function with respect to estimated angle

empirically derived for different values of N for both aspects. With a value of N = 1500,

or 25 minutes of data collection, the estimates for both target orientations converged to a

solution: ~7 = 1100 for the first target aspect and ~ = 350 for the second. These results

matched the location of glints and minima in the radiation patterns of the real data. The
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Figure 6-6: Probability density function over estimated angle for varying values of N for the
two target orientations. The first orientation converges to a value of ' 1100, the second
to a value of '' = 35".
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estimates were also 74 degrees apart, which was consistent with the expected 78 degree

change in ship position between the two data sets for a target at (170,155).

6.3 Seabed Ripple Anisotropy Angle Estimation

Figure 6-7 shows the effect of bottom ridging directionality on the location of minima and

maxima in the bistatic scattered field. These changes to the scattered field due to anisotropy

direction can have a significant impact on target scattering [7]. The goal of this research is

to produce a set of algorithms and processes to estimate the anisotropy of ripple fields using

AUVs. This information could be used to enhance performance of bistatic target detection,

localization and classification.

The basic configuration for this method is illustrated in Figure 6-2. A source, fixed

relative to the bottom patch, insonifies a region on the bottom and an AUV samples the

scattering data around that insonified patch. A model is trained using a set of example

vectors mapping scattering amplitudes from a comprehensive data set to sampling location

along an AUV path. This model is then used in real time by a vehicle to estimate of

anisotropy angle, y, based on scattering amplitude data.

6.3.1 Background

There are a number of papers that discuss methods for the estimation of various seabed

parameters from scattered field data, including several that utilize machine learning tech-

niques.

Schmidt and Lee [7] explored the effect of anisotropic rough bottom scattering from

different directions on 3D bistatic scattering from seabed targets, and described the devel-

opment of an anisotropic ripple field scattering simulation module, used here to explore the

possibility of estimating bottom roughness using bistatic data.

Kevin Williams[40] constructed a model for forward scattering and collected bistatic data

on a mobile receiving array and compared models to data in the forward scattering direction,

but did not attempt to estimate bottom parameters using that bistatic data. Bishwajit et.

al. [41] and Huang et. al. [42] discuss the use of multibeam backscatter data to determine

seabed types and parameters using techniques that include Neural Networks. Dosso et.

al. [43] and Steininger et. al. [44] used inversion techniques to estimate seabed roughness
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Figure 6-7: Example Anisotropic Goff-Jordan rough bottom ripple fields and resulting scat-

tered fields.
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from acoustic scattering and propagation. De et. al. [45] looked at using echo-sounder

backscatter data to estimate sea floor roughness, and Manik [46] used backscatter from the

sea bottom to estimate bottom properties.

These techniques focus on estimating parameters such as spectral scattering coefficients

or bottom composition, and do not provide direct information on the rough interface geom-

etry. Becker [47] examines a method for estimating the surface height power distribution of

bottom roughness using backscattering strength. Several techniques also exist for eliminat-

ing the rough interface scattering noise from sidescan sonar data[48.

Unlike the method presented here, these methods utilize backscatter strength or propaga-

tion information rather than directional 3D features that show up in the bistatic scattering

field. Attributes of the full three dimensional bistatic scattered field can be exploited in

the estimation of bottom characteristics by insonifying a region of ocean bottom using an

acoustic source and collecting acoustic data using an AUV fitted with a hydrophone array.

6.3.2 Simulated Scattered Field Data

Because real 3D bistatic scattered field data for different angles of bottom anisotropy was

unavailable, simulated data was used to develop and test the anisotropy regression methods

discussed in this paper. Scattered fields were modelled using the scattering simulation

package with Goff-Jordan anisotropic power spectra[8].

Figure 6-8 shows the environmental and source parameters used in generating scattered

field data. The source is located at 30m depth and 100m from the patch being insonified on

the bottom. The environment is modelled as a waveguide, with an air layer, a 100m deep

water layer, and a fluid sand bottom.

Table 6.3 shows the parameters used in the creation of the simulated scattered field data.

These parameters were selected based on those chosen by Lee in his thesis [9]. The insonified

area is modelled as a 20m by 20m rough patch. A Goff-Jordan Power Spectrum is used,

with a root mean squared (RMS) roughness height of 0.1m, a major correlation length of

2m and a minor correlation length of 0.01m. Scattered fields are simulated for anisotropy

directions between 0 and 90 degrees at 15 degree increments. A few of the simulated rough

bottom patches and their resulting scattered fields can be seen in Figure 6-7.
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Figure 6-8: Environmental and source parameters used in rough patch scattering simulation.
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6.3.3 Results

Scattered field data was simulated using the parameters in Table 6.3. The outputs of the

scattering simulator are data files that contain the azimuthal Fourier orders for the scattered

fields. For each field the amplitudes on a fine grid were calculated, and that amplitude data

then sampled into training, validation, and test examples. 4000 example paths were used

for training, 2000 for validation and 2000 for testing. Since there are seven scattered fields

sampled by each path, the training set Xt consists of 32000 examples, the validation and

test sets X, and Xx each consist of 14000 example vectors. The training, validation and

test sets were all constructed using the number of samples N = 720. The additional test

set used for confidence estimation with varying values of N, Xc, consisted of 12000 paths

(84000 examples). These are large numbers of example vectors, but they are randomly

selected from the possible AUV sampling from a grid of amplitude values. A similar grid

could be constructed from real AUV-sampled data.

Feature Space Selection

The same model parameters were used to assess all values of AO, and the total number

of points sampled by the AUV was kept constant. For each tested value of AO, a normal

distribution was fit using least squares to the PDF of the estimation error d. The standard

deviations of these normal distributions were compared to select the best feature space:

a lower standard deviation indicates higher accuracy in angle estimation. The final value

selected from a search over AO was AO = 50, resulting nF = 72 as the number of features.

SVM Model Parameter Selection

The SVM kernel used for the final model was linear, and the value for C was selected using

a logarithmic search over results from the validation set. The final value was C = 0.001.

The magnitude of the normal vector (k1wHj) for the trained model was 2.43, indicating the

low model complexity expected from a linear model.

Regression Results from Test Set

The test set was used to asses the validity of the model selected using the validation set.

Within the test set, each example vector represents an AUV path through the field, with
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Figure 6-9: P(I dmax < m), calculated by finding the percentage of paths that resulted in less

than m degrees error from regression of the test set X,. The curve shows the characteristics

of a Gaussian CDF.

data collected at identical locations across all seven scattered fields. Figure 6-10 shows a plot

of the probability that a paths will have less than m degrees maximum error, P(Idmax < m),

where m is an error magnitude in degrees and dmax is the maximum regression estimation

error based on data collected on along the same path through the scattering fields from the

seven anisotropy angles. These probabilities were calculated by finding the percentage of

paths in the test set X- that has a regression estimation error of less than m degrees. These

results show that the model was highly successful in estimating anisotropy angle in this data

set, with 100% of paths resulting in a maximum estimation error dmax of less than 20', 91%

showing a maximum error of less than 10' and 18% with a maximum error of less than 50.

The test examples have a number of samples N = 720, so this indicates that with 12 minutes

of data collection around the insonified bottom patch, it is possible to get less than 10' error

with greater than 90% confidence. The plot also looks like the cumulative distribution

function (CDF) for a Gaussian distribution. Figure 6-10 shows the true anisotropy angle

versus estimated anisotropy angle for Idmax < 3'. Each line represents a single AUV path

through the field, with data collected at identical locations across all seven scattered fields.

The confidence estimation set X, included examples with differing values of N so that
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Figure 6-10: True anisotropy angle -y versus estimated anisotropy angle for paths in test

set Xx that resulted in maximum anisotropy error of less than 30. Each blue line represents

the anisotropy estimation values for a single geometric sampling applied across the tested

anisotropy angles. The red line represents a perfect regression result, where -y = ~.

the effect of number of samples on model accuracy could be assessed. Figure 6-11 shows the

relationship between the PDF of the anisotropy error, fD(d), and the number of samples,

N. These plots show approximately Gaussian distributions with standard deviations that

decrease as N increases. Normal distributions were fit to these curves using least squares.

Figure 6-12 shows the nearly linear relationship between log(O) and log(N) and the least-

squares linear regression fit of log(cr) = -0.44 log(N)+4.64. A was found to be approximately

constant relative to theta. A model K(a(N), p = -0.5) where log(o(N)) = -0.44 log(N) +

4.64 was compared to the error distribution for each value of N using pair-wise two-sample

t-tests. In this test, the null hypothesis was that the model and the actual error distribution

were drawn from the same normal distribution. All resulting p-values were greater than

0.99, indicating the likelihood that the error data were drawn from the same distribution as

the model data was in excess of 99%.

Pair-wise two-sample t-tests were also used to look at the relationship between the PDF

for each anisotropy angle and the model K(i(N = 720), p = -0.5). The resulting p-

values ranged between 0.994 and 0.998, indicating that the error distributions for the seven
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anisotropy angles were drawn from the same normal distribution as the model with high

probability and suggesting that D(N, 7) ~ D(N).

The functional relationship between N and a was used along with a lookup table for

the CDF of a standard normal distribution for calculating the confidence of an anisotropy

estimate as a part of the regression processing chain.

Fy (y) = P(Y < y) = 1/ V/(27r) fY e_ 2 /2dt (6.5)

Where Fy(y) is the CDF for a standardized angle error y and Y is the random variable

associated with y. To get the probability that an anisotropy estimate ~' has an error less

than m given the vehicle has collected N samples, the standardized value of the error m is

first calculated based on estimates for P(N) and o(N).

y = (m - p(N))/o-(N) (6.6)

Next, a standard normal distribution lookup table is used to find the probability that the

error is less than that value.

P(IDI < mIN) = P(Y < y,Y > -y) = 2P(Y < y) - 1 = 2Fy(y) - 1 (6.7)

This allows the AUV to quickly access confidence of a given measurement while storing

a single lookup table of CDF values and the dependence of p and a on N. The linear

relationship between between log(o) and log(N) makes predicting error and confidence in

angle estimate for new values of N.

Testing in MOOS-IvP Simulation Environment

The real-time regression processing was tested in the MOOS-IvP simulation environment

(Figure 6-13). The SVM model, feature space, and confidence model files were specified in

the configuration of pSVMRegress. A simulated vehicle was then launched, and commanded

in a regression mission around a simulated rough patch 100m from the source. The full

processing chain ran in real time, coming up with progressive estimates of the anisotropy

angle as the vehicle circled the target, until the regression confidence reached 95%. This was

repeated with different simulated source locations and different anisotropy angles. Running
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Figure 6-11: PDFs of anisotropy error, fD(d), versus anisotropy error in degrees, d, for

several values of N from analysis of error data. Note that the error is clearly Gaussian

in distribution and as the time spent sampling the scattered field increases, the standard

deviation decreases while the mean remains approximately the same. Gaussian models were

fit to this data to estimate mean and standard deviation for different numbers of samples

and used to estimate confidence.
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Figure 6-12: The log-log linear relationship between the number of samples N and the

standard deviation of the PDF of the error, o. The circles show the values derived from the

data, and the line shows the least squares best fit of log(o-) = -0.44log(N) + 4.64.

the processing chain in these simulations demonstrated the plausibility of real-time ripple

field anisotropy estimation with onboard processing on an AUV.

6.4 Conclusions

6.4.1 Cylinder Angle Estimation

The Massachusetts Bay Experiment was an excellent test of the target characterization

technique proposed in this thesis. The source location was uncertain as it was located on

a ship swinging at anchor, with a software trigger that caused a 5ms jitter in firing time

relative to the CSAC PPS reference. The acoustic source was also omnidirectional, only

147dB, and far further from the targets (100m instead of 60m). The actual target location

and orientation were not known during the experiment as the steel pipe was dropped off the

back of the ship and the position approximately estimated via GPS (the original estimates

were 15-20m off of the final estimates). Only half the sonar aperture was available as the

second 24DSI12-PLL board malfunctions, so that only the first 8 channels were available

for processing. Despite the challenges, the acoustic data collected during this test was,
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Figure 6-13: Simulated AUV circling a simulated insonifies bottom patch, with SVM Re­
gression for estimation of anisotropy angle . 

if anything, better than that collected during the BayEx'14 experiment . This could have 

occurred because of the slightly deeper water, the sand bottom, or the lack of clutter. 

Training a SVM regression model on simulated scattered fields of cylinders of different 

orientations then estimating the orientation of the real pipe in the experiment was very 

successful. After 1400s of data collection, both orientations converged to a solution that 

was consistent with the change in ship position between aspects and with observed features 

in the scattering radiation pattern. This excellent performance was despite the fact that 

the simulation model was not a very good match for the experiment conditions and the fact 

that the scattering patterns for the 110 degree aspect do not look visually similar between 

real and simulated cases. The model is clearly able to pick out the important features in 

common, ignoring the details in scattering pattern that makes matching difficult , in this 

case, for a human observer. The success in estimation despite the differences between the 

model and real target geometry suggests that a similar method might be tried to estimate 

the orientation of a variety of aspect-dependent targets , including those with more complex 

geometries. 

6.4.2 Ripple Angle Estimation 

The generation of SVM regression models and use of those models in estimating the angle 

of bottom ridging in a real-time simulation environment was successfully demonstrated. 
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This work shows the potential of using the bistatic scattered acoustic field from bottom

ripples to estimate anisotropy angle. There are several avenues of further work that should

be pursued, given the success of this initial work. The results shown here are based on

simulated scattered field data, but to confirm the viability of this methodology it should be

tested using real acoustic data, either small scale or from full scale experiments. Because

the software used in performing model training, analysis and real-time regression is agnostic

on whether the data comes from a model, data collected by an AUV or another source, this

could be done with any full bistatic data set over the range of desired anisotropy angles. It

would also be valuable to explore in simulation whether the same regression and confidence

models could be successfully used with changes in environment, such as sound speed, depth,

and bottom composition. Overall, the simulation results show that this method has promise

and warrants further investigation.
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Table 6.1: Variables used to describe regression for angle estimation.

b Offset from origin of regression solution
C SVM trade-off variable
Fn Feature number.
nF Number of features.
ns Number of samples per feature.
rs Range to target of an acoustic sample.
AO Step size in angle used to define feature space.
w Normal SVM regression function
Xi Example vector for SVM

yi Label for the example vector xi (for cylinder an-
gle estimation yjyj,for bottom angle anisotropy
estimation 'Yaniso,i)

ZS Depth of an acoustic sample.

Zmax Maximum depth.
d Angle estimation error in degrees.
dmax Maximum angle estimation error for a single

path, tested across all anisotropy angles.
D Random variable that describes the distribution

of the angle estimation error.

y Angle of anisotropy regression or cylinder rota-
tion regression
Estimated anisotropy angle or cylinder rotation
angle

E SVM regression error tolerance
m Magnitude of angle estimation error in degrees,

|d|.
j, cj* Slack variables

0S Azimuth, relative to source-target line, of an
acoustic sample.

N Number of acoustic samples taken around cylin-
der target or insonified rough patch.

Table 6.2: Parameters for target scattering simulations for cylinder regression.

Parameter Description
r Cylinder radius
h Cylinder height
Roll Roll of cylinder

p Density of fluid inside cylinder

CP Compressional soundspeed of fluid inside cylinder
ap Attenuation of fluid
Pitch Pitch of cylinder

Value
0.2286m
1.5m
90 degrees
'1000
1500
0.02 dB/A
[0,5,10,..., 175]
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Table 6.3: Parameters for simulating anisotropic ripple fields.

Description
Number of grids in x direction
Number of grids in y direction
Length of patch in x direction
Length of patch in y direction
Major correlation length (m)

Minor correlation length (m)

Angle of anisotropy in degrees
RMS roughness height (m)
Window type

(in)

(in)

Value
512
512
20
20
2
0.01
[0,15,30,45,60,75,90]
0.1
Hanning
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nx
ny
sx
sy
c1
c2
sk
rm
window
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Chapter 7

Future Work and Concluding

Remarks

7.1 Future Work

The success of AUV sampling of amplitude-based bistatic radiation patterns for characteri-

zation of simple target geometries shows the potential of this approach and opens the door

for further research. Simulation studies using the MOOS-IvP simulation environment and

scattering simulation interface were used to test real-time processing and classification, but

the real test would be running the full processing chain on an AUV collecting data around

real targets. An additional scattering experiment, allowing a full closed-loop demonstration

of target localization and classification using a simulation-based SVM classification model for

the environment and expected targets, would be an important addition to this work. Moving

forward, it would also be extremely interesting to collect bistatic data from more complex

targets and attempt classification for less regular shapes, buried targets, and clutter.

Another avenue for future work would be to look at a similar technique with a slightly

different problem formulation. One of the limitations of this methodology is the aspect-

dependence problem: the orientation of the target relative to the acoustic source significantly

changes the scattering pattern. This makes regression for estimation of target orientation

a possible and necessary part of the target characterization process. Estimating the target

orientation takes 5-10 times longer than a simple shape classification. To eliminate this

issue, the problem formulation could be extended from bistatic to multistatic, to a scenario
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in which one AUV is used to insonify a target area while another collects bistatic data.

This would be a more mobile approach and would solve the orientation-dependence problem

encountered for aspect-dependent targets that requires separate classification and regression

steps. The Massachusetts Bay experiment showed that a lower powered source with >10m

location uncertainty did not invalidate the bistatic results, which suggests that the navigation

uncertainty of a AUV-based source would not invalidate this method.

7.2 Concluding Remarks

In the air and on the ground, robotic systems maintain constant high-bandwidth commu-

nication to an operator, who assists with classification and prosecution tasks similar to

those being attempted with AUVs today. The limitations of underwater communications

mean that, for effective underwater missions, more of the critical decision making must be

conducted onboard without the benefit of human guidance. However, many of the sensing

technologies and most of the classification techniques currently being used in Mine Counter-

measures follow the traditional paradigm, requiring human interaction and transfer of large

amounts of data at every part of the mission from localization to classification to prosecution.

The final approach presented in this thesis meets both requirements for real-time AUV-based

target characterization outlined in the introduction to this thesis: an inexpensive sensing

payload and a classification method that can be run in real-time on an AUV computer.

While further work will be required to show applicability to different target types and envi-

ronments, the feasibility of using bistatic angle dependence of target scattering amplitude for

characterization of sphere and cylindrical target geometries was successfully demonstrated.

This thesis developed a sensing technique and classification methodology for seabed

targets that can be run entirely on an AUV, without requiring vehicle recovery and rede-

ployment, postprocessing of data, or human interpretation of images. While it has long

been known that the radiation pattern from a target is distinctive, this work demonstrated

how to collect that data in the real world using an inexpensive hydrophone nose array and

process it for the classification and parameter estimation of targets. Chapter 3 described the

payload design required for precision data acquisition of bistatic acoustic data. This payload

was successfully used in the AUV Unicorn for collecting bistatic acoustic scattering data

in two shallow-water scattering experiments, as described in Chapter 4. The classification
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and regression methods for characterizing target geometry were demonstrated using the real

data and data from scattering simulations in Chapters 5 and 6. These techniques, demon-

strated successfully on simple target geometries, show great potential for fully autonomous

target characterization with all signal processing, classification and confidence estimation

conducted on an AUV.
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Appendix A

OASES-SCATT Parameters

This appendix includes the OASES and SCATT configurations necessary for replicating the

simulations described in this thesis. This includes oast .dat files, oast3 .dat files and target

parameters for spherical targets, cylindrical targets, and bottom ripple patches. The .trf

generation code can be run in bash after installing Scatt and Oases packages.

A.1 BayEx'14 Simulations

Below are the files, bash code and parameters used for generating sphere and cylinder

scattered fields to match the BayEx'14 experiment conditions.

A.1.1 oast file: bayex.dat

oast data file0for space free, and source at 3_60 deg

N P E
8000 8000 1 0

9
0 340 0 0 0 0.0012 0 0
0 1524 0 0 0 1.0 0 0
1 1525 0 0 0 1.0 0 0

3 1528 0 0 0 1.0 0 0

5 1530 0 0 0 1.0 0 0

6.5 1530 0 0 0 1.0 0 0
7.5 1575 0 1 1.5 1.7 0 0
8.5 1800 0 0.1 0.2 1.8 0 0

11 1800 0 0.1 0.2 1.8 0 0
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3
0 11 100 41

1763 1763
-1 1 1
0 0.06 20 0.012
0.5 6 0 0 1 0

A.1.2 oast3 file: bayex sca.dat

oast3 data file free for 360 deg
N r d J f
8000 0 0.0

9
0 340 0 0 0 0.0012 0 0
0 1524 0 0 0 1.0 0 0
1 1525 0 0 0 1.0 0 0
3 1528 0 0 0 1.0 0 0
5 1530 0 0 0 1.0 0 0
6.5 1530 0 0 0 1.0 0 0
7.5 1575 0 1 1.5 1.7 0 0
8.5 1800 0 0.1 0.2 1.8 0 0
11 1800 0 0.1 0.2 1.8 0 0

100 20
3
0 11 100

1400 1E8

-1 1 1 1
0.0 0.0012 51

A.1.3 Target files

sphere.dat

0.3
0.0153
7975
5773 0.01
3100 0.02
1.2
340 0.01
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cylinder.dat

0.1524

0.1524

0.9144

A.1.4 Sphere .trf generation code

oast bayex
sphcvs_3d -fluid bayex 32 1024 < sphere.dat

oast3 bayex-sca bayex

A.1.5 Cylinder .trf generation code

oast bayex

vsccvs -rigid -trapezoid bayex 32 1024 30 24 90 < cylinder.dat
oast3 bayex-sca bayex

A.2 Massachusetts Bay Simulations

A.2.1 oast file: mbay.dat

oast data file0for space free, and source at 3100 deg

N P E

8000 8000 1 0

8

0 340 0 0 0 0.0012 0 0

0 1500 0 0 0 1.0 0 0
1 1500 0 0 0 1.0 0 0
6 1500 0 0 0 1.0 0 0
7 1500 0 0 0 1.0 0 0
14 1500 0 0 0 1.0 0 0
15 1800 0 0.1 0.2 1.8 0 0

17 1800 0 0.1 0.2 1.8 0 0

3
0 11 100 41

2154 2154

-1 1 1
0 0.1 20 0.02
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0.5 6 0 0 1 0

A.2.2 oast3 file: mbaysca.dat

oast3 data file free for 3_100 deg

N r d J f
8000 0 0.0

8

0 340 0 0 0 0.0012 0 0
0 1500 0 0 0 1.0 0 0
1 1500 0 0 0 1.0 0 0
6 1500 0 0 0 1.0 0 0
7 1500 0 0 0 1.0 0 0
14 1500 0 0 0 1.0 0 0
15 1800 0 0.1 0.2 1.8 0 0
17 1800 0 0.1 0.2 1.8 0 0

100 20
3
0 11 100

1400 1E8

-1 1 1 1

0.0 0.002 51

A.2.3 Target file, cylinder.dat

0.2286

0.2286
1.5

1000
1300 0.02

A.2.4 Cylinder .trf generation code (run in bash after installing Scatt

and Oases packages)

(Replace "$pitch" with desired target rotation. Values [0,5,...,1801 were simulated for the

analysis in Chapter 6)
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oast mbay
vsccvs -fluid -trapezoid mbay 32 1024 30 $pitch 90 < cylinder.dat
oast3 mbaysca mbay

A.3 Ripple Field Simulations

A.3.1 oast file: deepaniso.dat

oast data file0for space rough, and source at 30_100 deg
N J E C P
1000 1000 1 0

6
0 340 0 0 0 0.0012 0 0
1 1500 0 0 0 1.0 0 0
97 1500 0 0 0 1.0 0 0
99.5 1500 0 0 0 1.0 0 0
100 1800 0 0.1 0.2
101 1800 0 0.1 0.2

1.8 0 0
1.8 0 0

30

0 110 100 41
2615 2615

-1 1 1

0 0.1 20 0.02
0 101 5 20
30 90 3
0.50 4 512 512 20 20

A.3.2 oast3 file: deepanisosca.dat

oast3 data file rough for 30100 deg
N r d f
1000 0 0.0

6

0 340 0 0 0 0.0012 0 0

1 1500 0 0 0 1.0.0 0
97 1500 0 0 0 1.0 0 0

99.5 1500 0 0 0 1.0 0 0
100 1800 0 0.1 0.2 1.8 0 0

101 1800 0 0.1 0.2 1.8 0 0
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100 20
30
0 110 100

1400 1E8

-1 1 1 1
0.0 0.002 51

A.3.3 Target file, rough.dat

Replace < gamma > with the desired anisotropy angle.

512
512
20
20
2
0.1
<gamma>
0.1
3
1

A.3.4 Rough patch .trf generation code for RGJ power spectrum

oast deepaniso
fvdct deepaniso
mp2 -f deepaniso-mp < rough.dat
fvpcvs deepanisomp.dat deepaniso.dct
oast3 deepaniso-sca deepaniso-mp-deepaniso
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Appendix B

Alternative Feature Spaces

In addition to the angularly dependent feature space discussed in Chapters 4 and 5, two

more complex feature mapping schemes were explored: a cylindrical representation described

by values rstep, Zstep, and 9 step, and a representation selected via k-means clustering of the

differences in amplitude in the 3D scattered field.

B. 1 Uniform feature space

R-step

F Z-step

@-step

Figure B-1: Uniform feature space geometry. Values of rstep, zstep and Ostep are selected

using a reducing grid search.

The simpler of the two features space representations is shown in Figure B-1. The space

between the source and target is broken into cells that measure rstep x Zstep x 9 step. Each

example vector, (xi, yi), is constructed by mapping each geometric location that has been

sampled by the AUV, (r8, z,, 6) and its associated value A8, to a feature number F" using

equation (B.1) and labelled based on class. The feature number is calculated as a function
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of the location of the sample (r8, z, 0,) and step sizes of range, depth, and azimuth and

maximum depth.

Fn = jL nmax,a + I sJInmax,onmax,z + + 10

nmax,O = 27r/Ostep . (B.1)

nmax,z = Zmax/Zstep

When multiple samples are collected from the same feature, the median amplitude is

taken. For example, if there are three samples at points that map to feature F, the value

An will be the median of the three amplitude values. This calculation is performed for each

geometric point the AUV has sampled, such that the feature vector is composed of a number

of feature-value pairs and the label yj becomes the anisotropy angle.

[i = {{F1, A1], ... , [FN, ANI

I if sphere . (B.2)
yi =

-I if cylinder

This is a rapid calculation that can easily be performed on an AUV. The values of

parameters that describe the feature space, 6 {rstep, Zstep, Ostep}, are selected using the

process shown in Algorithm 4 in a design of experiment reducing grid search similar to

that described by Staelin in "Parameter Selection for Support Vector Machines"[49] for the

purposes of selecting SVM input parameters.

Algorithm 4 Calculate 6*

i +- 0
rstep,o 1 [rstep,,min, rstep,o,min + (rstepomax - rstep,O,min)/2, rstep,o,max

Otep,o + [ 9 step,o,min, 6 step,O,min + (Ostep,O,max - Ostepomin)/2, 9 stepOmax]

Zstep,o + [Zstep,O,min, Zstep,O,min + (Zstep,o,max - Zstep,,min)/2, Zstep,o,max]

while (max(rstep,i) - min(rstep,i) > 1 and max(zstepi) - min(zstep,i) > 1 and
max(,tepj) - min(6,t,,) > 1 and 6*! = 6* I do

stepol zstep,il tstep,i] = FindB est Point (rst, p,i, 7ZstepJ7, Ost,,)
step,i rtepi step,i

rstep,i+1 = Ref ineGrid(rstep,j, r*tepi)

Zstep,i+1 = RefiineGrid(zstepI, Zs*tep,i)
Oj+1 = Ref ineGrid(Ote,,i, 0*tep,i)

end while
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Algorithm 5 FindBestPoint(r, z, 0)

Vmax <- 0
for r in ri do

for z in zi do
for 0 in Oi do

V = Value(r, z, 0)
if V > Vmax then

r * r

Z* z

0* + 9
end if

end for
end for

end for
return [r*, z*, *]

Algorithm 6 Ref ineGrid(dj, d*)

A = max(di) - min(di)
if d* + A /2 < max(di)and d* - A/2 > min(di) then

di+j = [d* - A/4, d , d* + A/4]
else if d7 + A/2 > max(di)and dc' - A/2 > min(di) then

dj+= [d* - A/4, d*, d* + A/2]
else if d* + A/2 < max(di)and d* - A/2 < min(di)and d* - A/2 > 0 then

dj+1 = [d* - A/2, d*, d + A/4]
else

dj+1 = [d - A/4, di, d + A/4]
end if
return dj+1
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B.2 K-means

The second feature space was selected using unsupervised machine learning in the form

of k-means clustering to determine the geometrical mapping for r, z, 0 location to feature

numbers. Each point in the scattered field was first represented as a location xi = [Xi, yi, zi)

with an associated value dA, where dA is the difference in amplitude between the sphere and

cylinder data at point x. Algorithm 7 describes the process used to determine the mapping

of the points, X ={x, ..., xN}, to a set of centers, M {m1 , ... ,mK} using the following

cost function:

c(xi, mj) = wo(H xi - mjjj) + wi(|ldAxi - dAmjj|) (B.3)

Algorithm 7 K-means feature selection

C* = 10000000
for 1 = 0 to 100 do

Randomly select K random cluster means M(O) = {mi, ... , }
repeat

Assignment: Assign each data point xi to the closest cluster mean {mi, ... }:

C(i) = argmin(c(xi, ink)), s.t.1 < k < K (B.4)
Mk

Update: Minimize the total variance for the cluster C with respect to {mi,... , mK},
yielding a new set of means m(l).

until The assignments do not change.

if EO<<K C(i) < C* then
M* = M(l)
C* EO<i<K C(i)

end if
end for
return M*, C*

B.3 Comparison of feature spaces

The angular feature space outperformed the uniform- and k-means feature spaces in all

tested metrics. Figure B-2 shows plots comparing the performance of the three formulations.

The extra dimensionality of the uniform feature space meant that a radial basis function

kernel was required in training, adding significant complexity and decreasing robustness to
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Figure B-2: Comparison of performance of three tested feature spaces.

navigation error. The K-means feature space was highly dependent on a match between the

model used to train the feature space and the eventual data being classified. This resulted

in poor robustness to small changes in environment and target parameters. As observed

in Ch. 2, the clearest features in the bistatic scattered field are azimuthally dependent

minima and maxima in the radiation pattern. These features are best captured by the

angularly dependent feature space, which gives the least complexity and best classification

performance of the tested feature selection methods.
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Appendix C

Software for SVM Example Vector

Set Generation

To facilitate the creation of SVM files for model creation, validation and testing from real or

simulation data sets, the AutoGeneration code was developed. This software uses a SQLLite

database backend, and performs all functions to go from a configuration to the independent

training, validation and testing example vector sets used in this thesis. In simulation, the

process uses configuration information to first generate appropriate OASES-SCATT simu-

lation models then sample that data into example sets. For real data, an amplitude file

describing the data collected by the AUV is written either in real time or simulation from

MOOS-IvP processing of acoustic data files. This file is then used to generate training,

validation and test examples.
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C.1 Simulation

Figure C-1: Autogeneration

Initialization

TRF Generation

Amplitude Calculation

Example Generation

SVM File Generation

process to produce SVM files for simulation data.

Figure C-1 shows the steps to produce the SVM files used in training and analysis us-

ing scattering simulation. The process is first initialized using a set of configuration files,

OASES-SCATT called to generate azimuthal fourier order files based on the configuration,

the scattering amplitude grid calculated, examples formed and finally SVM files written

using independent example vector sets.

C.1.1 Initialization

From a terminal, the python script runScriptTRFoSVM.py is called with two to five

inputs: a configuration flag, a database name, and three optional True/False falgs that can

circumvent parts of the SVM file generation procedure for expediency. For example:

> python runScriptTrftoSVM.py bayex14 bayexdata

would run the script using the "bayexl4" configuration and put the data into the

database "dbs/bayexdata". This database is created if it does not already exist.

The script runScriptTrftoSVM used hte configuration flag to determine which defini-

tions files to use in the generation of scattering models with OASES-SCATT, the formation

of test example vectors nad the compilation of training, test and validation data sets. Six

file types define this set of data:

1. Geo files: describes the target.
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2. Oast files: describes the environment and parameters for OASES-SCATT simulations.

3. Source file: defines the source frequency, range, and depth.

4. SVM configuration file: includes parameters for forming example vectors from data

and training, validation and test sets/files from example vectors. Also describes if

the data sets being created are for classification or regression and what the regression

variable is.

5. Positive class file: defines the target characteristics that constitute a positive class

label for classification.

6. Rough files: defines parameters for the addition of rough bottom scattering to target

scattering if desired.

An example configuration block for the "bayexl4" flag in runScriptTRFtoSVM.py is

shown below:

if gen =='bayexl4': #Based on actual BAYEX experiment parameters

geo-vec = ['sphere-fluidBAYEX.def','trapezoid-rigidBAYEX.def']
rough-vec=[]
src.file='srcBAYEX.def'
pos-class-file='posclass-sphere.def'
svm-f ile=' svmparamnangdep_9deg. def'
oastfile='OastDataSVMWbayex.def'

Geometry File:

#variable definitions for fluid sphere
shape ='sphere'
space ='free'
type ='fluid'
Radius= .3
Thickness=.0153 #shell thickness
RhoShell=7975 #density of hte shell

Cp=5773 #speed of sound
Ap=.01
Cs=3100
As=.02
RhoFluid=1.2
CpFluid=340
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ApFluid=.01
pitch=0
roll=0
buried=0

Source File:

freq= [8000]
sr=[60]
sd=[3]

SVM File:

#example input file for svm parameters
astep=9#azimuth step (deg)
nSinF=10 #max number of points sampled per feature
nF=40 #number of features sampled
nEx = 6000#number of examples to generate
dec-train=.5#percentage of examples to be used for training
decval=0.25#percentage of examples to be used for validation
sigma=0#standard dev. for zero-mean offset in x, y, z directions

OAST File:

COFF=0 #integration contour offset

DFRC=0.0 #freq increment for wide band
NL=6 #number of layers
layers =[[0,340,0,0,0,.0012,0,0],[0,1524,0,0,0,1.0,0,0],
[1,1525,0,0,0,1.0,0,0],[3,1528,0,0,0,1.0,0,0],
[5,1530,0,0,0,1.0,0,0],[6,1530,0,0,0,1.0,0,0],
[6.5,1575,0,1,1.5,1.7,0,0],[7.3,1800,0,0.1,0.2,1.8,0,0],

[11,1800,0,0.1,0.2,1.8,0,0]]

CC=1528 #compression wave speed: velocity, used to calc phase velocity
RD1=0 #first receiver depth
RD2=11 #last receiver depth
IR=41 #plot output increment
NR=100 #number of receivers
NW=-1 #number of wavenumber samples
IC1=1
IC2=1
RANGEPLOT='0 0.1 20 0.02'
TLOSSAXES='0.03077 4 0 0 1.06 0'
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IF=1

ST=100 #source type
FO=20 #max fourier order
nSInR=51#number of samples in range
tarLay=7
maxd=5#max depth in m for sampling
roughLay=5

Positive Class File

#pos -class

space= 'free'
shape=' sphere'
types='fluid'
geoid=-1
roughid=-1

Once the definitions files are selected the information from those files is checked and

entered into appropriate tables in the database. Where multiple targets, environments or

sources are specified, multiple data entries are made and used in generation of simulation

models.

C.1.2 TRF Generation

With all configuration data entered into the database, the information iused to write properly-

formatted files for use in generation of target scattering models with OASES-SCATT.

writeOastFiles.py takes in the database name and writes the oast.dat, oastsca.dat and

target.dat files for OASES-SCATT input (described in Appendix A). Once these files are

in place, the sequence of OASES-SCATT commands to produce the azimuthal fourier order

"TRF" file is run from getTRFFiles.py. This function uses the target parameters from the

database to determine which bash script to run. For the example given in initialization, it

would run free sphere model generation and free trapezoid model generation, setting up the

commands to run getSphereTarget.sh and getFreeTarget.sh. Different scripts are run for

spheres versus other shapes, for free targets versus partially buried targets, and for rough

patch scattering modelling.

Free sphere model generation script, getSphereTarget.sh:
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#!/bin/bash

#first input: file root
#second input: geo root
#third input: target shape
#fourth input: target type
#fifth: trf file
#sixth: pitch
#seventh: roll
#eigth: buried depth (0 = 50%)
#ninth: database name (folder under trfs)

pushd temp/

oast $1
#gets spherical target data for use with oast3
which sphcvs_3d
sphcvs_3d -$4 $1 32 1024 < $2.dat
oast3 $1'_sca' $1

trffile=$5'.trf'

cp $1'_sca.trf' '../trfs/'$9'/'$trffile

popd

Free shape model generation code, getFreeTarget.sh:

#!/bin/bash

#get non buried target using vsccvs

#first input: file root
#second input: geo root
#third input: target shape
#fourth input: target type
#fifth: destination filename (timestamp)
#sixth: pitch

#seventh: roll
#eigth: buried depth (0 = 50%)
#ninth: database name (folder under trfs)

pushd temp/
oast $1

which vsccvs
vsccvs -$4 -$3 $1 32 1024 30 $6 $7 < $2'.dat'
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oast3 $1'_sca' $1

#copy trf files:

trffile=$5' .trf'

cp $1'_sca.trf' '../trfs/'$9'/'$trffile

popd

The configuration used to make each scattering model is stored in the database and

associated with the appropriate trf primary key.

C.1.3 Amplitude Extraction

The python script next calls on matlab to read the binary .trf files and calculate the scat-

tering amplitudes form the contained azimuthal fourier orders at a grid in range, depth, and

azimuth. That grid is written to a plain text file. Once all .trf files are converted in this

way, the amplitudes are read from the output files into tables in the database.

C.1.4 Example Generation

At this point in the process, the database contains the amplitude "grids" of interest for all

SVM data sets and all the meta information used to create them. The next step is to convert

that data into example vectors that may be used to form independent training, validation

and test sets. The process here is for the angularly dependent feature space described in

Section 5.1.2, and is slightly different for the alternative feature spaces described in Appendix

B. The parameters used to create example vectors using the angularly dependent feature

space include astep (feature space step size in degrees), NSinF (approximate number of

points sampled per feature), nEx (total number of examples to generate).

Each example vector is pseudo-randomly generated using a "seed" value. For each fea-

ture, either NSinF, NSinF - 1 or NSinF + 1 random points are sampled, mimicking the

behavior observed in the real-world experiments.

The final locations and amplitudes are mapped to feature numbers, and the median

amplitude taken for each feature. A string of feature-value pairs is written to the database

along with the seed, amplitude key, and svm configuration key. nEx such examples are
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formed from each amplitude grid.

C.1.5 SVM File Generation

In the SVM File generation step, each example is assigned a label, grouped into the training,

validation or test set and written to file. The values of dectrain and dec val define the

percentage of the example vectors that are used in training, validation and test sets. The

label is determined for classification by the positive class file and for regression using the

configured regression variable. The database was used to determine the label of each example

vector. writeSVMFile.py is then used on each set to write training, validation and test files

used for training and analysis. These files are properly formatted for use with SVM-Light.

C.2 Real Data

Initialization

Example Generation

SVM File Generation

Figure C-2: Autogeneration process to produce SVM files for real data.

Generating SVM example vector sets from real data follows a slightly different procedure.

Before the data sets could be converted to examples for training and analysis, the mapping

of acoustic amplitudes to sampling locations had to be synthesised from the acoustic and

navigation data that made up an experimental data set. This was performed either in real

time (acoustic amplitudes calculated and written to file along with navigation information

as AUV collects the data) or in post-processing (logs are used to replicate the processing

that would have occurred in real time) within MOOS-IvP. The resulting file contained the

range, depth and azimuthal dependence of the acoustic data collected in the experiment.

Figure C-2 shows the process to go from this data to training, validation and test examples.

The process is very similar to that for simulation data from example generation onwards.

First, the acoustic amplitude data is written to the database. Example vectors are then

formed using sets of N sequential amplitude datum as described in Section 5.1.2. Sets of
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example vectors are written to SVM files in SVM file generation process identical to that

for simulation data.
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