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Abstract

One of the long term goals of Autonomous Underwater Vehicle (AUV) minehunting is to
have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acous-
tic methods for target classification using AUV-based sensing, such as sidescan and synthetic
aperture sonar, require an expensive payload on each outfitted vehicle and expert image
interpretation. This thesis proposes a vehicle payload and machine learning classification
methodology using bistatic angle dependence of target scattering amplitudes between a fixed
acoustic source and target for lower cost-per-vehicle sensing and onboard, fully autonomous
classification. The contributions of this thesis include the collection of novel high-quality
bistatic data sets around spherical and cylindrical targets in situ during the BayEx’14 and
Massachusetts Bay 2014 scattering experiments and the development of a machine learning
methodology for classifying target shape and estimating orientation using bistatic amplitude
data collected by an AUV. To achieve the high quality, densely sampled 3D bistatic scat-
tering data required by this research, vehicle broadside sampling behaviors and an acoustic
payload with precision timed data acquisition were developed. Classification was successfully
demonstrated for spherical versus cylindrical targets using bistatic scattered field data col-
lected by the AUV Unicorn as a part of the BayEx’14 scattering experiment and compared
to simulated scattering models. The same machine learning methodology was applied to the
estimation of orientation of aspect-dependent targets, and was demonstrated by training a
model on data from simulation then successfully estimating the orientations of a steel pipe
in the Massachusetts Bay 2014 experiment. The final models produced from real and sim-
ulated data sets were used for classification and parameter estimation of simulated targets
in real time in the LAMSS MOOS-IvP simulation environment.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Motivation

A growing application for Autonomous Underwater Vehicle (AUV) technology is the local-
ization, classification and mitigation of underwater hazards in shallow harbor environments.
The classification problem has attracted particular attention in recent years with the de-
velopment of visual and acoustic AUV-based sensors for remote data collection. Because
visual inspection of targets can be difficult or impossible in murky harbors and requires
precise target localization, acoustic sensors such as sidescan sonar and synthetic aperture
sonar (SAS) are used more extensively for AUV-based Mine Countermeasures.

At the current level of technology, these techniques can provide rich images of targets
and the environment but produce data that are difficult to use for real-time target classifica-
tion. Sidescan sonar systems are generally too high frequency for buried target localization
and classification. SAS images are usually computed in post-processing so that naviga-
tion corrections may be applied {1]. The current operational paradigm for the use of both
technologies requires a human in the loop for expert image interpretation. In addition to
these challenges to fully autonomous real-time classification of data from these systems, the
sensors themselves are too expensive to be practical in multi-vehicle operations.

To achieve plausible, real-time AUV-based target classification that is expandable to
distributed vehicle networks, two key advancements are required: an inexpensive sensing
payload and a classification method that can be run in real-time on an AUV computer
using onboard processing of sensor and navigation data. The advantages of such a sensing

system would be the ability to deploy multiple AUVs to carry out the target localization

21



Performing Localization/
—_— Classification

)

Source ' .

Figure 1-1: Multi-vehicle operation mission, where a fixed source insonifies a target field
while multiple AUVs sample the bistatic scattering fields around various targets.

and classification missions with immediate classification and confidence estimates to inform
prosecution decisions without having to recover and redeploy vehicles.

The goal for this thesis was to develop a payload and processing chain for target classifi-
cation using only bistatic acoustic data collected on an AUV’s linear hydrophone nose array
cut for low-frequency acoustic sensing (1-15kHz). The bistatic configuration and hydrophone
array were selected to limit sensing system cost: in the multi-vehicle scenario, a fixed acous-
tic source insonifies a target field while multiple vehicles with inexpensive payloads collect
bistatic scattering data around targets, as shown in Figure 1-1.

This thesis presents the AUV payload required to perform bistatic acoustic data collec-
tion, real-world bistatic acoustic data sets collected around spherical and aspect-dependent
seabed targets with that payload, and a machine-learning methodology that utilizes bistatic
angle dependence of amplitude features from the scattered field to classify target shape and
estimate the orientation of aspect-dependent targets. This approach was highly successful
for the classification of spheres versus cylinders and for the estimation of target orientation.
The results from real and simulated data for simple target geometries suggest that using fea-
tures of the bistatic acoustic scattering radiation pattern for target classification in real time
on AUVs is a plausible solution to the real-time target classification problem and warrants

further study.
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1.2 Historical Background

1.2.1 Bistatic Scattering from Seabed Targets

The vast majority of target scattering literature is focused on backscattering data from
monostatic sensing. However, there is a small body of theoretical and experimental work
looking at the bistatic scattering problem.

Bistatic scattering theory and models have been developed for simple target geometries
(sphere, spheroid, cylinder) in simple environments. The theoretical and numerical work on
bistatic scattering from spheres includes that by Gaunaurd and Uberall {2], which discusses
the free field bistatic form function of spherical targets and gives an example numerical
calculation. Hackman and Sammelmann describe the theoretical scattering from a spheroidal
target in an ocean waveguide, and include numerical results for the bistatic case [3]. While
the backscatter from finite cylinders for various aspects has been described analytically
[4] [5], the additional dimensionality of the bistatic problem means that the approach to
finding the bistatic scattered field is numerical. The analytical bistatic sphere scattering
formulation and Rumerman’s scattering model for cylinders [6] are used in the OASES-
SCATT acoustic simulation package developed by Schmidt and Lee [7] [8]. This acoustic
package was used to explore effects of environment, bottom composition and target geometry
on bistatic acoustic fields in Lee’s thesis, "Multi-static Scattering of Targets and Rough
Interfaces in Ocean Waveguides" [9]. Virtual scattering experiments using the OASES-
SCATT scattering simulator influenced this work by showing clear distinctions in bistatic
target scattering field characteristics.

Most of the limited experimental work on bistatic target scattering has been conducted
in the small scale, in water tanks and test ponds. For example, Baik, Dudley, and Marston
conducted an experiment where they looked at the bistatic response of different cylinders in
a test tank for the purposes of holographic imaging [10]. Kargl et. al. looked at the bistatic
scattering response of aspect-dependent targets in a test pond as a part of the PondEx10
experiment [11].

These experiments used moveable arrays that are not easily adapted to a harbor environ-
ment, and there have been very few attempts to collect bistatic acoustic data in situ with
AUVs. The GOATS98 experiment is a rare example of a successful AUV-based bistatic

scattering experiment: it included an AUV with a nose array, and produced data on the
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bistatic scattered fields off of fully buried, partially buried and proud spheres. Lepage and
Schmidt [12] and Edwards et. al. [13] describe the AUV experiment and using the array data
for Synthetic Aperture Sonar imaging. Synchronization was achieved using a vehicle-based
acoustic signal to trigger the source. The data was collected using lawnmower patterns
through the target field, which had the disadvantage of giving non-uniform data quality
and few data with the array at broadside to each target. The significant advances in many
areas since 1998 made a new experiment to collect bistatic data with an AUV valuable.
These areas of tremendous advancement include the computational power for real-time tar-
get tracking and classification, adaptive autonomy to allow more efficient data collection, the
existence of small, low-power, high-accuracy clocks for synchronization timing, and vehicle

navigation with less than 0.5% drift per distance travelled.

1.2.2 Target Classification

The more recent literature on using AUVs for Mine Countermeasures classification tasks
focuses on the use of monostatic and imaging techniques, often in high frequency. Examples
of these techniques include Synthetic Aperture Sonar (SAS) and sidescan sonar. These
methods have been shown to be effective for many target types and circumstances, but
the expense of developing and deploying these systems as well as the difficulty of using
the resulting data for real-time classification justifies investigation into alternative methods.
The AUV-based SAS work does not utilize the true bistatic field, but uses an array and
source together on an AUV to get a synthetic aperture, simplifying navigational constraints.
There are very few examples of using a SAS imaging approach with bistatic data: it was
attempted by Edwards et. al. as a part of the GOATS’98 experiment [13] and discussed
in a paper by Dudley and Marston, for experimental data collected using a rail source and
receiver [14].

Monostatic target classification using probabilistic methods is discussed in [15], which
attempts to classify targets using multiaspect backscatter, wave-based signal processing and
Hidden Markov Models (HMMs). In this method, a model is trained and then used to
classify new targets. This work demonstrates an empirical model-based approach to target
classification with a geometric feature space, though methods described use only backscatter
data, utilize a different aspect of the acoustic signal, and do not use a machine learning

approach to the classification.
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Several machine learning based target classification methods using backscatter informa-
tion and a frequency or time-frequency analysis of the target return have been published.
Kaminsky and Barbu looked at classification of buried cylindrical targets (such as cables)
using simulated data and a discriminant analysis method applied to a time-frequency im-
age [16]. Malarkodi et. al. investigated using Neural Networks for classification of target
type using a features space that was a statistical representation of the target return power
spectrum for a 40-80kHz Linear Frequency Modulation (LFM) chirp [17]. These techniques
differ from those described in this thesis in that they use features that include temporal or

phase information and only look at monostatic data.

1.3 Contributions

There are two important contributions of this thesis. The first is the bistatic data set
collected during the BayEx’14 and Massachusetts Bay experiments and the development of
the AUV payload for collecting that data. The second is the use of bistatic angle dependence
of scattering amplitudes with a machine learning methodology for target characterization,
which was demonstrated on simulated and real bistatic scattering data for the classification
spheres versus cylinders and for the estimation of rotation angle for aspect-dependent targets
and sand ripple fields.

Initial simulation studies provided the inspiration for using the relationship between
scattering amplitude and bistatic angle as a basis for target classification. Chapter 2 explains
some of the basic principles of target scattering, with supporting examples from simulation.

As discussed in the Historical Background section, very few bistatic scattering experi-
ments have been conducted in real harbor environments with AUVs. The challenges to a
successful AUV-based bistatic scattering experiment included timing, navigation, and col-
lecting uniform-quality data. Chapter 3 describes the acoustic payload designed and built
for precision timing of data acquisition on the AUV Unicorn for bistatic scattering experi-
ments and the characterization experiments undertaken to ensure that timing requirements
were met. Chapter 4 then explains the combination of hardware, signal processing, and
vehicle behaviors used to collect dense, high-quality bistatic scattering data sets around
spherical and simple aspect-dependent targets during the BayEx’14 and Massachusetts Bay

experiments using the AUV Unicorn. The resulting data sets are presented and compared
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to predicted scattering results from simulation. Chapter 5 explains the machine learning
classification methodology developed to use the geometric pattern of bistatic scattering am-
plitudes to distinguish spherical from cylindrical targets. The results from applying this
methodology on real and simulated data are then described, including features space and
parameter selection algorithms.

Chapter 6 describes the extension of the machine learning classification methodology to
regression problems for the estimation of cylinder rotation angles and seabed ripple field
anisotropy.

Finally, Chapter 7 presents the conclusions of this thesis and suggestions for future work.
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Chapter 2

Object Scattering In The Ocean

2.1 Overview

When a target on the ocean bottom is acoustically insonified, the target re-radiates the
signal (Figure 2-1). This reradiation consists of multiple time delayed echos that interfere
in the frequency domain.

For the problem of classifying underwater targets in real time using data collected on an
AUV, it was critical to identify features that were robust to several meters of error in vehicle
location, source location, and target location. The combined navigational uncertainty, plus
the computations limitations for data processing on an AUV, made using sensitive time and
phase information for target classification impractical. While these features are frequently
used for SAS imaging, they would be difficult to use in real time on a bistatic AUV system
because of the navigation errors inherent in an AUV system.

The interference of the time-delayed echos from target scattering result in frequency-
dependent minima and maxima in the bistatic radiation pattern from the target. These
scattering radiation patterns are distinct for different target types and are mostly dependent
on the bistatic angle of an amplitude measurement, showing range and depth independence
over meters or tens of meters. Bistatic angle is the angle between the source and the receiver
relative to the target. The concept for the classification techniques discussed in this thesis
is that these interference patterns in a given frequency band are stable and can be used to
characterize seabed targets.

The technology required for getting data on the bistatic radiation pattern is an AUV with

a linear hydrophone nose array, a data acquisition system, and signal processing software to
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Figure 2-1: Insonification of a target results in acoustic scattering, as the target re-radiates
the signal in multiple echos that interfere to form the radiation pattern exploited by the
characterization techniques discussed in this thesis.

calculate target scattering amplitude as acoustic data is collected around a target. Imaging
techniques are not required, as the dependence of scattering amplitude on bistatic angle can

be analysed directly.

2.2 Modelling Target Scattering with Wavenumber Integra-

tion

The wavenumber integration computational approach involves decomposing the acoustic
field in frequency and wavenumber, which makes it a good technique for propagation of target
scattering fields, as the dependence of the scattering radiation pattern is in the frequency
domain. While the models do not include multiple scattering or elastic scattering effects, real
scattering data showed the simulations to be generally effective at predicting the radiation
pattern for different targets and environments.

The OASES-SCATT scattering simulation package was used extensively in this thesis for
modelling target and bottom roughness scattering fields [7] [8]. This simulation package uses
the single scattering approximation [18], assumes an incident plane wave, and approximates
the target as a virtual point source with a specific radiation pattern[9]. The single scattering
approximation could be insufficient for accurately modelling temporal features of target

scattering, but is adequate for modelling minima and maxima of the interference pattern,
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of greatest interest in this thesis [7]. The plane wave approximation is appropriate for the
scenarios considered here as the source is in the far field from the target. Effects due to
layers in the medium are taken into account in the wavenumber integration approach, so
waveguide effects are included in the resulting models.

The simulation package uses 2-D wavenumber integration to propagate a plane wave from
the source to the target location. The equivalent virtual source radiation pattern is then
calculated for the target. For spheres, a volume scatterer approximation is used to directly
calculate the scattered pressure field from the incident pressure and boundary conditions.
Rumerman’s scattering model [6] is used to calculate the effective source function for finite
cylinder shells. 3-D wavenumber integration is then used to compute the full 3-D scattering
field from the spectral radiation pattern of the target at a set of ranges and depths for the
specified environment. The final output includes the azimuthal Fourier orders for a series of
ranges and depths from the target. In addition to target simulation, the scattering package
can model rough bottom scattering. This was used for modelling of anisotropic sand ripple
field bottom scattering to provide a second example of regression for parameter estimation
Section 6.3.

To interface the scattering simulation package with classification and regression soft-
ware, the custom AutoGen code was written. This code has a database back end that
allows reconstruction of all simulation experiments based on input parameters, and was
used for automatic generation of scattering fields based on target, source and environment

configuration. Appendix C describes this code in detail.

2.2.1 Target Scattering

The target scattering simulator was used to generate scattering models for the simple target
geometries used in this thesis. The assumptions about the target radiation patterns that
underlie this thesis were based on simulation data. The most important of these are the
persistence of radiation pattern features between ranges and depths for a given frequency.
Figure 2-2 shows the simulated scattering amplitudes for spherical and cylindrical targets
in a 6.5m deep waveguide for multiple depths, generated using the BayEx’'14 configuration
shown in Appendix A. The source is 3m deep, 8kHz, and 60m from the target. The simulated
water depth is 8m, with a mud bottom over sand.

For both target types, the clearest and most robust features are the bistatic angles of
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Figure 2-2: Simulated scattered field data at several depths.
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Figure 2-3: Simulated scattering amplitude dependence on angle & for spherical and cylin-
drical targets. # is calculated by setting the target at (0,0) and the source at (—60,0) such
that the source is at 180°.

amplitude minima and maxima in the scattered field. These features are only slowly changing
with depth and generally consistent in range from the target. The lobes of the radiation
pattern are also meters wide in the far field. Figure 2-3 shows the dependence of scattering
amplitude on bistatic angle, , across all depths and 20-40m range for the sphere and cylinder
case. The general location of minima and maxima within the pattern remains consistent with
different depths and ranges. These properties would make sensing of the overall radiation
pattern robust to several meters of AUV navigation error. Utilizing scattering amplitude
information has the additional advantage of being more robust to noise and interference than
temporal or phase information. Figure 2-4 shows the intensity-averaged radiation pattern
for spherical and cylindrical targets versus bistatic angle. Represented in this fashion, the
difference between the two target types is very clear, providing a good basis for AUV-based

target classification.

The aspect-dependence of cylindrical targets also causes distinct features in the bistatic
angle dependence of the radiation pattern. Figure 2-5 shows several cylinder rotations to
aspect angle v relative to the source and the resulting simulated radiation patterns versus
azimuthal angle relative to the source. The location of minima and maxima shift with aspect
angle, suggesting that the orientation of a cylinder could be estimated using a regression

model.
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2.2.2 Ripple Field Scattering

Similarly, the scattered fields from anisotropic bottom ripple fields have their most major
features in azimuth, rather than range and depth. Figure 2-6 shows the impact on the
radiation pattern of the anisotropy angle. Like with cylinder orientation, the radiation
pattern shifts consistently in a way that suggests the anisotropy angle could be estimated
using a regression model. These scattering simulations assumes a 100m waveguide with
a source at 30m depth, 100m from the insonified bottom patch. Within a 20-50m set of
ranges and 20m of depth, the location and strength of minima and maxima are consistent
and persistent. The mean or median scattering amplitude dependence on anisotropy angle

is distinctive.

2.3 Conclusions

Simulation experiments using a wavenumber integration-based scattering simulation pack-
age suggested that the dependence of target scattering amplitude on bistatic angle provides
robust features that could be used for target characterization. The use of these features,
rather than time or phase-based information, loosens navigation accuracy requirements to
what is plausible on an AUV. Additionally, target scattering amplitudes can be calculated
directly from acoustic data collected on a line array carried by an AUV. Utilizing the de-
pendence of target scattering amplitude on the bistatic angle of sampling does not require
sophisticated imaging techniques for classification, and could provide a basis for onboard

target characterization.
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(a) Intensity-averaged radiation pattern, averaged over range and depth, for spherical
target.

90 30

240 5 300
270

(b) Intensity-averaged radiation pattern, averaged over range and depth, for cylindrical
target.

Figure 2-4: Simulated radiation patterns for spherical and cylindrical targets. The pattern
was calculated by taking the mean intensity in each 5 degree azimuthal bin across range
and depth (20-40m range, 1-4m depth), converting to dB and subtracting the minimum
intensity. These polar plots are shown as looking from above on the target, with the target
at (0,0) and the source at r=60, § = 180°.
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(c) v = 30°. (d) v = 45°.
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(f) v = 90°.
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(g) v = 120°. (h) v = 150°.

Figure 2-5: Mean radiation patterns for different cylinder rotations. The location of minima
and maxima within the patterns shift with the angle .
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(a) Simulated scattered field amplitudes for (b) Simulated scattered field amplitudes for
anisotropic ripple field with v = 0°. anisotropic ripple field with v = 15°.
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(c) Simulated scattered field amplitudes for (d) Simulated scattered field amplitudes for
anisotropic ripple field with v = 30°. anisotropic ripple field with v = 45°.
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(e) Simulated scattered field amplitudes for (f) Simulated scattered field amplitudes for
anisotropic ripple field with v = 60°. anisotropic ripple field with v = 75°.

(g) Simulated scattered field amplitudes for
anisotropic ripple field with v = 90°.

Figure 2-6: Intensity-averaged radiation patterns for acoustic scattering from anisotropic

rough bottom patches with varying values of v = 45°, depths 10-50m, ranges 20-50m.
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Chapter 3

Acoustic Payload

To show that reliable bistatic scattering data collection by an AUV was feasible, an acoustic
payload had to be designed and built that solved the problem of time synchronization
between the acoustic source and vehicle. There were a number of obstacles to achieving
the required data logging accuracy. First, while many surface-based systems use global
position systems (GPS) to synchronize a local clock to the satellite pulse-per-second (PPS)
signal, this microsecond-precise clock was not available underwater. Second, the computer
clock, even synchronized via Network Time Protocol (NTP) to a precise PPS signal, has
accuracy only in milliseconds, and therefore could not be used to trigger data collection
when desired accuracy was in microseconds. Third, delays introduced by analog filters and
analog-to-digital conversion were in the tens to hundreds of microseconds, and had to be
taken into account in system calibration to achieve sufficient system accuracy. This chapter
presents the implementation of an accurate and precise data acquisition system for bistatic
acoustic data collection on an AUV using off-the-shelf hardware and a set of test routines
for calibration. First, the application is explained and the commercial off-the-shelf hardware
is described. The payload architecture is then laid out, including hardware and software
implementation needed for a functioning precision-timed data acquisition system. Next,
the test procedures used in the characterization and calibration of the system to eliminate
system delays are explained. Finally, the results and conclusions, including total system

accuracy, are reported.
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3.1 Background

In general, one of the greatest challenges to remote sensing in the ocean is the problem of
maintaining adequate time synchronization between the shore and any submerged system
[19]. Similarly, one of obstacles to the practical collection and use of bistatic scattering data
was vehicle-source time synchronization. The absolute start time of each acoustic data file
had to be known so that the target scattering signature could be identified within the time
series. This required synchronizing the firing schedule of the acoustic source with the data
acquisition system on-board the vehicle. There were two types of accuracy required of the
data acquisition system for this acoustic experiment: accuracy in arrival time of a contact
and accuracy in phase between channels in the hydrophone array. The desired resolution in
range for this system was 0.1m, which corresponds to a 70 microsecond difference between the
true and estimated time that the file begins recording. Less accurate time synchronization
would results in poor resolution of target range, which could cause misestimation of target
scattering strength by onboard signal processing. Similarly, the 16 channels need to start
recording at the same time so that the phase shifting between the channels is introduced
by the signal directionality rather than recording delays. The maximum permissible delay
between channels in the system was one percent of a wavelength amount, approximately
1 microsecond at 9kHz, to ensure that phase shifts introduced by recording delays did not

affect beamforming operations used to calculate the arrival direction of the signal.

3.2 Payload Architecture Overview

The acoustic payload used in the AUV Unicorn for this experiment consisted of the 16
element linear nose array used to collect acoustic data, a preamplifier for filtering and am-
plification on the raw signal, two 24DSI12-PLL data acquisition boards (DABs) [20] for
analog-to-digital conversion and an Advantech 3363 computer [21] with Intel Atom dual
core processor for data logging, signal processing, and vehicle autonomy. A Quantum Chip
Scale Atomic Clock (CSAC) SA.45s provided an accurate on-board time reference, and was
synchronized using the time reference from a Garmin 15xLW GPS while on the surface.
Figure 3-1 shows how these parts of the data acquisition and timing system interact. The
analog signals from the 16 elements of the hydrophone array were filtered and amplified by

the preamplifier, then synchronously recorded as 24-bit digital by the DABs. This recording
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was triggered by the rising edge of the CSAC PPS signal. The digital data is sent in the
form of a first-in-first-out (FIFO) buffer over PCI bus to the Advantech 3363 computer,

which ran a daemon that controls the DABs and logs the data to a timestamped file.

Payload
16 Channerls
From Array Data Aquisition
Preamp Boards
CSAC | PPS | FIFO Stream
PPSI Serial|—. Computer
GPS ——ISerial
Antenna GPS
GPS
Antenna
Payload
Nose Array Section
AUV Unicorn

Figure 3-1: Block Diagram of the data aquisition and timing system.

3.2.1 Real-Time Clock Synchronization

The Quantum CSAC SA.45s is a high-precision, low-cost, low-power clock well suited for
underwater sensing platforms, including autonomous underwater vehicles. A CSAC, prop-
erly aged, can be considered a reliable time source with precision limited by its drift rate
and an accuracy limited by the accuracy of the global time source it uses as a synchroniza-
tion reference. The aging rate of the CSAC is 3.0E-10/month [22], which far exceeds the
requirements of this application, where vehicles are deployed for less than a day at a time.

A CSAC and CSAC development board were integrated with the computer and acoustic
data acquisition systems in the AUV payload to provide a precision pulse-per-second time
reference while the AUV was submerged. The addition of a Garmin 15xLW GPS to the
payload, connected to an external GPS antenna, provided a time of day and PPS reference
for CSAC synchronization on the surface. Synchronization set the rising edge of the CSAC
Board’s PPS output to match the rising edge of the GPS PPS so that the start-of-second
time reference was the same.

This synchronization between the global time reference and the local time reference
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was managed using a custom daemon, which ensured that the vehicle and source time
references were the same. This daemon had two critical functions: to perform GPS-CSAC
synchronization on startup (if satellites are available), and to provide a GPRMC NMEA
message to the vehicle computer. The NMEA sentence was used by the generic NMEA
GPS Receiver (reference clock 20 [23]) for setting the LinuxPPS [24] reimplementation of
the NTP server on the computer. Since the timing of the recording relative to the start of
the second was known, if the computer clock was on the correct second when the data was
recorded the file’s timestamp was correct.

A backup power system for the CSAC was built so that the system could remain contin-
uously on. This was important because the CSAC’s performance improves as it ages [22].
Four hot-swap circuits provided automatic switching between three power sources: an on-
board battery pack containing 3 AA batteries, the regular vehicle power source, and an
externally accessible CSAC-only 5V power line. In ordinary operations, the vehicle could
be shut off and the external CSAC power then connected without opening the payload or
removing it from the vehicle. The battery pack, which lasts for more than 24 hours as the

only power source, kept the CSAC running during this changeover.

3.2.2 Data Acquisition

To achieve the level of accuracy in time synchronization required by this experiment, data
recording and logging had to properly implemented, using the CSAC PPS as a hardware
trigger. This was necessary because NTP provides, in the best-case, 1 millisecond accuracy
due to the drift in the real-time clock and the general delays in a non real-time operating
system.

8 channels from the preamplifier passed into each of the system’s two DABs. These
boards converted the analog voltages into 24 bit digital data at a sampling rate of 37500Hz,
and wrote the resulting binary data to the PCI bus FIFO buffer to be read on the payload
computer.

The DABs were configured to run synchronously across all channels and to use the GPS
lock feature. This meant that all channels were recorded at the same time, such that the
first 8 samples in the FIFO buffer correspond to the voltage level received on 8 elements
in the same time bin. GPS lock mode guaranteed that exactly the configured samples per

second were recorded each second, re-setting the lock state if there was a drift of more than
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one sample and adding or subtracting a sample if a sample drift occurred. In this mode,
after 3-5 seconds to confirm that a PPS signal was present, the buffer on each DAB was
cleared and recording began on the rising edge of the PPS signal. Each second thereafter,
the rising edge of the PPS signal was used to confirm that the number of recorded samples
matched the desired sample rate. The bytes read by the computer from the DABs were
tracked and the buffer never allowed to overflow so that the sample corresponding to the
start of each second was known.

This sampling method made on-the-second data recording possible. Each second, the
start of the data recording corresponded to the rising edge of the CSAC PPS signal used for
GPS lock on the DABs. When the CSAC PPS signal was synchronized with the GPS PPS
signal, this resulted in the first sample of each data recording corresponding to the time that

the ping was sent out from the acoustic source.

3.3 Delay Characterization Methodology

The payload system, as described, would have resulted in precise data acquisition, but had
accuracy limitations due to timing lags introduced by analog and digital systems. The analog
filters in the preamplifier introduced some delay into the system, as did the analog-to-digital
conversion in the DAB. These delays changed the estimated range to the source and targets,
and were on the order of tens to hundreds of microseconds. To build a data acquisition system
that was both precise and accurate, these delays had to be quantified so that they could be
incorporated into data recording timestamps. Two sets of experiments were undertaken to
characterize these delays: in the first, the magnitude of the delays was estimated using a
PPS signal, and in the second a constant waveform (CW) was used to get a more precise
estimate of the delays using phase. Additionally, the manufactuer claim of synchronous data
acquisition was tested between channels on the DABs, as introduced lag between channels
could significantly affect the phase information in the signal. These characterization steps
resulted in estimates for analog delay, digital delay, and between-channel recording delay.
Analog and digital delay estimates were used to calibrate the system by adjusting the time
stamp on each recording. To further improve on this calibration, a method was developed
for dynamically estimating the digital delay.

Table 3.1 shows the timing variables used to describe the system characterization. 7
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Figure 3-2: Experimental setup with test points.

variables describe delays, x variables represent time series data, k constants and ¢ phases.
Subscripts indicate the location of measurements (either in reference to Figure 3-1 or chan-
nel) or are descriptive of a calculated quantity. Estimated quantities from measurements are

indicated with a tilde, for example 74,4109 Would represent the estimated value of Tgn410g-

An accurate estimate of the propagation time, 7,.0p, Was necessary for successful tar-
get localization in the bistatic scattering experiment. However, when the onboard signal
processing chain estimated a target’s location, it could not directly measure the value of
Tprop- 