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IV. Transport Phenomena 

Lecture 16: Concentration Polarization 

MIT Student 

We have previously discussed open circuit voltage, which can be derived 
from the Nernst equation, and activation overpotentials, which can be de­
rived from the Butler-Volmer equation. This can accurately describe the 
behavior of electrochemical cells at low currents, but for sufficiently large 
currents, the transport of reactants to the reaction sites begins to become 
limiting, and the concentration at the reaction sites will be significantly 
lower than the bulk concentration. As the current gets even larger, the re­
action will completely run out of reactants, and the voltage required to push 
the reaction will diverge as the current approaches a limiting current, Ilim. 
This behavior is commonly described by a concentration polarization. For 
this lecture, we will examine how the diffusion of reactants can be modeled 
to describe this process. 

Linear Diffusion and Convection 

In a dilute (quasi-binary) solution, the transport of solutes can be described 
in terms of a flux density F� , which in the absence of convection can be 
described be Fick’s Law: F� = −D∇C, where D is the diffusivity of the 
particles, and C is their concentration. In the presence of fluid velocity �u, 
the more general expression for Fick’s Law becomes: 

F� = −D∇C + �uC. (1) 

The diffusivity D can be derived from a molecular random walk deriva­
tion, which yields a result of the form 

Δx 
D = , (2)

2Δt 
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whereΔ x is the mean free path of the solute andΔ t is the mean time 
between collisions of the solute. Keep in mind that this expression would 
need to be modified for concentrated solutions because it relies upon the fact 
that there are no interparticle interactions in order to obtain independent 
random walks. 

In order to apply Fick’s law, we need a final relationship between flux and 
concentration, which we obtain from conservation of mass. There are many 
good derivations of the conservation of mass relation available in textbooks, 
[1] but for our purposes, it is adequate to observe that for a point in space, 
the flux inwards plus any local particle generation must be equal to the flux 
outwards, or else there will a change in local concentration. For the case 
where there are no volumetric sources, this relationship is described by: 

∂C 
+ ∇ · F� = 0. (3)

∂t 

If we assume a constant diffusivity and incompressible flow, so that ∇ ·  
(D∇C) =  D∇2C and ∇·�u = 0, we can combine equations 1 and 3 to obtain 
the linear convection-diffusion equation: 

∂C 
+ �u · ∇C = D∇2C, (4)

∂t 

which is the primary tool for describing mass transport in many systems. 

2 Limiting Current Density 

Concentration polarization can be defined as the loss of voltage due to con­
centration changes out of equilibrium, or while current is passing. There 
are three basic ways for this to occur. The first is that the local equilib­
rium voltage depends on the local concentration, as described by the Nernst 
Equation. The second is that the local exchange current, and therefore the 
activation overpotential, also depend on local concentration, as described by 
the Butler-Volmer equation. The third process, which is often described on 
its own as the concentration polarization, is that the conductivity of the elec­
trolyte will also change as a function of local concentration, as described by 
the Nernst-Planck equation. The first two of these effects are commonly re­
ferred to as “external” effects because they are dependent upon the reactant 
and product concentrations outside of the electrolyte, while the third effect 
is an “internal” effect because it stems from changes taking place inside the 
electrolyte. 
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Courtesy of MIT Student. Used with permission. 

Figure 1: (Image taken from 2009 10.95 Scribe notes by MIT Student.) 
Schematic of a solid oxide fuel cell. Oxygen is supplied to the cathode, 
where it is reduced to oxygen ions that migrate across the electrolyte to the 
anode, where they oxidize hydrogen that has adsorbed onto the anode. At 
steady state for I > 0, the concentration profiles of oxygen and hydrogen in 
the cathode and anode electrodes will be as shown in the lower part of the 
figure. 

3 Example: Solid-Oxide Fuel Cell 

Consider the case of a solid oxide fuel cell. This system, with parameters 
as shown in figure 1, consists of two electrodes on either side of a solid 
electrolyte that can be treated as ideally permeable to O2− ions, and imper­
meable to everything else. In practice, these systems are comprised of three 
ceramic layers, and generally operate at temperatures between 600 and 1000 
◦C. The half reactions are as followss: 

cH2 
cO2 

c̄O2
c̄H2 

0 
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anode: H2 + O2− → H2O + 2e− 

cathode: 1
2 O2 + 2e− → O2− 

net: H2 + 2
1 O2 → H2O (5) 

For the simple case of steady state diffusion in the porous electrodes 
where we neglect diffusion, the transport equations simplifies to ∂2c/∂x2 = 
0, which has a linear solution. If we let the ’bulk’ concentrations be ci and 
the concentrations at the surface of the electrodes facing the electrolyte 
be ci, then the problem is fully defined, and it is trivial to specify the 
flux F = DΔci/li. The current is connected to the particle flux by I = 
2eAaFH2 = eAcFO2 , so the current can be written in terms of the flux 
across either the anode or the cathode: 

anode: I = DH2 

cH2 
l 
− 

a 

cH2 2eAa 

cathode: I 
−cO2 4eAc. (6)= DO2 

cO2 
lc 

Physically, concentrations must always be positive, so the particle flux 
through the porous electrode cannot exceed the value it achieves when the 
reactant concentration at the electrode surface reaches zero. This corre­
sponds to anode and cathode limiting currents, which occur when one or 
the other reactant cannot diffuse fast enough to allow for any more current 
to pass. These can be written as 

Ic 
lim = 4eAcDO2 cO2 

Ia = 2eAa (7)lim DH2 cH2 

We can now express c in terms of I and Ilim: 

= Ic cO2 = Ia cH2I lim 1 − lim 1 − 
cO2 cH2 

cO2 = 1  − 
I 

, 
cH2 = 1  − 

I 
(8)

Ic IacO2 lim cH2 lim 

Now that we have have expressions for c(I) at either electrode, we can 
plug them into our model: 

V (I) = Δφcathode − Δφanode − Δφelectrolyte (9) 
where 

Δφcathode = φmetal
c − φc = Δφeq

c + ηc (I)electrolyte act

Δφanode = φa
metal − φa = Δφa

eq + ηa (I)electrolyte act

Δφelectrolyte = IRel. 
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From the Nernst equation, we know that: 

Δφc = U − 
kT 

ln 
cO2− 

,eq c 2e 
√ 

cO2 

Δφa = U� + 
kT 

ln 
aH2O	 (10)eq a 2e cH2 cO2− 

so if we let V0 correspond to the open circuit voltage at the ’bulk’ conditions 
cO2 and cH2 , and then plug our result from equation 8 into the Nernst 
equation, we get: 

V0 = Uc 
� − Ua 

� − 
kT 

ln 
aH√2O 

2e cH2 cO2 

Veq(I) =  V0 + 
kT 

ln 
cH2 + 

kT 
ln 

cO2 

2e cH2 4e cO2 

kT	 I kT I 
= V0 + ln 1 − a + ln 1 − c . (11)

2e I 4e Ilim	 lim 

IiAs I → lim , the equilibrium voltage diverges because diffusion cannot sup­
ply enough reactants to the reaction sites to maintain a steady state. Note 
that the voltage will diverge at the minimum of Ic and Ilim 

a , since either lim 
logarithmic term can easily dominate the expression. 

As we discussed earlier, variations in concentration also affect reaction 
kinetics, as manifested in the Butler-Volmer equation. We will limit our 
analysis to symmetric (α = 1 2) reactions in a dilute gas for now, but one/ 
could obtain similar results for more complicated models. In our simple 
case, Butler-Volmer takes the form: 

ηa = 
kT	

sinh−1 I 
act	 2Iae 0 

ηc = 
kT	

sinh−1 I 
act 2e 2I0 

c 

where: 

Ia = Ka	 cH2 = Ka 1 − 
I 

0 0 0 IacH2 lim 

I0 
c = K0 

c	 cO2 = K0 
c 1 − 

Ic 
I

. (12) 
cO2 lim 

All the parameters that are not a function of current are folded into the 
K0 

i constants so that we can focus on the limiting current behavior. When we 
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Figure 2: Voltage and power versus current under simplified fuel cell condi­
tions. (Rel = 0.1 Ω  · cm2, Ic = Ia = 1 A/cm2, Kc = Ka = 10−5 A/cm2)lim lim 0 0 
When concentration polarization effects are included, voltage diverges as 
current approaches the limiting current. Peak power occurs quite near to 
limiting current density, so concentration polarization becomes the main 
limitation on maximum power density. 
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plug these results back into equation 9, we obtain a full model for the effect 
of concentration, which has a current versus potential relationship shown in 
figure 2. It is worth mentioning that for I → Ii , we can take asymptotic lim 
expansions of the activation overpotentials to obtain simpler expressions: 

kT I kT I 
ηa ∼ ln � ∼ ln 1 − 

e Ka 1 − I/Ia 2e Ia 
0 lim lim 

kT I kT I 
ηc ∼ 

2e 
ln 

K0 
c 
� 

lim 

∼ 
4e 

ln 1 − 
Ic . (13)

1 − I/Ic 
lim 

The last comment to make about this result is that although concen­
tration polarization is often only significant for relatively large currents, in 
many real world systems it can be a major concern in system design. If we 
look at power rather than voltage, as shown in the lower part of figure 2, we 
obtain a result with a sharp peak power near the limiting current followed 
by a steep drop in output as the system approaches super galvanic operation 
(V <  0). For many mobile systems, power density is often of greater impor­
tance than efficiency, so the hard limit on power density that concentration 
polarization imposes can be a significant design limitation. 

For further reading, see O’Hare et al., Fuel Cell Fundamentals, Ch. 5.2. 
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