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Abstract

Intensity-based image registration requires resampling images on a common grid to evaluate the 

similarity function. The uncertainty of interpolation varies across the image, depending on the 

location of resampled points relative to the base grid. We propose to perform Bayesian inference 

with Gaussian processes, where the covariance matrix of the Gaussian process posterior 

distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single 

image with a distribution over images that we integrate into a generative model for registration. 

Marginalization over resampled images leads to a new similarity measure that includes the 

uncertainty of the interpolation. We demonstrate that our approach increases the registration 

accuracy and propose an efficient approximation scheme that enables seamless integration with 

existing registration methods.

1 Introduction

Registration is a fundamental tool in medical imaging for image alignment. Intensity-based 

registration commonly finds the transformation between images by an iterative procedure 

that resamples images on a common grid to evaluate their similarity. An inherent problem is 

the variation of the interpolation uncertainty across the image. Fig. 1 illustrates two images 

and an overlay of the corresponding grids. Intensity values on the moving grid (blue) are 

used to interpolate values on the fixed grid (red) to enable the comparison of both images. 

We point out two locations on the fixed grid that have very different distances to 

neighboring points on the moving grid. This difference causes variations in the interpolation 

uncertainty. Both locations contribute equally to the calculation of the similarity measure, 

although the interpolation from observations that are far away may not be very trustworthy.

To address this problem, we formulate the interpolation as Bayesian regression. The 

intensity values on the transformed grid serve as observations and the prediction yields 

samples on the fixed grid. We employ a Gaussian process (GP) prior over images and 

assume Gaussian noise on the observations. The inferred predictive distribution is Gaussian 

with mean and covariance functions serving as an interpolator and a confidence estimate. 

Depending on the design of the covariance matrix of the GP prior and the magnitude of the 

presumed noise in the images, we can account for smoothing and noise reduction in the 
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prediction. This makes Gaussian processes a versatile framework for modeling image 

processing steps in registration.

The application of Gaussian processes introduces a new paradigm for the use of image 

interpolation in registration. Instead of only comparing the resampled intensity values, the 

similarity measure now takes into account the quality of the interpolation, which can vary 

dramatically across the image. To enable this change, we present a generative model for 

image registration with Gaussian processes. The inferred similarity measure emphasizes 

locations where samples are close to the original grid and deprecates locations that are 

equidistant from grid points. This is especially beneficial for anisotropically sampled data, 

frequently acquired in the clinical practice.

Related Work

The most common methods for interpolation are nearest neighbor, linear, cubic, and spline 

interpolation. The application of cubic B-splines for interpolation was proposed in [5]. 

Several excellent surveys of image interpolation exist [7,14]. Image interpolation in the 

context of registration is discussed in [4]. Further studies have been conducted to investigate 

the generation of interpolation artifacts and their influence on image registration, see for 

instance [1] and references therein. Gaussian processes have been applied in several fields of 

machine learning [11], e.g., image denoising [8], interpolation [13] and segmentation [15]. 

Gaussian processes were also used to model flow fields [6] and deformation fields in hybrid 

registration [9]. Gaussian processes have not yet been used for image resampling in 

registration.

2 Method

Given two images I and J defined on discrete grids ΩI and ΩJ, we calculate the 

transformation T that aligns the two images. We transform the grid ΩJ of the moving image 

J, yielding the transformed grid T (ΩJ) = {T (x), x ∈ ΩJ}. Except for axis-aligned 

transformations, we have to resample the transformed image from the grid T (ΩJ) to the grid 

of the fixed image ΩI to compare the two images. For the resampling, a continuous version 

of the discrete input image is constructed with interpolation [10]. Fig 2 characterizes 

common image interpolation methods by showing their responses in spatial and frequency 

domains.

2.1 Image Interpolation with Gaussian Process Regression

In this section, we formulate image interpolation as Gaussian process regression to obtain 

the interpolator and uncertainty estimates. A Gaussian process is a stochastic process 

consisting of an infinite collection of random variables, where any finite subset has a 

multivariate Gaussian distribution [11]. A Gaussian process GP(m(x), k(x, x′)), is entirely 

characterized by the mean m(x) and covariance k(x, x′) functions. The mean and covariance 

functions specify a distribution over functions, corresponding to a distribution over images 

in our case. We make the common assumption of a zero mean function [11].

Given moving image J on the transformed grid X = T (ΩJ), we predict the re-sampled image 

J* on the fixed image grid X* = ΩI. We employ a Gaussian process prior on the resampled 
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image, J* ~ GP(0, k). Considering Gaussian noise ε ~ N (0, σJ), the observations are 

distributed according to , where I is the identity 

matrix. Under these assumptions, the posterior distribution for predicting the transformed 

image is

(1)

with mean and covariance

(2)

(3)

The covariance or kernel function k characterizes the properties of images. It captures the 

relation between the random variables, which correspond to the voxels in the image. We 

work with the squared exponential covariance function with length-scale l, k(x, x′) = exp 

(−∥x − x′∥2/(2 · l2)). The equivalent kernel characterizes the behavior of GP interpolation 

and is shown in Fig. 2 for the squared exponential function. Theoretical connections to sinc 

interpolation exist for specific settings of the kernel [12]. The squared exponential kernel 

corresponds to a Bayesian linear regression model with an infinite number of Gaussian-

shaped basis functions [11].

2.2 Generative Model for Gaussian Process Registration

We derive the registration method with uncertainty estimates by integrating the Gaussian 

process in a new generative model for registration (see graphical model on the right). We 

treat input images I and J as observed random variables affected by image noise 

 and , respectively. The resampled image J* is a latent random 

variable. The amount of smoothing in the image J* is controlled by the length-scale l of the 

kernel. Following the graphical model, the joint distribution of images I, J, J* factorizes

(4)

The probability p(J* ∣ J; T, σJ, l) is the predictive distribution of the Gaussian process. From 

the previous section on Gaussian process interpolation we have p(J* ∣ J; T, σJ, l) ~ N(μJ, 

ΣJ). The likelihood p(I∣J*; σI) accounts for noise in the fixed image I with respect to the 

prediction J*. Under the assumption of i.i.d. Gaussian noise, this leads to the multivariate 
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Gaussian distribution . For calculating the optimal transformation T̂, 

we perform-maximum likelihood estimation on the joint distribution of images I and J

(5)

For Bayesian inference, we marginalize over the latent random variable J*

(6)

(7)

(8)

(9)

where we applied the factorization from the graphical model and product properties of 

multivariate Gaussian distributions [11]. The log-likelihood function is

(10)

with . This is the new similarity measure that we use for registration, where 

the covariance matrix Σ contains the uncertainty estimates. The presented approach models 

forward mapping in registration, where we obtain backward mapping by setting X = ΩJ and 

X* = T−1(ΩI).

2.3 Practical Considerations

The computational cost of O(|ΩJ|3) for the matrix inversion  is challenging 

for large images. In order to reduce the computational cost, we split the volume into blocks. 

We perform the prediction for each block separately, where we identify the spatially closest 

observations. This comes at almost no additional cost, because the distances need to be 

calculated for constructing the kernel. Visual inspection has not shown boundary effects. 

With this approach, we do not construct the full covariance matrix Σ anymore, so that we 

cannot apply the similarity measure in Eq. (10). We consider only the diagonal entries of the 

covariance matrix Σxx and neglect the first term in Eq. (10), yielding

(11)

We use this similarity measure in combination with block-wise estimation. For constant 

variances Σxx, this corresponds to the common sum of squared differences (SSD).
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To make the concept of uncertainty estimation in interpolation easy to integrate in existing 

applications, we propose an approximation for the variance values Σxx without performing 

GP regression. In this case, we use classic interpolation methods to construct the resampled 

image. Considering the covariance matrix in Eq. (3), we see that it only depends on the 

locations of the observations and predictions, but not on the observed values. We use the 

interpolation weights, as defined in linear interpolation, to approximate the elementwise 

variance values Σxx. We consider the prediction for a point x* on the regular grid with 

spacing s and let d = x* − x be the difference vector to the closest point on the base grid x. 

We approximate the variance at location x* with

(12)

where D is the dimensionality of the image. υ(x*) is the highest for locations that are 

equidistant from the base grid nodes, and zero when x* lies on the base grid. We illustrate 

the variances for the approximation and the Gaussian process in 1D and 2D in the 

supplementary material, which shows that the approximation closely follows the true 

estimates from the Gaussian process.

There are two important parameters that affect the interpolation; the noise variance  and 

the length-scale l of the kernel. If we set , the interpolator passes exactly through the 

observations. For , the method accepts noise in the observations so that the images can 

deviate from the observations. The length-scale determines the region of influence of each 

observation. For shorter length-scale, the prediction is only dependent on a few 

observations, causing more sensitive results. For larger length-scale, we obtain smoother 

results. Noise reduction and smoothing are common pre-processing steps for image 

registration and they can be naturally modeled within the proposed Gaussian process 

framework. Finally, the interpolation on irregular grids does not pose problems because the 

method depends on pairwise distances between points only.

3 Results

In our registration experiments, we focus on a rigid transformation model. This choice 

allows us to better isolate the effects of image interpolation in registration, which is the 

contribution of this work. Moreover, rigid registration enables exact computation of 

registration errors with respect to ground truth transformations on real data, which is 

challenging for transformation models with more degrees of freedom. We perform the first 

set of registration experiments on the publicly available BrainWeb [2] and RIRE [3] 

datasets. We set  in all experiments. First, we select axial slices and perform 2D 

registration. We downsample the images in one direction by a factor of 5 to simulate 

anisotropic data. Such anisotropy is commonly present in clinical practice. We transform the 

grid and create the fixed image by downsampling the original image. For this 2D registration 

experiment, we can calculate the GP interpolation (l = 2.5) without splitting the image into 

blocks. Consequently, we use the similarity measure in Eq. (10) with the full covariance 

matrix. For comparison, we perform nearest neighbor, linear, cubic, and spline interpolation 
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with SSD as a similarity measure. Moreover, we compute the approximated variance in Eq. 

(12) and use it in the similarity measures in Eq. (11), indicated with ‘V’ in the plots. The 

mean image μJ from the Gaussian process regression is replaced by the nearest neighbor, 

linear, cubic, or spline interpolator in this case. Fig. 3 shows results over 50 runs from 

random initial transformations.

In a second experiment, we perform 3D experiments on the BrainWeb and RIRE datasets. 

Again we downsample the images in one direction by a factor of 5, to create anisotropic 

volumes. For the Gaussian process interpolation (l = 2.5), we split the image into 8 × 8 × 8 

cubes to limit the computational costs. Since we do not construct the entire covariance 

matrix ΣJ in this case, we work with a diagonal covariance matrix in the similarity measure 

in Eq. (10). The evaluation of the baseline methods with SSD and the variance 

approximation is analogous to the 2D experiment. Fig. 4 reports the mean RMS errors and 

standard errors.

The final datatset consists of two MR images of the head that were acquired on two different 

grids in the MR scanner with a resolution of 3 × 3 × 3.6mm3. The primary slice direction is 

sagittal for the first image and axial for the second scan. We can access the transformation of 

each image with respect to the scanner coordinate system. Consequently, the ground truth 

transformation in our rigid registration experiments that relates both volumes is available. 

The registration is repeated 50 times for each configuration. The mean RMS errors and 

standard errors are plotted in the figure on the right. We compare to the nearest neighbor and 

linear interpolation. For the Gaussian process interpolation (l = 2.5), we divide the image 

into 8 × 8 × 8 cubes to limit the computational costs. Again, we only use the variance model 

and not the full covariance matrix ΣJ.

Our results show a large decrease in registration error for more complex interpolation 

techniques than nearest neighbor interpolation. The decrease from linear interpolation to 

cubic or spline interpolation is less pronounced. Spline interpolation leads to the best 

registration results among the classical interpolation schemes. In all experiments, using 

uncertainty estimates in the similarity measure leads to more accurate registration results. 

The improvement is largest for nearest neighbor interpolation, where the interpolation 

quality decreases the most when moving further away from the grid points. This finding is 

interesting for the registration of categorical or label data, where more complex interpolation 

methods cannot be applied. For the other interpolation schemes, we also notice a substantial 

improvement for the uncertainty estimate, especially for linear interpolation. Registration 

with Gaussian processes achieved the best performance in all experiments. This supports the 

use of the mean function as high quality interpolator and the covariance matrix as 

uncertainty estimate for registration.
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4 Conclusion

We proposed to integrate interpolation uncertainty into registration. To this end, we defined 

distributions over images based on Gaussian processes with the covariance of the posterior 

distribution serving as an uncertainty estimate. A novel generative model for registration 

with Gaussian processes yielded a similarity measure that incorporates interpolation 

uncertainty. Our results demonstrated improvement for image resampling and the necessity 

of integrating interpolation uncertainty in the similarity measure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Fixed (red) and moving (blue) images and the overlay of both grids after transformation 

(middle). The interpolation uncertainty varies across the resampled image due to different 

distances to neighboring points on the moving grid. Arrows point to two exemplary 

locations on the fixed grid where neighbors from the moving grid are close and far, 

respectively (right).
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Fig. 2. 
Comparison of interpolation functions in spatial (blue) and frequency (red) domains. The 

optimal frequency response would correspond to a box function.
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Fig. 3. 
Bars indicate mean registration error; error bars show standard error. Nearest neighbor 

(NN), Linear (Lin), Spline (Spl), Cubic (Cub), and Gaussian Process (GP) interpolation is 

reported. The use of the variance approximation is indicated with ‘V’.
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Fig. 4. 
Bars indicate mean registration error; error bars show standard error. Nearest neighbor 

(NN), Linear (Lin), Spline (Spl), Cubic (Cub), and Gaussian Process (GP) interpolation is 

reported. The use of the variance approximation is indicated with ‘V’.
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