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Abstract

Many transportation planning problems, such as crew scheduling and traffic assign-
ment, can be modeled using optimization models. Typically these are modeled as
deterministic problems, since stochastic models are more difficult to solve. The result
is that transportation modelers deal with uncertainties, such as inaccurate forecast-
ing, unplanned events and catastrophic incidents, by performing sensitivity analyses
rather than by incorporating randomness into the model structure.

We examine the role of stochastic optimization models in transportation, in par-
ticular robust optimization methods in which system reliability and expected costs
are balanced. We study stochastic programming duality and find that duality results
for deterministic problems apply to stochastic problems. From this, we describe gen-
eral subgradient methods to solve stochastic convex problems. We use this to solve
our Average Plan Model . The average plan model, a stochastic extension of current
deterministic optimization models, incorporates uncertainty into well known deter-
ministic models. The objective is to find a solution that is average in the sense that
it is closer to the solution of very high probability events, as opposed to infrequent
events. We detail the conditions for optimality of the average plan model and we
describe a methodology for its solution.

We demonstrate the applicability of our average plan model and solution method-
ology by applying them to two transportation problems. The first is a network design
problem for the distribution of crops in Mexico and the second is an airplane schedul-
ing problem. We evaluate the solutions provided and contrast them with solutions
generated under varying assumptions and policies.

Thesis Supervisor: Cynthia Barnhart,
Title: Associate Professor of Civil and Environmental Engineering.
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Chapter 1

Stochastic optimization models in

transportation

1.1 Computation and mathematical programming

Transportation systems are growing more complex day to day, and are thus growing
beyond the capacity of the human mind alone to operate, even near cptimally. It is
in this context that the computer becomes the most essential tool for the people that
need to plan, to operate and to manage large transportation systems. The properly
programmed computer can generate, simulate and evaluate many thousands of al-
ternatives. To increase the utilization (or impact) of modern computers, we need to
translate the transportation planning and operations process to simple instructions
that accurately reflect its quantitative aspects. That is, we need to formulate a math-
ematical model. The mathematical model relates in quantitative ways the information
the planner has about the system (network topology, demand, capacity supply) with
the valid decisions he/she can take (new schedule, increase/decrease capacity, build
a new link). The expected output of the mathematical model is a possible list of
the feasible options and in particular the best option from the point of view of the

planner.



1.2 Stochastic models

One important feature to exploit in mathematical and computer modeling of trans-
portation systems is the possibility of planning for uncertain circumstances. Examples

of uncertainty in transportation systems are:

e Statistical variations between the actual demand for transportation resources

and the forecasted demand;

e Random changes in the capacity of the network links due to weather:

— In air traffic control the change in weather patterns changes the capacity

of airports and airways;

— Heavy snow or other kind of weather conditions may reduce the capacity

of highways and other ground tracks; and
e Random changes in the capacity due to failure of the vehicles.

Although these uncertainties can be forecast on average, their effect is to alter
the actual operations from the optimal plan. One rather simple way to do this is
to include some slack in the data input to the model. For example in scheduling
flights for an airline, instead of considering the average fly time between two cities,
the planner might consider a larger flight time. This may result in a more reliable
plan, but its expected average cost is increased as scheduled flight time increases.
This illustrates the inherent trade-off between the expected cost of operation and the
reliability of the system.

A more sophisticated approach to capture stochasticity is to use stochastic pro-
gramming models in which the uncertainty is not considered in the model data but
in its structure. Stochastic programs include a large number of scenarios (even infin-
ity). For each scenario, there are certain corrective z.tions that are proper only to
the scenario, while there are other decisions that are common to all scenarios. This
" approach divides the decisions in two groups: a first st+ge in which decisions are taken

before knowing the with certainty the details cf the scenario and a second stage in
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which more information is acquired and the decisions are of a corrective nature.(See
[Wet96].)
There are two main applications in transportation science for the stochastic pro-

gramming approaches: namely robust planning and real time operations.

1.2.1 Robust planning

In robust planning we try to equilibrate the two opposing objectives of minimizing
expected cost and maintaining system reliability. In robust planning models, there is
a gap between the optimal robust plan and the optimal plan for a particular scenario.
The objective is to design the optimal robust plan to make the expected deviation
between it and the scenario specific plans small as possible. The robust plan, then,
is central to all the scenario solutions, but closer to solutions with large probability

and far from very low probability scenarios.

1.2.2 Real time operations

An important area of decision making in transportation is real time decision making.
In which a manager at given intervals of time decides to move vehicles or to allocate
shipments. Although he/she may have a forecast of the state of the network resources
in the near future his actions may have effects several periods after they were made
so the exact consequences may not be easy to predict. The stochastic optimization
model can help to find an optimal decision by modeling, evaluating, generating and
simulating alternatives in the short time spans necessary to take a decision. In other
hand. the advances in information technology make possible to combine in a single
system a plan optimization engine and a system database, that can advice manager

in a just in time way.
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1.3 The philosophy of the average plan model

This thesis deals with the actual modeling of optimal decisions under uncertainty. It
examines and explores general formulation and properties of these models and bridges
the gap between the well known and studied deterministic models and their stochastic
counterparts. Then the average plan model is proposed as one alternative to create
stochastic models.

The philosophy of the average plan is to express analytically the trade-cff between
robustness of a plan and its expected implementation cost. From the point of view of
modeling we should think that there are basically to kinds of events that can occur

to a system, regular events and catastrophic events.

e Regular events are usual, high probability events that the system handles on
daily bases. For example in an airport the changes of visibility and cloud ceiling

over the day constitute regular events.

e Catastrophic events are those that had a very low probability but their cost
may be extremely high making a significant impact in the expected operating
cost of the system. For example, in an airport a crash landing, a huge winter

storm, a terrorist attack.

The average plan model gives the decision maker a decision that balances the costs
of these events and finds a plan that is half way between the different conditions in
which the system has to operate. Although the distinction between these two kinds of
events may be in general subjective or dependent of the decision makers preferences,
the average plan model gives a formal mechanism to examine the different possibilities

at hand given the importance he is willing to give to catastrophic events.



Chapter 2

Stochastic Programming and

Duality

2.1 Introduction

In this chapter we define the mathematical framework of this thesis. First we define
the most general stochastic programming problem under study. Then we define its
Lagrangian and its Lagrangian dual. It will be shown that if there is strong duality
for the second stage deterministic problems, then it exists also for the two stages
general problem. From this we can find optimality conditions and the existence of a

dual solution

2.2 The general stochastic programming problem

We are trying to solve stochastic programming problems of the form:

inf B n(lir)lf (z,y (w),w) (2.1)
z y(w
s.t.

9@z y(w),w) < 0 as

13



zr € X

y(w) € Y(w) a.s.

where:

z € X is an element from a set of deterministic decisions,

w € Q is a scenario from the scenario set; and

y (w) € Y (w) is an element of the set of decisions proper only to scenario w.

All variables are vectors of the appropriate dimensions.

Problem 2.1 can be seen as a set of different optimization problems tied together
by the deterministic variable z. This gives way to the two stage interpretation of
stochastic programming problems. The deterministic variable z can be interpreted as
a first stage decision in which only the probabilities of future events are known and it
is necessary to optimize the future expected outcome. The stochastic variable y (w)
can be interpreted as a second stage variable in which the random event is known with
certainty and it is necessary to take a decision that optimizes the outcome for that
particular event. Thus problem 2.1 is a mathematical programming interpretation of
a decision tree as depicted in figure 2-1.

As for the technical side of the probability theory, we make the following assump-
tions:

Assumption 1 There is a probability space (22, ¥, P), where Q is the scenario
set,  is a o-algebra over Q and P is a probability measure.

Assumption 2 For each first stage decision z € X and for each w € Q with

p (w) > 0, there exists:

y* (w) = arg Sin f(z,y(Ww),w)

9(z,y(w),w)<0

such that

~00 < f(z,y (w)",w) < o0

14



flz,y(w),w)

\

Figure 2-1: The stochastic programming problem as a decision tree
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Then we have:

J1F @y @), dP (@) < oo

SO

E Ly(wr;gg)(w) f(z,y (W) ,w)} (2.2)

(zy(w),w)<0
exists. This means that if there exists a finite optimal solution for all second stage

decision problems, then the expected value 2.2 exists and problem 2.1 has a solution.

2.3 The Lagrangian dual of the general stochastic
programming problem

We define the Lagrangian for 2.1 as:

LAWw)=infE y(wr)nei}r}(w)f(m,y(W)M) +A W) g (z,y (w) ,‘w) - (23)

Let us also define the dual of 2.1 as:

sup L (A (w)) (2.4)
s.t.

A ((U) c A (w) | miny(w)EY(w) f (:E) Y (w) ’w) + A (w) g (:E, Yy (UJ) ’w) > —0Q, ( )
Yw: p(w) >0, VzeX

where the existence condition 2.5 reflects the need to be sure thai the mathematical
expectation exists. Then the dual is constrained to the region in which the mathemat-

ical expectation in the Lagrangian is well defined. Consider the fol'nwing example.



Example 1 Consider the linear stochastic programming problem:

mincz + E [l;/l‘(l:}l)l gw)y (w)] (2.6)
s.t.
Az =1b
T(w)z+ Wy (Ww)=h(w) a.s.

z20, yw)=>0 a.s.

This is the well known single recourse stochastic programming problem (see Birge
[BL97]). It is a very general version of a two stage stochastic linear program. To

show how we obtain its Lagrangian dual we have to rewrite it as:

ngn E x(g;’iyr(lw) cz(w)+q(w)y (w)] (2.7)
s.t.
z(w) = 2o  a.s.
Az (w) = b a.s.
TWw)z(w)+Wy(w) = h(w) a.s.
z(w) > 0, y(w)=>0 as.

Then the Lagrangian is :

MiNg(w)>0,y(w)>0 CT (W) +q W)y (w)+7(w) (o — T (w))
L(A(w),7(w),s ) =infE + (w) (b~ Az (w))

A (W) (h(w) = T (w) z (w) + Wy (w))
(2.8)

Take notice that the dual variables y (w) , ¢ (w) and A (w) are unrestricted in sign.

Changing the order of terms in the Lagrangian 2.8 we obtain:

17



minz((w))i% (c=yW)I-pWA-I(Ww)T W)z W)
LOA@),7(@),p ) =1 B ) =A@ W)y )+

pW) b+ A (W) h(w) =7 (w)zo
(2.9)

To enforce the existence condition 2.5, we must be sure that what is inside of the

expectation operator 2.9 is finite. This implies that:

c—Y(WI-pwWA-A(Ww)Tw) =2 0 as. (2.10)
g(w)=A(w)W > 0 a.s. (2.11)

otherwise, if any of the components of these vectors is negative, we can make the
corresponding value of z (w) or y (w) arbitrarily large. Satisfying constraints 2.10 and
2.11, however, causes the corresponding terms in the Lagrangian 2.9 to equal zero.

We can also observe that in order to have a finite solution, it is necessary that:
Ely (@) =0

So the dual of 2.1 is:

max E (1 (w) b+ A (w) h]
s.t.
YW I+pWA+A(W)T < ¢ as
AMw)W < qw)  as

Ejyw)] = 0.

I

18



2.4 Weak duality

The weak duality result for the stochastic two stage problem is similar to that for

deterministic problems (see [Ber95] and [Sha79}).

Theorem 1 (Weak duality) The primal problem 2.1 and its dual problem 2.3 are
always related by the following inequality:

,\SHEO L (/\ (w)) S ;2§ E Ly(wr)%l}]}(u) f (l‘: Y (‘—U) ,W):l . (212)
w2 (z,(w) w) <0

Proof. To prove it, observe that by the definition of the feasible region of the

Lagrangian, and since X (w) > 0, we have for all z and y (w) feasible in 2.1:

fyWw),w)+A(w)g(z,y(W),w) < flz,yW),w)  as. (2.13)

Since 2.13 holds with probability one, we have:
Elf(z,y(W),w) +A(w)g(z,y(W),w)] < Ef(z,yw), w)]
Vr € X, Vy(w)eY (w) as.
Then,
inf E y(wr;éip(u)f (z,y (W), w) + A (w) g (z,y () ,w)] ShfE L(wr)réig(u)f(z,y (w),w)|.

2.5 Strong duality

As in the previous section we can extend the strong duality result. for deterministic

‘ problems in developing strong duality for problem 2.1.

19



Theorem 2 (Strong duality) Let the deterministic problem for a fized scenario w:

min f (z,y (), w) (2.14)
s.t.
9z, y (W), w) <0 as
y(w) €Y (w) a.s.

have an optimal solution and optimal Lagrangian multipliers with no duality gap

forallz € X, X #0 and all w such that p(w) > 0. Then

LA = inf E i , , 2.15
o L0 tE| g s
TYylw)hwis

holds.

Proof. Let p (z,w) > 0 a.s. be the optimal Lagrangian multipliers for problem 2.14.

Then we have:

min z w),w) = min z,yl(w),w)+ T,w z, :
y(w)ely(w)f(,y() )= Jn @y (@),w) + p )9 (z,y (w),w)

Since this equality holds with probability one and by assumption 2, we can take

the mathematical expectation:
E i =F i
i, @y @) ) i, (0 (), + (o) g (o ) )
(2.16)

It follows:

ot 2 |, i f(x,y<w>,w>]=infE[ min £ 50 (),0) 4 1 (,0) 9 50 () ).

z€X |y(w)eY(w) zeX y(w)eY (w)

and

20



;g)f; E [y(wx)nei}r}(w) flz,y(Ww),w)+ u(z,w) g (z,y (w) ,w)]

< sup inf E| min z,y (W), w)+ A z,y (w),w
< s wtB| mp G660 A6 0]

which in combination with 2.12 proves 2.15 . B

2.5.1 Discussion

There are some important features of this strong duality result worth mentioning.
First, the result does not require any particular problem structure (like convexity).
Instead, the only necessary condition is that the second stage problem 2.14 have a
Lagrangian solution and no duality gap. Although this condition holds always for
convex problems, it may also hold in special cases for other kinds of math programs,
for example some integer programming problems.

Surprisingly, the requirements for the deterministic variables are even more re-
laxed. In fact the only requirement is that the set X is not empty. This gives us
great liberty in modeling problems of the form of 2.1 since the ﬁfst stage decision
variables are not constrained to any particular structure set. In fact, the first stage

decision variables can be integer or continuous.

Corollary 3 (Complementary Slackness) Let 2.1 be a problem that satisfies the
strong duality conditions. Then for an optimal triplet (z*,y (w)™, A (w)*) for 2.1, we

have the following complementary slackness requirement:

EA() gy W), w)]=0. (2.17)
Proof: From the strong duality result 2.15 we have:
E[f @y ) ,w)+ A (W) gy (W), w)]=E{f (@ y W) w).

The result follows immediately.

21



Corollary 4 (Deterministic multipliers) Let 2.1 be a problem that satisfies the
strong duality conditions and let the triplet (z*,y (w)", X (w)") be the optimal solution
to its dual. Let pu(z*,w) be the optimai Lagrangian multipliers for problem 2.14 then

Aw)" = p(z",w).

Proof: Letting £ = z* in the strong duality result, then:

min %y (w),w
i f(z"y(w),w)
9(z*,y(w)w)<0

y(wr)réill}(w) f (x" 4 (w) ,w) + A (w)* g (:E‘, y (w) ’w)jl ="

By the definition of mathematical expectation, we have with probability one:

min 5 Jw HA (W) gzt y (w),w) = in z*y(w),w). (2.18
min JE @)@ @) @) W) = min Y w)0). (219)
9(z" y(w)w)<0

2.18 is the optimality condition for problem 2.14 with z = z*. So A (w)" = u (z*,w)

2.6 Optimality conditions

Theorem 5 (Optimality Condition) Let the triplet (z*,y (w)", X (w)") satisfy the

following optimality conditions:
1. It is optimal for the dual problem 2.4;
2. It satisfies the complementary slackness requirement 2.17; and

3. It feasible for the primal problem 2.1.
Then the triplet is optimal in the primal preblem 2.1 .

" Proof. We have for any pair (z,y (w)) feasible in 2.1:

22



-

Ef(zy W) w) +A(w) gz y W) ,w)

IA

E[f(z,y(w),w) +A(w) g(z,y (w),w)]
< Elf(z,y (w),w)]

and by the second condition :

Elf ="y @) )] < E[f(z,y(w),w)].

Corollary 6 (Necessary and Sufficient Conditions ) A4 triplet (z*,y (w)*, A (w)")

satisfies the optimality conditions if and only if there is strong duality.

Proof. From optimality conditions 1 and 2:

Elf =",y ()", w) + A ()" g(z"y ()", w)] = E[f "y W), w)]

and so strong duality is satisfied. In the reverse part of the proof, if there is
strong duality, then conditions 1 and 3 must be satisfied. Condition 2 is guaranteed

by complementary slackness. W

Theorem 7 (Existence) Let problem 2.1 be such that for allz € X, X # 0 and
for all w € Q such that p (w) > 0, problem 2.14 has an optimal solution and optimal
deterministic Lagrangian multipliers. Then there ezists a triplet (z*,y (w)*, A (w)")

that satisfies the optimality conditions and is optimal in the dual problem 2.4.

Proof. Since the set X is not empty and f > —oo in the feasible region so the
mathematical expectation exists, an optimal z* exists. By the definition of 2.14,
y (w)* and p(z*,w) also exist. So, a primal optimal solution exists. But by the
_ Strong Duality Theorem and the Necessity and Sufficiency Corollary, there also exists

an optimal dual solution. M
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2.7 Concavity of the Lagrangian and convexity of
the feasible region

Theorem 8 The Lagrangian 2.3 is concave.

Proof. Let z, y (w) be the corresponding values for the Lagrangian at A (w) , then:

LOAW)+E[(A @) -2®)g(=zy(w),w)] (2.19)
= E[f(@y),0) +A(@) 9@y (w),w)+ (A () - Aw) ¢ (@Y @),w)]
= E[f(@yW),w) + 2 9(zy@),0)] 2L (M @)).

Then for A (w)® and A (w)* we obtain:

L()‘(w):;,\(w)l)+E[(A(w):;A(w)j)g(x’y(w),w)] > L()\(w)l)
(2 ) | (ML oy ),0)] 2 L (1)

adding the two inequalities:

A+ 2@ - LA @)) +L (A ()°)
(perpper), sl sben)

Thus the Lagrangian is concave. &

Theorem 9 (Convexity of the feasible region) The feasible region of the dual

2.5 is conver.

Proof. It is trivial to see that the constraints A (w) > 0 form a convex set.- For

constraints 2.5 consider the function:

LA\ (w),z,w) = y(wr)xéilr}(w) f(z,y (W), w)+ A(w)g(z,y (w),w) Vze X, a.s.
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By arguments similar to the last theorem, we find for any two feasible points

A(w)? and A (w)*:
¢ (a/\ @)°+(1-a) (W)} ,x,w) >al ()\ (w)° ,x,w)+(1 —-a)l ()\ (w)! ,x,w) > —00.

So clearly the feasible region is convex. B

2.8 Chapter 2 summary

In this chapter, we extend and apply Lagrangian theory for deterministic optimization
to problems with a mixture of random and deterministic variables and deterministic
and probabilistic constraints. We call these problems two stage stochastic programs
because we can separate the problem into a first stage containing only deterministic
variables and a second stage containing only random variables.

We define the Lagrangian for the 2-stage stochastic programming problem and
show that weak duality is always satisfy. Further we show that if there is strong du-
ality in the second stage problems for all positive probability scenarios, then strong
duality exists for the 2-stage problem. We show that there is a complementary slack-
ness condition that is both necessary and sufficient for optimality. Finally we show

that the Lagrangian is always concave in the Lagrangian multipliers.
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‘Chapter 3

Solution of Stochastic Convex

Problems

3.1 Introduction

In Chapter 2, we showed some general properties of stochastic programming problems
and Lagrangian duals. Particularly interesting is the fact that very little special
problem structure is needed to achieve quite strong results. In this chapter we develop
solution methods for problems satisfying certair convexity requirements.

Since the stochastic program 2.1 decomposes into independent problems for a
given z, it is natural to try to solve the problem by breaking it into scenario-specific
subproblems Some methods have been developed for the stochastic linear program-
ming problem, such as the L-shape method and the progressive hedging algorithm
( see Birge [BL97], Kall [KW94] and Wets [Wet88]). These methods require the

problem to be convex in the first stage variable.

3.2 Convex problems in the deterministic variable

Consider the second stage problem for a fixed deterministic variable zo € R" and

* some scenario w €
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y(wl)rélll}(w)f (x()ay (w) 1w) (31)
s.t.
9@ y@),w) < 0 as

y(w) € Y (w) a.s..

Assuming that the optimal Lagrangian multipliers exist for this problem, we define

the function:

p(zo,w)= sup min f(zo,y(w),w)+ p(zo,w)g(20,y (w),w) (3.2)
#(zo,w)>0 y(w)eY(w)

We say that problem 2.1 is convez in the deterministic variable if there exists a

random variable v (w) € R™ such that:

p(zo,w) < plz,w)—vW)(z—20) as. (33)
Vz, € X, Vze X CR"

Clearly, condition 3.3 means that p (z,w) is convex in z and 7 (w) is a subgradient
with probability one.

Furthermore, it can be seen from 3.3 that:

Elp(zo,w)] < Ep(z,w)] = Ely(w)](z — z0) (3.4)
Vi, € X, VzeXCR"

since 3.3 holds with probability one.
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3.3 The dual of a problem convex in the determin-
istic variable

Consider problem 2.1 and assume that it is convex in the deterministic variable. It
can be written as:
min B[f (z @),y (), w)] (3.5)
z(w)y(w)
s.t.
g(z(w),y(w),w) <0 a.s.
z(w)—z9 = 0 a.s.

g € R z(Ww)eX, yw)eY(w) a.s.

where the deterministic variable has been replaced by a set of random variables

z (w), all constrained to be equal. Dualizing this constraint we obtain:

Ly@) = min Blf (),y®),0)+71()(-sw)] (36

s.t.

g(z(w),y(w),w) < 0 a.s
r(w) € X, yw)eY (W) a.s..

We define the following scenario independent problems:

(v (W) = I(“r)r)l’iyr(lu)f(x(w),y(w),w)—-fy(w)x(w) (3.7)
s.t.
g(z(w),y(w),w) < 0 as

t(w) € X, yw)eY (w) a.s..
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Using 3.7, 3.6 can be written as:

Ly() = Elg (v @))] + min £y (w)] 2. (3.8)

For the Lagrangian to be defined we have to impose the constraint
E[y(w)] = 0. So the dual of 3.8 is:

max E [q (v (w))] (3.9)

s.t.

Ely()] = o

The main difference between this result and the dual found in 2.4 is that in 2.4,
we didn’t dualize the first stage variable. So there was strong duality when there
was strong duality for all the second stage variables. In 3.9, the first stage variable
is dualized, adding a new level of complexity to the problem. In fact, as shown in
the next section, we can not ensure that there is strong duality unless the problem is

convex in the deterministic variable.

3.4 Strong duality

Consider the following problem:

minp (z (w),w) (3.10)
s.t.
zw)y-zF = 0  as

The Lagrangian of this problem is:
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7(3;161)” z(rux})iélxp (z (w),w) —7(w) (:c (w) - .1:") . (3.11)

We can find 7 (w) by using the following lemma.

Lemma 10 (Deterministic convexity) Letp(z (w),w) be conver over X with prob-
ability one. Let v (w) be a subgradient to p (z (w),w) at z (w) = z* with probability

one. Then v (w) is the optimal solution to 3.11 and there is no duality gap.

Proof. We have from the convexity assumption:

in p (5 (0),0)-1 ) (2(0) ~2*) <0 (#5,) < p(e(),0) = () (2 () - 2°)
(3.12)
The left hand of the assumption holds from the optimal solution of problem 3.10.
The second inequality is the definition of a function convex in the deterministic vari-
able 3.3. W
This takes us to the issue of the strong duality between the dual problem 3.9 and
the primal 2.1. Notice that for convex problems in the deterministic variable, with

the optimal solution (z*,v (w)*) we have:

¢(y()) =p(z",w) —7(W) 2’ (3.13)

and taking expectations:

Elg(yw))) = Elp(z",w)] - E [y (w)]2" (3.14)

So for a random variable v (w)” that is feasible in the dual 3.9, we obtain:

Elg(y()))=Elp(zw)]=E (z*,y (W), w) (3.15)

min f
g9(z* y(w)w)<0 a.s.
y(W)eY{w) a.s.

because we assume that there is strong duality in the second stage problem.
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Theorem 11 (Strong convex duality) If the primal problem 2.1 is conver in the
deterministic variable and the second stage problems have optimal Lagrangian rnulti-

pliers, then 8.9 is a strong dual.

Proof: This follows from the identity in equation 3.15.

3.5 Subgradient solution methods

By taking the expectation over the right hand side of inequality 3.12, it can be
seen that —F [y (w)] is a subgradient to problem 3.10. This is the key to solving
problems that are convex in the deterministic variable, since there are methods for
convex deterministic problems that are based on using subgradients to point towards
the optimal solution. Such methods have been reviewed by Shapiro [Sha79] and
Bertsekas [Ber95]. The complicated part is solving for the stochastic variables in the
problem. So it is necessary to separate solving for the stochastic variables from solving
for the deterministic ones. Algorithms achieve this using a Bender’s decomposition
approach, as suggested by Shapiro [Sha79]. An important example of this approach is
the L-shape method presented by Wets [Wet88] for the stochastic linear programming
problem.

In the next sections, two methods using subgradient optimization are presented

for problemns convex in the deterministic variable.

3.5.1 A gradient like method

The steps of our gradient-like method are:

Step 0 Initialization. Let kK = 0. Find a feasible deterministic variable * e X.

Step 1 Stochastic variables solution. For every scenario w solve the problem:

min f (z (w) ,y (w),w) (3.16)
s.t.
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g(z (W), yw),w)<0 as.
z(w)-zF=0 a.s.

z(w)€e X, yw)eY (w) a.s.

Obtain the subgradient -y (w)k, represented by the vector of dual variables
associated with the constraints z (w) —z¥ =0 a.s. . In the special case where

the functions f and g have derivatives at z* ( a Hessian exists) then:
k_ k k
Y (w) - Vz(w)f (.'L' 'Y (w) ’w) + A (w) V:l:(u)g (x 'Y (UJ) aw) (317)

is the subgradient.

Step 2 Descent step. Find a new solution:

ZFtl =% + %E [y ()] (3.18)

Let k: =k + 1.

Step 3 Stopping rule. If IE [’y (w)k” < €, stop since the solution has been found (e

is a suitable tolerance), else go to Step 1.

This a common gradient method, as shown in [Ber95]. There are two remarkable
things about it. First, all of the stochastic parts of the problem has been concen-
trated in Step 2 . It assumes that it is possible to solve problem 3.16 for a general
random variable y (w) . This theoretically is possible, although it may seldom be
accomplished in practice unless special structure exists. In particular, in the case of
discrete scenarios, 3.16 is solved for all scenarios at each iteration step. In the case of
continuous distributions, often the distribution are discretized in order to solve 3.16
(See Birge and Louveaux [BL97]).

The second thing to notice in the algorithm is the descent step (equation 3.18) is

. i This step size guarantees convergence when k — oc , although it is not unique.

Many other step sizes can be selected, as discussed by Bertsekas [Ber95].
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3.5.2 Column generation like method

The gradient like method of section 3.5.1 can be redefined so that the descent step
uses the knowledge of all previous solutions generated. Such methods, referred to as
Generalized Linear Programming, have been proposed by Geoffrion [Geo72] Bertsekas
[Ber95] and Lasdon [Las70]. Applying these ideas, we replace step 2 in our gradient-
like algorithm with a step involving the solution of a linear program. The linear
programming algorithm exploits the convexity property 3.3 to obtain a new point z*.

The revised step 2 is:

Step 2 Descent step. Solve:

min @ (3.19)
s.t.
Elg(vw))] <8-E[y@)]z i=1..k
ze€R', 0eR

Make zF*! :=z and k :=k + 1.

To understand how this method works, consider that the constraints in the LP
are a piecewise linear approximation to the objective function. Observe that each

constraint can be rewritten using 3.4 as:

E [p (:c",w)] - F [’y (w)i] ' < E[p(z,w)] - F ['y (w)i] T (3.20)

So given the assumption that the problem is convex in the deterministic variable,
constraints of the form of 3.20 actually are a convex representation of the problem
3.2. The convergence of a method like this has been studied by Shapiro [Sha79] and
by Bertsekas [Ber95].

A very interesting interpretation involves the column generation aspect of this

“method. The column generation approach takes a sample of points z!, z?, .., z¥ from

the domain X. For each point, problem 3.2 is solved obtaining the values of the ex-
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pected subgradient E ['y (w)i] and the expected value of the problem E [q (7 (w)i)] =

Elp(r',w)-F [7 (w)’] z'. Then we can write a discretized version of the dual prob-

lem 3.9 :

min ; oE [q (v (w)')] (3.21)
s.t. -

k .

; o E ['y (w)'] =0

o 2> 0 ’i=1,..,k

That is in fact the dual of problem 3.20. The idea drawn for this representation is
that if a sample large enough from the domain is taken, the optimal or near optimal
solution can be found. If the sample is not large enough, a new sample point can
be obtained by setting the dual variables of the first set of constraints in 3.21 to the
value of the new sample point.

Using column generation jargon, step 2 is the master problem' 3.21, and step 1
is the pricing problem, that is, the problem of finding a new variable to enter the
LP basis. Thus finding the optimal solution to the convex problem is equivalent to
solving a LP problem with a huge number of columns, each one representing a feasible

point from the domain.

3.6 Problems with discrete deterministic variables

Discrete domain problems are known to be difficult and most of the solution meth-
ods fall short because they might require complete enumeration. In the particular
framework of this chapter there is not any reason why the column generation method
should not work for problems with discrete deterministic variables.

In fact, consider the domain X to be finite, then it is possible to write a discrete

" dual as 3.21 with all the elements of the domain. Such problems may be large but
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with the techniques of column generation it is possible and practical to find solutions.

The really important issue about problems with discrete determinist variables is
that no point in the domain will honor by itself the optimality condition E [y (w)] = 0.
The gradient may not vanish for any of the feasible solutions. But instead what
we can find for the optimal solution of 3.21 is a subset of solutions X, C X such
X, = {i| o; > 0} that necessarily honors the constraint 3,cx, &;E [’y (w)i] = 0. So
in fact we can find a subset of solutions for which a convex combination of their
subgradients will honor the optimality condition. The optimal solution is then found
by enumerating the elements of the set X, and selecting the one that has the smallest
value of E [g (7 (w))]- Notice that by the properties of LP, if the vector E [y (w)] is
size n, then the maximum number of elements in the s-et X, is n + 1. Making the

enumeration easy and practical, as argued in the following proposition.

Proposition 12 The optimal integer solution of a discrete problem of the form 3.21
that is the discretized version of the dual 8.9, is always a basic variable in the LP

relazation of 3.21.

Proof. Let z*,6* be the optimal solution to 3.19. Consider 7(w)0 to be the op-
timal solution to the integer version of 3.21 (implying op = 1). Let’s proceed by

contradiction.

If v ((.U)O is not in the basis, its reduced cost is strictly greater than zero. So:

E [q (7 (w)o)] +FE ["/ (w)o] Tt < 0. (3.22)
Now for any variable v (w)® that was included in the basis, we have:

E [q (’7 (w)b)] +FE [’7 (w)b] z* =6 (3.23)

Substituting the value of * from 3.23 in 3.22 and recalling that F [q (7 (w)i)] =
Elp(zt,w)]-FE [’y (w)i] z¥, we can write:

E [p (zO,w)] +E ['y (w)o] (x‘ - :vo) <E [p (mb,w)] +E ['y (w)b] (:c‘ - :z:") , (3.24)
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but this contradicts the fact that z° is optimal. B

3.7 Optimization with sampling, stochastic quasi-
gradient methods

In the methods presented in this chapter we have assumed that is possible to solve
the scenario problem for every possible scenario. Although this may be possible in
particular cases, such as discrete probability distributions, it may be very difficult for
more general distributions.

As mentioned above, one way to proceed with general distributions is to divide the
scenario space into a finite number of subsets and then use the probability for each
such subset to create a discrete distribution version of the original problem. Birge
calls these the stochastic equivalent (BL97].

Another way to proceed is to try to combine sampling with the methods we have
presented so far in order to avoid solving z (w) and y (w) for the entire scenario space.
Instead we obtain at each step a sample of size n (usually about 20) and we use it to
produce estimators of the quantities of interest, for example ¥ = E [y )]

The methods that combine gradient and sampling techniques are called Stochastic
quasigradient methods by Ermoliev [Eru88]. The methods that combine Bender’s
decomposition and sampling are Stochastic decomposition methods by Higle and Sen
[HS96].

The convergence of methods of this kind is insured by showing that successive
iterations form a super-martingale. Although martingale theory is beyond the scope
of this thesis, it is the opinion of the author that future work in the area of optimiza-
tion using sampling techniques should be subject to standards of this theory. Some
interesting applications of martingale theory to optimization can be find in Polyak

[Pol87] and in Motwani and Raghavan [MR95].
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3.7.1 Stochastic quasigradient method

Here we present the stochastic quasigradient version of the gradient method for convex

problems in the deterministic variable.

Step 0 Initialization. Find a feasible determinist solution z° € X. Make k = 0.

Step 1 Stochastic variables solution. At step k take a sample of size n of scenarios

from Q. For each scenario w®, i = 1,..,n solve:

min f (xk,y (wi) ,wi) (3.25)
s.t
g (:z",y (w.") ,wi) <0

y (o) €Y (w)

Obtain the subgradient —v (w")k.

Step 2 Subgradient estimation. Compute the estimator A* for the subgradient.

a1 N '
7 == (') (3.26)
ni:l
Step 3 Descent step. Find a new solution:
k+1 : P P 2
z""" = argmin {(:v + P z) ] (3.27)

Step 4 Stopping rule. If |'17’°| < € stop the solution has been found. (e is a suitable

tolerance), else make k := k+ 1, n:=n+ 1 and go to step 1.

To understand the way the method works we have to review a theorem cited by

Ermoliev [Erm88] based in the research done by Polyak [Pol87]. The theorem is:
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Theorem 13 Assume that:

1. E[p(z,w)] is a convez continues function.
2. X is a convez compact set.

3. The parameters p = %, and the sampling error €; are such:
o0 00 & 2
620, Ya=o00, L E[alesl+ [ <0 (329
k=1 k=1

Then the stochastic quasigradient method converges to the optimal solution.

It is easy to see that the method presented in this section honors these conditions.
Conditions 1 and 2 hold trivially as the first part and second part of condition 3.
For the third part of condition 3, it can be seen from the central limit theorem of

probability that for a large sample of size n + k we would have:

Eflex ] < (3.29)

ol
Voryn + k

where ¢ is the upper bound of the standard deviation of {¢;}. Then the conver-

gence of the first term will depend of the convergeuce of the series:

1

kgl TR (3.30)

The value of this series can be seen in table 3.7.1.

3.8 Chapter 3 summary

In this chapter, we have studied problems which are convex in the deterministic
variable for all non-zero probability scenarios. This property makes it possible to
find strong duals and the optimality condition F [y (w)] = 0 makes the expected
- subgradient equal to zero at the optimal solution. This is a stochastic extension of

deterministic convex programs for which the optimality condition is that the gradient
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n s

0 | 2612
10 | 1.356
20 | 1.111
30 | 0.981
40 | 0.894
50 | 0.831
60 | 0.782
70 | 0.743
80 | 0.709
90 | 0.681
100 | 0.657

Table 3.1: Value of the series 332, mlk—)ﬂ;

equal zero. So we extend the methods used to solve deterministic problems to solve
the first stage of two stage stochastic programs. It is possible to decompose stochastic
problems into two stages in order to facilitate their solution. The first method to do
this that we examine is a gradient-like method in which new solutions are obtained by
following the maximum descent direction. The second method is a column generation-
like method in which we enumerate successive feasible solutions until we find ohe that
satisfies the required tolerance. We show that this method can be easily extended
to problems with discrete domain for the deterministic variables provided that the
convex property holds. Finally, we show that it is possible to combine these methods
with random sampling in order to make the computation of the scenario dependent

problems easier.
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Chapter 4

The average plan model for robust

planning

4.1 Robust planning

Although for many reasons most optimization models are solved as deterministic
problems, in practice it ofte~ is necessary to have solutions that somehow consider
the uncertainties encountered operationallv. The idea of robust planning is to generate
solutions that somehow consider some degree of uncertainty in the planning data. For
example, consider the routing and scheduling of a fleet of vehicles. The solution is a
set of planned itineraries for all vehicles. Since there might be uncertainties that can
lead to disruptions to the plan, the planner could give connection times and travel
times larger than that required on average to ensure robustness of the solution, on
one leg of an itinerary to ensure that a delay in the network will not propagate to the
next legs.

There are two important characteristics of a robust plan:

1. The plan is not dynamic. In general, there is not a decision rule that tells us
what to do in case a particular scenario is realized. Instead, we expect that
our robust plan will be applicable most of the time. If an unforeseen condition

occurs, we expect changes to the plan to be minimal.
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Strategy is risky and the second is conservative,

4.2 The average plan mode]

We define the average plan model as:

min B [c ()7 (w) + % (2 () ~7)'Q (z (w) f)] (4.1)
s.t.

Aw)z(w) > b (w) a.s.

where:
w € (2 is the set of scenariog
T is the average plan

@ is a positive definite matrix.

Place, he/she will find an optimal plan z (w) that solves the scenario LP problem:

min ¢ (w) z (w) (4.2)
s.t.

AWw)z (w) > b(w) a.s.

Since the resulting scenario is not known with certainty, we generate an average
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plan T. This plan constrains the solutions of the individual scenarios by means of the
quadratic term in the objective function of 4.1. Thus, we have the desired effect: the
individual scenario solutions for 4.1 are not optimal for problems 4.2, instead they
are likely to be near the average plan Z.

A better understanding of the model can come from reformulating it by defining

the variables:

yw)=z(w) -7 (4.3)

Then 4.1 is:

min E[c (w)]T+ FE [c W)y (w) + %y (w) Qy (w)] (4.4)
s.t.

AW ZT+y(w) 2 bw) a.s.

y (w) represents the difference between the actual solution for scenario w and the
average plan. It also can be interpreted as the actions necessary to fiz the plan when
it is known with certainty how it failed. The objective function minimizes the cost of

the average plan plus the cost of fixing it.

4.3 The dual of the average plan

Before examining more deeply the optimality conditions for the average plan, let’s
study its dual using the theory developed in the last chapter. We are going to focus

on problem 4.4. Its Lagrangian is:

L(A(w)) =infE y(u})réi}r}(w)C(w) T+c(w)y(w)+ -;-y (W) Qy (W) + A () (b (w) — A (w) (T +y (w)))
(4.5)

where the average plan has taken the place of the first stage variable and the
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correction y (w) the place of the second stage.

Arranging terms:

Aw)b(w)+ (c(w) — A(w) A (w)Z+

L(\(w)) =infE (4.6)
z miny,) (¢ (W) = A (W) A (W) y (W) + 33 () Qy (w)
We see that the optimal correction is:
y(w) =-Q7 (W) - A (w) A W))' (4.7)
So the Lagrangian is:
L\ () = inf B AMw)b (W) + (c(w) = A(w) A(w))Z+ (4.8)
* —3 (@) =AW AW) Q7 (W) ~ A (w) A (w))
To ensure that the Lagrangian has a finite solution we should have
Elc(w) = A(w) A (w)] =0. | (4.9)

Then the dual problem is:

1
r/{l(ga)cE‘ Aw)b(w) — 5

s.t.

() = A @) A @) Q7 (e () ~ Aw) A (@30)

Epw)AW) = Elcw)]

AMw) > 0 a.s.

by virtue of the solution represented by equation 4.7 we see that the conditions

of the strong duality theorem are honored so there is no duality gap.
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4.4 Optimality conditions
Here we give the optimality theorem for the average plan.

Theorem 14 (Optimality) The average plan Z* is optimal if and only if:

" = Efz (w)’] (4.11)

and

£ (w)" = arg c(w)z (W) + % (z()-7)Q(zw) -7).  (412)

min
A(w)z(w)>b(w)

Proof: By equation 4.12 we see that z* is feasible in 4.1. Next, taking the

mathematical expectation of equation 4.7 we obtain:

Elyw)]=-Q 'Elc(w) - A(w)Aw)]=0. (4.13)

The equality to zero follows from equation 4.9 . Condition 4.11 follows from 4.3
and 4.12 implies strong duality since it is a convex problem with no duality gap.
Therefore z (w)* is optimal in 4.1 and T*, obtained by equation 4.11, is also optimal

in 4.1.

Corollary 15 Let T* and y (w)" = z (w)" — T* be the optimal solution for 4.1, then

we have:

AW yw) > -AWw)Q 'c(w) as. (4.14)
with probability one.

Proof: We have with probability one:
Aw) (T +yWw)) >2bw) as..

And the second stage problem:
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minc (w)y (@) + =3 )’ Qy (@) (4.15)
y(w) 2
s.t.

AwWlyw) 2 b(w)—AW)T a.s..

There are two cases: in the first, —A (w) Q@ 'c(w) > b(w) — A(w)T* a.s.. So
4.15 has the interior point solution y (w)* = -Q7!c(w)’ a.s.. Thus A (w)y (w)* =
~AWw)Q'c(w)’ a.s.. Inthesecond: A (w)y (W) > b(W)-AW)T* > —-AW)Q le(w) as.

From both cases, we see that 4.14 is always honored.

4.5 Dispersion of the solution

The quadratic term F [y (w)' Qy (w)] in the solution shows how far the solution is from
the feasibility condition y (w) = 0 a.s. . The formal statement of this dependence
can be obtained from Markov’s inequality [MR95] for a nonnegative random variable

z (w). Markov’s inequality states that for a positive real ¢ it is always-true that:
E
Plz(w)>1t) < ——[‘?E(i"l] (4.16)

Substituting the quadratic term for z (w) we obtain:

E [y (w) Qu(w)]
< ; .

P (y(w) Quw) > t) (4.17)

4.6 The stochastic quasigradient method for the
average plan model

In this section we show how to adapt the method of section 3.7 to the average plan
- model. Scme theoretical considerations, for example, the convexity of the average

plan, we leave for the next chapter.
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First we find the gradient for Z. It can be seen from the Lagrangian 4.6 that:
VzL (T,A () = E(c(w) — A () A (@))], (4.18)
but by equation 4.7:
VzL (7, A (@) = E[(c(w) = A (w) A(w))] = —QE [y (W)]. (4.19)

So the gradient for the average plan is the expected value of the deviations from the
plan times the parameter matrix —Q.

Now we can present the method.

Step 0 Initialization. Select an initial average plan 70, Set the counter k£ := 0. Set

an initial sample size n.

Step 1 Sampling. Obtain a sample w* € , i=1,..,n+k from the scenario set. For

each sampled scenario, solve the plan deviation problem:

min c (wi) Y (wi) + -;-y (wi)l Qy (wi) : (4.20)

s.t.

Ay (@) zb(w) - A()z

Y (wi) € R".

Step 2 Descent direction estimation. Obtain the average of the plan deviations:

x 1 n+k .
7 =n+ki=21y(w)- (4.21)

Step 3 Plan update Find the average plan:
zE+l = gk 4 %Q@"’ . (4.22)

Step 4 Stopping rule If l@"‘l < €, where ¢ is a tolerance, stop; the solution has been
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achieved, otherwise go to step 1.

The conditions for the convergence of the method have been discussed in section
3.7. Notice that this method diverges from the method in section 3.7 in step 3 . We
do not have to project the new solution to a constraint set since we passed all the
constraints in the plan to the second stage problem, making the solution update a

very easy step.

4.7 'The average plan model for multicommodity
flows on networks with random capacity and
demand

One of the fundamental problems underlying transportation and logistical analysis is
the multicommodity flow problem. It requires the determination of an optimal sharing
of network resources between several commodities competing for those resources. A
discussion and deterministic formulations of the problem can be found in Barnhart
in [Bar93] and in [BHV96], and in Ahuja, Magnanti and Orlin [AMO3].

In many logistical applications involving multicommodity flows, there are uncer-
tainties, the most common ones are in the capacity of the network and in the demand
on the nodes. The average plan model 4.1 is well suited to model and solve uncertain-
ties in network models, such as the multicommedity flow problem. In this section,
we show that the route generation (column generation) methodology can be applied
to the average plan formulation for multicommodity flows.

Let G = (IV, A) be a network, where N represents the set of locations and A rep-
resents the arc set of transport between the locations. The average plan formulation

of a multicommodity flow problem for the scenario set 3 w and K commodities is:

min E é (c (W) z (W), + % (z (W) — ’x‘k)“)] (4.23)
s.t.

Nz (w), = d(w), k=1,.,.K as.
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(4.24)

IA
<
S
I3
n

K
Zz(w)k
k=1

zw), 2 0 k=1.,K as.

Where:

Ty is the vector of the expected arc flows of commodity k;

z (w), is the vector of the arc flows of commodity & in scenario w;

v (w) is the vector of arc capacities in scenario w;

d (w), is the supply/demand at nodes of commodity k in scenario w;
¢ (w), is the cost of transporting commodity k in scenario w; and

N is a full rank node-arc incidence matrix.

In the following, we examine how to solve problem 4.23 for a fixed value of Zy. In
doing this, we learn how to solve the scenario dependent average plan multicommodity
flow model.

In the deterministic case, multicommodity flow problems are commonly solved
iteratively. One approach is to relax constraints 4.24, thereby decomposing the re-
sulting problem into several shortest path problems, one for each commodity. We can

use a similar approach for model 4.23, the Lagrangian is:

K Minyag),=dw), (€(@)eT W) + & (z (W), —Zx)?) +

LTk, A (w),) = z(w) 20
ZIIC(=1 A (w), (z (W) —v(w))
Aw), 2 0 k=1,.,K as. (4.25)

We solve 4.25 by solving | K| Q2] independent problems of the form:

: ) . q — 2
o8, (AT @)+ § (2 (@)~ 7). (4.26)
z(w), 20
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In the remaining part of this section we assume that each commodity has a single
origin and destination. If ¢ = 0, 4.26 is a shortest path problem. For a general ¢ > 0,
4.26 is not a shortest path problem, instead, it is a projection problem (see [Ber95]).
One way to find the solution for problem 4.26 is to use the convex combinations
method presented by Sheffi [She85]. This method is an adaptation of the gradient
method to solve network problems.

Assuming that is to possible to enumerate all possible routes between the origin
and destination of commodity k in scenario w a LP can be used to solve problem
4.26. Let P (w), be a matrix which columns are the feasible routes for commodity &

in scenario w. Then the flow can be represented as:
z (W), =P (w), 0 (W) » (4.27)

where § (w), is a vector which elements are the flows in each route. We obtain the

optimal flow by solving:

" max A (4.28)
s.t.
Pw)(c@)p+A(W)) = aP )Tk + P(W)y P (W) 6 (), = ulA  (4.29)
Wi (W), = d(w), (4.30)
W)y = 0
Where:

A is a scalar representing the marginal cost of used routes;

6 (w), are the flows in the feasible routes for commodity & in scenario w.
d (w), is a scalar with the amount of commodity £ in scenario w;

u is a vector of ones of dimension equal to the number of paths.

Problem 4.28 is based in the results presented by Bertsekas in [Ber95] and in
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[BG92] about optimization over simplexes applied to network flow problems. It re-
flects the very well known result that commodities use routes with the same marginal
cost while ignoring routes with a greater marginal cost. Constraints 4.29 represent
the marginal cost of the commodity for each route.

In order to obtain the optimal multipliers A (w), we need a master program to
use with the column generation step. Let z (cu);c be the routing generated in the **

iteration and g (w)}, its cost, then the master LP is:

min F Lz:l 21 g (W)l w)k] (4.31)
s.t.

v (w) a.s. (4.32)

ZZ-’E P

k=1j=
Sf Wy =1 a.s.
=1

fwi >0 k=1,..,K j=1,.,i as.

IN

A (w), is the dual solution for constraints 4.32.

The solution of the average plan multicommodity flow problem 4.23 for a fixed
T, iterates 4.28 and 4.31. This shows that the average plan version of the multicom-
modity flow problem is not intrinsically more difficult than the linear, deterministic
version.

We have shown in this section how to implement the scenario dependent problem
for multicommodity flows needed in all solution methods of the average plan model

presented in this thesis.

4.8 Chapter 4 summary

In this chapter we present the average plan model, that incorporates stochasticity to
a plan that in the deterministic case would be represented by a LP. The main idea
" behind the model is that deviations from the plan are penalized by a quadratic term.

We use the Lagrangian methods of chapter 2 to obtain the average plan dual and from
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it, we deduce the optimality condition E [y (w)] = 0, meaning that the expected value
of plan deviations should be zero. We adapt and apply the stochastic quasigradient
method of chapter 3 to obtain the solution of the average plan model. Finally, we use
the theory of chapter 2 to find a column generation solution of the average model for

multicommodity flow problems.
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Chapter 5

The generalized average plan

model

5.1 Planning models for random scenarios

In this chapter we expand the average plan model of chapter 4 to include plans that
can not be formulated as linear programming problems in their deterministic form.
We show in this chapter that a fairly large class of models such as IP’s or NLP’s can
be cast as average plan models.

The approach followed here is similar to the one proposed by Richetta and Odoni
[RO93]. We know that there is a set of scenarios 2. If we know in advance with
certainty which is the scenario w that will occur, we can determine an optimal plan

T (w) that is the solution of

min f (z (w) ,w) (5.1)
s.t.
T(w) € X (w).

Nevertheless we don’t have certainty about the scenario that will occur, just its prob-

~ ability distribution. The Richetta approach is to find a plan z that fits all scenarios
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w € , and solves the problem:

min E [ (z,w)] (5.2)
s.t.

r € ()X (w).

weN

Unfortunately, as mentioned in the previous chapter, there are two important set-
backs. First there may not be a plan z that is feasible for all scenarios. Second, if z
exists it may be constrained by a very low probability set X (w) that may have very
large costs f (z,w) associated with it, making the plan too costly, although feasible.

Another approach is to allow an acceptable risk of selécting an infeasible plan. The
planner establishes a level of risk of infeasibility that he is willing to take in order
to obtain a more economical plan. This can be modeled as the chance constraint

program:

min F [f (z (w) ,w)] (5.3)
‘ s.t.
P(z(w)=1z) > a (5.4)

z(w) € X (w) a.s.

8

m
)
K

Here constraint 5.4 establishes that the plan z is feasible at least o percent of the
time. However with this model it is desirable to find the maximum level a that makes
the plan feasible; since it may be infeasible for high values of this constant.

In this chapter we present an alternative model called the Generalized Average
Plan Model with the goal of overcoming the shortcomings of the previous two models.

It is:

min E [f (z (w),w)+ % (z (W) -7 Q (¢ (w) - ?c')] (5.5)
s.t.
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t(w) € X(w) a.s.

T € R

As in chapter 4, the rationale of this model is that for large values of Q (a positive
definite matrix), the optimal solution of 5.5 will try to minimize the quadratic term
by selecting values of z (w) that are close to Z. A deeper insight to this effect will be

presented in the next section.

5.2 The generalized average plan model as a quadratic

dual

We can rewrite the planning model 5.2 as:

min E [f (z (w) ,w)] (5.6)

s.t.

Assume that 5.6 has an optimal solution z (w)*,T*, otherwise the value of the objec-
tive function will be +00. Then, we have the following inequality:
1 *

mip  f(z(w),w)+5(@W) -T)Qz W) -7)< f(z(w),w) as.
z(w)€X (w) 2

(5.7)

This holds because z (w)” is a feasible solution to the left hand size of the inequal-

ity. Since 5.7 holds in the almost surely sense, it is possible to take the mathematical

expectation in both sides of the inequality and optimizing over T we obtain:

min B A f(z(w),w) + % (z(w)-2)Q(z(w) -T)| < E[f(z(w)",w)].
(5.8)
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So the average plan is always a lower bound on the optimal value of the planning
model represented by 5.6. Now, if we want a strong lower bound we should find a
value of the parametric matrix ¢ that makes the left hand side as big as possible.
Consider S to be the set of all positive definite matrices of size n (size of the vector
of variables). Then the optimal lower bound is:

maxmin £ | min f (z (w),w) + -;— (z() -2 Q(z(w)-7)| < E[f (z(w)",w)].
(5.9)

We conclude with the following definition:

Definition 1 (Quadratic dual) The quadratic dual of th> planning model 5.6 is
the optimization problem:

maxmia B | min f(@(),0)+;(@W) - QEw) -1 (5.10)

5.3 Optimality and strong duality of the quadratic
dual

We have shown that the generalized average plan is a dual for the program 5.6, in a
non-Lagrangian sense. Shapiro [Sha79] examines the theory of generalized duals and
finds that the optimality conditions are similar to those for Lagrangian duals. Here
we examine the optimality and strong duality issue applied to the generalized average
plan.

The optimality conditions are established by the following proposition:

Proposition 16 (Optimality conditions for the quadratic dual) Letz (w)", T

be an optimal solution to the quadratic dual 5.10 such that:
Elz(w) -7)Q (z{w) -] =0. (5.11)
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Then it is optimal to problem 5.6 and there is no duality gap.

Proof. Since Q* is positive definite, condition 5.11 implies:
(zW)-7)Q" (z(W)*-Z)=0 as (5.12)

and thus:
z(w)' =" as. . (5.13)

This implies that z (w)*, Z* is feasible in 5.6. Substituting condition 5.11 in inequality

5.8, we find:

Blfe@ wis _mn  BfG@e)] . 610
z(w)eEX(w), TER"

So z (w)*, T* is optimal in 5.6 and therefore there is no duality gap. ®

5.4 Solution of the generalized average plan model

for a fixed value of )

We are interested in sclving the generalized average plan model 5.5 for a fixed value of
Q to obtain some feasible plans for different scenarios. In order to obtain this solution
we are going to apply the theory developed in chapter 3 for stochastic programs that
are convex in the deterministic variable. In this case, the first stage deterministic
variable is the average plan T and the second stage variables are the plans for the
specific scenarios z (w). First we have to show that the generalized average plan

model is convex in the deterministic variable as defined by equation 3.3.

Theorem 17 (Subgradients for the average plan) Let f (z (w),w) be convez on

X (w) with probability one, and X (w) compact with probability one. Then the function

pEw) = mp fEW)0)+3E0-DQEE-7 (1)
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s convez in the deterministic vartable T and
Y(w)=—-(z(w)-T)'Q (5.16)

w5 always a subgradient.

Proof. Consider an average plan Z° and its corresponding second stage decision

z (w)°. Then
D (fo,w) =f (:c (w)° ,w) + % (x = 'fo)/Q (z (w)° - f‘)) . (5.17)

Let € (w)° be a subgradient in the almost surely seﬁse for f(z (w),w) at z (w)°
then § (w)° = £ (w)°+ (a: (w)? — T"), Q is a subgradient for the function f (:c (w)° ,w) +
3 (:c (w)° - fo), Q (:r () - .'z*’) respect to the variable z (w) since the second term is
the subgradient for the quadratic term . Furthermore since z (w)® is optimal for z°

in the scenario w we have

§w)° (z(w)—z)°) 2 0 . (5.18)
YV (w) € X (w) a.s.

To show convexity on the average plan, we analyze the value of p (7°, w)+7 (w)° (Z —

Using 5.18 we have

P (T“,w) + 7 w)° (?c‘ - f“) <p (Eo,w) + 6 (w)° (x (w) — x(w)o) + 9 (w)° (‘x‘— 'jo) .
(5.19)
Developing the right hand side:

5(c@)° -2 Q(z (W)~ 7°) (5.20)
{E (w)® + ( z(w)’ - fo)’ ] (z (W) -z (w)o)

-t -F)e(r-7).

(S]]
~J
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Regrouping terms we have:

(:z: (w)° ,w) +&W)° (a: (w)y—z (w)o) (5.21)

z (w)° —:z:) Rz w)-7) - (z(w)° -2°)].

We can add and substract 1 [(z (W)—-T) - (x (w)° - EO)]'Q [(3; (W) —T) — (:1; (Ww)° - 5;4))]

to this expression and rearrange the squared expressions to obtain:

f (:I?( ) ) +e (w)o (a: (W) =z (w)O) (5.2
F W) - QEw) 1)
—5le@-n- e - ele@ -2~ (W -2)].

But this is always less or equal to:

flzw),w)+3 @ W) -7 QEw) - 7) (5.23)

because ¢ (w)° is a subgradient to f (z (w),w) and the fourth term of 5.22 is always

negative. Selecting ' and its corresponding second stage solution z (cu)1 we obtain :

p(aw) +7@)° (3 -2°) <p(shw) as. (5:24)

So the average plan model is convex in the deterministic variable. B

Now that we have found the expression for the subgradient of function 5.15, we can
find the optimality conditions for the generalized average plan model. The argument,
as in chapter 3, is to find a first stage variable such that the expected subgradient is

zero, as is shown in the following theorem.

Theorem 18 (Optimality conditions) Consider the generalized average plan model

5.5, if f(x (w).w) has a subgradient for all z (w) € X (w) with probability one, then
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T and z (w)* are optimal in 5.5 if and only if:
"= FEz (w)°]. (5.25)
Proof. We can write the generalized average plan model as:

. . 1 =\ N -
BB |l L @060 -2 Q6w -2 = g Bl @0l
(5.26)
Since f (z (w),w) is convex over the dominion, inequality 5.24 is valid and then

Elp@E,wl+ENW)]E-7) < ElpEw) (5.27)

is also valid. But at 7%, E[y(w)’] = F[z (w)" — "] Q = 0 by condition 5.25 and by
5.16. Thus Z* and z (w)" are optimal. &

As shown, the optimality condition 5.25 is similar to condition 4.15 of chapter 4.
This is not surprising since the linear average plan model 4.1 is a special case of the

generalized average plan model 5.5.

5.4.1 Gradient method

Now that we have found the subgradient and the optimality conditions for the gener-
alized average plan model we can apply the methods obtained in section 3.5. As was
shown there, we can separate the second stage variable solution (meaning the sce-
nario dependent plan) from the solution of the average plan. Then we can calculate

a descent direction and update the first stage variable. The algorithm is as follows:

Step 0 Initialization. Let £ = 0. Select an initial average plan z°.

Step 1 Scenario solution. For every scenario w € § solve:

(zw)-7%) Q(z(w) - 7*). (5.28)

N =

k _ 3 .
z (w)" = arg SN0 flz(w),w)+
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Step 2 Average plan update. Find the new average plan:
1
ktl _ =k = k] _ =k
Tl =z +kQ(E[m(w)] z*). (5.29)

Step 3 Stopping rule. If |(E [:z: (w)"] - T")l < €, where € is a tolerance, stop since

the solution has been found, else go to step 1.

Since this algorithm is the same as the one of section 3.5.1, it’s convergence is

guaranteed by similar arguments.

5.4.2 Column generation method

As in section 3.5, we use the column generation method as an alternative to gradient
methods and as a tool to methodically enumerate possible solution plans. In this case

we define column 7 as:
Elyw)]=Q(E[zw)-7]). (5.30)
We also define the value of the function g (y (w)i) as:
¢(r@)) =p(Fw) - 1(W)'T (5.31)

With these two definitions we can write the column generation method for the average
plan model.

Step 0 Initialization. Let k = 0. Select an initial average plan z°.

Step 1 Pricing problem. For all scenarios w € €2, solve 5.28. Obtain the new column

using 5.30 and its associated cost E [q ('y (w)i)] using 5.31.

Step 2 Master problem. Solve for the variables o*, 7 = 1, ..,k from the linear pro-

gramming problem:

k o
min ; E [q ('*/ (w)‘)] o (5.32)
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Step 3

s.t.

k R .
; E [y(w)]a' =0 (5.33)

k .
Yat=1
i=1
at>0,i=1,...,k.
The dual variable associated with the constraint 5.33 is the new plan Z**'.

Stopping rule. If IE [7 (w)i] < € where € is a tolerance, stop since the solution

has been found, else go to step 1.

5.4.3 Stochastic quasigradient method

Following section 3.7, we can write a solution method for the generalized average

plan model based on using statistical samples to avoid the work of enumerating all

scenarios.

Step 0

Step 1

Step 2

Step 3

Initialization. Set k = 0 and select an initial sample size n. Select an initial

average plan z°.

Scenario sampling. Take a sample of size n of scenarios from 2. For each

sampled scenario w* solve the problem:

z (wi)k =g, Jin oS (z (&), ) + % (2 () -7) Q= («) - 7).

(5.34)

Solution update. Obtain the new average plan using:
kil _ ok, @1 i\ _ =k = o=
T =7 +k(n§x(w’)—x). (5.35)

Stopping rule. If

%Z?:l z (W) — 'fk] < € where € is a tolerance, stop since

the solution has been found, else let k := k+1, n =n+1 and go to step 1.
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5.5 Applying the generalized average plan model
to discrete problems

Many transportation problems, such as crew scheduling vehicle routing and network
design, are well represented by integer programming models. These models are in
general non-convex and therefore simple gradient methods may not converge to the
global optimum. Instead it is necessary to do a more thorough exploration of the
decision space to obtain a global optimum or at least a good local optimum. Further-
more, the average plan T as defined by 5.5 is not itself guaranteed to be a feasible
plan since it may not be an element of the feasible deci§ion space. Nevertheless the
interpretation of the value Z, although problem dependent, may be interesting and

will give insight into the problem. A more detailed discussion follows.

5.5.1 Non-convexity of discrete problems

Consider the following small example. Considering a scenario w?, we have the second
stage problem:

p (‘x’, wo) = gl)lé?o'l}z (wo) + % (:c (wo) - 35)2 : (5.36)

- z(w

A plot of this function car. be seen in figure 5-1.As shown, there is obvious non-
convexity at T = % The reason for this is that at this point there is no subgradient
§ (W) = e (w°) + 4 (x (W) — %) such that inequality 5.18 is satisfied. For example,
for z (w°%) = 0 we should have ¢ (w°) + 4 (:L‘ (w?) — %) > 0, therefore € (w°) > 3. But
such a subgradient doesn’t exist for f (z (w°),w®) =z (w®). In the same way, we can
see that for z (w®) = 1, we should have € (w®) < —1 but this subgradient doesn't exist
either. This is not the case for a problem with continuous variables such (see Figure

5-2) as:
p(w) = min z(w®)+; (s (s%)-7)". (5.37)

z(w9)€(0,1]

The reason for this phenomencn is the behavior of the quadratic term when the
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Figure 5-1: A non-convex problem

second stage variable is discrete. Consider the function

1

: =2
x(ﬁ)rg{raﬂ 5 (z (w) —7)°, (5.38)

that is plotted in figure 5-3. There is obvious non-convexity at T = %

5.5.2 Solving 0-1 problems by thorough exploration of the
domain

In this subsection, we will concentrate on models in which the second stage solutions
are constrained to have binary values, this is, X (w) C {0,1}". Their average plan

solution has a very interesting interpretation. By the optimality condition 5.25, we
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Figure 5-2: The same problem with a continuous variable

have:

-

[ P(z1(w)=1)

z=Ez(w) = J{) rW)dPw) = | L E@=1) (5.39)

| P(2n (W) =1) |
That means that the average plan represents the probability that each individual
variable equals one, when the scenario w occurs. In the case that the problem un-
der study is a network design problem the average plan solution will represent the
probability that a given link will be included under the actual scenario in which the
network will operate.
The lack of convexity of these kinds of problems makes them particularly challeng-
ing, because we can use our subgradient to guide us to a nearby local optima but we
don’t have any information about where the global optimum is. Neither do we have a

lower bounding technique that would allow us to enumerate efficiently the solutions.

64



0.H25

0.1400

0.68$75

0.6150

0.6$25

0.6$00

0.0$75

0.6350

0.6425

Figure 5-3: A plot of the quadratic term

The resulting approach is to enumerate a list of candidate solutions, evaluate them,
refine them, and select the best one. Fortunately we can do evaluation and refinement

in a fairly efficient way. The algorithm is as follows:

Step 0 Initialization. Make a list of candidate solutions Z* € [0,1]", k=1,..., K.

Step 1 First evaluation. For each member of the list solve the second stage problem:

(W) =arg_ min f(z()w)+ % (2@ -7) Q(z(w)~7"). (5.40)

Step 2 Refinement. Obtain for all k,the refined average plan

Thw=F [:r (w)k] . (5.41)
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Step 3 Second evaluation. Solve for all k, the problem:

toln—l

2 =E [f (z (@), w) + 5 (z(w)* - -'=) (z (w)* - fg)] . (5.42)
Step 4 Plan selection. Select:

z* = min_zF. (5.43)
k=1,..,.K

The corresponding refined plan T} is the solution.

The idea behind this algorithm is that even if we start with a value Z* that is not a
local optimum for the discrete average plan 5.5, we can find an approximation to the
corresponding local optimum in a single step. Because once we have fixed the second
stage variable z (w)k we only need to evaluate the optimality condition to obtain the

local optimal average plan. We can show it in the following lemma.

Lemma 19 Let % € [0,1]" be any average plan, then Tx obtained by using 5.40 and

5.41 15 the corresponding local optimum.

Proof. From 5.40 we can obtain the second stage solution z (w)*. Then we obtain

the local optimum by solving:

1
. k k
fglelgn E [f (:c (w) ,w) +5 (z (w)* - xﬁ) Q (x (w)* - x'}i)} (5.44)
But since z¥ is an unconstrained vector of real numbers we can obtain it just by

finding the derivative and making it equal to zero:

[( z (W)~ %) ]=0, (5.45)

thereby obtaining 5.41. B
An heuristic that can be used to avoid the process of generating several trial

solutions and then evaluating them, is to use instead a relaxed version of the discrete
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problem:

minB [f (z(0),0) +3 @) - QEw)-2)] (540
s.t.
z(w) € conv(X (w)) a.s.
I € R" ,

in which the convex hull of the feasible second stage solution is used instead of the
discrete set. This problem can be solved using any of the algorithms of section 5.4.
Then we can use the refinement algorithm of this section to obtain the corresponding
local optimum. Since the initial solution was the glol;al optimum for the relaxed
problem, there is at least some hope that the refined solution will also be the global

optimum.

5.5.3 An iteration method

The previous method is a way to explore quickly a great number of starting points
and evaluate them. If we commit to a particular starting point and we want to find
the corresponding local optima we have to use an iteration method that will take us
there. The following method works with problems with discrete variables as well as

with continuous variables and mixed discrete-continuous variables.
Step 0 Initialization. Let k£ = 0. Select an initial average plan 7°.

Step 1 Scenario solution. For every scenario w € Q solve:

z(w)* = arg min f(z(w),w)+ % (@ =-7)Qzw) -2). (5.47)

Step 2 Solution update. Do:
Tl = F [z (w)k] . (5.48)
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Step 3 Stopping rule. If ’(f’”‘l - ‘f")l < ¢, where € is a tolerance, stop since the

solution has been found, else go to step 1.

To show how the algorithm works, define:
1@ D =E[fcw) ) +;60)-9Qew-3)|.  (4)
Then observe that we have the following inequalities:
7z W), 7%) 25 (z W)*,7*) 2 5 (z W)*,2). (5.50)

The first inequality corresponds to step 1 in the algorithm and holds because
we are minimizing over the stochastic variable z (w). The second inequality holds
because evaluating the optimality conditions 5.48 is equivalent to minimizing over
the deterministic variable Z, as shown in lemma 21. The inequalities 5.50 show that
successive iterations of the algorithms decrease the objective function. The method is
similar to coordinate descent presented by Bertsekas [Ber95]. Although this method
works for problems with all continuous variables, it is not recommended because these
problems may have regions in which the objective function is linear (as an example

see figure 5-2). A subgradient method may be quicker in these situations.

5.5.4 Computational issues

Solving the non-linear integer program 5.40 can be quite challenging. Fortunately,
for binary decision variables, it is possible to express the quadratic term as a linear
function when the matrix @ is diagonal. If f (z (w),w) = ¢(w)z (w), then the lin-
earization of the quadratic term makes 5.40 a linear integer program for all scenarios.
Consider the quadratic term corresponding to the i** element:

%i(x (), — 7). (5.51)
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Instead we can write this term as:

A EIONE -4 (5.52)

We can see that for z (w) € {0,1} the values of 5.51 are the same as those of 5.52,

but 5.52 is linear in the second stage variables.

5.5.5 Saving branch and bound trees

In the solution methods presented above, we found that in the second stage we have
to solve an integer or mixed integer program for each positive probability scenario.
This is very time consuming. Instead, we propose at each iteration of the method,
to save the branch and bound trees for all scenarios. Observe that at the end of
any second stage scenario solution all the leaves of the B&B tree have been either
fathomed and the search stopped on that particular node or they contain a discrete
feasible solution. Observe that in the following iteration the costs in the objective
function of the second stage problems are updated using 5.52. Now we use our saved
branch and bound trees in the following way. First we evaluate the leaves that contain
a feasible solution using the updated objective function, to obtain a new lower bound
for the tree. Next we examine the previously fathomed nodes using the new lower
bound to see which ones should still be fathomed and which may be opened to further
exploration.

We consider that this method may help considerably to reduce the time and make

more efficient the solution of the discrete second stage problems.

5.6 Post-solution analyses

We have seen so far how to solve (at least approximately) the generalized average
plan model 5.5 for continuous and discrete variables. In some cases, we may find an
~average plan T that is feasible for all strictly positive probability scenarios. Then this

is the plan we should follow. However, the average plan model is designed precisely
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to cover the cases in which no such solution exists. What we have to do in this case
is to select one of the second stage plans to be our master plan. We know by the
formulation of the average plan that the second stage solutions are reasonably close

to each other. We propose the following heuristic to select a second stage plan.

Step 0 Scenario sampling. Make an unbiased sample of scenarios w™ € Q, m =

1,., M.
Step 1 Scenario evaluation. Using the optimal average plan solution T* obtain the
scenario dependent plan.

™) = ar mi
II(UJ ) gx(u"‘)el){'l(um)

m=1,.,M

Step 2 Scenario evaluation. For all the scenarios sampled, obtain the following

value:

M
=3 (W) -z (") QW) -z W) ‘ (5.54)

n=1

m = 1,..,A/I .

Step 3 Plan selection. Find:

min 2™, (5.55)
m=l,..,

The corresponding value of z (w™) is the desired plan.

The rationale behind this algorithm is that we are trying to find the plan from
which a deviation would be the least costly. We are pricing the deviations by using
the quadratic term, so 5.54 and 5.55 help us to find the sample plan that will have
the minimum correction cost.

Another wny to find an acting or master plan is to find the plan that is closest to
the master plan T*. We do this by solving the problem:

min_(z (w™) -7 Q (z (w™) - T"). (5.56)

m=1,..M
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In fact this approach is equivalent to the one obtained using equations 5.54 and

5.55. Observe that:

Elz(w) -z (™) Q(z (w) -z (w™))] (5.57)
= E[(z()-7) - (= (™) -7))Q((z(w) - 7) - (z (w™) - 77))].

Developing the right hand side, we have:

El(z (w) -z (w™)Q(z(w) —z (™)) (5.58)
= El(z(w)-7)Q(z(w) —%")]+2 E[(z(w) - 7°)]Q (z (v™) — Z")
+(z (™) -T)Q (z (w™) —T).

But the second term of the right hand size goes to zero because of the optimality
condition 5.25. It shows that finding the acting plan z (w™) that minimizes the
correction costs with respect to the plans of other scenarios is the same as that which

minimizes the correction cost with respect to the optimal average plan.

5.7 Chapter 5 summary

In this chapter, we extend the average plan model 4.1 of chapter 4 to a generalized
model 5.5 that is not limited to a particular shape of the objective function or to a set
of linear constraints. We show that the generalized average plan model is a relaxation
of the planning model represented by 5.6, and a non-Lagrangian dual to this problem
in which the unknown dual variable is the positive matrix @. In some cases, it will
be possible to find a @ that makes it possible to use the average plan 5.5 to obtain
a solution to 5.6, but in general it will not be possible since no such solution exists.
Instead, fixing @ will help us to find reasonable plans.
Then we study how to solve the average plan 5.5 when there is convexity of
“the deterministic variables Z. We prove that a solution exists when the function

f(z (w),w) is convex in the almost surely sense. Furthermore, we find an explicit
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expression for the subgradient 5.16 and optimality conditions 5.25 in this case. This
allows us to apply the algorithms of chapter 3 to solve for the average plan.

When we study how the average plan behaves for discrete problems, we find that
these are not convex in the deterministic variables and therefore, we cannot find a
global optimum except with complete exploration of the decision space. Instead, we
find local minima and we propose a heuristic to find reasonable solutions. Finally,
we propose a heuristic to select a particular plan to follow based on choosing the one

with least expected correction cost.
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Chapter 6

Transportation applications of the

average plan model

6.1 Introduction

The purpose of this chapter is to provide proof of concept of the generalized average
plan model. Our approach is to examine certain transportation problems that have
been solved in a deterministic manner and alter them to include randomness, thereby

applying and illustrating the theory of chapters 4 and 5.

6.2 A service network design model for the distri-

bution of crops in Mexico

6.2.1 Problem background

Mexico’s surface transportation network (railway and highways) has two characteris-

tics:
1. It spans very difficult terrain due to geographical accidents,

2. Only important cities and ports are connected by high capacity roads and/or

railway tracks.
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The consequence of these two points is that the surface transportation network
is not redundant. Meaning that there are very few routes between any two points in
the network, sometimes just one. Furthermore, these roads link.only the big cities
and major ports.

There are well defined crop producing regions and consumption centers in Mexico.
In particular most of the production is done in the North-West region. The crop
demand that cannot be supported by internal procuction is supplied by importation
of crops through the Gulf’s ports (Veracruz and Tampico). The primary consumption
centers are the cities (Mexico city, Guadalajara and Monterrey).

[Jau89] studies the problem of routing railcars at the Mexican National Railway
company to service crops. The transport requirements- goal is to find routings for
loaded and unloaded cars over the railroad network, based on demands for transport
of crops.

In this thesis, we solve the same problem but consider different demand scenarios
to find new routings under stochastic conditions. In the original problem, routes
were constructed by sending loaded cars to their destination using the shortest paths,
and the service network was completed by returning empty cars to loading points by
using a network flow model. Demand data represents supply and demand forecasts
for crops, for the year 1991.

For purpose of our case study, we have simplified the 1989 network by using node
consolidation (nodes represent regions rather than individual cities). The nodes in
our network and the corresponding demands (-) and supplies (+) are presented in
Table 6.1.The corresponding network is shown in figure 6.2.1. Table 6.2 shows the
distances between any two cities using the shortest paths in the network. The cost
of creating a route between any two cities was calculated using the empirical formula

.5d'®, where d is the length of the shortest path between these two cities.

6.2.2 Methodology

- We solve this problem using the algorithm of section 5.5.3. The second stage scenario

problem is the Service Network Design Model studied by Barnhart and Kim [Kim97].
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Number Name Average cargo (Loads/Week)

1 North-West Region 122.15

2 Torreon -97.38

3 Monterrey 236.94

4 Guadalajara -44.13

5 Aguascalientes 0

6 San Luis Potosi 0

7 Tampico 18

8 Mexico City -492.98

9 Veracruz 257.4

Table 6.1: Modeled nodes
[ Nodes | 1 2 | 3 | 4] 5|6 7 | 8 9 |

1 8.8 11242116 |13.6|13.6 176|152 | 19.5
2 8.8 0 362 | 7.1 { 5.1 |6.78|8.92|10.7| 13.71
3 12.42 | 3.62 0 7.37(7.05|5.37| 5.3 |9.56 | 10.09
4 11.6 7.1 7.37 0 2 2 6 3.6 7.9
5 13.6 | 5.1 | 7.05 2 0 | 168|568 56 | 9.9
6 13.6 | 6.78 | 5.37 2 1.68| 0O 4 4.19 | 8.49
7 17.6 | 8.92 5.3 6 0.68 1 4 0 8.19 | 4.79
8 152 | 10.7 | 9.56 | 3.6 | 5.6 [ 4.19 (819 | O 4.3
9 19.5 | 13.71 1 10.09 | 7.9 |{ 9.9 | 849 | 4.79 | 4.3 0

Table 6.2: Shortest path distances in the netwcrk

75



Figure 6-1: The network model for Mexico’s distribution problem

This is similar to the network design problem studied by Magnanti [MW84] with the

following special characteristics:

e The links between nodes are vehicles moving between them. The capacity of the
link will be a function of the type of vehicle used and the frequency of travel.
In this particular application we only consider the aggregat.e capacity of the

vehicles in the link.

e To model vehicle tours it is necessary to add conservation of flow constraints

for the vehicles to the model.

The model for the second stage scenario dependent problem is:

) 2 2
min Z (f(i,j) +q (1 - wa-)) +q (Efi‘j)) ) T W)+ (6.1)
(3.3)

> SV W)

(i,7)

s.t.
Ny(w) = d(w) (6.2)
Nz(w) = 0 (6.3)
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Uz @) 2 wupw) V(G5 ) (6.4)
Tap W) € {0,1}  V(,j).

where:

(.5 (w) is a binary vector representing the assignment of a fixed number of vehicles

to arc (%, j)of the network in scenario w;
Y(.5) (w) is the number of loads of crops on arc (4, ) in scenario w;
N is the node-arc incidence matrix representing the network;
d(w) is the demand in scenario w;
U is the aggregate capacity of the stream of vehicles in the arc;
fii.j) is the cost of assigning a stream of vehicles to arc (¢,7), and

C(i,j) 1s the cost per load of transporting crops over arc (2,7).

Constraints 6.2 enforce conservation of flow for the Crops, constraints 6.3 guarantee
conservation of flow for the vehicles and constraints 6.4 allow crops to flow only on
arcs where vehicles have been assigned.

We linearize the quadratic term in the objective function using the method of
equation 5.52. For the solution of this problem, we generate 5 random scenarios
using a normal distribution with mean given by the values of Table 6.1 and a diagonal

Covariance matrix with 10 loads/week in all non-zero elements.

6.2.3 Results

We solve the problem using ¢ = 50 and g = 500. The corresponding average plan
routings of vehicles are shown in Figures 6-2 and 6-3.

With the value of g = 300 we have a single solution that is feasible and is the
“same for the 5 scenarios. The objective function expected value is 171298.3 Load-

sKm/Week. In contrast, when ¢ = 50, one solution (shown in figure 6-2) is selected
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Figure 6-2: Solution with ¢ = 50




122.1 -97.38

236.94

257.4

Figure 6-4: Deterministic solution of Mexico’s logistic problem.

for only 4 of the 5 scenarios. In the solution for the 5th scenario, we found two addi-
tional links between nodes 3 and 6. The expected value of the objective function is
125861.9 Loads*Km/Week. '

There are a few points worth mentioning about the solution:

e First, it is interesting to contrast the difference between the sclution obtained
using the average plan model and the solution of the deterministic model of
the problem using average values for the demand. The deterministic solution is
shown in Figure 6-4 . The most striking difference in the routing is that nodes
5 and 6 are ignored in the deterministic routing because their expected demand
is zero. This doesn’t happen in a stochastic routing because these nodes can
serve as supply or demand points and hence, the demand for those nodes will
be different from zero for some scenarios. Thus the average plan will route a
stream of vehicles through them and the deterministic plan, which does not, is

infeasible for of the 5 scenarios.

e As mention in scction 5.5, problems with discrete variables as this one may have
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several local optima, so the solutions presented in Figures 6-2 and 6-3 may not
be the absolute minima. Nevertheless, both present the desirable characteristics
expected from the average plan. In the solution obtain for ¢ = 50 we obtain

P (Z = z (w)) = 0.8 while for ¢ = 500 we obtain P (T =z (w)) = 1.

e The numerical example presented here uses five scenarios obtained from sam-
pling a multidimensional normal distribution. It is easy to understand the
results obtained in the case of ¢ = 50 by thinking about the shape of the distri-
bution. There are a few scenarios that are in the tail of the distribution while
most of them are in the main body of the distribution. The scenarios in the
main body are closer to each other and the solution for them would be similar.
In this example, 4 of 5 scenarios have the same solution. While for the scenarios

in the tail, the solution is different.

6.3 An airplane scheduling problem

6.3.1 Problem background

During the last decade, the Federal Aviation Administration (FAA) has been schedul- -
ing daily ground delays for commercial flights. The rationale behind this policy is that
it is cheaper and safer to make airplanes wai’ on the ground of the departing airports
than to circle in the air above the arrival airport. This problem, called the ground
holding problem, has been extensively researched by Odoni and Richetta[RO93], and
by Vranas, Bertsimas and Odoni [VBO94] just to mention a few.

In particular Vranas et al. [VBO94] have developed a deterministic model to study
the network effects of such imposed ground delays. In their model, the main set of
constraints reflect airport landing capacities in the network, throughout the day.

In our case study, we do not solve the network wide problem under uncertainty.
Instead we solve the problem of finding the schedule (itinerary) of flights of a single
_aircraft moving over congested networks. We consider the shadow price of landing at

a given airport at a given time rather than the capacity of the airport. Our intent
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Scenario | Airport 1 | Airport 2 | Probability
1 Good Good 2
2 Good Bad 2
3 Bad Good z
4 Bad Bad 3

Table 6.3: Scenarios and associated probabilities

is for this work to serve as a prototype for the column generation step of a larger
problem that would solve the ground holding problem under uncertainty.

An interesting interpretation for the average plan model in this case, is that an
airline does not design a schedule for each possible climatic condition, but rather it
designs a schedule that works on average. The property of the average plan to tie
schedules for different scenarios in a flexible way can be exploited in this problem,

since we are not looking for schedules that are optimal all the time.

6.3.2 Methodology

For this case study, we use the data from Vranas’ first example containing two airports
(JFK and BOS) and 64 time slots of 15 minute durations for 16 hours of airport
operation. For each airport we consider two possible states: ”Good” in which the
same landing capacities as in Vranas’ data are used and "Bad” in which we reduce
by 1 airplane/time period the capacity of airport 2 (BOS) in slots 12 to 49. For the
"Bad” scenario in airport 1 (JFK), we reduce the capacity by 1 or 2 airplanes/time
period in slots 13 to 51. Combining tk2 states, we create four scenarios, shown in
Table 6.3. We assign a higher probability to scenarios 1 and 4 because we consider
the states of both airports tc be positively correlated. Using these scenarios, we
solved deteministically the ground holding problem for each scenario and obtain the
corresponding shadow prices for the capacity of each airport in each time pericd, for
each scenario, as shown in Table 6.4.

We are trying to schedule 20 flights of the same airplane between the two airports.
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" Time Slots Airport 1 “Airport 2
Scenario 1 2 3 4 Scenario 1 2 3 4
1 0 0 0 0 0 1] 0 0
2 0 0 0 0 0 0 4] Q
3 0 0 0 0 0 [] 1] Q
4 0 0 0 0 0 [ 0 0
5 50 50 50 50 [ 0 0 0
6 1) 0 0 0 0 0 [0) 0
7 0 0 0 0 [ 0 [} 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10 200 300 200 300 200 200 200 200
11 150 250 150 250 150 150 150 150
12 100 200 160 —200 100 100 100 100
13 50 150 50 150 50 50 50 50
14 0 100 0 100 0 0 0 0
15 0 50 0 50 0 [ [ 0
16 0 0 0 0 0 0 0 0
17 0 0 0 0 9] [ 5] 0
18 0 0 0 [1] 0 [ 0 0
19 0 0 0 0 ") 0 0 0
20 300 450050 375050 450050 200 200 300 450050
21 250 450000 375000 450000 150 150 250 450000
22 200 449950 374950 449950 100 100 200 449950
23 150 449900 374900 449900 50 50 150 449900
24 100 449850 374850 449850 0 0 100 449850
25 50 100 50 100 0 [ 50 100
26 0 50 0 50 0 Q 0 50
27 0 0 0 0 [ 0 0 0
28 0 (] 0 0 0 0 0 0
29 0 0 0 0 0 [} 0 0
30 375050 450050 375050 450050 200 200 1.3499%e+-06 1.3499e+4-06
31 375000 450000 375000 450000 150 150 1.34985e+06 1.34985e+4-06
32 374950 449950 374950 449950 100 100 1.3498e+06 1.3498e+-06
33 374900 449900 374900 449900 50 50 1.34975e+4-06 1.34975e+-06
34 374850 449850 374850 449850 0 0 1.3497e4-06 1.3497e+06
35 50 100 50 109 200 450 1.34965e+06 1.34965e+06
36 0 50 0 50 150 400 1.3496e+4-06 1.3496e+-06
37 0 0 0 [ 100 350 1.34955e+06" 1.34955e+06
38 0 0 0 0 50 300 1.3495e+06 1.3495e+-06
39 0 0 0 0 0 250 1.31945e+06 1.34945e+4-06
40 30C 450050 300 450050 200 200 524950 524950
41 250 450000 250 450000 150 150 524900 524900
42 200 449950 200 449950 100 100 524850 524850
43 150 449900 150 449900 50 50 524800 524800
44 100 449850 100 449850 0 [ 524750 524750
45 50 100 50 100 0 0 50 50
46 0 50 ) 50 0 0 0 0
47 [}] 0 [ [4) 0 )] 0 0
48 0 0 0 0 0 0 0 0
49 0 0 0 [1] 0 0 0 0
50 375050 375050 375050 375050 200 200 250 200
51 375000 375000 375000 375000 150 150 200 150
52 374950 374950 374950 374950 100 100 150 100
53 374900 374900 374900 374900 50 50 100 50
54 374850 374850 374850 374850 0 [ 50 [*]
55 50 50 50 50 0 [ 0 0
56 0 0 1] 0 0 [ 0 0
57 0 1] 0 0 0 0 0 0
58 0 0 [] 0 0 [ 0 0
59 0 0 0 0 0 0 0 0
60 200 200 200 200 0 0 0 ]
61 150 150 150 150 0 0 0 0
62 100 100 100 100 0 0 0 0
63 50 50 50 50 0 0 0 0
64 0 [ [ 0 0 0 [} 0
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The mathematical model of the problem for scenario w is:

0
min‘z_z1 [Cg (ri (W) = ti (W) + Xi (s (w) + ) + % (t (w) — f)z] (6.5)

s.t.
T; (UJ) Z t,' (w) 1= 1, ,20 (66)
tiyi(w) 2 rwW+f+u  i=1,.,19 (6.7)
to (w) Z 1
Where:

t; (w) is the scheduled departure time for flight ¢ in scehario w;
7; (w) is the actual departure time of flight ¢ in scenario w;

f is the fly time (considered 1 time period);

u is the turn around time (considered 1 time period);

A; (1) is the shadow cost of flight ¢ landing in time period 7;

C, is the ground holding cost (50 cost units/time period).

The objective function has three terms. The first is the cost of the plane waiting
on the ground. The second is the shadow cost of constraint associated with the plane
landing at a time equal to actual departure time the flying time. The last is the
quadratic term of the average plan mcdel. Constraint 6.6 tells us that the actual
departure time should be greater than the scheduled departure time. Constraints
6.7 force the next scheduled departure time to be at or after the time at which the
airplane is ready to depart on its next flight.

Due to the problem’s structure, we solve it as a dynamic program. In general,
the ability to solve this problem as dynamic program should be exploited for the

_purpose of using this model as the column generation step of a network-wide model
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with several aircraft. The dynamic programming recursion equations are:

Lt @)w) = min Cyri(0) ~ () X )+ )
q . — 2 3 . . Y
+2 (t: (w) = 0)" + ta+1(w)§'z(lzu)+f+u Ji (ti+1 (w),w) (6.8)
i = 1,..,19
J20 (t20 ((-d) ,w) = min Cg (ng (w) — 10 (w)) + A20 (7‘20 (w) + f) . (69)
ra0(w)>t20(w)

These equations are easy to implement and simplify considerably the calculations
necessary to solve the scenario specific problem.

Although in reality this is not a discrete variable problem, we have discretized
it by dividing the time horizon into periods. Consequently, we solve 6.5 using the

algorithm of section 5.5.3 .

6.3.3 Results

We implement the dynamic programming approach of equations 6.8, in a program
shown in the appendix. We solve it using values of ¢ = 50 and g = 100. The
resulting average plan schedules are shown in Table 6.5, with the s;:hedule depicting
the departure times of each flight. As expected the objective function value for
g = 100 is much larger than the value for ¢ = 50 . For ¢ = 100, all scenario solutions
are equal meaning that for this value of ¢ the constraint ¢ (w) = t is honored with
probability one. Observe that in this solution, the flights are evenly spaced by two
time periods, this spacing represents the flying time plus the turn around time. This
means that the airline is willing to ”pay” whatever is necessary to land their airplanes
at the desired time. This disregard for the landing cost causes the schedule to be the
same in all scenarios. In the ¢ = 50 case, there are again several flights spaced by two
time units. However periods 17 and 38 are followed by longer gaps in time before the
next flight. This coincides with sharp increases in the landing shadow costs.

This example illustrates how costs increase 2= the quadratic parameter g increases.

Also it shows that the quadratic term does not necessarily increase the numerical
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Flight Schedule ¢ = 50 Schedule ¢ = 100
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4
1 1 1 1 1 1
2 3 3 3 3 3
3 5 5 5 5 5]
4 7 7 7 7 7
5 9 9 9 9 9
6 11 11 11 11 11
7 13 13 13 13 13
8 15 15 15 15 15
9 17 17 17 17 17
10 20 22 22 22 19
11 22 24 24 24 21
12 24 26 26 26 23
13 26 28 28 28 25
14 28 30 30 30 27
15 32 32 33 33 29
16 34 34 35 35 31
17 36 36 37 37 33
18 38 38 39 39 35
19 43 43 44 44 37
20 46 46 46 46 39
Objective function value 110503 358950

Table 6.5: Solution of the average plan model for the flight scheduling problem. Even
numbered flights arrive to airport 1.
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complexity of the problem, as can be seen from dynamic equations 6.8. Notice, that
the solution to this problem is sensitive to the starting value T of the average plan
in the iteration process and that with other starting poirts, other solutions may be

found.

6.4 Chapter 6 summary

In this chapter we illustrate the application of the average plan model using two case
studies. In the first, we consider a logistics model that uses the service network design
problem as the second stage scenario dependent problem. In the second we solve a
subproblem of the average plan versicn of the ground holding problem by solving
a schedule construction problem. The scenario dependent problem in this case can
be solved using dynamic programming making it numerically easy. Both problems

illustrate the properties of the average plan model described in chapter 5.
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Chapter 7

Future Research

We examine here some topics of future research, and break these topics into three

categories: theoretical, computational and economic research issues.

7.1 Theoretical research issues

e It is necessary to formally connect the chance constraint formulation 5.3 with

the average plan model 5.5 and show in which cases the two are equivalent.

e It is necessary to develop methods like the stochastic quasigradient algorithm
of section 3.7.1 for problems with discrete variables. This could be used to
interface with a simulator and manage large numbers of scenarios for problems

with discrete variables.

e It is important to explore methods to find the global optimum of the average
plan model with discrete variables. Such methods could be based in branch and

bound or in heuristic explorations of the domain.

o In the average plan model, we relax the constraint T = z (w) a.s. by means
of the quadratic term. Nevertheless other functions may be used to relax this
constraint and produce meaningful duals. These other functions should be

explored.



e Connections with other models for robust planning such as Yu’s [YK97], should

be explored.

7.2 Computational issues

e Many researchrs are already studying how to parallelize stochastic program-
ming problems (see [NZ96]). In the case of the average plan model, it is pretty
obvious that the second stage scenario dependent problems can be solved in
parallel. It would be useful to study formal algorithms to parallelize this solu-
tion. Furthermore, it may be possible to distribute different functions to several

processors in a distributed computing environment.

e It is necessary to explore how to connect the average plan to existing systems
such as GIS and optimization solvers in order to turn it into a practical tool for

a wide variety of planning problems.

7.3 Economic issues

e It is necessary to investigate the economic interpretation of the quadratic term.
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Appendix A

Software implementation

In this appendix we include the software corresponding to the case study of section

6.3

A.0.1 mplane.cc

//IImplementation of the average plan model
// aapplied to the airplane scheduling problem.
/ /11t uses an object—oriented design to

//ssolve the scenario related problem.

#include <iostream.h>
#include < stream.h>
#include <stdio.h>
#include "plane.h"

int nscenarios = 4, nperiods = 64, nflights = 20, tut = 1, ftime = 1;
double cg = 50., q = 50;

double pe[] =

{.33, .17, .17, .33};

void input_ca (double *, double *, char *);

main ()
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{

char name[15];
int iter = 0;

vector tb (nflights), te (nflights);
// CConstructors
double **a = new double *[nscenarios];
double **b = new double *{nscenarios];
plane **p = new plane *[nscenarios];
vector **tw = new vector *[nscenarios);
double *cst = new double{nscenarios];
for (int i = 0; i < nscenarios; i++)
{

a(i] = new double[nperiods];

b(i] = new double[nperiods};

sprintf (name, "scenario%d.dua",i);

input_ca (a[i], b[i], name);

p(i] = new plane (nperiods, nflights, ftime, tut, cg, q, a[i], bli], tb);

tw[i] = new vector (nperiods);

cout << "Iteration " << iter++ << endl;

th = te;

te.zero ();
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for (int j = 0; j < nscenarios; j++)

{

plj]—>new_t (tb);

for (int k = nflights — 1; k >= 0; k—-)
{

p(j]—>iteration (k);

}

/] ccout< < "Esc:"< <j<<” "<<*(p[i]->J[0])<<endl;

*(twlj]) = p[j]—>schedule (cst(j]);

/] ccout< < cstfjj< <endl;

te += *(tw[j]) * (peli]);
}

cout << "E[tw]=" << te << endl << endl;

}

while (te != tb);

// OOutput
for (int j = 0; j < nscenarios; j++)
{
cout << "Scenario " << j << " =" << *(tw[j]) << endl
}

cout << "tb=" << tb << endl << end];

// PPos—solution analysis
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vector tx (nscenarios), tk (nperiods);

for (int k = 0; k < nscenarios; k++)

{
tk = *tw(k] — tb;
tx[k] = (tk.module ()) * q;

}

int pi;

double cpi = tx.min (pi);

cout << "Recommended scenario:" << pi << endl;

cout << "Schedule: " << *tw[pi] << end];

double obj = 0., rel = 0,;

for (int j = 0; j < nscenarios; j++)

{

obj += cstfj] — tx[j];

if (*tw{pi] == *tw[]])

{

rel += pe[j];

}

cout << "Objective value=" << obj << endl;
cout << "Reliability=" << rel << endl << endl

//ddestructors

for (int i = 0; i < nscenarios; i++)
{
delete afi], bfi];
delete pli};
// delete twfif;
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delete a, b;
delete p;
delete tw;

delete cst;

void
input_ca (double *a, double *b, char *s)

int airport, time0;

double cgg, ca;

ifstream scenario (s, ios::in);

for (int i = 0; i < nperiods; i++)

{

scenario >> airport >> time0 >> cgg >> ca;
afi] = —ca;

}

for (int i = 0; i < nperiods; i++)

{

scenario >> airport >> time0 >> cgg >> ca;
bfi] = —ca;

}

scenario.close ();

130

140

150

A.0.2 plane.h

. #tifndef PLANE
#define PLANE
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#include <iostream.h>

#include "vector.h"
#define infinity 1E20
class plane

{

10

public:

vector ** J, **ac, *tb;

int nperiods, nflights, ftime, tut;

double cg, q;

plane (int np, int nf, int ft, int tu, double cgg, double qq, double *a, double *b, vector & t0);

“plane (); 20

void iteration (int k);

vector schedule (double &val);

void new_t (vector & t0);

b

30
#endif

A.0.3 plane.cc

#include "plane.h"

- void plane:

iteration (int k)
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int t, p, tmax, g;
vector tg {nperiods);

int arp = k % 2;

for (t = 0; t < nperiods; t++)

{

tg.zero ();
for (g = 0; g < nperiods — t; g++)
{

tmax = t + g + ftime;

if (tmax < nperiods)

{
tg(g] = cg * g + (*aclarp]){tmax] + q * (t — (*tb)[k]) * (t — (*tb)[k]) / 2;
}
else
{
tglg] = infinity;
}

tmax += tut;

if (tmax < nperiods)

{
tglg] += (*J[k + 1]).min (p, tmax, nperiods — 1);
}
else
{
tglg] = infinity;
}

/] ccout< < "g="<<g< <" t="<<t< <" tmaz="<<tmaz<<endl;
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/[ ccout< < "tg="< <tg< <endl;

(*J[k])[t] = tg.min (p, 0, nperiods — t — 1);

}
/] ccout< < "k="< <k< < *Jfk|< < endl;
}
plane:: “plane () 50
{
for (int i = 0; i <= nflights; i++)
{
delete J[i];
}
delete J;

delete ac[0];
delete ac[1]; » . 60
delete ac;

delete tb;

plane::plane (int np, int nf, int ft, int tu, double cgg, double qq, double *a, double *b, vector & t0)

{
nperiods = np;
nflights = nf;
ftime = ft;
tut = tu; 70
cg = cgg;
q =qq;

J = new vector *[nflights + 1J;
for (int i = 0; i <= nflights; i-++)
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{

J[i] = new vector (nperiods);
}
ac = new vector *{2];
ac[l] = new vector (nperiods, a);
ac[0] = new vector (nperiods, b);

tb = new vector (t0);

vector plane::

schedule (double &val)
{

vector t (nflights);

int td, ta;

double cost;

ta = 0;

for (int k = 0; k < nflights; k++)
{

cost = (*J[k]).min (td, ta, nperiods — 1);

if (k == 0)

val = cost;
t[k] = td;

ta = td + ftime + tut;

9
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/[ ccout< < "< <t< < endl;

return (t);

}

void plane:: 120
new_t (vector & t0)
{

*tb = t0;

}

A.0.4 vector.h

// class to manipulate vector

//1it uses loop unrolling with 2 elements

#ifndef VECTOR
#define VECTOR

#include <iostream.h>
#include <math.h>

#include "array.h"

10
class vector:public array
{
friend ostream & operator << (ostream & os, vector & v);
public:
vector (int n0):array {nQ)
20
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vector (int n0, double *b):array (n0, b)

{
b

vector (vector & v):array (v)

{
b

vector operator + (vector v);

vector operator — (vector v);

vector operator *(double k);

double operator *(vector v);

vector operator / (double k);

void operator += (vector v);

void operator —= (vector v);

void operator *= (double k);

void operator /= (double k);

double sum (void);

double module (void);

#endif

30

40

50

A.0.5 vector.cc
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#include "vector.h"

vector vector::operator + (vector v)

{

}.

vector u (n);

if ('same_size (v))

{

cout << "Vector addition tried in members of different dimensions" << endl;

exit (1);

}

for (inti=0;i<n-—1;i+=2)
{
w.ali] = ali] + v.ali;
wali + 1] = afi + 1] + v.afi + 1];

}

if (odd)
waln - 1] = aln = 1] + v.an — 1;

return (u);

’

vector vector::operator — (vector v)

{

vector u (n);

if (Isame_size (v))

{

cout << "Vector difference tried in members

exit (1);

}

for (inti=0;i<n=-1;i4+=2)

{

100

of

different

dimensions" << endl;
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u.afi] = afi] — v.ali];
wali + 1] = afi + 1] — v.afi + 1];

}

if (odd)

vafn - 1] = aln - 1] - v.aln - 1J;

return (u);

h

vector vector::operator * (double k)

{

vector u (n);

for (inti=0;i<n—1;i+=2)

{
w.alfi] = k * ali];
uwali + 1=k *afi + 1};

}

if (odd)

uan — 1] =k *a[n - 1J;

return (u);

}

vector vector:operator / (double k)

{

vector u (n);

if (k ==0.)
{

cout << "Tried to divide a vector by zero" << endl;
exit (1};

}
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for (inti=0;i<n-1;i+=2)

{
u.afi] = afi] / k;
vafi+ 1] =afi +1] / k;

}

if (0dd) | 80
ualn — 1] =afn - 1] / k;

return (u);

double vector::operator * (vector v)

{
double s = 0
90
if (!same_size (v))
{ _
cout << "Dot product tried in vectors of different dimension" << end};
exit (1);
}
for (inti=0;i<n-—1;i+=2)
{
s += afi] * v.ali] + afi + 1] * v.afi + 1];
} 100
if (odd)

s+=aln~ 1] *van - 1]

return (s);

102



void vector::operator += (vector v)

{

if (!same_size (v))

{

110

cout << "Vector += tried in members of different dimensions" << endl;
exit (1);

}

for (inti=0;i<n-—1;i+4+=2)
{
ali] += v.afi;
afi + 1] += v.afi + 1J;

}

120

if (odd)

an — 1] += v.a[n - 1J;

void vector::operator —= (vector v)

{
if (Isame_size (v)) 130

{

cout << "Vector -= tried in members of different dimensions" << end];
exit (1);

}

for (inti=0;i<n—1;i+=2)
{
ali] —= v.afi];

afi + 1) —= v.alfi + 1J;

}

140

if (odd)

aln — 1} —=v.an - 1
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void vector::operator *= (double k)

{

for (inti=0;i<n-—1;i+=2)

{ e
afi] *=k;
ali + 1] *=k;
}
if (odd)
aln — 1] *=k;

void vector::operator /= (double k)

cout << "/=0 tried";
exit (1);

}

for (inti=0;i<n-—1;i+=2)

{
ali] /= k;
ali +1] /= k;
}
if (0dd)
afn — 1] /=k;

ostream & operator << (ostream & os, vector & v)
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int n = v.size ();

0s << n(n;

for (int i = 0;i < n; i++)

{

os << v[i;

if(i'=n-1)
05 << n,n;
else

0s << n)u;

return (0s);

}
double vector::
sum (void)
{
double s =0,

for (inti=0;i<n-—-1;i+=2)

{
s += afi] + afi + 1J;
}
if (0dd)
{
s +=a[n - 1];
}

return (s);
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double vector::

module (void)

{
doubles =0

for inti=0;i<n-1;i+=2)

{

s += afi] * afi] + ali + 1] * afi + 1];

}

if (odd)
{
s+=a[n - 1] *an - 1}

}

return (s);

}

220

230

A.0.6 array.h

// Class to manipulate arrays of real numbers

#ifndef ARRAY
#define ARRAY

typedef unsigned short logical;
#define TRUE !0
#define FALSE 0

class array

{

friend ostream & operator << (ostream & os, array & q);
friend logical operator == (array & a, array & b);

friend logical operator != (array & a, array & b);
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protected:
double *a;
int n;
logical odd;

20

void isodd (void)
{

odd = FALSE;

if (n % 2)

odd = TRUE;

public:

array (int n0) 30
{
if (n0 <= 0)
{
cout << "Error trying to create array with nonpositive elements" << endl;

exit (1);

n = n0;
a = new double[n];
zero ();

isodd (); 40
b

array (int n0, double *b)

{
if (n0 <= 0)

{

cout << "Error trying to create array with nonpositive elements" << endl;

exit (1);

n = n0; 50



a = new double[n];
for (int i = 0;i < n; i++)
ali] = bfi];
isodd ();
b

array (const array & b)
{
n = b.n;
= new doublefn]; 60

for (inti=0;i<n-1;i4+=2)

{
ali] = b.ali];
ali + 1] = bafi + 1J;
}
odd = b.odd;
if (odd)
aln — 1] = b.a[n - 1};
h
70
“array ()
{
delete a;
¥
void zero (void)
{
for (int i = 0;i < n; i++)
afi] = 0,
} 80

doutle &operator(] (int j);

void operator = (array b);

double min (int &p);
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double min (int &p, int first, int last);

double max (int &p);

double max (int &p, int first, int last);

int size (void)

{

return (n);

}

logical same size (array & u)
{
if (n == u.n)
{
return (TRUE);
}
return (FALSE);

}
b

#endif

90

100

A.0.7 array.cc

#include <iostream.h>

#include "array.h"

double array:
min (int &p)

{

double temp;

temp = a[0];
p=0;
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for (int i = 1;i < n; i++)

{
if (temp > ali])
{
temp = ai];
p=i
}
}
return (temp);

h

double array::
min (int &p, int first, int last)

{
double t;

if (first < 0 || first > n — 1 || last < 0| last > n — 1 || last < first)

{

cout << "Bad parameters asked to min function in array" << endl;

exit (1);

}

t = alfirst];

p = first;

for (int i = first; i <= last; i++)

{

if (t > alfi])

{
t = ali];
p=i
}
}
return (t);

h
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double array::

max (int &p) 50
{
double temp = a[0];
p=0;
for (int i = 1;i < n; i++)
{
if (temp < ali])
{
temp = ali];
p =i 60
}
}
return (temp);
h
double &array::operator{] (int j)
{
if(j>=nl]j<0)
{
cout << "Error addressing array element " << j; 70
exit (0);
}
return afj];
b
double array::
max (int &p, int first, int last)
{
double t; 80

if (first < 0] first > n — 1 || last < 0| last > n — 1 || last < first)
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{

cout << "Bad parameters asked to max function in array" << endl;

exit (1);
}
t = a[first];
p = first;

for (int i = first; i <= last; i++)

{
if (t < alfi])
{
t = afi];
P=1i
}
}
return (t);

b

ostream & operator << (ostream & os, array & q)

{

os << "("
for (int i = 0;1 < q.n; i++)
{
os << q.afif;
if(i<qn-1)
0s << ", "
}

os << ll)ll;

return (os);
&
logical operator == (array & a, array & b)
o

logical p = TRUE;
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inti=0;
120
if (a.n !'=b.n)

return (FALSE);

while (p == TRUE && i < a.n)
{

if (a[i] != bfi})

p = FALSE;

i++;

}

return (p); _ 130

h

logical operator != (array & a, array & b)

{

logical q;

return (!q); 140

b

void array::operator = (array b)
{
n = b.n;
a = new double[n];
for inti=0;i<n-1;i +=2)
{
afi] = b.a[i]; 150
afi + 1] = b.afi + 1j;
}
odd = b.odd;
if (odd)
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aln — 1] = b.a[n - 1J;
15

A.0.8 Output for ¢ =50

Iteration O
E[tw]=(0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38)
Iteration 1
E[tw]=(0,2,4,6,8,10,12,14,16,19,21,23,25,27,29,31,33,35,37,39)
Iteration 2
Eltw]=(0,2,4,6,8,10,12,14,16,19.67,21.67,23.67,25.67,27.67,30,32,34,36,38,40)
Iteration 3 '
Eltw]=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31,33,35,37,39,41)
Iteration 4
E[tw]=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31.5,33.5,35.5,37.5,40,42)
Iteration 5
E[tw]=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31.5,33.5,35.5,37.5,41,43)
Iteration 6 o
E[tw]=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31.5,33.5,35.5,37.5,42,44)
Iteration 7
E(tw]=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31.5,33.5,35.5,37.5,42.5,44.67)
Iteration 8
E[tw]=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31.5,33.5,35.5,37.5,42.5,45)
Iteration 9
E[tw]=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31.5,33.5,35.5,37.5,42.5,43)
Scenario 0 =(0,2,4,6,8,10,12,14,16,19,21,23,25,27,31,33,35,37,42,45)
Scenario 1 =(0,2,4,6,8,10,12,14,16,21,23,25,27,29,31,33,35,37,42,45)
Scenario 2 =(0,2,4,6,8,10,12,14,16,21,23,25,27,29,32,34,36,38,43,45)
Scenario 3 =(0,2,4,6,8,10,12,14,16,21,23,25,27,29,32,34,36,38,43,45)
tb=(0,2,4,6,8,10,12,14,16,20.34,22.34,24.34,26.34,28.34,31.5,33.5,35.5,37.5,42.5,45)

Recommended scenario:1
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Schedule: (0,2,4,6,8,10,12,14,16,21,23,25,27,29,31,33,35,37,42,45)
Objective value=110503
Reliability=0.17
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