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Abstract  
 
We discuss features contained in a machine learning software developed at MIT for professional car 
racing, to improve the predictions of track position changes within a race. We study pit crew performance 
and driver performance within selected races, and find that good combined performance for both 
correlates to better finish positions. 
 
Secondly, we classify tracks based on tire wear and the ratio of 2 versus 4 tire change decisions for pit 
stops. We find that a driver’s performance in early stages of the race is similar to performance in later 
stages, suggesting that final race outcomes may be inferred from earlier stages of the race.  
 
Thirdly, we look at how tire change decisions vary from track to track depending on tire wear, caution 
periods, and stages of the race to understand how teams adapt their tire change strategies as each race 
progresses. We propose heuristics based on these observations that may be used to improve the 
software. 
 
Next, we test whether the construction of the machine learning dataset using similar and different track 
characteristics has a discernable impact on the predictive capability of the software. Our tests indicate 
that it may be preferable to aggregate different races together because there is no distinct difference in 
the results when compared to only selecting similar races. 
 
Finally, we cover ideas about how new features could be implemented in the software, and touch on other 
factors affecting pit stop strategy in the quest for better predictive capability in the software.  
 
Thesis Supervisor:  Cynthia Rudin 
Title:    Associate Professor of Statistics, CSAIL and Sloan School of Management  
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1. Introduction 

 

1.1 United States Professional Car Racing 

 

The  ( ) runs a series of motorsports events in the 

United States. The most prestigious of these is the Cup Series, which is in its 67th season as of 2015. The 

series comprises a field of up to 43 stock cars powered by V8 engines, and drivers compete in up to 36 

races held throughout the country, mostly on oval tracks. 

 

Cars must regularly pit to refuel and change tires throughout each race. Decisions on when to do so 

depend on factors such as tire wear, fuel consumption, the driver’s race strategy in relation to his rivals, 

and most importantly, unique to , the incidence of caution flags waved frequently throughout 

the race. 

 

Similar to other racing categories, caution flags are waved when there are hazards on the track. They could 

be caused by accidents, loose debris that affect the safety of the cars, spillage causing slippery surfaces, 

light rain, intrusions onto the track, or scheduled yellow flags. In such scenarios, cars are required to slow 

down and follow a pace car that is dispatched to bring the race under control while the hazard is attended 

to. 

 

Typically, because racing effectively stops when caution flags are waved, teams take the opportunity to 

call drivers into the pits to change tires and refuel their cars. Tires must be changed regularly because of 

rapid degradation under racing conditions – this rate of degradation varies from track to track. 

 

A number of other factors also affect pit stop strategy. For example, cars that delay their pit stops may 

end up at the front of the field if they are willing to sacrifice putting on fresh tires. This happens in part 

because of the scoring system. 

 

Drivers who win a race are awarded 43 points, with each successive driver receiving 1 point less than the 

one ahead of him or her. Winners of each race also receive 3 bonus points. In addition, 1 bonus point is 

awarded to any driver who has led any one lap, and another 1 bonus point is awarded to the driver who 

has led the most laps in the race. In total, drivers may score a maximum of 48 points in a race – 43 for 
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finishing first, 3 for winning the race, 1 for leading a lap, and 1 for leading the most number of laps. The 

minimum points a driver can score is 1 point, for finishing last. 

 

The variety of different race strategies under different racing conditions makes it difficult for  

crew chiefs to determine what strategy their drivers should take to maximize the points they get from 

each race. Essentially, crew chiefs must ensure that their drivers remain as far in front as possible, while 

having their race cars sufficiently fueled and outfitted with fresh tires. 

 

Decisions that crew chiefs make during the race are based on intuition that is informed largely by their 

historical understanding of previous races, their drivers’ performance in the days leading up to the race 

such as during the practice and qualifying sessions, and real-time information that is streamed to them 

during the race itself. Balancing the pros and cons of their options, such as deciding to change 2 tires 

instead of 4 is done on-the-fly, without a significant amount of software tools. This is in order to get their 

driver ahead of the pack, but at the cost of increased tire wear. 
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1.2 Data Analytics and Machine Learning 

 

Data analytics can be broadly categorized into three types (Gartner, 2014). The first is descriptive 

analytics, which illustrates trends based on historical results. The second is predictive analytics, which uses 

those trends to predict outcomes for the future. The third is prescriptive analytics, which recommends 

actions that one should take to influence outcomes. 

 

Top Formula One teams such as McLaren already use data analytics intensively (MeKenna, 2013) , but this 

is not prevalent in  because of regulations limiting the amount of technology that can be installed 

on the cars, such as the use of sensors and detailed telemetry that sends diagnostic information from the 

car to the garages during a race. To work within existing regulations,  teams are focusing on 

different technologies that help improve race outcomes without mounting sophisticated sensors on their 

cars. 

 

For example, Michael Waltrip Racing works with a company known as Zebra for deploying RFID technology 

for pit crew training (Hartigan, 2014). However, such efforts are typically limited to off-track situations, 

outside of races.  has strict regulations controlling the amount of technology that can be used on 

race cars, and items such as tire sensors are prohibited for use during race weekends (Spencer, 2014). 

 

Machine learning is one method in which computers can assist with decision-making during a  

race. Underpinning this is the reliance on pattern recognition, particularly in the area of using decisions in 

previous races to enhance crew chiefs’ decision-making capabilities during the course of current and 

future races. In essence, the computer can act as a quick-thinking advisor to the crew chief, using inputs 

from previous races and the live data stream from the current race. These inputs are structured in a way 

that allows the computer to detect patterns within the data, using institutionalized knowledge that race 

engineers have developed over the years. 
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1.3 Motivation 

 

Data analytics has become an increasingly important part of motorsports, especially because teams and 

drivers need to continually make decisions during a race. How many tires should be changed during a pit 

stop? What race strategies are rivals going to take? What is the projected performance of each car for the 

duration of the race, based on their historical and current on-track performance? These questions need 

to be answered continually as the race progresses. 

 

Although big data analytics is prevalent in a motorsports series such as Formula One, there are aspects 

exclusive to  that make the wholesale import of the Formula One approach infeasible. For 

instance, while race teams in the 2014 Formula One United States Grand Prix collected approximately 243 

terabytes of data (Bi, 2014), each of them drawing data from a variety of sensors installed on the car and 

along the race track,  teams are unable to do so. Moreover, budgets in  are much more 

constrained, with teams running on an estimated 10 to 20 percent the budget of a top Formula One Team 

(Stevens, 2013). 

 

In terms of race strategy, tire wear is particularly important in  racing because of the car’s high 

weight-to-tire-size ratio.  cars weigh more than double that of IndyCar and Formula One cars and 

they cover much longer race distances. A typical  race could run a distance of 500 miles, 

compared to just 190 miles in Formula One. As a result, there is a high premium placed on tire wear and 

tire management. 

 

Furthermore, the rules for the  Cup Series are different from other motorsports races. Caution 

flags are waved much more frequently, resulting in cars pitting mostly during caution laps instead of when 

the race is in full swing. Drivers are also awarded a bonus point for leading any one lap of the race, 

tempting some to remain on track while their rivals pit for fresh tires and refuel. 

 

Moreover, the decision to pit for either 0, 2, or 4 tires is also a special feature in , and only 6 pit 

crew are allowed to work on the car. This substantially slows down tire changes compared to the typical 

3-second pit stop in Formula One, where about 21 pit crew are involved. In conjunction with that, the 

decision to pit for either 0, 2, or 4 tires means that the time taken for each car during a pit stop could vary 
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by several seconds. This results in an adversarial scenario where teams must make calculated decisions 

based in part on what their rivals do in the pit. 

 

Making real-time decisions with several considerations in mind is not straightforward as cars can lap a 

 track in as little as 19 seconds. Such is the case in Southeast_E, which is ’s shortest track 

with a lap distance of 0.526 miles. On such a track, the time between a caution flag and when the pit road 

is open to receive cars can be particularly brief. This makes it difficult for  teams to perform 

detailed calculations to determine their optimal tire change strategy. 

 

Collectively, these factors make it useful to incorporate some form of machine learning to enable crew 

chiefs to make more effective decisions. Machine learning algorithms are able to crunch massive amounts 

of data from previous races, analyze current trends, and incorporate new data from ongoing races to 

generate predictions for expected changes in track position based on pit stop strategy. In addition, these 

insights can be calculated during a race session. The software essentially acts as an assistant to the crew 

chief, who needs all the help he or she can get to make the final call. 
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1.4 Primary Research Objectives 

 

This thesis focuses primarily on generating useful prescriptive analytics by developing descriptive and 

predictive analytics using data from previous seasons of the  Cup Series. These results are then 

formatted and implemented in software developed by MIT for an organization involved in the series. 

Currently, the software runs a variety of machine learning algorithms on data from the 2012 to 2014 

 Cup races. Predictions are made over the course of a race, and the results are compared against 

the actual race outcomes to determine the accuracy of those algorithms. 

 

Stock Car

Race Telemetry

Timing and Scoring

System

MATLAB

Machine Learning

Software

Race Telemetry
Laps and Pit

Data (MATLAB)

Historical 

Race Data

Real Time Race 

Prediction

 

Figure 1. Components of the Machine Learning Software and Flow of Data  

 

Further work needs to be done to convert these predictions into actionable decisions. Fundamentally, 

there are three key questions that need to be answered as a race progresses: 

 

1. When should a driver pit during the course of a race? 

2. How many tires should be changed during that pit stop? 

3. If a driver pits and makes a certain tire change decision, what is the predicted change in track 

position before the next pit stop?  

 

Because of the adversarial relationship between the driver and his or her rivals, a supplementary question 

that is useful for decision-making should also be considered: 

 

1. What are the likely pit stop decisions made by the driver’s rivals?  
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2. Current Work and Literature Review 

2.1 Research Methods & Approaches 

 

Figure 2. Data Science as a combination of Mathematics, Domain Knowledge, and Computer Science (Jones, 2013) 

The successful application of machine learning in the  context requires a combination of distinct 

skillsets. In any data science project, domain knowledge, mathematics and statistics, and computer 

science work hand-in-hand, as shown in Figure 2. In this project, we combine the skills of a mathematics 

professor, a master’s candidate in computer science, and a race circuit project manager to jointly work on 

the problem. 

 

There are several tasks that have already been completed. For instance, a working machine learning 

software has already been developed in MATLAB (Tulabandhula & Rudin, 2014). In that piece of software, 

certain race dynamics such as the “fresh air effect”, where drivers lap quicker at the front and at the back 

of the field, has been considered. However, although several race characteristics have been factored into 

the model, more can be done to improve the predictive capability of the software because there are many 

more parameters that influence changes in track position. 

 

The first step in our research is to account for the factors that determine how tire decisions are made 

during pit stops in a  race. This is done by watching  races, discussing race strategy with 

our industry sponsor for the project, reading research material, and reviewing features already included 

in the machine learning software. 
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Secondly, further research is done to understand additional factors that influence pit stop and tire change 

strategy, in the context of making improvements to the machine learning software. In particular, part of 

the model used in the current software written for the  team is documented. This involves 

reading the code, tracing the program’s functions, and documenting its processes and logic. Next, we look 

at how tire change decisions are made in some races, and attempt to explain the reasons for those 

decisions. Combining insight from both the software’s predictions and actual races, we are better able to 

understand the strengths and limitations of the software. 

 

Thirdly, we will identify areas for further improvement in the software. We will run tests against our 

assumptions about dataset construction and its relation to predictive capability of the software. We also 

propose new features for the software, taking into account additional data gleaned from the most recent 

 season as well as those from previous seasons. 
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2.2 Factors Influencing Racing Performance 
 

 

Figure 3. System Dynamics Diagram of Race Characteristics 

Figure 3 shows a basic system dynamics model that maps the various parameters of a race and how they 

work together to influence a driver’s lap time. Generally speaking, the driver with the lowest cumulative 

total lap time throughout the course of a race will emerge the victor, and those with higher cumulative 

lap times will fall behind the winner in order of their cumulative race timing. 

 

It is important to decompose the cumulative lap times into individual laps, because lap times are recorded 

and reported to the team garages every time a driver completes a lap. We then proceed to break down 

lap times into its respective components: 

 

𝐿𝑎𝑝 𝑇𝑖𝑚𝑒 =
𝑇𝑟𝑎𝑐𝑘 𝐿𝑒𝑛𝑔𝑡ℎ

𝑆𝑝𝑒𝑒𝑑
+ 𝑃𝑖𝑡 𝑇𝑖𝑚𝑒 

 

Track length is usually measured in miles, and speed is measured in miles per hour. We need to also 

account for Pit Time, which is the time taken for a car to drive into the pits (road time) and change its tires 

(stop time). This time is added to the Lap Time whenever a car leaves the track and enters the pit. Although 
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Driver's Skill
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+
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+
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+ -
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this point appears obvious, lap times must be represented in a way that allows different races to be 

compared against each other within the machine learning model.  

 

The speed that a driver is able to achieve during each lap depends on a variety of factors: 

1. Fresh Air (Relative Track Position) 

2. Driver’s Skill 

3. Car Set-Up 

4. Track Characteristics 

5. Tire Wear 

6. Caution Flags 

 

Fresh air refers to the track position of the car in relation to the rest of the field. Cars at the front and at 

the back of the pack tend to achieve higher speeds because of the larger gaps between them and their 

neighbors. Small gaps result in aerodynamic disadvantages because the air flow around the cars becomes 

more turbulent due to the close proximity of their neighbors and the interaction of cars with the 

surrounding airflow. Conversely, larger gaps are prevalent nearer the front and the back of the field, 

resulting in cleaner air that allows drivers to race faster. 

 

A driver’s skill is another factor in determining the speed that he or she can lap the track. Better drivers 

are able to drive faster because of their ability to maneuver around corners quickly and hit optimal speeds 

along the straight portions of the track. Due to the duration of a  race, a driver also needs 

endurance to maintain high levels of concentration throughout the race, which often runs for 3 hours. 

 

The car set-up is also crucial in determining performance. Generally speaking, only the top 10 to 15 drivers 

have a realistic chance of winning a race. Even though  cars are meant to be fairly standardized, 

regulations allow for many tweaks that allow a better-financed team to build more improvements into 

the car. Teams that develop their cars better are able to build sustainable advantages that are carried on 

to subsequent races in the season. 

 

Next, the track characteristics determine the speed at which drivers can lap the track. Oval tracks such as 

the Southeast_C are faster when compared to road courses such as the West_B and the Northeast_A. 

Drivers are able to hit much higher speeds on oval tracks because the tracks have fewer turns and are 



Page | 17 
 

banked around the corners, compared to road courses which have many turns and flatter corners. Track 

characteristics also affect tire wear. Specifically, coarser and older asphalt pavements result in higher tire 

degradation, compared to pavements constructed with finer aggregate and are repaved more recently. 

 

Tire wear also affects a driver’s speed. Tires wear out at different rates based on the characteristics of the 

track’s pavement. In conjunction with that, the tires deployed for the race are made up of different 

compounds, and affect how quickly the tires degrade. 

 

Lastly,  has a relatively high frequency of caution flags, which denote the period in which a pace 

car is deployed onto the track. This brings the race under control for officials to clear debris from the track, 

to make it safer for racing. The extremely high lap times clocked under cautions encourage drivers to pit 

as soon as possible, as the positive effect of fresh tires far outweighs the time lost for the pit stop. 

 

Together, these race characteristics act in concert with a variety of additional factors to determine the 

performance of a driver and his or her track position throughout the race. This is captured in the more 

comprehensive system dynamics causal loop diagram in Figure 4, which contains variables that will be 

discussed further in the thesis. 

 

 

Figure 4. System Dynamics Causal Loop Diagram of Race Characteristics Affecting Track Position  
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2.3 Race Definitions and Measuring Race Performance 

 

Figure 5. Composition of Race Performance based on Leg, Driver-Car, and Pit Crew based on a hypothetical 

Race comprising 3 Stages 

In the machine learning software, a race comprises a series of outings and caution periods as depicted in 

the blue and yellow boxes in Figure 5. Each outing comprises warm-up laps, which are marked in green if 

a pit stop is made, and epochs which are marked in orange. In aggregate, a race is composed of several 

outing-caution sequences. 

 

In terms of measuring performance, we look at the race performance of a driver as an aggregate of stage 

performances over the course of the race. Apart from the first stage, each of these stages consists of 

cautions, warm-up laps, pit stops if any, and epochs. 

 

Cars typically pit during caution laps, and pit crew performance is measured during that period by studying 

stop times, which are defined by the amount of time each car is stationary in the pits. Crew chiefs also 

make strategic decisions during this period by deciding whether to swap 0, 2, or 4 tires. 

 

Performance during an epoch is largely influenced by the skill of the driver and the set-up of the car, as 

touched on in the system dynamics diagram in Figure 3. The driver-car performance should ideally be 

measured across the warm-up laps and epoch. However, the machine learning software measures driver-

car performance based only on what happens during the epoch, with inputs from the caution laps and 

pits selectively included. Warm-up laps are disregarded in the machine learning model as cars do not run 

at their optimal speeds until their tires have warmed up.  
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2.4 Developing Predictions for the Race 

Outing / Leg

Warm-Up 

Laps
Epoch

Pit-Stop or

Caution Laps

Pit-Stop or

Caution Laps

Pit-Stop or

Caution Laps

Pit-Stop or

Caution Laps

Prediction Interval

Prediction

 

Figure 6. Definition of Prediction Interval in relation to Outings/Legs, Warm-Up Laps, Cautions, Pit Stops, and 

Epochs 

The machine learning software makes a prediction about the track position of a driver over the span of a 

Prediction Interval as described in Figure 6. This prediction is made prior to the period when a pit stop or 

caution laps occur, so as to inform crew chiefs of the possible outcomes of different tire change decisions 

when a pit stop is made. 

 

Figure 7. How Epochs are generated for the Feature Matrix in the Machine Learning Software 

The software makes this prediction by building a feature matrix using epochs from races in the past, as 

well as epochs from the ongoing race. These epochs only consider a subset of the characteristics of an 

outing, as laps are trimmed from the start and end as shown in Figure 7, which plots a driver’s lap times 
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over a caution-outing-caution. Epochs are written into the feature matrix only after laps from the front 

and back of the epoch have been trimmed. 

 

At the front of the epoch, towards the left side of the graph, the caution laps, pits, and warm-up laps are 

trimmed. The number of warm-up laps trimmed is based on a predetermined number of laps at the 

beginning of the epoch. Lap times which are slower than the fastest lap recorded within that 

predetermined number of laps are removed. 

 

At the back of the epoch, towards the right side of the graph, the caution laps and pit stops are removed. 

In addition to that, a predetermined number of laps known as the end indices are trimmed. This is to 

account for slower lap times recorded as the caution flags are waved, as well as racing incidents that 

immediately precede those caution laps. 
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2.5 Data Structures in the Machine Learning Software 
 

Figure 8 below shows a snapshot of selected data structures that form part of the machine learning 

software. Race is the superset which comprises parameters, pittimes, epoch, predictions, and other 

associated details. 

 

Track-specific characteristics are captured in the parameters. 

 

Epoch consists of the feature matrix, which is represented by 165 features in its columns, and all of the 

race’s epochs for all drivers in its rows. 

 

Predictions are the set of predictions made during the course of the race. 

 

Pittimes capture details of all drivers and their respective pit stop and tire-related information. 

 

Lastly, other contains supplementary data used for intermediate calculations as the machine learning 

software is run. 

 

Figure 8. Data structures used by the Machine Learning Software   
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2.6 Components of the Feature Matrix and Feature Selection 
 

The machine learning software uses a variety of inputs from race telemetry sent to the team garages as 

the race progresses. Specifically, the following details are captured for all drivers before they are 

processed to construct the feature matrix: 

1. Lap Times 

2. Pit Stops 

3. Track Positions 

4. Race Cautions 

The feature matrix in Figure 9 consists of 165 features, but only a subset of 40 are selected as independent 

variables for the machine learning algorithm, with the objective to predict the track position of drivers at 

the end of the Prediction Interval. This prediction is represented as the dependent variable, or Feature ID 

33. 

 

A number of the independent variables can be classified according to the type of race characteristics that 

the machine learning software attempts to model. For example, Feature IDs 34 and 35 refer to the track 

position of the driver in relation to the rest of the field. This is meant to capture the “Fresh Air” effect 

(Tulabandhula & Rudin, 2014), in which drivers near the front and back of the fields tend to reach faster 

speeds. 

 

Feature IDs 56, 59, 60, 61, and 69 attempt to capture characteristics related to drivers in the 

neighborhood. For instance, the number of tires changed by rivals in the vicinity, the respective age of 

their tires, and their relative track positions in the field of drivers all have an impact on the predictions for 

a driver. 

 

Other race characteristics are also accounted for in the remaining features, but it is up to the machine 

learning algorithm to find a linear combination of features such as using regression, that minimizes the 

error in the predictions. The following are the dependent and independent variables in the regression 

equation. Detailed descriptions have been removed for this public document. 

 

ID. Classification Description Dep. Var Ind. Var 

33  current outing  delrank (leg end - pre pit)' X   

9  before pit Feature ID 9   X 
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13  before pit Feature ID 13   X 

26  before pit Feature ID 26   X 

28  before pit Feature ID 28   X 

34  before pit Feature ID 34   X 

35  before pit Feature ID 35   X 

37  before pit Feature ID 37   X 

40  before pit Feature ID 40   X 

41  before pit Feature ID 41   X 

43  before pit Feature ID 43   X 

44  before pit Feature ID 44   X 

45  before pit Feature ID 45   X 

56  before pit Feature ID 56   X 

59  before pit Feature ID 59   X 

60  before pit Feature ID 60   X 

61  before pit Feature ID 61   X 

69  before pit Feature ID 69   X 

75  before pit Feature ID 75   X 

76  after pit Feature ID 76   X 

77  after pit Feature ID 77   X 

82  before pit Feature ID 82   X 

85  after pit Feature ID 85   X 

89  before pit Feature ID 89   X 

127  before pit Feature ID 127   X 

132  current outing Feature ID 132   X 

136  current outing Feature ID 136   X 

139  after pit Feature ID 139   X 

140  after pit Feature ID 140   X 

146  before pit Feature ID 146   X 

149  before pit Feature ID 149   X 

150  before pit Feature ID 150   X 

151  before pit Feature ID 151   X 

153  before pit Feature ID 153   X 

157  before pit Feature ID 157   X 

158  before pit Feature ID 158   X 

160  before pit Feature ID 160   X 

161  before pit Feature ID 161   X 

163  before pit Feature ID 163   X 

164  before pit Feature ID 164   X 

165  before pit Feature ID 165   X 

Figure 9. Dependent and Independent Variables in Machine Learning Software  

  



Page | 24 
 

2.7 Predictive Capability of Current Model 
 

 
Figure 10. Predictive Performance of Machine Learning Software based on Root Mean Square Error, R2, and Sign 

Accuracy (Tulabandhula & Rudin, 2014) 

 

The machine learning software’s implementation of ridge regression, support vector regression, lasso, 

and random forests performed significantly better than the baseline methods across 3 metrics – the root 

mean square error, R2, and sign accuracy (Tulabandhula & Rudin, 2014). 

 

For the Initial Rank baseline method, the predicted change in track position over the course of the epoch 

was 0. For the Average Rank baseline method, the track position at the end of the epoch was based on 

driver’s average track position from the previous epochs.  

 

Essentially, there was some evidence that the model possessed some predictive capability in estimating 

the track position of drivers at the end of the epoch compared to a naïve approach. 
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2.8 Observations and Suggested Improvements 
 
To begin the journey of answering the questions posed in this thesis, we needed to predict the difference 

in track position at the end of the upcoming epoch, before the next pit stop occurred. By doing so, the 

software could simultaneously recommend a tire change decision for the current pit stop leading into the 

epoch. We began by looking at gaps we needed to fill for the current version of the software. 

 

Firstly, the machine learning model required accurate inputs for the tire change decisions made by the 

entire field of drivers. It had not been designed to make predictions for all drivers, and additional features 

were needed to provide some degree of predictability for the actual tire decisions expected of individual 

drivers. In this regard, we understood that  teams typically had a good understanding of the 

preferred tire change strategy for each track and there were some observable patterns that we could 

include into the model. 

 

Secondly, teams understood that certain tracks such as Southeast_I necessitated 4-tire changes very 

frequently because of the very high tire wear of the track. As a result, they rarely made 2 or 0-tire changes 

during a pit stop. The lack of such samples where contrarian decisions were taken made it difficult for the 

machine learning model to make precise predictions for such strategies. 

 

Thirdly, although there was a sizeable number of features incorporated into the machine learning model, 

there was significant scope to introduce additional features that could improve the predictive capability 

of the software. For example, there should be strong penalties applied for pitting under regular racing 

conditions, particularly if there is no caution likely to occur anytime soon. 

 

In order to address these gaps, we explored a few areas in the thesis. Firstly, we sought to understand the 

broader tire change strategies employed on different race tracks. Secondly, we learned more about 

specific circumstances in which 0 or 2-tire pit stops were made. Thirdly, we attempted to draw 

correlations between different features in the model to strengthen the software’s predictive capabilities.  
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3. Analysis of Machine Learning Features 
 

3.1 Performance After 2-Tire Pit Stop 

 

A series of 17 races from the 2012  Cup were classified into 2 groups for the machine learning 

software. The first group of races represented those where pit stops to change 2 tires led to a loss of track 

position, whereas those in the second group of races saw drivers maintain or improve their track positions 

(Tulabandhula & Rudin, 2014). The classification of races is shown in the following table. 

 

Group A 

(Loss of Track Position with 2-Tire Stop) 

Group B 

(Maintain Track Position with 2-Tire Stop) 

1. West_A 

2. Southeast_H 

3. Southeast_D, Race 1 

4. Midwest_A, Race 1 

5. Midwest_B 

6. Southwest_A, Race 2 

1. Southeast_C, Race 1 

2. Midwest_C, Race 1 

3. Northeast_B, Race 1 

4. Midwest_D 

5. Northeast_C, Race 1 

6. Midwest_A, Race 2 

7. Southeast_C, Race 2 

8. Northeast_C, Race 2 

9. Midwest_C, Race 2 

10. Southeast_E, Race 2 

11. Southeast_G 

Figure 11. Classification of Races based on Machine Learning Software  

We selected Midwest_B from Group A and Southeast_G from Group B to illustrate the change in track 

position between two pit stops whenever 2-tires were changed. For the two graphs on the following page, 

the horizontal axis represents the lap of the race. The vertical axis represents the track position of the 

driver 4 laps after pitting. 

 

Lines are drawn from the 2-tire change pit stops, either to the subsequent pit stop, or to the end of the 

race. These lines are then colored depending on the number of tires changed. Red represents 2 tires, blue 

represents 0 tires, and green represents 4 tires. If a line starts with red and ends in blue, it means that the 
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driver pitted for 2 tires for the first stop and 0 tires in the next. The end of each line is also labeled with 

an ID number (i.e. “3”) and the car number associated with that line (i.e. “#22”). 

 

  

Figure 12. Graph of Midwest_B 2012 Race depicting Change in Track Position for Pit Stop with 2 Tires Changed 

  

Figure 13. Graph of Southeast_G 2012 Race depicting Change in Track Position for Pit Stop with 2 Tires Changed 

By visually comparing the two races from different groups, it was fairly obvious that drivers in the 

Midwest_B race lost track position after pitting for 2 tires. However, this wasn’t apparent in the 
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Southeast_G race. There was a fair number of upward-trending lines, suggesting that it may not be 

advisable to change two tires in the Southeast_G race either. 

 

Importantly, what stood out were the number of pit stops where 2 tires were changed. There was a 

greater frequency of such pit stops in the Midwest_B race compared to the Southeast_G race, suggesting 

that teams had more flexibility to change their tire strategy in the Midwest_B race. We attempted to 

produce visualizations of the Midwest_B races from 2013 and 2014, to understand whether 2-tire pit 

stops were similarly frequent across a 3-year period. 

 

The following graphs in Figure 14 and Figure 15 depict the Midwest_B 2013 race and Midwest_B 2014 

race respectively. 

 

 

Figure 14. Graph of Midwest_B 2013 Race depicting Change in Track Position for Pit Stop with 2 Tires Changed 

 

Comparing the 3 Midwest_B races made it clear that drivers were often able to change 2 tires at different 

stages of the race. However, the frequency of such pit stops differed substantially across all 3 races. The 

2014 race featured the fewest 2-tire pit stops while the 2013 race featured the most. This implied that 

the absolute number of 2-tire pit stops was not a useful indicator of the tire strategy. We needed to look 
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a step further, and perhaps compare the ratio of 2 to 4 tire pit stops to get a better understanding of the 

track’s characteristics. 

 

 

Figure 15. Graph of Midwest_B 2014 Race depicting Change in Track Position for Pit Stop with 2 Tires Changed 

 

In practical terms, tracks with higher tire wear due to its asphalt characteristics mean that drivers have to 

pit more frequently for 4-tire changes instead of 2. During a review with the industry sponsor, we were 

informed that some tracks in the  season had a very strong bias in favour of 4-tire changes. This 

appeared to run counter to how some tracks were classified in Figure 11. In particular, the two races held 

in Midwest_A were categorized into different groups. If tracks had a strong bias to one or another tire 

change strategy, why would Midwest_A appear under both groups? Were the groupings not sufficiently 

detailed, or could there be more categories not accounted for? 

 

This led us to plot the graph of the Southeast_I race in 2014, which was outside the group of classified 

races. We were advised that Southeast_I was a track where almost all pit stops involved 4-tire changes 

because of the extremely high tire wear. We needed to verify whether drivers who pitted for 2 tires truly 

performed poorly almost all the time. 
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Figure 16. Graph of Southeast_I 2014 Race depicting Change in Track Position for Pit Stop with 2 Tires Changed 

Based on the plot for the Southeast_I race, it was evident that 2-tire pit stops were indeed very infrequent. 

However, not all 2-tire pit stop decisions were bad, and if we were to use the original classification as 

suggested in the paper, Southeast_I would be considered a Group B race because the 2-tire pit stops 

produced reasonable results, contrary to what was the intuitive decision. 

 

Our review of the plots based on the machine learning software’s track classification did not yield any 

definitive conclusion, except to suggest that the race classifications could be further refined. However, we 

noted the following: 

 

1. Races where 2-tire pit stops usually led to losses in track position did not necessarily mean that 

all drivers were forced to pit for 4-tires at all times. There were circumstances where taking a 

contrarian approach worked. 

 

2. It may be possible to infer the characteristics of a track and its impact on tire change decisions by 

looking at the ratio of 4-tire to 2-tire pit stops.  
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3.2 Performance based on Stop Time in Pit 
 
 

We wanted to understand the importance of pit crew performance during pit stops, in relation to the 

drivers’ finishing position at the end of the race. Although the machine learning software currently shaves 

off caution periods and warm up laps because of the high variability of track positions and lap times during 

the caution periods, it retains the stop time of the cars during their pit stops. These stop times, which do 

not include the time that drivers spend driving down the pit lane, indicate the time that vehicles are 

stationary in the pit. They solely measure the time taken for pit crew to refuel cars and change tires. 

 

It takes approximately 4 seconds to change 0 tires and only refuel a car, 6 to 7 seconds to change 2 tires 

and refuel, and about 13 to 14 seconds to change 4 tires and refuel. The frequency of 4-tire pit stops tends 

to be significantly higher than other types of pit stops, so we focused purely on pit crew performance 

during those types of stops. We selected the following races from the 2014  Cup for review: 

 

1. West_A 

2. Southeast_C, Race 1 

3. Northeast_B, Race 1 

4. Midwest_A, Race 1 

5. Midwest_C, Race 2 

6. Southwest_A, Race 2 

 

The following box plots were generated by reviewing the finishing position of the drivers on the horizontal 

axis, and the stop time taken in seconds on the vertical axis. The whiskers of the box plot extend to 1.5 

times the interquartile range of the stop times for 4-tire pit stops. 

 

We first looked at the West_A race as depicted in Figure 17. We noticed from the plot that the time taken 

for 4-tire pit stops were in fact higher for the top 5 drivers compared to those who finished from 6th to 

10th. In fact, pit stop times for the 11th to 14th drivers were generally lower than the top 10 drivers. This 

suggested that the performance of pit crews during pit stops was not the sole determinant in determining 

performance of drivers. In fact, there was even a pit stop lasting more than 60 seconds for the 5th placed 

driver, which was about 4 times as long as a regular 4-tire pit stop. 

 



Page | 32 
 

 

Figure 17. Box Plot of 4-Tire Pit Stop Times based on Final Finishing Position of Drivers for West_A 2014 Race 

 

However, we noticed an upward slope in the box plots after the 23rd-placed driver in the race. Perhaps 

there was a weak correlation between the finishing position of the drivers and pit crew performance. It 

could be possible that past a certain point, pit crew performance was not a useful determinant of a driver’s 

likely finishing position.  

 

In order to determine whether the West_A race was an outlier or in fact a trend that could be seen across 

many races, we looked at the plots for the remaining races. The next plot in Figure 18 shows 4-tire changes 

in Southeast_C Race 1 to see whether the pattern seen in the West_A race repeats itself. 
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Figure 18. Box Plot of 4-Tire Pit Stop Times based on Final Finishing Position of Drivers for Southeast_C Race 1 2014 

Based on Southeast_C Race 1 in Figure 18, there is a clearer upward-sloping trend when comparing the 

box plots from the driver that finished first to the one who finished last. However, like the previous 

West_A race, the top few drivers were not necessarily the ones who clocked the fastest 4-tire pit stops. 

Although the top 10 drivers clocked roughly the same stop times, the 12th, 13th, 16th, and 24th-placed 

drivers had among the best pit stop performances. 

 
The Northeast_B Race 1 of 2014 as depicted in Figure 19 was a bit of an outlier in our analysis. The 6th and 

12th-placed drivers had particularly poor 4-tire pit stops that lasted between 80 to 120 seconds, as 

indicated by their very tall boxes. Other drivers at the front of the field had relatively low 4-tire pit stop 

times compared to the lower-half, from the 20th position onwards. 
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There are exceptions where very poor pit stop times will not affect track positions too badly. These occur 

when caution periods last particularly long, or when subsequent caution periods are very closely 

separated such that drivers can regain lost laps. 

 

 

Figure 19. Box Plot of 4-Tire Pit Stop Times based on Final Finishing Position of Drivers for Northeast_B Race 1 2014 

In this race, a horrendous 111-second pit stop dropped the 6th-position finisher by about 20 spots after 

lap 72, and further down the field by a few more spots in the subsequent 95-second pit stop on lap 80. 

The driver staged a miraculous recovery over the next leg of the race, moving from 30th to 14th-position 

by the next pit stop, and advancing to 6th by the next. This outlier suggested that pit stops had to be viewed 

in the context of overall performance by also including details about what happened during the regular 

racing period. In a similar situation, the car in 12th had to make up for the 82-second pit stop by only 
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refueling and not changing tires at the subsequent stop 9 laps later. This helped regain some track position 

lost. 

 
Figure 20. Box Plot of 4-Tire Pit Stop Times based on Final Finishing Position of Drivers for Midwest_A Race 1 2014 

 

The Midwest_A Race 1 in 2014 had some very long 4-tire pit stops recorded that were outside the norm. 

Although the top 15 drivers had very consistent 4-tire pit stop times in general, drivers in 5th and 8th 

positions clocked a few longer pit stops in comparison. The lower half of the field, like in previous races 

we observed, had relatively longer stop times and poorer consistency. 

 

In the case of the driver in 5th, the poor pit stops were recorded in the earlier legs of the race, particularly 

during stops on Laps 6, 8, 73, and 104 of the 200-lap race.  Running at 19th position on Lap 108, the driver 

eventually overcame those deficits and slowly advanced in the field. From this driver’s performance, it is 

reasonable to assume that poor performance in the early part of the race can be overcome in the later 
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stages. The driver’s remaining pit stops were only for 2-tire changes on laps 110, 148, and 184, and stop 

times during those pit stops were reasonably good. 

 

 
Figure 21. Box Plot of 4-Tire Pit Stop Times based on Final Finishing Position of Drivers for Midwest_C Race 2 2014 

 

Next, we studied the Midwest_C Race 2 in 2014 as depicted in Figure 21, to see whether there was any 

discernable trend in the pit stop times and the finishing position of drivers in that race. Again, we noticed 

that the top few drivers had stop times that were tightly-clustered together. In addition, they had 

relatively low and consistent 4-tire pit stop times compared to the drivers that were further down the 

order. For instance, the driver in 10th had one particularly long 4-tire pit stop, and drivers in the 14th to 

19th positions had stops that were a few seconds off the interquartile range. 
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Figure 22. Box Plot of 4-Tire Pit Stop Times based on Final Finishing Position of Drivers for Southwest_A Race 2 2014 

Finally, we reviewed the Southwest_A Race 2 in 2014 in Figure 22 and noticed similar trends. Cars in the 

front generally had more consistent and lower stop times than those at the back, although this was not 

universal. Similar to what was discovered in previous races, poor stop times could be made up through a 

combination of good performance outside of the caution periods, as well as good strategic decisions on 

tire changes in subsequent pit stops. 

 

We had the following conclusions by reviewing plots of the selected races: 

1. Drivers in the front tended to have more consistent and lower stop times compared to those the 

back. However, this was not universally applicable as other factors influenced their overall race 

performance. A more holistic view of the race was likely to give a more complete picture of the 

driver’s performance. 

2. Drivers with very high stop times tended to lose track position. However, such losses could be 

mitigated by making strategic tire change decisions later on in the race, and clocking good pit stop 

times thereafter.  
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3.3 Momentum of Track Positions Gained or Lost during a Race 
 
Over the course of a race, drivers tend to move up and down the order depending on the performance of 

their cars. We wanted to investigate whether the changes in their track position were consistently positive 

or negative as the race progressed, particularly during each epoch as shown in Figure 5. An epoch is 

defined by the leg, less the warm-up laps and caution periods. Warm up laps are trimmed because drivers 

lap more slowly during these legs as their tires need time to warm up before they can perform optimally. 

 

A driver’s performance during each epoch was captured in the machine learning software under the 

feature that measured the momentum of track positions gained or lost during a race. Specifically, this 

measurement is referred to in the software as the average previous rate of change in rank, or what we 

call the Driver Momentum. This was calculated for each leg of the race by tracking the average change in 

track position for each outing and obtaining the median: 

 

 

𝑥𝑖 =  
𝑇𝑟𝑎𝑐𝑘 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝐸𝑛𝑑 𝑜𝑓 𝐸𝑝𝑜𝑐ℎ𝑖−1  − 𝑇𝑟𝑎𝑐𝑘 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐸𝑝𝑜𝑐ℎ𝑖−1 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑎𝑝𝑠 𝑖𝑛 𝐸𝑝𝑜𝑐ℎ𝑖−1
  

 

𝐷𝑟𝑖𝑣𝑒𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 { 𝑥2, 𝑥3, … , 𝑥𝑘  }  

 

where i = outing number, and k = number of outings. x1 is ignored in the calculation of Driver Momentum 

as there are no positions prior to the first lap. 

 

In the box plot shown in Figure 23, we studied the Southwest_B Race 2 race in 2014. The vertical axis 

represents the average rate of change in track position for the previous epoch of the race. The horizontal 

axis represents the final track position of drivers in that race. Each point in the box plot represents the 

driver momentum at each point of the race. A negative momentum represents an improvement in track 

position, while a positive momentum represents a loss in track position. 

 

Looking across the field, we noticed that the momentum for most drivers tended to be either in the 

positive or negative realm. This meant that most drivers who improved their track position during a leg of 

the race tended to maintain that momentum for subsequent legs of the race. Those who lost track 

position during a leg of the race continued to lose track position in the following legs of the race. This 
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observation applied to a majority of the drivers in the race, suggesting that one could predict the relative 

performance of most drivers by simply studying their momentum in the earlier stages of the race. Since 

Southwest_B was classified as a track with high tire wear, we needed to check if this was simply an isolated 

case, or whether such driver momentum patterns occurred elsewhere as well.  

 

 
Figure 23. Box Plot of Momentum of Track Position for Southwest_B Race 2 2014 for Drivers based on Finishing 

Position 

We looked at the Southeast_F Race 2 in 2014 to study whether the pattern applied to another track with 

high tire wear. In Figure 24, we noticed that the pattern remained consistent for most of the drivers. Those 

who gained track position in one epoch of the race continued to do so in others. Those who lost track 

position in one epoch of the race continued to lose track position in others. 
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Next, we attempted to perform the same analysis across a larger number of tracks, covering those which 

had low and medium tire wear as well to see if the pattern was generalizable across a larger group of 

races in the  Cup season. 

 

Figure 24. Box Plot of Momentum of Track Position for Southeast_F Race 2 2014 for Drivers based on Finishing 

Position 

The following low tire wear tracks were selected for analysis in the subsequent pages: 

1. Northeast_C, Race 1 

2. Northeast_C, Race 2 

3. Midwest_A, Race 1 
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4. Southwest_A, Race 1 

 

  
Figure 25. Box Plot of Momentum of Track Position for Northeast_C Race 1 2014 for Drivers based on Finishing 

Position 

 

The Northeast_C Race 1 in 2014 demonstrated that most drivers had a consistently positive or negative 

driver momentum. Driver momentum was calculated across roughly 5 epochs of the 305-lap race for each 

driver. Taking reference from the first driver, driver momentum was captured at around laps 104, 147, 

203, 243, and 292. The results from this race correlated with our previous observation that driver 

momentum was largely fixed throughout the race. 
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Figure 26. Box Plot of Momentum of Track Position for Northeast_C Race 2 2014 for Drivers based on Finishing 

Position 

 

The Northeast_C Race 2 in 2014 also showed that most drivers had a consistently positive or negative 

driver momentum. Driver momentum was calculated across roughly 4 epochs of the 303-lap race for each 

driver. Taking reference from the first driver, driver momentum was captured at around laps 99, 162, 239, 

and 286. The results from this race also correlated with our previous observation that driver momentum 

was largely fixed throughout the race. 
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Figure 27. Box Plot of Momentum of Track Position for Midwest_A Race 1 2014 for Drivers based on Finishing 

Position 

The Midwest_A Race 1 in 2014 also showed that most drivers had a consistently positive or negative driver 

momentum. Driver momentum was calculated across 5 epochs of the 200-lap race for each driver. Taking 

reference from the first driver, driver momentum was captured at around laps 66, 96, 140, 177, and 200. 

The results from this race again correlated with our previous observations that driver momentum was 

decided early on in the race. 
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Figure 28. Box Plot of Momentum of Track Position for Southwest_A Race 1 2014 for Drivers based on Finishing 

Position 

The Southwest_A Race 1 in 2014, like the previous box plots, also showed that most drivers had a 

consistently positive or negative driver momentum. Driver momentum was calculated across 3 or 4 

epochs of the 312-lap race for each driver. Taking reference from the first driver, driver momentum was 

captured at around laps 98, 155, 231, and 268. The results from this race also correlated with our previous 

observation that driver momentum was largely fixed in the early part of the race.  
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It appeared that the pattern of driver momentum applied to low tire wear tracks. To understand whether 

this phenomenon applied across high tire wear tracks for races in 2014, we also plotted the graphs for 

the following races in addition to the Southwest_B Race 2 and Southeast_F Race 2 races that were plotted 

at the beginning of this section: 

1. Southeast_F, Race 1 

2. Southeast_I 

3. West_C 

 

Figure 29. Box Plot of Momentum of Track Position for Southeast_F Race 1 2014 for Drivers based on Finishing 

Position 

The Southeast_F Race 1 in 2014 shown in Figure 29 showed a similar pattern to the earlier box plots. More 

than three quarters of the drivers registered either positive or negative momentums based on the first to 
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third quartiles. Driver momentum was calculated across 5 epochs of the 400-lap race for each driver. 

Taking reference from the first driver, driver momentum was captured at around laps 93, 154, 219, 289, 

and 360.  

 

The Southeast_I race in 2014 is represented in Figure 30 and shows a similar pattern to Southeast_F Race 

1. More than three quarters of the drivers had either positive or negative momentums based on the 

measurements from the first to third quartiles. Driver momentum was calculated across 7 epochs of the 

335-lap race. The first driver’s epochs were tabulated at laps 71, 109, 164, 199, 248, 285, and 318. 

 

Figure 30. Box Plot of Momentum of Track Position for Southeast_I Race 2014 for Drivers based on Finishing 

Position 
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Figure 31. Box Plot of Momentum of Track Position for West_C Race 2014 for Drivers based on Finishing Position 

Finally, we looked at the West_C race in 2014 shown in Figure 31. The results were again similar to what 

we saw for the other races. More than three quarters of the drivers had either positive or negative 

momentums based on the measurements from the first to third quartiles. Driver momentum was 

calculated across 6 epochs of the 206-lap race. The top driver’s epochs used in the calculation ended at 

laps 37, 85, 111, 135, 161, and 192. 
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As a result of our observations across several races, and taking into account both high tire wear and low 

tire wear tracks, we believe that driver momentum is generalizable across a majority of drivers in  

Cup races. This has several possible implications: 

 

1. The performance of each driver can be estimated in the early part of each race. Drivers that gain 

track position usually continue doing so throughout the race, while those that lose track position 

often continue to do so throughout the race. 

 

2. If driver momentum can be predicted early in the race, it may be possible for drivers to strategize 

their overtaking and pit stop decisions on tracks with very unique race strategies such as 

Southeast_B and Southeast_A. According to our industry sponsor, in such races, some drivers 

deliberately stay behind the pack to conserve their car, and only start driving more aggressively 

during later stages of the race. 

 

3. Driver momentum plots could be coupled with variables such as pit stop times, pit road times, 

and gap time between drivers to provide more fine-grained analysis on the impact of tire change 

decisions. 
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3.4 Combining Pit Crew Performance and Driver Momentum 
 

 

Figure 32. Using Stop Time and Driver Momentum to Estimate Stage Performance 

Conceptually, stop times and driver momentum are metrics that measure performance of different parts 

of each stage of the race, as shown in Figure 32. Stop times determine pit crew performance while driver 

momentum measures driver-car performance. 

 

Based on observations made regarding pit stop timing in relation to finish positions, it appears that good 

performance within epochs could cancel out poor pit crew performance and vice-versa. Hence, moving 

up one level to characterize the performance of each driver from the perspective of a stage of the race, 

we decided to combine both features to see if our findings could tell us more about overall race 

performance.  

 

We selected a few races to plot driver momentum against stop times: 

1. Southwest_B, Race 2, 2014 

2. Northeast_D, Race 1, 2014 

3. West_C, 2014 

4. Northeast_C, Race 2, 2014 

5. Midwest_A, Race 2, 2014 

 

We developed scatter plots by selecting only the medians of stop times for 4-tire pit stops and driver 

momentum. 4-tire pit stop times were selected instead of 2-tire pit stop times because of the higher 

frequency of 4-tire pit stops. The median of driver momentum was taken as it was easier to compare the 
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performance of different drivers when each of them was represented by a single data point in the plot. 

We also colored the data points based on the finish positions in groups of 5 drivers each, from 1st to 20th. 

This allowed us to cluster drivers visually into different performance brackets. 

 

Drivers clustered at the bottom-left corner of the plot were those with the best driver momentum and 4-

tire pit stop times. We thought that a correlation between finish position and aggregated driver 

momentum and stop time performance was very likely. 

 

 

Figure 33. Scatter Plot of Median Stop Times against Median Driver Momentum based on Final Track Position for 

Southwest_B Race 2 2014 

 

In the Southwest_B Race 2 in 2014 as shown in Figure 33, the top 5 drivers had the best driver momentum 

compared to the other groups of drivers. 4 out of the top 5 drivers were clustered at the bottom left 

corner of the graph, and the same pattern was seen for the 6th to 10th-placed drivers. The pattern was not 

as clearly visible when comparing the 11th to 15th drivers against the 16th to 20th. 

 



Page | 51 
 

Although there was a small indication that drivers with better 4-tire pit stop time and driver momentum 

tended to end the race with better finish positions, we wanted to see if the correlation between driver 

finish positions and this combination of features was clearer in other races. 

 

Figure 34. Scatter Plot of Median Stop Times against Median Driver Momentum based on Final Track Position for 

Northeast_D Race 1 2014 

In the Northeast_D Race 1 in 2014 as shown in Figure 34, 4 out of the top 5 drivers were clustered at the 

bottom left corner of the graph, and the same pattern was seen for the 6th to 10th-placed drivers. In this 

particular race, the 11th to 15th drivers were clustered more closely to the bottom left corner of the graph 

compared to the 16th to 20th, indicating that the pattern of combined driver momentum and 4-tire pit stop 

times held true across all 4 clusters of drivers. 

 

As for the West_C race in 2014 as shown in Figure 35, the top 5 drivers did not have the best driver 

momentum and pit stop time combination. Instead, it was the 6th to 10th-placed drivers that fell mostly 

within the bottom left corner of the scatter plot. There was no substantial difference between the 11th to 

15th and 16th to 20th-placed drivers, but when the 1st to 10th and 11th to 20th drivers were considered as 2 

groups instead of 4, the cluster of the top 10 drivers tended to be closer to the bottom left corner 

compared to the 11th to 20th. 
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Figure 35. Scatter Plot of Median Stop Times against Median Driver Momentum based on Final Track Position for 

West_C Race 2014 

 

Figure 36. Scatter Plot of Median Stop Times against Median Driver Momentum based on Final Track Position for 

Northeast_C Race 2 2014 
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A relatively large number of drivers had a median driver momentum of 0 in the Northeast_C2 race in 2014 

as shown in Figure 36. However, there was some differentiation when comparing their 4-tire pit stop times 

across the different clusters of drivers. 4 of the top 5 drivers were close to or within the bottom left corner 

of the plot, and 4 of the 6th to 10th drivers were the same as well. As for the next 10 drivers, the 11th to 

15th-placed drivers performed comparatively better than the 16th to 20th-placed drivers. 

 

 
Figure 37. Scatter Plot of Median Stop Times against Median Driver Momentum based on Final Track Position for 

Midwest_A Race 2 2014 

Lastly, we studied the Midwest_A Race 2 of 2014 in Figure 37 to see if the general patterns from the 

previous races were visible. In this instance, the top 5 drivers had better driver momentum and 4-tire pit 

stops than the 6th to the 10th drivers as their plots were comparatively closer to the left of the graph. 

However, the pattern was not visible when comparing the 11th to 15th and 16th to 20th-drivers. 

 

Nonetheless, across the 5 races we studied, it could be possible to generalize the insight that drivers who 

finished closer to the top tended to have better combinations of driver momentum and 4-tire pit stop 

times. We believed that it would be useful to introduce the combination of median 4-tire stop times and 

driver momentum as an additional feature in the machine learning software.  
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4. Analysis of Race Characteristics 
 

4.1 Tire Degradation 
 
Although there are 36 races in the  season, some races run on the same track more than once. 

Circuits such as those in Southwest_A, Southwest_B, Southeast_D, Midwest_C, and Southeast_E, organize 

two  races each season. As a result, there are 23 tracks, mostly oval-shaped, but of different 

lengths, used for racing. 

 

Characteristics of each race track have a large impact on tire change decisions. Depending on factors such 

as the speed of the car, the banking of the track, the mix of the asphalt used, and other factors, tires will 

degrade at different rates. In addition, racing tires are designed to wear, and as cars race along the track, 

they also lay down rubber, which improves the grip of the track over time. 

 

Ultimately, these factors influence the top speeds that the cars are able to achieve each lap. And, as the 

tires begin to wear, the cars’ top speeds tend to decrease. All this is measured based on the lap times that 

the cars clock for each lap. Without measuring the thickness of the tires directly to determine the actual 

rate of tire wear, we can infer the rate, or % degradation, by calculating the change in lap times from one 

lap to the next: 

 

𝑡𝑙𝑎𝑝 − 𝑡𝑙𝑎𝑝−1

𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙
× 100% 

 

Calculated over the course of an outing, a linear regression graph can be generated to calculate the effect 

of the track on tire wear, with tlap – tlap-1 represented by the slope, and toptimal represented by the y-

intercept. An example of the linear regression for the track in Southwest_A using data from the race in 

2014 is seen in the following chart. 
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Figure 38. Linear Regression for Southwest_A Race 1 2014, based on the Average Lap Time of the Top 20 Finishers 

from Laps 6 through 35 

There are several factors that need to be taken into account when generating the linear regression graph 

for each track. These result in a number of assumptions that we make in determining the track’s tire 

degradation. 

 

First, we measure tire wear based on the lap times from early in the race. This is done because the 

characteristic of the track changes over time as more rubber is laid down on the surface as the cars race 

around the track. In addition, all cars run on fresh tires at the beginning of the race, compared to later in 

the race when different tire change strategies come into play, resulting in some cars having fresher tires 

than others. 

 

Second, we ignore the lap times for the bottom half of the field, and only select the average lap times of 

the top 20 drivers based on their finishing positions. Accidents and car failures tend to happen throughout 

the race, and it would not be appropriate to include the lap times of cars that are heavily damaged or who 

enter the pits frequently for repair work. Moreover, the top half of the field of drivers tend to have higher 

chances of winning the race as those at the bottom, so it is more useful to average the lap times for those 

which have good driver-car performance. 
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Third, at least the first 3 laps of the race are dropped from the regression graph. This is necessary as cars 

are heavily bunched up at the beginning of the race. As a result, lap times tend to be slower as cars jostle 

for track position in the initial laps. In addition, cars need to be running at higher speeds in order to heat 

up their tires to perform optimally. 

 

Fourth, we remove caution laps when an accident occurs, debris is spotted on track, or a scheduled yellow 

flag is enforced. Drivers slow down substantially during these laps to follow the pace car and allow race 

officials to safely clear hazards from the track. 

 

Fifth, lap time samples from near the next pit stop onwards are removed so that we can capture optimal 

performance of the current set of tires only. Lap times increase dramatically as cars slow down to enter 

the pits, change tires, and refuel. Similarly, very heavy tire wear will cause drivers to slow down 

substantially before entering the pits. 

 

Sixth, outliers in the plot are manually removed. We do this because there may be times when cars lap 

the track more slowly than usual, such as when drivers are bunched together and lots of jostling for track 

position occurs. Drivers typically lap the track more slowly when they are defending their position or trying 

to overtake slower cars in front. 

 

Lastly, samples of lap times from a subsequent leg of the race are used whenever the starting leg is littered 

with cautions or pit stops. We observed this on tracks such as West_A, Southeast_G, Southwest_B, 

Southeast_A, Midwest_A, and Northeast_A. In those instances, we calculated an adjusted toptimal based on 

the original y-intercept and slope using the following calculation: 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 + 𝑠𝑙𝑜𝑝𝑒 × (𝑙𝑎𝑝 − 4) 

 

For this calculation, the next earliest leg of the race is used where most, if not all the top 20 cars are driving 

on 4 fresh tires after a caution is lifted. Similar to the calculation for toptimal , the first 3 laps are ignored, 

resulting in the adjusted optimal lap time taken at lap 4. This allows us to compare the results of tire 

degradation across all 23 tracks. 
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Graphs generated for each of the 23 race tracks can be found in Section 9.3. Their respective tire 

degradations are shown in Figure 39, starting from the track with the lowest tire wear (Southeast_A) to 

the highest tire wear (Midwest_E). 

Track % Degradation 

Intercept 

Toptimal 

Adjusted 

Toptimal Slope 

Standard 

Deviation p-value 

Southeast_A 0.007% 48.6534 48.8471521 0.0036557 0.002978 0.228563 

Northeast_A 0.033% 70.6622 71.3199116 0.0234897 0.005541 0.0008251 

Southeast_B 0.045% 45.8644   0.0206142 0.00926 0.0429453 

Southeast_C 0.053% 15.6563   0.0082956 0.000503 < 0.0001 

Midwest_A 0.055% 37.8045 37.9920564 0.0208396 0.002097 < 0.0001 

Midwest_B 0.055% 30.6209   0.0168518 0.001076 < 0.0001 

Northeast_B 0.055% 52.7364   0.0290275 0.003139 < 0.0001 

Midwest_C 0.063% 30.1902   0.0191001 0.002543 < 0.0001 

Northeast_C 0.067% 29.2737   0.0195242 0.000593 < 0.0001 

Southwest_A 0.070% 26.9578   0.0189037 0.001051 < 0.0001 

West_A 0.079% 29.0689 30.1903388 0.0238604 0.001861 < 0.0001 

Northeast_D 0.086% 23.5551   0.020243 0.000666 < 0.0001 

Midwest_D 0.095% 30.5025   0.028877 0.001924 < 0.0001 

Southeast_D 0.128% 29.4007   0.0376473 0.00123 < 0.0001 

Southeast_E 0.145% 19.5991   0.0284421 0.001891 < 0.0001 

Southeast_F 0.177% 22.222   0.0393687 0.001738 < 0.0001 

Southeast_G 0.183% 31.3084 32.0099848 0.0584654 0.001418 < 0.0001 

West_B 0.190% 76.733   0.145521 0.007296 < 0.0001 

Southwest_B 0.197% 27.9639 29.1683256 0.0573536 0.001589 < 0.0001 

West_C 0.206% 40.3092   0.0830462 0.006846 < 0.0001 

Southeast_H 0.213% 29.0498   0.0618795 0.001946 < 0.0001 

Southeast_I 0.232% 30.8645   0.0715526 0.002702 < 0.0001 

Midwest_E 0.236% 50.3967   0.119024 0.004839 < 0.0001 

 

Figure 39. List of Tracks based on Tire Degradation, with the T(optimal), the Slope of Time Degradation, and its p 

values 
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We produced the following graph in Figure 40 that visually shows the tire degradation for each track.  

 

Figure 40. 2014 Tracks ordered by % Tire Degradation 

We proceeded to classify tracks based on 4 categories: (1) Very low, (2) low, (3) medium, and (4) high tire 

wear. The classifications in Figure 41 are: 

Very Low Tire Wear Low Tire Wear Medium Tire Wear High Tire Wear 

1. Southeast_A 

 

1. Northeast_A 

2. Southeast_B 

3. Southeast_C 

4. Midwest_A 

5. Midwest_B 

6. Northeast_B 

7. Midwest_C 

8. Northeast_C  

9. Southwest_A 

1. West_A 

2. Northeast_D 

3. Midwest_D 

4. Southeast_D 

5. Southeast_E 

1. Southeast_F 

2. Southeast_G 

3. West_B 

4. Southwest_B 

5. West_C 

6. Southeast_H 

7. Southeast_I 

8. Midwest_E 

Figure 41. Classification of 2014 Tracks based on Tire Degradation 
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4.2 Ratio of Tire Change Decisions 

Another method to determine the tire strategy used for each race track is to study historical records of 

tire change decisions used for previous races on the same track. This is particularly useful when factors 

apart from tire wear degradation act in concert with other track or race characteristics. For instance, cars 

may decide to stay out of the pit under regular racing conditions because pitting may result in rivals 

lapping them due to the low lap times. This would be a bigger consideration for tracks such as Southeast_C 

and Southeast_E, and less so for tracks such as West_B and Northeast_A. 

 

Figure 42 lists all races in 2014, the track they raced on, and the number of 0, 2, and 4 tire-change pit 

stops made by all drivers participating in each race. When 2014 data was not available, data from the 

corresponding race in 2013 was used instead. The ratio of 2 versus 4 tire-change pit stops was calculated, 

with results from the previous section on tire degradation included in the last column for reference. The 

table is arranged in descending order by the ratio of 2 versus 4 tire-change pit stops, which allowed us to 

identify tracks where different tire change strategies were a real possibility. 

Race Name 0-Tire Stops 2-Tire Stops 4-Tire Stops 
Ratio of 

2 versus 4 Stops Tire Wear 

Southeast_B, Race 1 74 96 123 0.78 Low 

Southeast_A, Race 2 15 65 87 0.75 Very Low 

Northeast_C, Race 1 2 56 78 0.72 Low 

Southeast_A, Race 1 82 88 144 0.61 Very Low 

Southeast_B, Race 2 51 59 99 0.60 Low 

Southwest_A, Race 1 26 76 153 0.50 Low 

Midwest_A, Race 1 52 69 140 0.49 Low 

Southwest_A, Race 2 25 95 196 0.48 Low 

Northeast_C, Race 2 49 69 202 0.34 Low 

Northeast_B, Race 2 32 64 192 0.33 Low 

Midwest_D 9 18 58 0.31 Medium 

Midwest_A, Race 2 47 58 189 0.31 Low 

Midwest_C, Race 1 246 57 197 0.29 Low 

Southeast_C, Race 2 18 54 208 0.26 Low 

Midwest_E 10 41 185 0.22 High 

Northeast_B, Race 1 29 43 217 0.20 Low 

Midwest_C, Race 2 18 41 217 0.19 Low 

West_A 16 26 154 0.17 Medium 

Northeast_D, Race 1 21 36 246 0.15 Medium 

Southeast_E, Race 2 40 24 218 0.11 Medium 

Southeast_E, Race 1 36 28 298 0.09 Medium 
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Midwest_B 9 24 274 0.09 Low 

Southeast_H 14 28 386 0.07 High 

Northeast_A 33 8 123 0.07 Low 

Southeast_G 10 22 360 0.06 High 

Southeast_C, Race 1 19 10 169 0.06 Low 

Southeast_I 20 19 327 0.06 High 

West_B 18 9 164 0.05 High 

West_C 20 19 355 0.05 High 

Northeast_D, Race 2 17 11 221 0.05 Medium 

Southeast_D, Race 1 52 17 342 0.05 Medium 

Southeast_D, Race 2 8 11 227 0.05 Medium 

Southwest_B, Race 2 8 15 341 0.04 High 

Southeast_F, Race 1 12 11 269 0.04 High 

Southwest_B, Race 1 34 10 298 0.03 High 

Southeast_F, Race 2 3 4 197 0.02 High 
* Figures marked in red refer to statistics taken from the corresponding races in 2013 as 2014 data was not available. 

Figure 42. List of 2014 Races based on Ratio of 2 versus 4 Tire Pit Stops and Associated Tire Degradation. 

 

Figure 43. 2014 Races ordered by Ratio of 2 versus 4 Tire Pit Stops 
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In general, tracks with lower tire wear had higher ratios of 2 to 4-tire change pit stops, indicating that 2-

tire changes were a reasonable option when tire degradation was lower. This was evident for tracks such 

as Northeast_C, Southeast_A, Southeast_B, Southwest_A and Midwest_A. On the other end of the scale, 

tracks with high tire wear tended to have drivers gravitate towards 4-tire change pit stops. This was 

obvious for Southeast_F, Southwest_B, Southeast_I, West_B, Southeast_H, and West_C. Drivers who 

pitted on those tracks very rarely chose to change 2 tires or fewer. 

 

However, there was some variability in the tire change decisions for selected tracks. For instance, the 

second Northeast_D race had a relatively low ratio compared to the first. In addition, the Midwest_E race 

was clustered with low tire wear tracks although it was a high tire wear track itself. Such observations 

suggest that a selected number of tracks require detailed fine-tuning, as predicted tire wear and historical 

tire change decisions do not correspond with each other. 

 

Nonetheless, given the fact that several tracks exhibit strong attributes where tire wear and tire-change 

decisions are strongly correlated, appropriate weights should be applied to the following tracks when 

considering the predictive model, based on the following classifications. 

 

Bias towards 4-tire Pit Stops No Bias Applied Bias towards Mixed Strategy 

1. Southwest_B 

2. Southeast_F 

3. West_C 

4. Southeast_I 

5. Southeast_G 

6. Southeast_H 

7. West_B 

8. Northeast_A 

9. Southeast_D 

1. Northeast_D 

2. Southeast_C 

3. Midwest_B 

4. Southeast_E 

5. West_A 

1. Southeast_B 

2. Midwest_E 

3. Midwest_D 

4. Northeast_C 

5. Southwest_A 

6. Midwest_A 

7. Southeast_A 

8. Northeast_B 

9. Midwest_C 

 

Figure 44. Classification of Tracks based on Ratio of 2 versus 4 Tire Changes  
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4.3 Changing Fewer Tires or Staying Out when Tires are Changed Recently 

 

It is also particularly important to model behavior based on recent tire change decisions. Drivers may opt 

to stay out on track or to change two instead of four tires if they had recently made a pit stop. The 

following chart in Figure 45 illustrates the tire change strategy employed by teams at different stages of 

the race, based on their track position 4 laps prior to pitting. The horizontal axis represents the pre-pit 

track position of a driver, and the vertical axis shows the lap number of the 2014 Midwest_B race, which 

is classified as a track with low tire wear. 

 

Each point on the chart represents a pit stop made by a driver. Green circles are pit stops where 4 tires 

were changed, orange circles are 2-tire pit stops, and red circles are 0-tire pit stops. Shaded horizontal 

bands represent caution laps of the race, and the car number and lap that it pitted are labelled next to 

each circle. 

 

Figure 45. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Midwest_B Race 2014 

There are two important observations made for the race. The first is represented by the blue circle labelled 

“1”, which shows that the drivers at the front of the pack refrained from pitting in the final stages of the 

race. Presumably, this was to maintain their track position because pitting would push them further down 

the order. Drivers beyond the 10th position probably took chances to change their tires in the hope that 
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the loss of track position due to pitting could be overcome by the increased speeds they obtained whilst 

running on fresh tires. 

 

The second observation occurs in the blue circle labelled “2” at the second series of pit stops during the 

first caution flag. Cars #18, #31, and #20 decided to pit for 2 tires instead of 4. This is likely to have been 

due to the recent series of pit stops around lap 45. Assuming that a fresh set of tires works optimally for 

45 laps, they would have been less than halfway through their tires during the pit stop on lap 68. 

 

Next, we studied whether these two phenomenon occurred in the 2014 Southwest_A race as shown in 

Figure 46. Similar to Midwest_B, the Southwest_A track was characterized as one with low tire-wear. 

Assuming that our observations for Midwest_B were accurate, drivers at the front of the field should not 

have pitted in the last leg of the race. Also, if tire wear on the track was sufficiently low, drivers could 

choose to change 2 or fewer tires during a pit stop, provided that the previous pit stop was done recently. 

 

 

Figure 46. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Southwest_A1 Race 2014 

 

Indeed, cars at the front of the field did not pit during the last stage of the race, even when a caution 

occurred. This area is indicated by the blue circle labelled “1”. The blue circle labelled “2” also confirms 
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our observation that as long as pit stops were made recently, there would be an option for drivers to 

change just 2 tires instead of 4.   

 

We needed to study whether these two observations emerged in other circumstances as well. For 

example, if a track with low tire wear did not have cautions near the end of the race, would drivers at the 

front of the pack still insist on staying out? Another sample, this time from the 2014 Midwest_C Race 1 

was reviewed in Figure 47. 

 

Figure 47. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Midwest_C Race 1 2014 

Based on observations in the Midwest_C race, it was clear that drivers had the flexibility to change fewer 

than 4 tires when a pit stop was made recently. This was indicated by the pit stops made around the 

second and third cautions indicated by the blue circle labelled “2”. On the other hand, for the last stage 

of the race, drivers at the front pitted despite the lack of caution flags. The reasons could be traced to the 

decision not to stop during the 8th caution period of the race. Firstly, fresh tires and a full tank of fuel 

would only have given drivers enough to race for 40 laps, which would not have brought them to the end 

of the race. Secondly, drivers had probably expected one last caution before the race was over, and so 

they decided not to pit. Because the caution did not happen, several cars had to pit under regular racing 

conditions for fuel and some fresh tires. 
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We can draw a couple of conclusions from the observations over these 3 races with low tire wear: 

1. Drivers at the front of the field will refuse to pit during the last stage of the race as long as their 

cars have the capability to run until the very end. 

2. Drivers who pitted relatively recently had the flexibility to change two or four tires during a 

caution period. 

 

The next step was to observe whether these conclusions applied to tracks with high tire wear. Based on 

our findings about the classification of tracks, races in Southeast_I and Southwest_B are considered good 

comparisons. In this first comparison, we relied on the 2014 Southeast_I race as shown in Figure 48. We 

studied the tire change strategy during the last stage of the race, and also looked at instances where pit 

stops were relatively close to each other to see if similar patterns were visible. 

 

Figure 48. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Southeast_I Race 2014 

Tracks with very high tire wear usually had very few instances of 2-tire changes. Consistent with that 

observation, the Southeast_I race predominantly exhibited pit stops with 4-tire changes. Even when 

cautions occurred close to the end of the race, drivers at the front had to pit for fresh tires, as seen in 

the vicinity of the blue circle labelled “1”. In addition, even when drivers had pitted recently, they 

usually opted for 4-tires instead of 2, except when pit stops were made almost back-to-back. 
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It was important for us to verify these against another track with high tire-wear. As such, we chose the 

2014 Southwest_B Race 1 as seen in Figure 49 to check whether the observations made for Southeast_I 

were consistent. 

 

Figure 49. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Southwest_B Race 1 2014 

The pattern in the Southeast_I race repeated itself in Southwest_B. In the vicinity of the blue circle labelled 

“1”, drivers decided to pit for fresh tires as late as during the caution flag on Lap 333, even though the 

race ended just 7 laps later. Pit stops also mostly involved 4-tire changes, except in the very early stages 

of the race, which was run under caution flag conditions. 

 

We reached the following conclusions by studying these 2 races with high tire wear: 

1. Drivers are very likely to pit during a caution regardless of when it occurs, even if that caution is 

close to the end of the race. 

2. Drivers have very little flexibility to change 2-tires, and usually opt for 4-tires unless they have 

pitted extremely recently. 

 

Collectively, our conclusions point us towards adopting different tire change strategies for races with high 

tire wear, compared to those with low tire wear. 
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5. Dataset Construction and Effects on Predictive Capability 

5.1 Reconstructing the Dataset and Testing Methodology 

In the original machine learning software, all races from 2012 and selected races from 2013 were 

aggregated to produce a consolidated dataset for training, testing, and validation. When running a 

machine learning model, it is critical that the dataset used is representative of the actual racing conditions, 

and that the features selected are useful in providing insights that will assist the machine learning 

algorithm to produce meaningful results. 

 

For example, if a race was held in Southwest_B, we thought that it could be more useful to only use 

historical races from Southwest_B and similar tracks to build the dataset. This is because a number of race 

characteristics, such as road times for pit stops, the number of laps of a race, and other features that may 

be specific to the Southwest_B race may not have been comprehensively captured in the original dataset 

and accounted for in the selected features. 

 

Rather than exhaustively account for those differences in track type and race characteristics by building 

additional features into the dataset, we thought about building a smaller dataset from scratch to include 

just a few races that we believed had very similar characteristics. 

 

In order to understand whether our track classifications based on tire wear, tire change decisions, and the 

ratio of 2 versus 4 tire changes during pit stops had an impact on the predictive capability of the machine 

learning software, we needed to run a few tests against our hypotheses, which were: 

 

1. Past low tire wear races with higher 2 versus 4 tire change ratios are good predictors for future 

low tire wear races with higher 2 versus 4 tire change ratios. 

2. Past high tire wear races with lower 2 versus 4 tire change ratios are good predictors for future 

high tire wear races with lower 2 versus 4 tire change ratios. 

 
We decided to run 5 types of tests by constructing datasets differently and tested the machine learning 

software against a selected race from within each dataset. The tests that we designed were: 

 

1. Test 1: Same Track 

The race is tested against all races held on the same track only. 
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2. Test 2: Similar Races 

The race is tested against all races held on the same and similar tracks. 

3. Test 3: Different Races 

The race is tested against all races held on different tracks. 

4. Test 4: All Races 

The race is tested against all races. 

5. Test 5: Track Position Maintained 

No dataset was built in this case. This test assumes that the track position of drivers at the start 

of each epoch remains the same at the end. 

To compare outcomes, we calculated the root mean square error of the machine learning software to 

measure the differences in predictive capability across different test scenarios. This was calculated by: 

𝑅𝑀𝑆𝐸 =  √ 
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

  

where n = number of predictions, 𝑦𝑖  is the actual track position of the driver, an 𝑦̂I is the track position 

predicted by the machine learning software. 

 

We sought additional data from our industry sponsor, and obtained historical race data that was not 

previously available to us. This allowed us to build a more comprehensive dataset specific to the high and 

low tire wear tracks, and which also had different ratios of 2 versus 4 tire changes. The races were selected 

and classified in Figure 50. 

Low Tear Wear, 

Higher Ratio of 2 versus 4 Tire Changes 

High Tear Wear, 

Lower Ratio of 2 versus 4 Tire Changes 

1. Midwest_C, Race 1, 2012 

2. Midwest_C, Race 2, 2012 

3. Midwest_C, Race 2, 2013 

4. Midwest_C, Race 1, 2014 

5. Midwest_C, Race 2, 2014 

6. Midwest_B, 2011 

7. Midwest_B, 2012 

8. Midwest_B, 2013 

9. Midwest_B, 2014 

1. Southwest_B, Race 2, 2011 

2. Southwest_B, Race 1, 2012 

3. Southwest_B, Race 2, 2013 

4. Southwest_B, Race 2, 2014 

5. Southeast_I, 2012 

6. Southeast_I, 2013 

7. Southeast_I, 2014 

Figure 50. Races selected to test effect of dataset construction on predictive capability 
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The races are arranged by the ratio of 2 versus 4 tire changes in increasing order as shown in Figure 51. In 

general, high tire wear tracks had lower ratios of 2 versus 4 tire changes, as was the case in the 

Southwest_B and Southeast_I races. With the exception of the Midwest_C Race 1 in 2012, all the low tire 

wear tracks had relatively higher ratios of 2 versus 4 tire changes. Nonetheless, we classified Midwest_C 

Race 1 2012 together with the Low Tire Wear, Higher Ratio of 2 versus 4 Tire Changes, as the track had an 

identical track length and shape compared to Midwest_B. 

Race 2-Tires 4-Tires 

2 versus 4 

Ratio 

Tire 

Wear 

Track 

Length Track Shape 

Southwest_B, Race 1, 2012 5 257 0.019455 High 1.5 mi Quad-Oval 

Southeast_I, 2012 7 307 0.022801 High 1.54 mi Quad-Oval 

Southwest_B, Race 2, 2013 6 239 0.025105 High 1.5 mi Quad-Oval 

Southeast_I, 2013 15 350 0.042857 High 1.54 mi Quad-Oval 

Southwest_B, Race 2, 2014 15 341 0.043988 High 1.5 mi Quad-Oval 

Midwest_C, Race 1, 2012 11 216 0.050926 Low 1.5 mi D-Shaped Oval 

Southeast_I, 2014 19 327 0.058104 High 1.54 mi Quad-Oval 

Southwest_B, Race 2, 2011 23 277 0.083032 High 1.5 mi Quad-Oval 

Midwest_B, 2014 24 274 0.087591 Low 1.5 mi D-Shaped Oval 

Midwest_B, 2011 27 218 0.123853 Low 1.5 mi D-Shaped Oval 

Midwest_B, 2012 30 180 0.166667 Low 1.5 mi D-Shaped Oval 

Midwest_C, Race 2, 2014 41 217 0.18894 Low 1.5 mi D-Shaped Oval 

Midwest_C, Race 1, 2014 57 197 0.28934 Low 1.5 mi D-Shaped Oval 

Midwest_B, 2013 66 208 0.317308 Low 1.5 mi D-Shaped Oval 

Midwest_C, Race 2, 2013 94 176 0.534091 Low 1.5 mi D-Shaped Oval 

Midwest_C, Race 2, 2012 59 104 0.567308 Low 1.5 mi D-Shaped Oval 

Figure 51. Race and Track Statistics, and Details for Races Selected for Test Effect of Dataset Construction  

Other factors, such as the length and shape of each track, were also considered when grouping tracks 

together. The Southwest_B and Southeast_I tracks had very similar track lengths of 1.5 and 1.54 miles 

respectively, and were of the quad-oval shape. The Midwest_C and Midwest_B tracks were both 1.5 miles 

each, and both were D-shaped oval tracks. In this regard, we built the dataset using tracks that were as 

common to each other as feasible, but had different tire wear and 2 versus 4 tire change characteristics 

so that we could isolate those characteristics and determine whether our hypotheses held or not.  
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5.2 Test Case: Low Tire Wear Track and Higher 2 versus 4 Tire Change Ratio 

The results for the low tire wear tracks are recorded in Figure 52 with their relative order from “1” to “5” 

in brackets, with “1” having the lowest root mean square error. 

 Midwest_C Race 2, 2014  

(RMSE of Test) 

Midwest_B, 2014  

(RMSE of Test) 

Test 1: Same Track 2.2242 (4) 2.8169 (4) 

Test 2: Similar Races 2.2075 (3) 2.6746 (1) 

Test 3: Different Races 2.192 (2) 2.7624 (3) 

Test 4: All Races 2.1609 (1) 2.6967 (2) 

Test 5: Track Position Maintained 3.422 (5) 3.8113 (5) 

Figure 52. Root Mean Square Error of Machine Learning Software Test Cases for Midwest_C Race 2 2014 and 

Midwest_B Race 2014 

Although our hypothesis stated that races on tracks with similar tire wear and 2 versus 4 tire change ratios 

were good predictors of future races with similar characteristics, it appeared that using different races 

could actually return better results, as seen when comparing the Midwest_C Race 2’s Test 3 against Test 

2 and Test 1. In fact, when the Midwest_C Race 2 was predicted using a dataset comprising different races 

(Test 4), the results were the best amongst all tests. This suggested that the effects of aggregation across 

a larger sample of races could outstrip differences in track characteristics for predictions. 

 

For the Midwest_B 2014 race, the test against different races (Test 3) also performed better than historical 

races on the same track (Test 1). Although our hypothesis appeared to be correct in this case because the 

test for similar races (Test 2) performed the best among the lot, the results were just marginally different 

when compared to aggregating all races (Test 4). In addition, Test 4 produced better results than Test 1, 

which contradicted our hypothesis. Another finding was that in all cases, the machine learning software 

performed better than the naïve algorithm (Test 5), which returned a root mean square error that was 

about 1 more than the rest. This tallied with findings in earlier research done, which concluded that the 

machine learning software was better in predicting changes in track position compared to naïve 

predictions. 

 

Lastly, aggregating races across tracks of different tire wear and tire change ratios (Test 4) tended to 

perform better than simply looking at past races on the same track (Test 1). This suggested that it may be 

pointless to focus on selecting races for the construction of the dataset, as the predictive capability of the 

software would not be adversely affected by including races of different track characteristics. However, 

our caveat is that throughout our dataset, only oval tracks with very similar track lengths were used.  
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5.3 Test Case: High Tire Wear Track and Lower 2 versus 4 Tire Change Ratio 
 
The results for the high tire wear tracks are recorded in Figure 53 with their relative order from “1” to “5” 

in brackets, with “1” having the lowest root mean square error. 

 Southwest_B, Race 2, 2014 

(RMSE of Test) 

Southeast_I, 2014 

(RMSE of Test) 

Test 1: Same Track 2.5007 (4) 2.6129 (4) 

Test 2: Similar Races 2.192 (2) 2.5708 (1) 

Test 3: Different Races 2.2075 (3) 2.5924 (2) 

Test 4: All Races 2.1609 (1) 2.5983 (3) 

Test 5: Track Position Maintained 3.348 (5) 3.5999 (5) 

Figure 53. Root Mean Square Error of Machine Learning Software Test Cases for Southwest_B Race 2 2014 and 

Southeast_I Race 2014 

The test which returned the best result for the Southwest_B Race 2 was the one that aggregated all races 

(Test4), followed by that of similar races (Test 2), different races (Test 3), and the same track (Test 1). 

Similar to the result with the low tire wear tracks, it appeared that aggregating races regardless of their 

tire wear and tire change ratio characteristics did not have a detrimental effect on the predictive capability 

of the machine learning software. Instead, it performed the best among the lot. 

 

The results for Southeast_I showed that making predictions against similar races (Test 2) performed the 

best, followed by different races (Test 3), all races (Test 4), and the same track (Test 1). Even though our 

hypothesis turned out to be true in this scenario, the difference in the root mean square error for the 

tests was razor thin, at around 0.04 from the first to the fourth test. This indicated that the way the dataset 

was constructed was not important in determining the predictive capability of the software for this race.  

 

As with the test on the low tire wear track, Test 5 turned in the poorest result, showing once more that 

the machine learning software performed better than the naïve algorithm. 

 

In conclusion, we believe that our hypotheses regarding the importance of tire wear and tire change ratios 

for the machine learning software does not hold. There appears to be no discernable benefit from 

constructing the dataset according to tire wear and tire change ratio characteristics, when using the 

current set of features in the machine learning software, and selecting tracks that have similar lengths 

and shapes. 
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6. Overall Findings and Relation to Previous Research 
 

We looked at the research done in this thesis and compared it to insights discovered from the paper 

(Tulabandhula & Rudin, 2014) to understand whether our results tallied and see if there were additional 

insights that could be gleaned for further work. 

 

6.1 New Insights and Reinforcement of Previous Insights 

1. Strong Correlation between Tire Wear and Tire Change Decisions 

There is a strong correlation between the tire wear characteristics of a track and tire change decisions. 

Tracks with low tire wear have higher ratios of 2 versus 4 tire change decisions, while those with high tire 

wear have much lower ratios of 2 versus 4 tire change decisions. This finding could be incorporated into 

the machine learning model to offer better prescriptions of tire change decisions for each pit stop. 

2. Correlation between Finishing Position and Combination of Driver Momentum and Pit Crew 

Performance 

Building on features implemented in the machine learning software, we found that there was some 

correlation between a driver’s finishing position and the combination of driver momentum and pit crew 

performance. The combination of driver momentum and pit crew performance was useful in determining 

a driver’s performance across a stage of the race, which comprised an epoch, warm-up laps, and caution 

periods. 

3. Aggregation of Races for Dataset 

It should be possible to aggregate races of different track characteristics for the construction of the 

dataset for the machine learning software even if tire change ratios and tire wear are fundamentally 

different. However, it is important to note that the high and low tire wear tracks selected for this test 

were oval tracks of similar lengths. We did not test the software against tracks of different lengths or 

those that were road courses, which might return different results. 

4. Importance of Later Stages of a Race 

Our studies indicate that tire change decisions at the later stages of the race take on relatively greater 

importance because poor performance at the beginning can be made up through good driver and pit crew 

performance as the race progresses. The prevalence of caution periods appears to be the main reason for 

this, because cars can catch up with the rest of the pack and recover lost laps during such periods. Poor 

decisions made near the end have no way of being corrected unless the performance of the driver in that 

last stage is exceptional.  
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6.2 Responses to Primary Research Questions 
 

Returning to the original questions posed in this thesis, our responses based on the research conducted 

are: 

 

1. If a driver pits and makes a certain tire change decision, what is the predicted change in track 

position before the next pit stop?  

The machine learning software has generally been able to predict the change of track position of a driver 

with an accuracy better than the naïve approach, where the initial track position of the driver is retained 

throughout the duration of the epoch. New features based on our improved understanding of how end 

stages of a race influence outcomes, and the correlation of tire wear to tire change decisions may enhance 

the software’s predictive quality for the Prediction Interval. 

 

2. When should a driver pit during the course of a race? 

Ideally, drivers should pit just before cautions are declared during a race because they would end up at 

the front of the field when others pit during the caution. However, because predicting caution periods is 

difficult, we suggest that pit stops should be done whenever caution flags are waved, unless we are near 

the end of a race on a low tire wear track. 

 

3. How many tires should be changed during that pit stop? 

4 tires should be changed at every pit stop, particularly on high tire wear tracks. For tracks which have low 

tire wear characteristics, 2-tire pit stops or 0-tire stops are recommended when tire changes have been 

done very recently, and the tires still exhibit very good performance based on the driver’s lap time.  

 

4. What are the likely pit stop decisions made by the driver’s rivals? 

We have not yet predicted the pit stop decisions made by a driver’s rivals, but there are a couple of ways 

that this can be done. The first is to study what the optimal tire change strategy would be by looking at 

the relative age of the rival’s tires and the tire wear characteristic of the track. The second is to look at the 

decisions of drivers ahead of the rival. This characteristic of protected drivers (Tulabandhula & Rudin, 

2014) could be a good indicator on how to decide what rivals would do. 
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7. Future Work 
 

7.1 Adding New Features into the Machine Learning Software 

Following our additional findings in this thesis, new features could be implemented in the machine 

learning software to determine if these insights would result in better predictive outcomes: 

 

1. Combination of Driver Momentum and Pit Crew Performance 

This feature could be useful in providing higher-level insights into performance for each stage of the 

race to help inform the tire-change decision-making process when making pit stops. 

2. Percentage of Race Complete 

The stage of the race is presently contained in the feature matrix by recording the number of laps 

completed and the leg number for each driver. In order to tie the stage of the race to specific tire 

change decisions, it may be useful to capture the percentage of the race completed by dividing the 

lap number of the pit stop by the total number of laps for the race. 

3. Inclusion of More Features Surrounding Pit Stops 

In order to improve the predictions made for the prediction interval, more features surrounding the 

nature of pit stops could be included to provide further insight into portions of race stages that are 

not captured in the feature matrix. For instance, the change of track position in between epochs, gap 

timings of drivers, tire age in relation to track tire wear profile, and pit times as a fraction of lap times 

could be calculated and tested. 

 

7.2 Building Track Profiles from Practice and Qualifying Sessions 

Previous research suggested classifying tracks into different groups based on practice and qualifying times 

prior to the race proper (Tulabandhula & Rudin, 2014). Our independent discussions with engineers 

involved in Formula One revealed that this was commonly done because track characteristics tended to 

change from year to year, and the most accurate data was captured by studying track conditions during 

the race weekend. Although computer simulations done independently in Formula One tended to yield 

fairly accurate results beforehand, fine-tuning of car set-ups and predictive analytics for the race weekend 

were normally done based on driver and car performance from the later practice sessions. Feeding on-

site track characteristics to the machine learning software during the race weekend could be useful in 

future. 
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7.3 Heuristics 
 

Based on the analysis performed in the thesis, there are clear patterns for tire change decisions for races 

on different tracks. Appropriate weights could be introduced into the machine learning software to skew 

tire change decisions using the following rules: 

 

Tracks with High Tire Wear and Low 2 versus 4 Tire Change Ratios 

Applies to the following tracks: Southwest_B, Southeast_F, West_C, Southeast_I, Southeast_G, 

Southeast_H, and West_B 

1. Pit whenever there is a caution, and change 4 tires whenever possible. The savings of about 6-7 

seconds for a 2-tire stop is worth less than the better lap times clocked when on 4 fresh tires for 

the next leg of the race. 

 
Tracks with Low Tire Wear and High 2 versus 4 Tire Change Ratios 

Applies to the following tracks: Southeast_B, Northeast_C, Southwest_A, Midwest_A, Southeast_A, 

Northeast_B, and Midwest_C 

1. If it is early in the race and a caution flag is waved, a driver may change 2-tires instead of 4 

provided that the car’s tires are relatively fresh and are expected to last until the next caution 

period. The savings of about 6-7 seconds is usually worth more than the slower lap times clocked 

for the next leg of the race compared to having 4 fresh tires. 

 

2. If it is late in the race and drivers are within the top 10, do not pit unless absolutely necessary, 

such as when the tires are completely worn out, or if fuel has run out. Do not pit even if there is 

a caution, as maintaining position on track is more important than putting on fresh tires. 

 
 

All Other Tracks 

Applies to the following tracks: Northeast_A, Southeast_C, Midwest_E, West_A, Northeast_D, 

Southeast_E, Midwest_B, Southeast_D, Midwest_D 

1. No clear pattern at this point.  
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7.4 Statistical Probability of Cautions during a Race 
 
Drivers face a variety of hazards throughout the duration of a race, especially since up to 43 cars lap the 

track at high speeds, and regularly adjust their racing line to take advantage of changing track conditions 

and rivals ahead of, or behind them. This continual adjustment requires drivers to maintain high levels of 

concentration to avoid getting involved in incidents on the track. Accidents are prone to happen when 

drivers experience a momentary lapse of concentration. 

 

Some tracks may present higher levels of difficulty to drivers, and as a result accidents may happen more 

frequently. These incidents will cause caution flags to be waved to slow down the race, and bring it under 

control such that race officials are able to clear hazards off the track. During these periods, drivers usually 

take the opportunity to pit for fresh tires and refuel. 

 

Hence, it may be useful for us to calculate the probability of cautions during different stages of each race. 

Given that the incidence of caution flags are inherently probabilistic, it may be useful to rely on as many 

past races as possible to generate predictions for each track. Doing so would give  teams a better 

understanding of whether they should pit their drivers under regular racing conditions, or whether they 

should stay out on track to wait for a caution to occur. This ties in with one of our main research questions 

about predicting caution periods in advance, in order to call drivers into the pit immediately before 

caution flags are waved. 

 

7.5 Adjustment of Epoch Characteristics 
 

Finally, the machine learning software currently trims laps from the start and the end of each leg of the 

race to generate epochs. As a result, epochs are not included into the feature matrix when they are too 

short, such as when caution periods occur in rapid succession of each other. This may be detrimental to 

the predictive capability of the machine learning software, such as if cautions occur near the end of the 

race, when tire change decisions take on increasing importance. It may be useful to retain epochs 

regardless of their lengths near the end of the race or adjust the minimum allowable epoch length for 

each track.  
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9. Appendix  
 

9.1 Selected Races for the 2014 Dataset 
 
The races for 2014 in alphabetical order, according to region and race number are: 
 

Race Name (Abbreviated) 

Midwest_A Race 1 

Midwest_A Race 2 

Midwest_B 

Midwest_C Race 1 

Midwest_C Race 2 

Midwest_D 

Midwest_E 

Northeast_A 

Northeast_B Race 1 

Northeast_B Race 2 

Northeast_C Race 1 

Northeast_C Race 2 

Northeast_D Race 1 

Northeast_D Race 2 

Southeast_A Race 1 

Southeast_A Race 2 

Southeast_B Race 1 

Southeast_B Race 2 

Southeast_C Race 1 

Southeast_C Race 2 

Southeast_D Race 1 

Southeast_D Race 2 

Southeast_E Race 1 

Southeast_E Race 2 

Southeast_F Race 1 

Southeast_F Race 2 

Southeast_G 

Southeast_H 

Southeast_I 

Southwest_A Race 1 
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Southwest_A Race 2 

Southwest_B Race 1 

Southwest_B Race 2 

West_A 

West_B 

West_C 

 
Figure 54. List of Races for 2014  Cup Series  
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9.2 Complete Feature Listing 
 

ID. Classification Description Dep. Var Ind. Var 

33  current outing  delrank (leg end - pre pit)' X   

9  before pit Feature ID 9   X 

13  before pit Feature ID 13   X 

26  before pit Feature ID 26   X 

28  before pit Feature ID 28   X 

34  before pit Feature ID 34   X 

35  before pit Feature ID 35   X 

37  before pit Feature ID 37   X 

40  before pit Feature ID 40   X 

41  before pit Feature ID 41   X 

43  before pit Feature ID 43   X 

44  before pit Feature ID 44   X 

45  before pit Feature ID 45   X 

56  before pit Feature ID 56   X 

59  before pit Feature ID 59   X 

60  before pit Feature ID 60   X 

61  before pit Feature ID 61   X 

69  before pit Feature ID 69   X 

75  before pit Feature ID 75   X 

76  after pit Feature ID 76   X 

77  after pit Feature ID 77   X 

82  before pit Feature ID 82   X 

85  after pit Feature ID 85   X 

89  before pit Feature ID 89   X 

127  before pit Feature ID 127   X 

132  current outing Feature ID 132   X 

136  current outing Feature ID 136   X 

139  after pit Feature ID 139   X 

140  after pit Feature ID 140   X 

146  before pit Feature ID 146   X 

149  before pit Feature ID 149   X 

150  before pit Feature ID 150   X 

151  before pit Feature ID 151   X 

153  before pit Feature ID 153   X 

157  before pit Feature ID 157   X 

158  before pit Feature ID 158   X 

160  before pit Feature ID 160   X 

161  before pit Feature ID 161   X 
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163  before pit Feature ID 163   X 

164  before pit Feature ID 164   X 

165  before pit Feature ID 165   X 

1  nonfeature Feature ID 1     

2  nonfeature Feature ID 2     

3  nonfeature Feature ID 3     

4  current outing Feature ID 4     

5  current outing Feature ID 5     

6  current outing Feature ID 6     

7  current outing Feature ID 7     

8  current outing Feature ID 8     

10  before pit Feature ID 10     

11  before pit Feature ID 11     

12  before pit Feature ID 12     

14  before pit Feature ID 14     

15  current outing Feature ID 15     

16  current outing Feature ID 16     

17  nonfeature Feature ID 17     

18  nonfeature Feature ID 18     

19  after pit Feature ID 19     

20  after pit Feature ID 20     

21  after pit Feature ID 21     

22  current outing Feature ID 22     

23  current outing Feature ID 23     

24  nonfeature Feature ID 24     

25  nonfeature Feature ID 25     

27  after pit Feature ID 27     

29  nonfeature Feature ID 29     

30  after pit Feature ID 30     

31  current outing Feature ID 31     

32  current outing Feature ID 32     

36  before pit Feature ID 36     

38  before pit Feature ID 38     

39  before pit Feature ID 39     

42  before pit Feature ID 42     

46  before pit Feature ID 46     

47  before pit Feature ID 47     

48  after pit Feature ID 48     

49  after pit Feature ID 49     

50  after pit Feature ID 50     

51  after pit Feature ID 51     
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52  after pit Feature ID 52     

53  after pit Feature ID 53     

54  after pit Feature ID 54     

55  after pit Feature ID 55     

57  before pit Feature ID 57     

58  before pit Feature ID 58     

62  current outing Feature ID 62     

63  current outing Feature ID 63     

64  nonfeature Feature ID 64     

65  after pit Feature ID 65     

66  after pit Feature ID 66     

67  current outing Feature ID 67     

68  current outing Feature ID 68     

70  current outing Feature ID 70     

71  before pit Feature ID 71     

72  before pit Feature ID 72     

73  current outing Feature ID 73     

74  after pit Feature ID 74     

78  after pit Feature ID 78     

79  after pit Feature ID 79     

80  after pit Feature ID 80     

81  after pit Feature ID 81     

83  before pit Feature ID 83     

84  after pit Feature ID 84     

86  before pit Feature ID 86     

87  before pit Feature ID 87     

88  before pit Feature ID 88     

90  after pit Feature ID 90     

91  current outing Feature ID 91     

92  current outing Feature ID 92     

93  current outing Feature ID 93     

94  after pit Feature ID 94     

95  current outing Feature ID 95     

96  current outing Feature ID 96     

97  current outing Feature ID 97     

98  before pit Feature ID 98     

99  nonfeature Feature ID 99     

100  before pit Feature ID 100     

101  before pit Feature ID 101     

102  current outing Feature ID 102     

103  current outing Feature ID 103     
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104  current outing Feature ID 104     

105  current outing Feature ID 105     

106  current outing Feature ID 106     

107  current outing Feature ID 107     

108  current outing Feature ID 108     

109  current outing Feature ID 109     

110  current outing Feature ID 110     

111  current outing Feature ID 111     

112  current outing Feature ID 112     

113  current outing Feature ID 113     

114  current outing Feature ID 114     

115  current outing Feature ID 115     

116  current outing Feature ID 116     

117  current outing Feature ID 117     

118  current outing Feature ID 118     

119  current outing Feature ID 119     

120  current outing Feature ID 120     

121  current outing Feature ID 121     

122  current outing Feature ID 122     

123  current outing Feature ID 123     

124  current outing Feature ID 124     

125  current outing Feature ID 125     

126  current outing Feature ID 126     

128  before pit Feature ID 128     

129  before pit Feature ID 129     

130  before pit Feature ID 130     

131  after pit Feature ID 131     

133  before pit Feature ID 133     

134  before pit Feature ID 134     

135  current outing Feature ID 135     

137  before pit Feature ID 137     

138  before pit Feature ID 138     

141  before pit Feature ID 141     

142  before pit Feature ID 142     

143  before pit Feature ID 143     

144  before pit Feature ID 144     

145  before pit Feature ID 145     

147  before pit Feature ID 147     

148  before pit Feature ID 148     

152  before pit Feature ID 152     

154  before pit Feature ID 154     
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155  after pit Feature ID 155     

156  after pit Feature ID 156     

159  before pit Feature ID 159     

162  before pit Feature ID 162     

 

Figure 55. Complete Feature Listing, including Dependent and Independent Variables in Machine Learning Software  

 
 

9.3 Slopes by Tire Wear for Track Classification 

 

 
 

Figure 56. Slope of Tire Degradation for Southeast_B Track based on Southeast_B Race 2014 
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Figure 57. Slope of Tire Degradation for Southwest_A Track based on Southwest_A Race 1 2014 

 

 
 

Figure 58. Slope of Tire Degradation for West_A Track based on West_A Race 2014 



Page | 86 
 

 
 

Figure 59. Slope of Tire Degradation for Southeast_C Track based on Southeast_C Race 1 2014 

 

 
 

Figure 60. Slope of Tire Degradation for West_C Track based on West_C Race 2014 
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Figure 61. Slope of Tire Degradation for Southeast_E Track based on Southeast_E Race 1 2014 

 

 
 

Figure 62. Slope of Tire Degradation for Southwest_B Track based on Southwest_B Race 1 2014 
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Figure 63. Slope of Tire Degradation for Southeast_H Track based on Southeast_H Race 2014 

 

 
 

Figure 64. Slope of Tire Degradation for Southeast_F Track based on Southeast_F Race 1 2014 
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Figure 65. Slope of Tire Degradation for Southeast_A Track based on Southeast_A Race 1 2014 

 

 
 

Figure 66. Slope of Tire Degradation for Midwest_C Track based on Midwest_C Race 1 2014 



Page | 90 
 

 
 

Figure 67. Slope of Tire Degradation for Southeast_D Track based on Southeast_D Race 1 2014 

 

 
 

Figure 68. Slope of Tire Degradation for Northeast_D Track based on Northeast_D Race 1 2014 
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Figure 69. Slope of Tire Degradation for Northeast_B Track based on Northeast_B Race 1 2014 

 

 
 

Figure 70. Slope of Tire Degradation for Midwest_A Track based on Midwest_A Race 1 2014 
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Figure 71. Slope of Tire Degradation for West_B Track based on West_B Race 2014 

 

 
 

Figure 72. Slope of Tire Degradation for Midwest_D Track based on Midwest_D Race 2014 
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Figure 73. Slope of Tire Degradation for Northeast_C Track based on Northeast_C Race 1 2014 

 
 

 
 

Figure 74. Slope of Tire Degradation for Midwest_E Track based on Midwest_E Race 2014 
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Figure 75. Slope of Tire Degradation for Northeast_A Track based on Northeast_A Race 2014 

 
 

 
 

Figure 76. Slope of Tire Degradation for Southeast_I Track based on Southeast_I Race 2014 
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Figure 77. Slope of Tire Degradation for Midwest_B Track based on Midwest_B Race 2014 

 

 
 

Figure 78. Slope of Tire Degradation for Southeast_G Track based on Southeast_G Race 2014 
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9.4 Tire Change Strategy according to Pre-Pit Position and Lap Number 
 

  
 

Figure 79. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Midwest_B Race 2014 
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Figure 80. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Southwest_A Race 1 2014 
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Figure 81. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Midwest_C Race 1 2014 
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Figure 82. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Southeast_I Race 2014 
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Figure 83. Tire Change Decisions according to Pre-Pit Track Position and Lap Number for Southwest_B Race 1 2014 

 


