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Abstract

Public service robots have been more and more popular due to their social and eco-
nomical influences. This thesis investigated two issues about control and navigation
of public service robots deployed in crowded environments such as airports and shop-
ping malls. Our solutions facilitates the synergy of a distributed sensor network and
a central computer. A distributed sensor network provides multi-view measurements
without occlusion, and a central computer can use these data to estimate the state
of everything in the environment in real-time.

A public service robot should have human-like mobility, but a wheeled robot is
vulnerable to fall when it transits to escalators/moving walkways that are commonly
seen in public places. A compliant coupler is inserted between the wheel and the drive
motor, which could block instantaneous impacts during the transition. A feedback
control is designed to improve the transmission system's damping and regulate the
robot's ground speed. A simulated robot was able to transit between ground and
moving walkways smoothly using the series elastic transmission and unified velocity
control.

To help a public service robot reach its destination efficiently without causing
much annoyance to nearby humans, we developed a three-layer hierarchical path
planner. Every layer plans at a different temporal and spatial scale, and the plans are
refined as they are passed from top level to the bottom level. The intermediate level
planner bridges global path optimality and local path optimality, and is discussed in
detail. Using a fluid analogy, the medium planner treats individual passengers as fluid
particles, and tries to find a path so that the total pressure received is minimized.
Navigation maps are introduced as an augmentation to navigation functions, which
indicate the shortest path towards goal to a robot. Using a finite-horizon optimization,
the medium planner can react to the dynamic crowd promptly. Simulations show that
the planner is able to plan appropriate paths in many different scenarios.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Engineering
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Public service robots have been more and more popular due to their social and

economical influences. This thesis investigated two issues about control and naviga-

tion of public service robots deployed in crowded environments such as airports and

shopping malls. Our solutions facilitates the synergy of a distributed sensor network

and a central computer. A distributed sensor network provides multi-view measure-

ments without occlusion, and a central computer can use these data to estimate the

state of everything in the environment in real-time.

A public service robot should have human-like mobility, but a wheeled robot is

vulnerable to fall when it transits to escalators/moving walkways that are commonly

seen in public places. A compliant coupler is inserted between the wheel and the drive

motor, which could block instantaneous impacts during the transition. A feedback

control is designed to improve the transmission system's damping and regulate the

robot's ground speed. A simulated robot was able to transit between ground and

moving walkways smoothly using the series elastic transmission and unified velocity

control.

To help a public service robot reach its destination efficiently without causing

much annoyance to nearby humans, we developed a three-layer hierarchical path

planner. Every layer plans at a different temporal and spatial scale, and the plans are

refined as they are passed from top level to the bottom level. The intermediate level

planner bridges global path optimality and local path optimality, and is discussed in

detail. Using a fluid analogy, the medium planner treats individual passengers as fluid

particles, and tries to find a path so that the total pressure received is minimized.

Navigation maps are introduced as an augmentation to navigation functions, which

indicate the shortest path towards goal to a robot. Using a finite-horizon optimization,

the medium planner can react to the dynamic crowd promptly. Simulations show that

the planner is able to plan appropriate paths in many different scenarios.
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Chapter 1

Introduction

1.1 Motivation

People have been actively exploring the application of robots in non-industrial sce-

narios over the past few decades. Probably the best known example is Roomba, an

autonomous vacuum cleaner by iRobot, used by millions of families [10]. Besides

home appliances, other successful trials include robotic guides to museums [1] and

shopping malls [11], companion robots [6, 18] and humanoid robots[19].

Public service robots are those deployed in public environments to satisfy the

increasing need for high-quality daily services. They are of particular interest because

of their potential social and economical impacts. Compared with home robots, public

service robots are unique in the following aspects: [2]

" The environments they operate in tend to be more structured. For example,

homes can be very different in layout and design, while shopping malls often

have similar facilities and functionalities.

" Usually the initial installation costs are less important, and operational costs

are more crucial due to the long operation hours.

" They can concentrate on some specific tasks. For instance, a museum guide

robot only focuses on navigation and explanation. On the other hand peo-
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ple may expect a home robot with manipulator arms to be versatile for many

services.

The similarities in the workspace makes it possible to design a robot and deploy it

in numerous places. Higher initial setup budget allows for sensors embedded in the

environments and more advanced technologies. The concrete objectives lead to more

clearly defined market. These specialties make public service robots more likely to be

prototyped and commercialized.

Yet there are many challenges faced by public service robots, such as

" Safety issues. Public places are occupied by both humans and robots, and

collisions are risky and unacceptable.

* Sensor obstructions. The passengers are like dynamic obstacles, which may

block the photoelectric sensors and ultrasonic sensors.

" Human-like accessibility. A public service robot has to adapt to environments

designed for human. For example, it should be able to follow its human user,

even if he/she is using the escalator.

" Human-machine interactions. A robot interacting with humans should respect

their conventions and avoid being confusing or aggressive. For example, it

is reported that robots approaching people from certain directions are very

unwelcome[16].

" Scalability. A typical robot works alone, and it only needs to observe a small

vicinity. However, there may be hundreds of public service robots operating in

the same environment, and much computational power is required for scheduling

and world modeling.

Special attention should be paid to service robots in busy public transportation

junctions such as train stations and airports. These junctions are usually multi-story,

consisting of many concourses and platforms. Besides, they are often integrated with

shopping and dining areas, which brings in even more people. The spacial complexity

14



and highly dynamic crowds render it more difficult to control and navigate robots

in those junctions. However, despite the growing need for public service robots in

busy transportation junctions, few researches have been done on that matter. This

thesis aims to develop solutions to some issues of public service robots in crowded

environments, with the help of a distributed sensor network and a connected central

server.

1.2 Related Works

An autonomous robotic tour-guide for museums is presented in [1], which features

interactive human-machine interface. To deal with uncertainty in the environment

and measurements, probabilistic representations are incorporated for perception, rea-

soning and planning. An entropy gain filter is devised to remove invalid sensor mea-

surements caused by obstruction, so that Markov localization can be applied even in

the presence of many people. The filtered out data are then used to estimate the

position of nearby people, which is integrated with the floor plan to produce an in-

stantaneous occupancy-grid map. A modified dynamic window approach implements

local collision avoidance, while global minimum-cost paths are achieved by dynamic

programming, both using the instantaneous occupancy grids. The software system

on the robot is modular, decentralized and asynchronous. Time-critical modules such

as collision avoidance are run in parallel on-board, while computation-intensive tasks

such as path planning are carried out by off-board workstations. In the trial deploy-

ment in a normally-operating museum, the robotic tour-guide worked for 47 hours

continuously, traveling a total of 18.6km and serving more than 2400 visitors, with

only six mild collisions.

[17] describes a robotic wheelchair name MAid, whose task is to transport mobility-

impaired people in crowded public environments. It receives commands from users

and overwrites those that may result in collisions. An on-board laser range finder is

used to detect surrounding objects. By comparing sequential observations, the veloc-

ities of nearby objects could be estimated, which are extrapolated to predict future

15



trajectories. The wheelchair's maneuvers that would result in collision are identified

and removed, and an action that optimizes a given metric is chosen among the valid

reachable velocities, which is similar to the dynamic window approach. MAid has

been successfully tested in crowded railway stations and exhibition halls, and when

the traffic is too heavy, it would stop and wait for the people to pass.

In the presence of sensors fixed in the environment, the accuracy of robot local-

ization and human tracking can be improved[7]. The external sensors are usually

mounted high enough to avoid obstructions and provide larger fields of view. They

also serve as fixed position references, which is crucial in decreasing estimation co-

variance. An association-correction method is developed to fuse the measurements

from both onboard and offboard sensors. Simulations show that the method yields

much smaller localization error, and field tests demonstrate the system's ability to

recover quickly from tracking errors.

When planning paths, a robot should take into consideration the velocity con-

straints attached to some regions, as suggested by [12]. In the "regions with velocity

constraints" (RVC's), the robot is restricted to a velocity predefined by human opera-

tor, so as to avoid danger and minimize total traveling time. A new discrepancy-grid

map is generated for every instant, based on which a trajectory satisfying the veloc-

ity constraints are generated. This method is verified with robots running along real

public paths with humans.

A finite-state-machine motion planner is introduced in [23]. The onboard sensor

readings are converted to the input alphabet and fed to a finite state-machine. The

output from the state-machine is converted to linear and angular velocities, which

are used to control the robot. In the first conversion, a coarse occupancy-grid map

is obtained by projecting the sensor readings onto the robot's neighborhood. The

weighted occupancy comprises the input alphabet, which in used to look up the next

state in a transition table. In the test runs in shopping malls and congress centers,

the robot usually changes its state to "pause" to wait for a moment when there is

more space to move.
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1.3 Fundamental Assumptions

The methods developed in this thesis assumes that there are many sensors installed

in the public environment, which constitutes a distributed sensor network, and that

a central server is connected to the sensor network. The central server processes the

data from the sensor network and estimates in real-time the states of all passengers

in the environment.

This assumption of distributed sensor network is not unrealistic, because it is

common to see airports and train stations installed with many surveillance cameras.

Other than the surveillance cameras, ticket gates, designated laser range finders and

deployed robots all provide adequate information about the environment. The dis-

tributed sensor network is advantageous in that an object is usually detected by many

sensor, which rules out the chances of occlusions. The estimation accuracy can be

boosted as a consequence of multiple-view object recognition.

The central server could be seen as an augmentation to the inspection and data

storage nodes in existing surveillance camera systems. It analyses the plentiful data

collected by the sensor network, and produces real-time estimates of everything in the

environment. It could also identifies statistical motion models of passengers from past

data. These models play important parts in estimating and predicting the passengers

states. The colossal computing power the central server possesses render it possible

to perform centralized scheduling and planning for all deployed robots, thus providing

the scalability needed.

The synergy of the central server and the distributed sensor network is remarkably

influential to the control and navigation of robots in crowded public environments,

as we will describe with details in the following chapters.

1.4 Thesis Organization

This thesis studies the control and navigation of a kind of service robot designed

for highly populated public environments. The work assumes that a distributed sen-
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sor network is available, and the sensors are connected to a central computer that

is capable of integrating all measurements and estimating the states of the entire

public environment. Furthermore, any robot deployed in the public environment has

access to the real-time estimates as well as the computing power of the central com-

puter. Two engineering challenges for public service robots are stressed and tackled

facilitating the above assumptions.

The first chapter gives the background and motivation of the thesis. Some re-

lated works on public service robots are surveyed, whose perks and inadequacies are

pointed out. The fundamental assumptions of this thesis are established, including a

distributed sensor network that monitors the public place and a central server that

estimates the states of the environment in real-time The synergy of the distributed

sensor network and the central server is briefly discussed.

The second chapter investigates the transition of a robot between normal floor

and moving walkways. The disturbance caused by the transition is modeled as an

instantaneous external input to the system, which is clearly separated from the normal

inputs in the frequency domain. Series elasticity is introduced to the transmission

system to absorb the high-frequency disturbance. A velocity controller is devised to

increase the transmission's damping and regulate the robot's ground speed.

The third chapter focuses on navigating a robot in the presence of crowds. A

three-layer online planner is proposed for path planning in uncertain dynamic envi-

ronments. The Medium Planner, a novel layer that bridges the global optimality and

local optimality, is studied in detail. Two concepts are put forward to formulate the

medium-range path planning as a finite-horizon optimization. To solve the two-point

boundary-value optimization, the structures of the problem is examined and iterative

methods are discovered to approximate the solution.

The last chapter summarizes the work and lists a few remarks on possible exten-

sions of the work.
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Chapter 2

Smooth Transition

Public service robots operate in environments that are designed primarily for human.

They have to possess human-like mobility in order to deliver expected services. How-

ever, most mobile robots today are wheeled, which are unable to ride on escalators and

moving walkways that are commonly seen in public transportation junctions. This

chapter presents a solution for wheeled robots to transit smoothly between ground

and moving walkways. The solution could be easily altered to work for escalators.

2.1 Design Concepts

The overarching goal of the thesis work is to deploy mobile robots for services in

public areas. Robots should be able to move around without obstructing surrounding

passengers. This requires the footprint, or the area occupied by the robot, to be as

small as a human. Fig.2-la illustrates a wheeled mobile robot with a small footprint.

Having both front and rear wheels, the robot is statically stable. Yet the stability

margin is rather narrow, since the distance between the front and the rear wheels

is short, compared with the high center of mass. Transition to and from moving

walkways or escalators is challenging for this type of mobile robots.

As shown in Fig.2-lb, the floor speed changes discretely as the robot steps on and

off the moving walk. When the powered wheel arrives at the edge of the stationary

floor, the velocity of the contacting point C on the wheel is zero, assuming no slip
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on the floor. On the other hand , when the powered wheel arrives at the edge of the 

moving walkway, the velocity of the contacting point on the moving walkway is not 

zero. The velocity discrepancy between the contacting points on the wheel and the 

moving walkway makes the wheel slide on the moving walkway. The sliding friction 

gives an impact to the wheel and the rest of the robot body, which may cause the 

robot to stagger , stumble, or fall over. Similarly, the robot is suddenly stopped at 

the end of the moving walkway, as it transits back to the ground. 

(a) overview (b) close-up 

Figure 2-1: Transition between the ground and a moving walkway 

The impact that acts on the robot during the transition can be characterized 

by its short duration and large magnitude. Preliminary calculation reveal that the 

duration is on the order of 10-2 s , and the sliding-induced impact is proportional to 

the robot 's weight. The wheel velocity control system is unable to react to such an 

instantaneous disturbance. However, in the frequency domain there is a clear sepa

ration between characteristic frequency of the impact and that of the wheel control 

system. Fig.2-2 illustrates the separation in the frequency spectrum , where Wcr is 

the critical frequency. Since the wheel velocity control system is unable to respond 

to such a high-frequency disturbance, it is reasonable to consider a passive damper 

to absorb the impact. Nonetheless , it should be noted that the impact in this case 

acts in the horizontal direction along the floor. Unlike traditional shock absorbers of 

automobiles and mobile robots , which suppress impacts normal to the ground, this 

shock absorber has to block the horizontal impact along the tangential direction of 

the wheel. 

20 



command disturbance

all

Characteristic Frequency

Figure 2-2: Frequency spectrum of the input signal

Here we propose to use series elasticity in the transmission to absorb the tangential

impact. See Fig.2-3, a torsional spring is inserted between the wheel axle and the

actuator shaft. The torsional spring serves as a mechanical low-pass filter, so that

high-frequency signals would be blocked. When the wheel steps on or off the moving

walk, the wheel is forced to accelerate or decelerate by the impact Because of the

elastic coupler, the wheel is virtually disconnected from the rest of the robot at high

frequencies. It is then free to rotate for a short period of time, while the momentum

of the robot body forces the body to move forward during the transition.

motor wheel

ks bd

IW

TM Im coupler

Figure 2-3: Compliant coupler in the transmission

Impact absorption is not the only function needed for this mobile robot. Once

the robot gets on the moving walk, its wheel speed must drop to zero to stop relative

motion, which might lead to collisions with surrounding passengers. As the robot

gets off the moving walk, its wheel speed must rev up so that the robot can continue

to move at the same ground speed, for the same reason of collision avoidance. The

wheel velocity control system must kick in at the right moment in response to the

21



abrupt change of the floor speed. The elastic coupler can facilitate to detect the

impact-induced wheel rotation and form a feedback control loop that regulates the

wheel speed. As shown in Fig.2-3, by measuring the rotation angles of the wheel

axle and the actuator shaft, we can compute the transmitted torque with the help of

Hook's Law. This provides the robot control system with useful information for

* Regulating the wheel speed;

" Detecting the discrete change of the floor speed, so that the reference input to

the wheel speed control system can be switched as soon as the floor speed has

changed; and

* Improving the dynamics of the wheel control system based on the measurement

of the transmitted torque and the phase lag between the motor and the wheel

axles.

The following sections will explore these features in details.

2.2 Dynamics Analysis and Control Synthesis

The design concepts described in the previous section are depicted in Fig. 2-4. The

robot is equipped with series elasticity to absorb impacts in the tangential direction

of the wheels. The stiffness of elastic coupler is chosen to reject high-frequency dis-

turbances while maintaining the command signals. A feedback control is designed

to cooperate with the series elasticity in the transmissions. The outer loop of the

control, which regulates the robot's ground speed, is closed with a velocity estima-

tor. The estimator estimates the robot's velocity by synthesizing the readings from

the accelerometer and the landmark detector. The dashed paths in the upper part

constitutes the feedforward loop, which is proposed to speed up the response of the

robot when it is running on the ground. The "Transition Detector" recognizes the

discrete change of the floor speed, using the angular positions of the motor shafts

and the wheel axles. The "Feedforward Velocity Controller" will output zero when

the robot is on the moving walkway, which can be easily determined by counting the
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total number of transitions. The inner loop of the control is designed to increase the

damping and suppress the oscillations in the transmission induced by the impacts.

Transition
r Detector 1

Feedforward

lVelocity ControllerRot I
Robot robot

+ Feedback + motion
Velocity Controller +

velocity~
reference

Velocity Accelerometer
velocity sI;=,or

estimate
Landmark

I Detector

(a) Outer loop
Transmission

0 + Transmission
Controller

wheel
+motion Wheel

motor
motion Motor

Encoder

(b) Inner loop

Figure 2-4: Block diagram of the Unified Velocity Control

Before moving on to detailed dynamics analysis and control synthesis, first we list

the nomenclature in Table 2.1, whose visual explanations can be found in Fig.2-3.

2.2.1 Series Elastic Transmission

The block diagram of the Series Elastic Transmission is shown in Fig. 2-5. A compli-

ant coupler connects the shaft of a geared motor and the wheel axle. The coupler is

represented with the Kelvin-Voigt model, which consists of a spring and a damper in
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Table 2.1: Nomenclature of Series Elastic Transmission

Symbol Description

0m angular position of the motor

0, angular position of the wheel

1m moment of inertia of the motor

I, moment of inertia of the wheel
Td external disturbance torque
Tm motor torque

parallel. There are two encoders measuring the angular positions of the motor shaft

and wheel axle, respectively.

Compliant
Coupler

Motor -.. Wheel-
Enodr Motor _Gearbox Enndr Wheel]

Figure 2-5: Block diagram of Series Elastic Transmission

The equations of motion of the transmission system can be easily obtained as

r Td = w

r = km(6m- O)+bd(m - k)

T. - T = IjM

(2.1)

where T is the torque transmitted through the coupler.

Take the Laplace transform of both sides, and we find the characteristic equation

of the open-loop transmission system as

DOL(S) = S2 [JmJwS2 + (In + Iw)bdS + (Im + Iw)ks]. (2.2)

The characteristic equation (2.2) reveals that the open-loop transmission system has

two repeated poles at the origin, and two complex poles whose natural frequency u),
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and damping ratio (OL are given by

OL ks(Im + Iw)
F Im=w (2.3a)

(OL = bd(Im + Iw) (2.3b)
2ImIwon

The compliant coupler is made from visco-elastic materials, which have relatively

small damping, bd ~ 0. Therefore the transmission system's break frequency Wb can

be approximated to

In order to suppress high-frequency disturbances, we choose Wb = w,., the critical

frequency that separates the user commands and the impacts. The desired stiffness

of the compliant coupler is then

W2 Im wks = .r (2.5)
Im + Iw

With the stiffness derived, there is no design freedom in the damping coefficient bd,

because it is connected with the stiffness as a consequence of the material property

and coupler geometry.

2.2.2 Unified Velocity Control

The Unified Velocity Control improves the damping of the transmission system, and

regulates the robot's ground speed at the same time. We will first carry out the control

synthesis using the angular coordinates of the wheel and the motor, and then rewrite

it using Cartesian coordinates under the no-slip assumption. Strictly speaking, the

wheel does slip on the floor/moving walkway during the transitions. However, in

simulations and prototype experiments the control works robustly despite the invalid

assumption.

We simplify the control in Fig. 2-4 to a linear paradigm shown in Fig. 2-6, where

25



G,(s) is the transfer function from the motor torque to wheel motion, and Gm(s)

from the motor torque to motor motion:

G,(s) = =(s) -, (2.6a)
-r(s) DT(s)

Gm(S) Om(S) Iws2+bds+k,

Tmm (S)=D=. (2.6b)

mC'(s) D(s) S

--- ----------------- --------------

+ tracking loop

1+
I C'(s) aGm(S) + -

0 OM stabili-ing loop

-------------------------------------------

Figure 2-6: Block diagram for Unified Velocity Control

The tracking loop in the upper part realizes the outer loop in Fig. 2-4a, which aims

to regulate the robot's ground speed. The stabilizing loop in the lower part imple-

ments to the inner loop in Fig. 2-4b, which improves the damping of the transmission

system. C'(s) and Cs(s) are the tracking controller and stabilizing controller, respec-

tively. The motor torque Tm, according to the principle of superposition, is computed

as the sum of the tracking torque -t and the stabilizing torque TF,

Tm = r + TS (2.7a)

Tt = C(S)(ref - w) (2.7b)

T8 = CS(S)(0 - 0m) (2.7c)

Noting that the reference for the stabilization loop is constant zero, we can combine

the stabilizing controller Cs(s) with the transmission system Gw(s) and Gm(s), and
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obtain an SISO system as shown in Fig. 2-7. The closed-loop transfer function is

(2.8)TCL _ OW C G
Oref 1+CtG'

where G(s) is the lumped dynamics of the transmission system and the stabilizing

controller,
_ O

G(s) - Tt

11

sG,

1+ Cs(Gm - Gw)

C'(s) t G(s)

Figure 2-7: Simplified block diagram for the Unified Velocity Control

Applying proportional-derivative controller to both loops

C'(s) = K' + Kis,

CS(s) = K + Khs,

and noting that 0,ef is constant, the lumped dynamics G(s) becomes

G(s) = s(bds + k,)
DCL(s)

where

DCL(s) = DOL(S) + S2 (ImK S + ImK,)

is the characteristic equation of the closed-loop system. The two oscillatory poles

now have natural frequency wCL and damping ratio CCL.

CL ks(Im+Iw)+KjIwCL =m w (2.13a)

(CL = bd(Im + Iw) + KIm
2ImIwWn

(2.13b)KI
2Imnn
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The approximation 2.13b comes from the fact that bd 0.

Comparing the open-loop pole positions (2.3) with the closed-loop pole positions

(2.13), we can draw some conclusions about the stabilizing controller gains as follows.

K, is similar to the stiffness of the compliant coupler. Kp increases the natural

frequency of the system, which degrades the intrinsic low-pass property of the Series

Elastic Transmission. In (2.5) the stiffness of the compliant coupler has been designed

to achieve frequency separation, therefore we can simply choose

K, = 0. (2.14)

Kh is similar to the damping coefficient of the compliant coupler. Because bd ~ 0,

the damping of the system comes mainly from Kb. By increasing Kb we can bring

the poorly damped poles to the left, thereby improving the closed-loop transmission

system's damping. However, if Kh is too large, the two complex poles will meet and

become real, which might deteriorate the dynamic response. The pole trajectories

with respect to Kb are plotted in Fig. 2-8. Note the two repeated poles at the origin

do not move. If desired damping ratio (d is given, then KL can be roughly computed

50

0

-50
-100 -80 -60 -40 -20 0

Figure 2-8: Pole trajectories with varying KL

as

KD = 2(dIm& L. (2.15)

With Kp and K7 determined, G(s), the lumped dynamics of the transmission

system and the stabilizing c, now has two complex poles, two repeated poles at the

28



origin and two zeros. One zero originates from the coupler's material viscosity, and the

other zero sits at the origin. The relative degree of G(s) is three, which means that

a proportional-derivative controller like (2.10a) could provide guaranteed stability.

Selecting the gains for the tracking controller C(s) is simple and not discussed here.

Now we convert the Unified Velocity Control from angular coordinates to Carte-

sian coordinates. Assuming no slip between the wheel and floor/moving walkway,

the robot's ground speed Ji is related to the wheel speed 9w by = -Rw, and the

reference velocity for the wheel 9 ,ef is related to the reference ground speed vref by

ref = -Vref/R. Substituting Oef, 9,, and Ow in (2.7) and (2.10) with vref, i, and z,

we arrive at the following control law,

Tm = Kp(vre - , ) + KD(-z) + K (Ow - Om) + Kh(6w - Om), (2.16)

where Kp = -Kp/R and KD = -KD/fR.

2.2.3 Velocity Estimator

In a crowded environment, it is very important for a robot to maintain a constant

speed, otherwise it may bump into nearby humans. We propose the Unified Velocity

Control to regulate the robot's ground speed and improve the transmission system's

damping. However, the loop cannot be closed without velocity feedback. Here we

briefly discuss a velocity estimator that is backed by the setup of a distributed sensor

network and a central server.

The sensor network consists of not only active sensors such as cameras, but also

static landmarks that are visible only to robots. These landmarks encode location

information to assist indoor localization. A robot has a landmark detector that could

identify these landmarks and parse the location information carried by them, which

is referred to as global localization. Moreover, a landmark detector is also able to

achieve local localization by measuring the distance and angle between a robot and

a landmark. The robot can perform indoor localization using the global information

and local information. Examples for such landmark detectors include ultrasonic range
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devices[3] and visual fiducial systems[15]. Yet it should be noticed that the landmarks

are sparsely installed in the environment, and a robot may only find landmarks once in

a while. These low-rate position measurements are insufficient to supply the velocity

feedback needed a closed-loop control.

The remedy is to fuse the position measurements with acceleration measurements,

as depicted in An onboard inertial measurement unit could measure a robot's accel-

eration at a high rate. Despite that the acceleration measurements are depreciated

by noise and bias, integrating them with occasional location measurements using a

multi-rate Kalman filter yields good velocity estimate. Details about formulating of

the Kalman filter can be found in[211.

accelerometer, landmark

detector

Xx

Figure 2-9: Illustration of ground speed estimation.

2.3 Simulation

We perform simulations to examine the performance of the Series Elastic Transmission

and the Unified Velocity Control. The robot starts from rest on the ground and moves

forward. It steps onto a moving walkway, keeps advancing and finally transits back to

the ground. Fig. 2-10a depicts the scenario. The robot's initial position is 1.8m away

from the moving walkway. The length of the moving walkway is 1.8m, and its speed

is Vb = 0.3m/s. Throughout the procedure, the Unified Velocity Control regulates

the robot's ground speed to a reference velocity, vref = 0.3m/s.
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motor b
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1.8m 1.8m coupler

(a) scenario (b) configuration

Figure 2-10: Simulation setup

Fig. 2-10b shows the configuration of the Series Elastic Transmission. The wheel

radius is R = 0.25m.. The inertia of the gear motor is Im = 0.765kgm 2 , and the

inertial of the wheel is I, = 0.135kgm2 . The mass of the wheel is m, = 5kg, and

the rest of the robot has mass mb = 45kg. The critical frequency that separates

the commands and transition impacts is w, = 10Hz. Referring to (2.5), the desired

stiffness of the compliant coupler is k, = 113.25Nm/rad, and as a consequence, the

damping coefficient is bd = 0.566kgm/s.

The ground speed is estimated by integrating the accelerometer measurements.

The accelerometer is modeled with additive band-limited white noise. We apply the

following friction model

f = P(m. + mb)g tanh(500V), (2.17)

where y = 0.7 is the friction coefficient; g = 9.81m/s2 is the gravitational acceleration;

V, is the slip velocity between the tire and the floor/moving walkway.

The simulation results are plotted in Fig. 2-11. Fig. 2-11a shows that the robot's

ground speed converges to the reference velocity in less than four seconds. There

is a small step at t ~ 7s, indicating the transition from the ground to the moving

walkway. Another small step at t ~ 12.7s represents the transition from the moving

walkway to the ground. In Fig. 2-11b, soon after the robot gets on to the moving

walkway, its wheel stops rotation. The wheel's angular speed is almost zeros when

the robot is on the moving walkway, which means that the robot is being carried
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Figure 2-11: Simulation results

forward by the moving walkway. As the robot transits back to the ground, the wheel

starts rotating again. The robot's ground speed is maintained well during the two

transitions.

2.4 Prototype Experiment

Experiments with a proof-of-concept robot are conducted to verify the simulation

results. We build the prototype robot with 80/20 aluminum frames, and install Series

Elastic Transmission to drive the two rear wheels. The two front caster wheels are

for static support only. The test track is designed to replicate the simulation, which

has a mock moving-walk between two fixed platforms. See Fig. 2-12. The robot is

commanded to move with vref = 0.3m/s, which is the same velocity as the moving

walkway's velocity Vb. The robot's ground speed is estimated with an IMU and an

ultrasonic range finder.

See Fig. 2-13 for the break-down of a Series Elastic Transmission. Every trans-

mission has a Maxon EC-90 brushless motor, a HarmonicDrive 50:1 gearbox and a

US Digital 10000 PPR encoder. The compliant coupler consists of four pieces of

polyurethane, with connections to both the motor shaft and the wheel axle. The

wheel radius is R = 0.25m. The inertia of the gear motor is I, = 0.765kgm 2,

and the inertial of the wheel is I, = 0. 135kgm 2 . The critical frequency that sepa-
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Figure 2-12: The prototype robot on the test track 

rates the commands and transition impacts is Wcr = lOH z . The coupler's stiffness is 

ks = 135.22N /rad, which is obtained in the same way as the simulation. 

(a) motor side (b) wheel side 

Figure 2-13: Breakdown of a prototype Series Elastic Transmission 

The control system of the prototype robot is implemented with NI Lab VIEW and 

NI cRIO, whose structure is portrayed in Fig. 2-14. 

Results from the experiment are plotted in Fig. 2-15. 
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Figure 2-14: Control architecture of the prototype robot.
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Figure 2-15: Experiment result

It is observed that both wheels stops when the robot gets on the moving walk,

and they starts to move again soon after the robot gets off, which is in accordance

with the simulation results. However, the ground speed regulator needs more tuning.
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Chapter 3

Navigation In Crowds

One of the engineering challenges for a public service robot is finding its way in

crowded places. The robot should be able to reach its goal position quickly for

the sake of efficiency. In the meantime, it must not cause much annoyance to nearby

passengers, for that it is traveling together with them in the same public environment.

goal

entrance . -

passenger

corridor ....................

robot

Figure 3-1: Navigation scenario example

The challenge arises from the fact that public environments can be very compli-

cated, dynamic and uncertain. For example, a train station may be a multistory
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complex with many static objects like unattended chairs appearing randomly; peo-

ple are entering and leaving the station all the time; pedestrians can be standing or

walking, whose states change cannot be well anticipated.

A typical mobile robot today only works in static environments where the sole

source of changes is robot itself; or there are several agents whose behaviors are

known to the robot. They cannot handle situations as complex as the train station

depicted above, because they all rely on limited sensors onboard, which cannot provide

enough information for the robot to fully comprehend the environment. Some robots

have access to external sensors like surveillance cameras, and they could observe more

objects and larger space. But that convenience comes with a constraint that their

applications are limited to controlled environments such as laboratories or factories.

The preceding chapters introduce the synergy of a distributed sensor network and

a central server. The central server can estimate the states of the environment in

real-time with the help of the connected sensor network. Any robot deployed in the

station is able to access these estimates, so that it can percept a world far more

tremendous than before. Besides, high-speed Internet connection render it feasible

for a robot to make full use of the massive computing power of the central server.

With these advantages, the navigation problem can be tackled in a multi-scale and

iterative fashion, which welcomes both global optimality and local optimality. The

following sections explain a hierarchical online planning scheme for navigating a robot

in a crowded environment.

3.1 Hierarchical Online Planning Scheme

A public service robot needs to find its way inside a crowded environment with least

effort and minimal disturbances to other passengers. This task is not easy because

* The space in which the robot moves can be huge and complicated. For example,

the train station of Tokyo is an expanding multi-story complex, with many

platforms, hallways, intersections, shopping areas and underground connections;
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* Crowds are highly dynamic. An unloading airplane can fill up the platform with

passengers, making the condition of the platform change from "nobody around"

to "people everywhere" within 1 minute;

" Individual's motion is hard to anticipate. A pedestrian's velocity is affected by

numerous factors; one may suddenly stop walking for no explicit reason;

* Powerful computers are needed for path planning in high dimensional space due

to the great number of people.

In the past few decades, numerous methods have been proposed for robot nav-

igation. Some methods come with reference systems and algorithms to locate an

object, and pilot a robot from an initial location to a desired goal position. This kind

of method is called "Global Navigation", and the most commonly seen examples are

navigation devices in automobiles, which locate vehicles using the Global Position

System and compute best routes between start locations and destinations. Other

methods try to determine a robot's position relative to nearby objects, and guide it

to approach or avoid them. This so-called "Local Navigation" can be illustrated by

educational robotic platforms, which uses infrared proximity sensors to avoid collision

with walls.

However, no single method could deal with a dynamic environment comparable to

a crowded train station. Global methods are hard to apply because there is no conve-

nient system for indoor localization. The point-to-point plans usually fail to handle

collision avoidance with passengers in the station. Local methods are not proper ei-

ther, because they tend to be conservative, making the robot stop unnecessarily often

for pedestrians. The plans they generate are short-sighted, giving no guarantee on

the optimality of the overall trajectory.

The synergy of a distributed sensor network and a central server creates new op-

portunities for robot navigation in crowded places. First, all surveillance cameras,

ticket gates and other sensors installed in the environment form a network that offers

comprehensive observations of the station to the central server. Furthermore, every

deployed robot can act as a mobile probe to sense specific areas. The enormous com-
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puting power of the central server render it possible to process the rich information,

and estimate the state of the all humans and robots in real-time [24]. These real-time

estimates are delivered to the robots to help them navigate around. Moreover, by

analyzing the recorded data we could build models of individual motion and crowd

motion, which help forecast how the states would evolve in the future. Equipped with

the real-time estimates and statistical models, a robot is aware of not only the pas-

sengers near it, but also conditions beyond its reach, spatially and temporally. These

notable advantages give rise to a planning algorithm that embraces both global path

optimality and local collision avoidance.

We propose a multi-scale online planning scheme for the robot navigation in order

to fully facilitate the benefits explained above. Three planners form a hierarchical

structure, every one of which produces a finite-horizon plan that solves the navigation

problem at a different spatial and temporal scale. All planners re-plan after the first

few actions in the corresponding plans are executed, so that a robot can adapt to

the dynamic and uncertain environment. Table 3.1 lists the summary of the planning

scheme. The plan from the Macro Planner is concise and abstract, which is passed

Table 3.1: Summary of multi-scale online planning architecture

Layer Spatial Temporal Task

Scale Scale

Macro 100m lIs Find keypoints to connect start and goal positions.

Medium 10m is Join or avoid passenger flows.

Micro Im O.s Avoid collision with individual human or robot.

down to the Medium Planner. The Medium Planner augments the abstract plan

with more details and send it to the Micro Planner. Located in the lowest level,

the Medium Planner grounds the plan with actual robot dynamics and environment

states, and generates a continuous trajectory. Using an analogy of animation making,

Macro Planner generates key frames; Medium Planner adds breakdowns to describe

the transitions between key frames; Micro Planner creates in-betweens that fill the

gaps and make the animation smooth.
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3.1.1 Macro Planner

Being the highest-level planner, the Macro Planner solves the navigation problem

from a large-scale persepective. As illustrated in Fig. 3-2, the Macro Planner models

the station as a highly abstract graph. The nodes in the graph amount to key loca-

tions such as entrances, shops and intersections of pathways. An edge in the graph

represents the pathway connecting the key locations corresponding to the two end

nodes. The plan for the scenario depicted in Fig. 3-2a would be similar to: "Given

the current and predicted states of the environment, the robot should go to intersec-

tion A, then to intersection B and place C, and the goal is on the right-hand side".

C

(a) actual scenario
(b) graph representation

Figure 3-2: Macro planner example

star: goal position; red shades: entrances; blue shades: walls

Thanks to the "large-scale" presumption, we are allowed to put aside vehicle dy-

namics, and treat the crowd in a pathway as a whole, whose effects are encoded

by properties associated with that edge. With these expedient setup, the navigation

problem is simplified to determining a sequence of nodes, or key locations in the actual

environment, to visit one after another, so that the robot can reach its destination

with minimal expected traveling time, i.e.,
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{fo 7fli,..lp} argmin~ 1< hkhk 1 > (3.1)
E (< nk, nk+1 >)

k{O

subject to

no = initialposition 
(3.2)

n = goal _position

where

" e =< ni, n3 > is the directed edge from node ni to node nj;

" l(e) is the nominal length of the pathway that is represented by edge e;

* S(e) is the expected speed for a robot moving in the pathway referred by e.

It is not difficult to realize that the denser a crowd, the slower one can move in it.

And it is less struggling to follow a group of people than going against or cut through

them. These observations help connect the robot's expected speed S(e) to the edge's

properties,

S(e) = S(d(e), v(e)), (3.3)

where

* d(e) is the average crowd density of the pathway corresponding to edge e;

* v(e) is the average velocity (magnitude and direction) of the crowd in pathway

referred by e.

With the plentiful and easily available data stored in the central server, we can

identify the function S(d(e), v(e)) with data-driven methods. S+(e), the upper bound

of S(e), leads to an admissible heuristic function 1(e)/S+(e), because the traveling

time determined by the heuristic function is always smaller or equal to the actual

traveling time. Furthermore, 1(e)/S+(e) naturally follows the triangle inequality,

making it a consistent heuristic function. Dynamic A * is guaranteed to yield the

optimal solution given the admissible and consistent heuristic function.
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3.1.2 Medium Planner

The Medium Planner acts as a transition layer between the Macro Planner and the

Micro Planner. Any two consecutive key locations in the plan from Macro Planner

are interpreted as a sub-goal by the Medium Planner. The Medium Planner sets

some waypoints between two consecutive key locations to describe the transition

more meticulously, with considerations of mid-range optimality. These waypoints are

passed down to the Micro Planner for further plan refinement. In this way global

navigation is linked with local navigation more smoothly.

The mid-range optimality in short is defined as "following the trend". Passengers

in busy train stations tend to form lines or flows. As explained in Section 3.1.1, it

is more comfortable to move in accordance with pedestrian flows than to go against

them. Fig. 3-3 exhibits some examples about mid-range optimality. In Fig. 3-3a,

the space is not highly populated, and the best strategy for the robot is head directly

towards the goal (blue arrow). In Fig. 3-3b, there are two distinguishable pedestrian

flows, and the robot should join the one marked by the blue arrow instead of the

adverse flow, which is marked by the red arrow. In Fig. 3-3a, lots of people are

standing between the robot and its destination, and the robot is better to make a

detour as indicated by the blue arrow than to follow the red arrow and cut through

the crowd.

The Medium Planner should be able to identify a passenger group whose velocity

is favorable for a robot to reach its destination, and lead the robot to join the group.

When no such group exists, as in the case where all people are standing still, the

Medium Planner guides the robot to avoid highly-populated regions.

We present an optimization-based solution for this task. Inspired by Smoothed

Particle Hydrodynamics, the crowd is treated as an imaginary fluid flow, with humans

corresponding to fluid particles. A velocity field and a density field are constructed

from estimated passengers' states to describe the fluid. A new concept named Crowd

Pressure is defined to measure the effort of traveling in crowds, which is analogous

to the resistance an object receives as it moves in water. The classical Navigation
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(a) (b) (c)

Figure 3-3: Medium planner example

star: goal position; green circles: passengers; short arrows: velocities of passengers

Function is augmented to Navigation Map, which is a vector field that encodes the

floor plan, goal position and mid-range optimality. A cost function is established

facilitating the above two concepts. The data and models in the central server help

predict the evolution of the imaginary fluid flow in the near future. The plan for the

robot is obtained solving an optimization on the expected cost over a finite-horizon.

Details about Medium Planner will be covered in Section 3.2.

3.1.3 Micro Planner

The Micro Planner is located in the lowest level in the hierarchical architecture. It

grounds the plan from the upper level planner with actual robot dynamics and nearby

environment, and plans a continuous trajectory for the robot. The trajectory could be

seen as a B-spline whose control points are the key locations and waypoints generated

by the Macro Planner and Medium Planner.

At the finest scale, passengers are treated as individual moving obstacles whose

position and velocity are made available by the estimator on the central server. The

current estimates and predictions of these obstacles are projected to position-time

space and any obstacle-free trajectory connecting the initial state and goal state is a

guaranteed collision-free path for a robot. See Fig. 3-4.

Several algorithms exist for this kind of local collision avoidance, such as Virtual

Force Field and Dynamic Window Approach. The latter one is preferred because it
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t+2

Figure 3-4: Micro planner example

is derived directly from the dynamics of robots. We will briefly explain the Dynamic

Window Approach and its extension to dynamic obstacle avoidance here. Details

about the methods could be found in 15, 20, 17].

The Dynamic Window Approach assumes zero accelerations in the a finite-horizon

after the first interval, which simplifies the problem. The planning is conducted in

the velocity space of the robot, i.e. the control variables are the translational velocity

and the rotational velocity. The robot has limited actuation, so that in the velocity

space only a small region near the robot's current velocity is achievable in the next

interval. The blue rectangle in Fig. 3-5 represents the feasible velocities.

passenger 1- - -m

wall 2 passenger 2

dynamic
window

actual
wall 1 velocity

Omax 0 Oa

Figure 3-5: An example velocity space in Dynamic Window Approach

Given the states of nearby obstacles, any velocities that lead to collisions in the

finite-horizon are ruled out, as marked by the red dashed curves in Fig. 3-5. The

collision-checking method with static obstacles is illustrated in Fig. 3-6a. The robot's
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trajectory consists of lines and arcs. If a trajectory intersects with a static obstacle,

for example the red curves in the figure, the corresponding velocity is regarded as

dangerous and would not be considered in the planning. For a dynamic obstacle,

assuming its states are delivered to the robot by the central server, we can construct

a "Velocity Obstacle" 117] according to the relative velocity between the obstacle

and the robot. Only the velocities whose tips are outside the velocity obstacle are

considered safe.

. I
rV I T I

V,

I R

(a) static obstacles (b) dynamic obstacles

Figure 3-6: Collision-checking for static and dynamic obstacles

An objective function is defined over the velocity space to reflect collision avoid-

ance, minimal travel distance and goal attraction. We remove the velocities that may

cause a collision from the velocity space, and search the feasible region for the velocity

that maximizes the objective function. As long as the robot executes the action, the

planning is performed again.

3.2 Medium Planner Design

The Medium Planner generates waypoints to connect consecutive key locations by

solving a finite-horizon optimization. It is assumed that the Macro Planner has given

the destination key location and task speed to the Medium Planner, and the real-time

estimates of every passenger is accessible to the robot.
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3.2.1 Optimization Formulation

The optimal waypoint sequence {i, E2 , - - - , } minimizes the following estimated

cost that is summed over a finite horizon:

1
{ Xi,*--- 1 }=argmin{ Eyk~p~k_1,

subject to

Xk+1 =

&0 =

I (Uk) =

'I(uk) =

Uk, k) + R(k_1, Uk, k)} + H(1i)}, (3.4)

A(-k, Uk)

xo ,(3.5)

0

0

where

1 1 is the length of horizon, similar to that in Model Predictive Control;

* y is the discount factor that reflects the uncertainty of the future;

* Xk = [Xk, Yk, Ok] is the waypoint, a.k.a. robot's position and heading, for future

time step k;

" xo is the robot's actual state at the beginning of the planning;

" Uk = [Wk, Uk] is the robot action for future step k, consisting of the angular

velocity and linear velocity;

* P(Xk_1, Uk, k) is the Crowd Pressure, i.e. the cost of robot with state Xk_1

moving in the crowd with velocity Uk;

" R(xk_1, Uk, k) is the penalty from the velocity regulator. The velocity reference

is read from the Navigation Map;

" H(i-1) is the estimated cost to reach goal from state X-, as discussed in [4];

" A(xk, Uk) describes the state transition under action Uk;

* ((Xk) models the constraints on the robot's state from walls etc.;
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* XF(Uk) represents the action limits of the robot.

Both Crowd Pressure and Navigation Map are computed using estimated pas-

sengers' states. Current crowd state, i.e. every passenger's position and velocity, is

readily available from the central server. Future crowd states are forecast with the

statistical models that are identified from previous data offline.

Let AT denote the planning interval. One can easily calculate Xik from Uk for a

linear transition model:

Xk= yk = A(k-1,uk)

Ok. (3.6)
Xk-1 + ukATcos Ok

= j Yk-1 + UkAT sin Ok

Ok-1 + WkAT

Therefore it makes no difference whether to write the plan as {-iki, 2, -. ,C 1} or

{u1 , u2 , ... ,u}. For the ease of cost function formulation, we will use the latter

representation in the rest of the section.

3.2.2 Crowd Pressure

When an object moves in a steady flow, it feels drag force because of the fluid pressure

acting on its surface. The pressure is proportional to the fluid density and quadratic

to the relative velocity between the object and the fluid around it. As a result of the

drag force, the object's velocity would eventually converge to the same velocity as

the nearby fluid, when the relative velocity becomes zero and so does the pressure.

If we regard humans as fluid particles and the crowd they form as water, then a

similar conclusion can be drawn for a robot moving in that crowd: If the robot has a

velocity similar to the surrounding people, then it needs small effort to move; Con-

versely, if the relative velocity between the robot and its surrounding people is large,

as in the case of going against a pedestrian flow, then the robot would have a difficult
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time reaching its destination and it is causing much annoyance to nearby passengers.

The crowd-fluid analogy has been adopted by researchers in transportation 181 and

computer graphics [22].

Crowd Pressure P is defined in a similar way to the fluid pressure,

p = P11Vr 12, (3.7)

where p is the local crowd density and V, is the relative velocity (vector) between

the robot and the surrounding pedestrian flow. It is a measure of the effort to move

inside crowds, because low pressure indicates either low crowd density or low relative

velocity, both of which lead to small traveling resistance. In other words, if a robot

stays in low-pressure regions, it is either moving in free space or following a group of

passengers whose velocity is favorable to it.

To calculate the Crowd Pressure that a robot traversing in a public environment

receives, we first construct a velocity field and a density field from estimated/predicted

crowd states. The area near the robot is meshed uniformly. The velocity for any

passenger inside the area is distributed among the four grid points which make up of

the cell he/she occupies. The distribution coefficients are

W = (1 - a)(1 - b)

W2 =(1 - a)b

W3= a(1 - b) , (3.8)

W4 =ab

ZWk = 1

where
a = (x - XbI)/(Xbr - XbI), (3.9)

b = (y - YbI)(YtI - Ybl).

are the the normalized coordinate of the passenger's location in the cell. (Xbl, Ybl),

(Xbr, Ybr) and (xti, yti) are the coordinates of the bottom-left grid, bottom-right grid

and top-left grid in the global frame, respectively. See Fig. 3-7 for illustration of
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velocity decomposition. The density field is obtained using the same decomposition

Wy'b'

Wf' W3V

Figure 3-7: Decomposition scheme for constructing density field and velocity field

Vp: a passenger's velocity; Wi: distribution coefficients

scheme, with free space carrying density 1 and every passenger carrying density po

(po > 1). Fig. 3-8a illustrates an example crowd, whose average velocity is 0.5m/s to

the right. Every small red circle marks a passenger's position and the attached short

line indicates the velocity. The velocity field and the density field after decomposition

are presented in Fig. 3-8b and Fig. 3-8c, respectively.

Then, we smooth the velocity field and the density field using a kernel function

such as moving average. The velocity field and the density field obtained through the

decomposition can be very thorny. The field values jump at interfaces between cells.

And small offset in a passenger's estimated location can result in large difference in

the fields. Therefore we smooth the raw fields to alleviate the discontinuities and

errors caused by estimation inaccuracy. Additionally, smoothing gives some hints

about future crowd motion. For example, two people approaching each other have to

stop before they collide, and in the smoothed velocity field some place between them

has zero velocity, which captures this tendency. Fig. 3-9 shows the smoothed velocity

field and smoothed density field for the same example crowd.

Next, we calculate the relative velocity field by subtracting the robot's velocity

from the smoothed velocity field. Fig. 3-10 plots the relative velocity field for a robot

moving to the right with 0.3m/s.

Finally, we compute the Crowd Pressure as P = plj3 , where p is the local crowd
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Figure 3-8: Velocity field and density field for an example crowd 
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Figure 3-9: Smoothed velocity field and density field for an example crowd
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density and V, is the relative velocity between the robot and nearby people. According

to Fig. 3-11, we can find out that the low-pressure areas correspond to either the

low-density areas in Fig. 3-9b (e.g. bottom right corner, around (30,5)) or the small-

relative-velocity areas in Fig. 3-10 (e.g. near top boundary, around (12,25)).

30
0.9

25 0.8

0.7
20

0.6

15 0.5
0.4

10 0.3

0.2
5

01

5 10 15 20 25 30

Figure 3-11: Crowd pressure for a robot moving in the example scenario

3.2.3 Navigation Map

In the literature of robot navigation, navigation functions are introduced as a tool to

create feasible paths that allows a robot to move from its initial position to its destina-

tion while avoiding obstacles [14, 13]. It can be a potential function whose gradients

represent goal-attraction and obstacle-repulsion. Sometimes it is constructed with op-

timal control, with the control variable being a robot's velocity and the cost function

being the distance-to-goal. In both cases, a robot can obtain its reference velocity by

plugging its position into the navigation function. Fig. 3-12 gives a visual explanation

of navigation function, where the mahogany arrows indicate the reference velocities.

There are some issues with navigation functions, however. The potential method

may suffer from local minima and instability in narrow corridors. A typical naviga-

tion function is static, in that it assumes an exactly known environment where all

obstacles are static. To deal with a dynamic environment, one has to compute the

navigation function frequently with updated obstacles' positions. In a train station
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Figure 3-12: Navigation function for an example scenario

where hundreds of people are walking or standing, a robot may not be able to find a

navigation function that tells a path to goal due to the occlusions.

To better facilitate the hierarchical planning architecture and the real-time esti-

mates offered by the central server, we present the concept of Navigation Map as a

replacement for the navigation function. A Navigation Map is an instantaneous vector

field that describes the optimal action for any give position, so that if a robot follows

the velocity suggested by the Navigation Map for every instant, it will reach its goal

position with a minimum of the objective function (3.4), while satisfying the con-

straints posed by walls, corridors, etc. With the Navigation Map indicating the robot

which way to preceed, i.e. the nominal trajectory , the navigation problem becomes

"follow the nominal trajectory and make necessary changes if there are unexpected

people". See Fig. 3-16 for a visual explanation of Navigation Map. Comparing the

arrows between Fig. 3-12 and Fig. 3-16, we can see the reference velocities in the

Navigation Map is influenced by the existence of pedestrians.

The navigation functions treat "collision avoidance" as a hard constraint that

should never be violated. However, since Navigation Maps model crowds as fluids,

the hard constraint of "collision avoidance" is replaced with a soft constraint of "min-

imize Crowd Pressure" This change is acceptable because it is the Micro Planner's

responsibility to avoid collision with individual passengers. If Medium Planner suc-

cessfully creates keypoints that make a robot stay out of crowd or follow pedestrian

flows, the chances of collision can be reduced dramatically.
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Figure 3-13: Navigation Map for an example scenario

Navigation Maps are spatial and temporal. One may find two neighboring lo-

cations in a Navigation Map have suggested velocities pointing to each other. This

should not be interpreted as a local minimum, because a Navigation Map is useful

only in the planning interval it is compute for. When a robot decides to follow the

suggested velocity at current position and arrives at a location that seems to push

it back according to the same Navigation Map, it should in fact consult the succes-

sive Navigation Map for the next planning interval, whose suggested velocity may no

longer push it backwards.

However, true Navigation Maps cannot be obtained. As defined, a Navigation

Map entails the control policy Uh(X, y, t) and cost-to-go h(x, y, t): for every robot

position (x, y) there is such an action Uh(X, y, t) that if the robot applies that action,

the expected cost to reach its destination h(x, y, t) would be minimal. Nonetheless it

is impossible to construct the Navigation Map without solving (3.4) first. This is like

the "chicken-or-egg" dilemma: on one hand we want to compute the Navigation Map

in order to solve the optimization; on the other hand we have to solve the optimization

to construct the Navigation Map.

Here we present a way to break the tie. The optimization is solved backwards

first, and a grid-based Navigation Map is constructed to approximate the true one.

Then the grid-based Navigation Map is interpolated to solve the optimization forward,

whose results are the final output of the Medium Planner.

The first step is to initialize the terminal-time Navigation Map. Since Navigation
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Maps are spatial and temporal and we don't know exactly when the robot would reach

its goal, we cannot simply apply the approach for calculating navigation functions.

Instead, we set the terminal-time to be 1+1, where 1 is the length of planning horizon,

and calculate the Navigation Map at 1 + 1 as

Uh(X, y, l + 1)

h(x, y, l + 1)

= argmin{distance _to_goal}

= min{distance togoal}

where the magnitude of Uh is the task speed S assigned by Macro Planner, and the

direction points to the eight neighboring grid points. The underlying reasoning is

that the cost-to-goal consists of two proportions: one is due to distance traveled and

the other is associated with the existence of crowds. Because of the discount factor

-y, the effect of crowd in the far future is discounted so much (e.g. 0.710 0.03) that

we can ignore the cost associated with it. This makes h(x, y, l + 1) the lower bound

of H( 1i) in (3.4). Fig. 3-14b shows the Navigation Map initialization with I = 5.

The red circles mark the estimated passenger positions, and black line attached to

a circle implies the estimated velocity for that passenger. The blue cross and the

green circle represent the initial and goal positions for the robot, respectively. In the

Navigation Map, the blue dots depict the grid points, and the black lines attached to

them indicate the suggested velocity.

(a) predicted scenario (t =6)

Figure 3-14: Navigation Map

V%4% *049PAPPAPP404

(b) Navigation Map (t =6)

initialization example
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For any planning time 0 < t < 1, the Navigation Map is obtained by

{u(x, y, t)

h(x, y, t)

= argmin {h(x, ya, t + 1) + C(x, y, u, t)}
(),y))ED(x,y)

=min {h(Xn, yn, t + 1) + C(X, Y, U, t)}
(x,y,)ED(X,y)

(3.11)

where

" D(x, y) is the set of all neighboring grid point of (x, y)

" u has direction from (x, y) to (xn, yn), and its magnitude is the robot's task

speed;

" C(x, y, u, t) is the discounted cost to apply action u at (x, y) at future step t.

As stated before, we calculate the grid-based Navigation Map by solving the opti-

mization backwards from terminal-time. Therefore the cost C has the same structure

as (3.4), with the only difference being the value of parameters,

C(x, y, u, t) = t {P(x, u, t) + R(x, u, t)}, (3.12)

where

* x = (x, y) is the position in consideration;

* P(x, u, t) is the predicted Crowd Pressure for a robot to apply u from position

x at future step t;

* R(x, u, t) is the velocity regulator whose reference is given by the successive

Navigation Map Uh(X, y, t + 1).

See Fig. 3-15 for the rule of value iteration.

Fig. 3-16 shows a few steps in the calculation of Navigation Map after the initial-

ization in Fig. 3-14b.
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Figure 3-15: Value iteration rule for Navigation Map
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Figure 3-16: Navigation Map calculation example

3.2.4 Solving Optimization

The optimization is solved using Branch-and-Bound search [9]. Starting with the

robot's initial state x0 , we choose an allowable angular velocity w, and an allowable
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linear velocity u1 , and obtain a robot state Xi-i using (3.6). This procedure is repeated

for every planning step, which results in a search tree demonstrated in Fig. 3-17.

Step 0 XA
(,)(0-1) 0o (-jr.0-5)

Step 1 X,
(62. 2) (0-0

Step 2 -2

Step I j, * * ... * * *

Figure 3-17: Brand-and-Bound search tree

However, enumerating both angular velocity and linear velocity makes the branch-

ing factor large, which slows down the planning. We observed that for a given robot

state [x, y, 0]T, once the angular velocity is chosen, the linear velocity is no longer

an independent variable. In the rest of this section we will develop a control law for

determining the linear velocity.

Recall from Section 3.2.2 that robot with state Xk_ would receive resistance from

the crowd, if it executes action Uk

P(k_1,Uk, k) = localcrowddensity x robotrelativevelocity2
2

= p(k1,yk)k ) - UkCOSOk
Vy(Xk-1, yk-1) - U sin Ok (3.13)

= p{uk - 2(Vxcos Ok + V sin Ok)uk + (VX +Y

= p(u - 2Cuk + C2)

where p is the local crowd density and (V, Vy) is the velocity of surrounding pas-

sengers. See Fig. 3-18a. For a specified robot position (Xk_1, yk-1), the coefficient

C1 = V cos k + V, sin 6 k only depends on 0 k, the robot's heading at future step k. If

9 k is given, then both C1 and C2 are constants, and P becomes quadratic in Uk, the

robot's linear velocity.

In (3.4) the velocity regulator pushes the robot to adhere to a prescribed velocity

suggested by Navigation Map. Any deviation from the prescribed velocity will be
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penalized by

R(xk1, Uk, k) = regulator _gain x robotvelocityerror2

2

S cos ((Xk_1, yk_1) - Uk COS Ok
= a

Ssin ((Xk-1, Yk-1) - Uk sin (3.14)

= a{u2 - 2S cos(( - Ok)Uk + S 2 )1

= a(u - 2Duk + D2 ),

where a is the regulator gain; S is the magnitude of the prescribed velocity and ( is

the direction of the prescribed velocity, both of which are from the Navigation Map

Uh(X, y, k). See Fig. 3-18b For a specified robot position (Xk_1, Yk-1), the coefficient

D1 = cos(( - Ok) only depends on 9 k, the robot's heading at future step k. If 6k

is given, then both D1 and D2 are constants, and R becomes quadratic in Uk, the

robot's linear velocity.

(cos Ok,sin Ok) (cOS , sin 0k

Ulk (v, V I goal

S

(a) Crowd Pressure (b) Navigation Map

Figure 3-18: Nomenclature for solving optimization

The one-step cost F is the sum of the above two terms,

F=P +R= (p+a)u - 2(pC1 + aD1)uk + (pC2 + aD2 ). (3.15)

Note that for a given robot position (Xk1, Yk-1), both C1, and D1 only depend on

Ok, the robot's heading at future step k. If Ok is given, then all of C1 , C2 , D1 and D2

are constants, and F becomes quadratic in Uk, the linear velocity of the robot. The

value that minimizes the one-step cost is u, = (pC1 + aD1 )/(p + a). For a real robot
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with speed limit umax, we choose the linear velocity according

0 if uc < 0

Uk = Uc if 0 < uc < Umax

Umax if uc > Umax

(3.16)

which is illustrated in Fig. 3-19.

F(u.) 0k=7r/2

0k k =0

0 Uu Uk

Figure 3-19: One-step cost as a function of robot action.

3.3 Medium Planner Simulation

This section gives several simulation results for the Medium Planner. In all simula-

tions, the world is a 30 x 30m2 square. The passengers are modeled as random-walking

particles, whose future velocities are assumed to be equal to the current ones and the

positions are linearly extrapolated. The parameters used by the Medium Planner are

" horizon length 1 = 10 seconds;

" planning interval AT = 1 second;

* discount factor -y = 0.75;

* unit density carried by a passenger po = 100;

" velocity regulator gain a = 100;

* velocity regulator gain for calculating the Navigation Map aNM = 50;
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* cellsize = 1 X 1;

" smoothing_ kernelsize = 3 x 3;

" max linear velocity uma, = lm/s;

" max angular velocity Wmal = r/3deg/s;

" task speed S = lm/s;

The plans from the Medium Planner are overlaid on top of the simulated scenario.

In the following plots, the red circles represent the positions of passengers, and the

short black lines attached to the circles indicate the velocities. The blue cross and the

green circle mark the current position and the goal position of the robot, respectively.

The blue lines connect the past waypoints, while the cyan lines connect the future

waypoints planned by the Medium Planner.

In the first example, passengers are barely moving and they form a box canyon.

The robot initially stands inside the box canyon and its destination is on the other

side of the crowd. Because the passengers' velocities are trivial, the quasi-static crowd

is very similar to walls and other permanent obstructions. The robot realizes that it

should not walk through the crowd and steers away as suggested by the Navigation

Map, which is illustrated by the cyan lines in Fig. 3-20. The robot hesitates between

t = 9s and t = 24s, because Navigation Map directs it to go back to the crowd while

the estimated high Crowd Pressure prevents it from doing so. The obvious wrong

direction of the Navigation Map is probably caused by the coarse mesh with which

the Navigation Map is obtained. At t = 25s, the robot finds an alternative route

to bypass the crowd. It then marches to its destination with desired task speed.

Despite the hesitation and wait, the robot is successful in escaping the box canyon,

which shows both local optimality (avoiding people) and global optimality (choosing

low-cost path to goal).

The second simulation demonstrates four passenger flows. The horizontal flow in

the top area is from left to right, while the flow in the bottom area is from right to

left. The vertical flow in the left area is from bottom to top, while the flow in the
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Figure 3-20: Medium Planner simulation result 1
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right area is from top to bottom. The robot starts from the top right corner and its

destination is in the top left corner. Instead of walking through the adverse flow in

the top area, the robot decides to make a detour and take advantage of the other

flows. It joins the vertical flow and goes downwards, and finds the less-populated

space in the center of the environment, from where it heads to goal with the favorable

vertical flow.
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Figure 3-21: Medium Planner simulation result 2

In the third simulation, the pedestrians form two flows: one vertical from bottom

to top, and the other one horizontal from left to right. The robot starts from the top

and its destination is in the bottom part. There is no pedestrian flow to make use

of, so the robot can only wait for the hollows in the adverse flow and move. Note the

trajectory tangles near (16, 21).
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Figure 3-22: Medium Planner simulation result 3
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Chapter 4

Conclusions

In this thesis, we discussed two engineering challenges faced by service robots in

crowded public environments. Connected with a distributed sensor network and a

central server, a robot can transit smoothly between ground and escalators/moving

walkways, and navigate optimally in the presence of a great number of passengers

without cause much annoyance.

Public service robots are designed to work in public places, such as shopping malls

and train stations, to provide daily services to humans. Because of their public ex-

posure and frequent interaction, they have a lot of potential in social and economical

impacts. The public places they are deployed in usually share similarities in func-

tionalities and facilities, and the concentration on a few tasks and a higher budget

rule out some constraints on robot design. However, the existence of many moving

passengers adds to the requirements on robotic perception, control and navigation.

Conventional methods cannot adequately meet these requirements.

We propose to tackle the challenges with the synergy of a distributed sensor net-

work and a central server. The distributed sensor network and the central server

can be seen as an upgrade of the existing security camera systems commonly seen in

public spaces like banks and airports. The higher initial installation budget allows

for better-quality sensors that are embedded to the environment. The service robots

deployed in the environment act as mobile sensors. Any object would be reported

by multiple sensors, and the multiple-view not only reduces chances of occlusion but
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also improves estimation accuracy. The central server is capable of synthesizing the

information collected by the sensor network, and produce real-time estimates of every

human and robot in a public environment, which contributes to control and naviga-

tion of the robots. From past data, models for passenger motion could be identified

statistically, which are applied to estimate and predict passengers' states. The server

can also perform centralized scheduling and planning for all robots in the same envi-

ronment.

To better serve the users, any robot deployed in a public environment should be

able to follow its user to any place she/he goes. This requires the robot to access

the facilities that are designed for human, for example, escalators and moving walk-

ways. However, the transition between fixed floors and moving walkways introduces

severe impacts that makes a wheeled robot vulnerable to fall over. The impacts are

strong, and the robot's velocity controller cannot handle such instantaneous distur-

bances. By inserting a torsional spring between the motor shaft and the wheel axle,

the impacts in the tangential direction of the wheel can be absorbed. This Series

Elastic Transmission serves as a mechanical low-pass filter, and at high frequencies,

the wheel is virtually disconnected from the rest of the robot, so that the wheel speed

can change freely while the robot moves unaffected. The compliant coupler offers

high-fidelity torque measurement at the same time. The Unified Velocity Control is

devised to work with the Series Elastic Transmission. The outer loop of the Unified

Velocity Control regulates the robot's ground speed, while the inner loop enhances

the transmission system's damping. Simulation shows that a robot equipped with

Series Elastic Transmission and Unified Velocity Control can maintain a consistent

speed during transitions. Prototype experiments are conducted, but the results are

not very ideal. A possible reason is that the prototype robot uses a discrete-time

control system while the design is conducted for continuous-time control, and the

lags deteriorate the performance.

A public service robot needs to plan its way to perform tasks. In a crowded

environment, the robot must find a path to move efficiently while avoid causing

much annoyance to nearby humans. The task is not easy because the uncertain
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dynamic environment consists of many passengers and robots, and the gap between

global path optimality and local path optimality is significant. We put forward an

online planning scheme facilitating the synergy of the distributed sensor network and

the central server. Three planners form a hierarchical structure, and the plan from

an upper level planner is refined by a lower level planner. The top layer, namely

the Macro Planner, adopts abstract models, and finds a sequence of key locations

for the robot to visit. The intermediate layer, namely the Medium Planner, treats

the crowds using the analogies of fluids, and generates waypoints to describe the

transition between two consecutive key locations. The bottom layer, namely the

Micro Planner, grounds the plan with actual robot dynamics and nearby passengers'

states, and produces a continuous trajectory. The intermediate layer is novel because

it bridges the global plan optimality with the local plan optimality. The Medium

Planner is formulated as a finite-horizon optimization, whose cost is defined with

respect to two concepts, the Crowd Pressure and the Navigation Map. The Crowd

Pressure is a measure of the effort to move in the presence of crowds. Low pressure

indicates either low crowd density, or small relative velocity between a robot and its

surrounding people. The Navigation Map is an adaptation of the classical navigation

function to dynamic environment. It tells a robot the best velocity to take at the

robot's current position. The optimization is a two-point boundary-value problem,

and we develop an iterative method to obtain approximate solutions. Simulations

show that the simple formulation is pertinent to many typical navigation scenarios,

and the planner is robust in terms of parameters and estimation errors.

There are many potential applications for the technologies presented in this thesis.

For example, in airports one may often see the staffs helping disabled passenger

to navigate around and board the plane. This kind of service are not regularly

needed, but an airport has to hire people exclusively for that, which costs a lot. With

the synergy of a distributed sensor network and a central server, an autonomous or

semi-autonomous robot is able to locate and navigate, thereby providing convenient

mobility service for disabled travelers. When there is no call, the robot could routine

services such as security surveillance and luggage transportation. East Japan Railway
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Company has planned to build a train station with embedded sensors to test some

public service robots, as a preparation for 2020 Tokyo Olympics and Paralympics.

In the simulation of the Medium Planner, we observe that the iterative solver

for the optimization (3.4) may not be able to find an optimal solution in real-time.

Sometimes the solver takes several seconds to compute a path, while the update

interval is one second. We have modified the solver so that it can come up with

a solution quickly and continuously improve it. However, we are not satisfied with

this any-time algorithm. See Fig. 4-la, current methods iteratively predicts future

Medium Planner

(a) iterative solver

(b) reduced-order model

Figure 4-1: Solvers for Medium Planner

crowd states and searches for an optimal path. When the crowd is dense where

the robot's speed is quite limited, the solver wast a lot of time examining the small

area. Intuitively we feel that the crowd motion are statistically predictable, and the

optimal plans strongly depend on the current state of the environment. Therefore we

propose to identify a reduced-order model of the iterative solver, so that whenever

the estimated states of nearby obstacles are available to the robot, it can feed the
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information to the reduced-order model and instantaneously obtain the optimal plan,

or an suboptimal plan that is very close to the optimal one.
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