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Abstract

The equilibrium density of fluids under nanoconfinement can differ substantially from
their bulk density. Using a mean-field approach to describe the energetic landscape
near the carbon nanotube (CNT) wall, we obtain analytical results describing the
lengthscales associated with the layering observed at the interface of a Lennard-Jones
fluid and a CNT. We also show that this approach can be extended to describe the
multiple-ring structure observed in larger CNTs. When combined with molecular
simulation results for fluid density in the first two rings, this approach allows us to
derive a closed-form prediction for the overall equilibrium fluid density as a function
of CNT radius that is in excellent agreement with molecular dynamics simulations.
We also show how aspects of this theory can be extended to describe some features
of water confinement within CNTs and find good agreement with results from the
literature. Finally, we present evidence that this model for anomalous fluid density
can also be applied to understand simple nanoscale flow phenomena.
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Chapter 1

Introduction

"My density has brought me to you!"

- George McFly in Back to the Future

1.1 Through the Nano-Looking Glass

The behavior of fluids at the nanoscale can differ dramatically from their familiar

behavior at the macroscale. Whereas classical fluids can be studied using macroscopic

balance laws - to wit, the Navier-Stokes equations - the properties of nanoconfined

fluids (i.e. a confined fluid with a confinement lengthscale that is comparable to the

fluid molecular lengthscale) are often dominated by molecular-scale features.

Fluids under nanoscale confinement exhibit many remarkable properties. For

example, one phenomenon that has garnered considerable attention over the last

decade is the tendency for fluids to flow through carbon nanotubes (CNTs) at rates

that are substantially higher than those dictated by macroscale fluid mechanics. In

particular, it has been observed in both experiments and computer simulations that

for water flowing through a CNT, this flow-rate enhancement can be up to four orders

of magnitude [11, 12, 13, 14]. There is clear evidence that fluids at the nanoscale are

governed by a different fundamental physics than classical fluids, and that there is

great engineering potential for nanofluidics.
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1.2 The Anomalous Density Phenomenon

In this thesis, we present new analytical and computational insights on yet another

nanofluidic phenomenon: the anomalous density. When a fluid is placed under

nanoconfinement (e.g. within a CNT) and this nanoconfined system is in equilib-

rium with a large fluid bath, then the density (defined in the usual sense as total

mass of confined fluid molecules normalized by available volume) of the nanoconfined

fluid can differ dramatically from the density of the bulk fluid. In particular, the

nanoconfined density is generally lower than the bulk density - for water confined

within a CNT, this value can be as low as 200 kg m- 3 [1].

The qualitative relationship between the anomalous density of water and confine-

ment lengthscale (in this case, the radius of the confining CNT) can be observed in

Figure 1-1, from [1]. This figure shows that for large CNT radii, the water density

approaches the familiar bulk value of 1000 kg m-3; on the other hand, fluid density

falls dramatically as the confinement lengthscale decreases.

1.3 Applications of the Anomalous Density

Understanding and predicting this anomaly is very important for a variety of nanoscale

applications. For example, in the area of public health, Hinds et al. propose several

potential designs for CNT-based desalination devices [15]. The possibility of drug

delivery across cell membranes has been studied by Park et al. [16]. In both cases,

estimating efficiency and calibrating fluid throughput would in part depend on the

amount of fluid that can fit within each nanoconfining geometry.

On the energy frontier, developing a model for anomalous density can assist in

calculations of the shale gas or oil content of nanoporous rock [17]. Such a model

could also play a role in designing and optimizing nano-osmotic energy harvesters

that use boron-nitride nanotubes [18].

From a fundamental physics perspective, an understanding of the anomalous den-

sity could also potentially assist with the development of sub-continuum models that

16
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and blue dots denote fluid atoms.
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were obtained through molecular dynamics simulations; Eqns. 5 and 9 in the legend

refer to empirical fits for the simulation data used in [1].
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predict anomalous fluid flow rates through CNTs. This could be accomplished using

theories that posit direct relationships between anomalous flow and density depletions

[19, 20] as well as theories that indirectly rely upon the equilibrium fluid density (e.g.

a theory that relates fluid kinetics to excess entropy, which in turn depends on the

equilibrium fluid density [21]).

Predicting equilibrium densities under confinement can also be very beneficial from

a computational point of view, because it allows realistic simulation of nanofluidic

systems without coupling to an external fluid bath, which is often very computation-

ally expensive [5, 22, 23]. Benefits are possible even when a fluid bath is included in

such systems. For example, it is common to pre-fill nanopores with fluid molecules

to reduce equilibration time; knowledge of the correct equilibrium density minimizes

the computational cost associated with equilibration.

1.4 Prior Work

Previous work has investigated these anomalous equilibrium densities under nanocon-

finement, primarily using molecular dynamics simulations. In particular, there have

been many studies of the equilibrium behavior of Lennard-Jones fluids under nanocon-

finement. Travis and Gubbins have studied the structure of Lennard-Jones fluids

within slit pores [24], whereas Wu et al. and Liu et al. have investigated the struc-

ture of these fluids within CNTs [7, 22]. Using Monte Carlo simulation, Shai et

al. have studied the structure and heat capacity of neon and xenon (two fluids very

accurately described by the Lennard-Jones potential) within a CNT environment [25].

There have also been many equilibrium studies of nanoconfined water. Alexiadis

and Kassinos have conducted a comprehensive study of the relationship between CNT

radius and the anomalous density of water confined within the CNT, including the

effects of CNT chirality [1] and the effects of using different molecular models for

water or different CNT rigidities [26]. Similar problems have been studied by Wang,

Zhu, Zhou, and Lu, who focused on the relationship between CNT structure and the

hydrogen-bonding network of water molecules within the CNT [6]. Koga et al. have

18



investigated phase transitions and the possible existence of a solid-liquid critical point

for water in a CNT [27]. The orientational distribution of water molecules within a

CNT, and the effect of an external electric field on this distribution, has been studied

extensively by Su and Guo [28].

These studies have established that fluids confined within a sufficiently large CNT

will form concentric rings, or fluid layers, near the CNT wall [1, 6, 7, 22]. Near the

center of the CNT, the fluid will exhibit little ordering and resemble bulk fluid, or

fluid that is not "aware" of the presence of the CNT wall. These features can be seen

in Fig. 1-2, which shows the equilibrium structure of a Lennard-Jones fluid in a CNT

of radius 23.5A, obtained through molecular dynamics simulation. Numerous studies

[8, 10, 24, 29] have observed the presence of a stand-off distance between the CNT

wall and the fluid, determined empirically to be on the order of one atomic diameter.

Despite the large number of studies on equilibrium nanoconfined fluid structure,

there is to date no first-principles model that can predict the lengthscales associated

with the nanoscale fluid layering described above. Similarly, there is currently no

method for predicting the magnitude of the anomalous density without the high

computational costs of a density-functional theory calculation [30, 31].

1.5 Scope of Current Work

In this thesis, we present several new theoretical and computational results on fluids

confined within CNTs. We begin in Chapter 2 by outlining the fundamentals of molec-

ular dynamics (MD) simulation, a technique used extensively to support the models

we build. We also discuss several interatomic potentials of interest in our work - most

notably, the Lennard-Jones potential. In Chapter 3, we present a classical mean-field

energetics argument, which allows us to develop analytical results on lengthscales of

interest for nanoconfined fluids. Specifically, we predict the equilibrium locations and

widths of nanoconfined fluid rings that form within CNTs. These lengthscales play an

important role in understanding the anomalous density phenomenon. Chapter 4 pro-

vides a detailed description of the MD simulations performed, including simulation
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settings and post-processing of simulation output. We present the results of these

MD simulations in Chapter 5. In particular, we find excellent agreement between

theory and simulation over a broad range of simulation conditions for Lennard-Jones

fluids. We also show that key aspects of our theory can be extended to describe water

confined within a CNT. Moreover, we demonstrate that these models can shed light

on simple nanoscale flow phenomena. We conclude in Chapter 6 by summarizing the

key contributions of this thesis and offering perspectives on future directions for this

work.
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Chapter 2

Fundamentals of Molecular

Dynamics (MD) Simulations

"If you could stop every atom in its position and direction, and if your mind could
comprehend all the actions thus suspended, then if you were really, really good at al-
gebra you could write the formula for all the future...."

- Thomasina Coverly in Arcadia

Statistical physics is a powerful toolbox for analyzing nanoscale systems. How-

ever, when the number of degrees of freedom in the system becomes large (and the

system Hamiltonian grows correspondingly unsightly), analytical approaches are of-

ten intractable. For example, the statistical properties of a dense nanofluid could in

principle be obtained through analytical (or numerical) solution of the BBGKY hi-

erarchy of equations [32, 33], but for real-world systems this is rarely practical. This

motivates the need for a computational approach that can generate a large number

of system microstates, amenable to statistical sampling. Toward this end, molec-

ular dynamics is a particularly popular and successful simulation technique. MD

deterministically generates the time evolution of a system using information about

atomistic kinematics and interatomic potentials. This is accomplished by numerically

integrating Newton's equations of motion for each constituent atom.

MD has been the simulation tool of choice for numerous investigations of nanocon-

fined fluid structure. In particular, MD has been used extensively in studies focused

on LJ fluids [22, 23, 34], as well as studies focused on water [1, 9, 29, 35]. MD has also
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been used to examine the effects of a wealth of simulation parameters on fluid struc-

ture, including temperature [36], presence of ions [37], and many choices of confining

material [38, 39].

In this chapter, we present the fundamentals of the MD simulation technique. We

begin by describing the basic MD algorithm, including the calculation of interatomic

forces, the updating of atomic positions using knowledge of these forces, and the

implementation of thermostats i.e. the maintenance of constant temperature in a

simulation. We then discuss the interatomic potentials of interest in our work -

namely, the LJ potential and various models for water. We conclude with a discussion

of how thermodynamic properties are sampled from molecular trajectories obtained

through MD simulation.

2.1 The Basic MD Algorithm

2.1.1 Time-Integration of Newton's Laws

The goal of MD simulation is to use knowledge about atomic positions and veloci-

ties, along with information about interatomic interactions, to predict positions and

velocities in the future. This is done through time-integration of Newton's laws of

motion. In particular, consider an atom of mass mi located at position ri, where the

potential field is U = U(6i). Then this atom obeys the equation of motion:

S ri 2 - - - - (2.1)
dt2  ri

Here, f is of course the force exerted on this atom. Note that in this thesis, we

will only consider pair potentials i.e. the potential field is uniquely determined by

pairwise interactions between all atoms within the system. There are more-complex

potentials (e.g. the Stillinger-Weber potential for silicon [40]) where configurations of

triplets (or even more particles) also contribute to the system energy, but these are

not needed to study the fluids of interest here.

Given a system of N interacting atoms, Eqn. (2.1) represents N coupled non-linear
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ODEs, which unsurprisingly cannot be solved analytically for non-trivial systems i.e.

N > 2. Thus we must use a numerical integration technique to update the 6N values

of atomic positions and velocities.

2.1.2 Velocity Verlet

Using knowledge of i'i at time t (and all previous times), we can calculate the value

of position at a time St later, ri(t + t), as:

fi(t + it) = i (t) + iY*(t)6t + 2 a(t)6t2 (2.2)

where 74 = fi/mi. Analogously, we can update the velocity 'i using:

di(t) + di(t + St)
zi (t + t) = ii (t) + 2t (2.3)

This approach is known as the velocity Verlet algorithm [41, 42]. This algorithm

is the standard basis for numerical time integration in the molecular dynamics code

LAMMPS [43] used in this thesis. We note several important aspects of the velocity

Verlet algorithm:

1. This method is self starting and explicit. In other words, given initial positions

and velocities (and interatomic potentials), we are immediately able to imple-

ment Eqns. (2.2) and (2.3) without specifying additional initial conditions.

Moreover, at every timestep, we are able to calculate the LHS using known

values for RHS quantities.

2. Velocity Verlet is a symplectic integrator. This means that as long as the forces

in the system are conservative, the system Hamiltonian will not deviate sub-

stantially from its initial value in the long-time limit; in fact, the Hamiltonian

will oscillate around its initial value.

3. The global errors in position and velocity are both O(6t2).
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4. For 6t small, there is the possibility that at2 (t) will be so small in magnitude

that it gets lost in rounding errors.

The weakness discussed in the last item can be mitigated by a common vari-

ant of Verlet integration known as the leapfrog algorithm, which can also be imple-

mented in LAMMPS. However, in practice, it is sufficient for many applications to

use LAMMPS's standard velocity Verlet algorithm.

2.2 Constraint Dynamics

The basic method described so far should, in principle, allow us to predict the time-

evolution of a molecular system. However, the dynamics of real-world systems are

often constrained in ways that are not directly or obviously related to Newton's laws.

This motivates the implementation of constraint dynamics. In particular, we are often

interested in simulating systems that have a fixed temperature, which necessitates a

thermostat. To simulate molecules, which contain multiple atoms in a prescribed

geometry, we must also employ a holonomic constraint on the atoms within each

molecule to maintain this geometry.

2.2.1 Thermostats

If we wish to conduct a simulation in the canonical ensemble (in other words, we wish

to hold constant the particle number N, the system volume V, and the temperature

T), it may be difficult to maintain a constant temperature since symplectic integration

only preserves total system energy. This motivates the use of thermostats in MD

simulations to maintain a desired system temperature. We discuss here two common

methods of thermostatting an MD simulation, both of which are simple to implement

in LAMMPS:

1. The Berendsen thermostat [44]: This method relies on rescaling velocities to

achieve the desired temperature. In the simplest sense, this thermostat can
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be implemented by adjusting every atom's velocity i' to a modified velocity i'

given by:

U Tu (2.4)
VTinst

where Tde, is the desired temperature and Timt is the current system temper-

ature. To prevent sharp jumps in temperature, it is common to introduce a

relaxation parameter a (less than 1) to "smooth out" the thermostatting pro-

cess:

+C'=e ( 1+ a (s )) (2.5)

2. The Nose-Hoover thermostat [45, 461: This is an "extended-system method"

that adds an external heat bath as an additional degree of freedom. This is

accomplished by modifying the underlying equations of motion to include a

frictional term that guides the system toward the desired temperature:

d = - (2.6)

d(Tt - Tdes) (2.7
dt -Q

where Q is the reservoir inertia, g is the number of degrees of freedom in the

system, and kB is Boltzmann's constant (kB =1.38.10-23 J K-1). Note that the

damping term serves as a proportional controller that responds to deviations

from the desired temperature. The proportional controller produces oscillations

of period 27r around the desired equilibrium temperature.
2kBgTdes

2.2.2 Holonomic Constraints on Molecular Geometry

If the time-evolution of each atom within a molecule is calculated without an addi-

tional geometric constraint, then over a long period of time, the atoms within the

original molecule will very likely stray into an unphysical configuration.
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To address this problem, we impose holonomic constraints (i.e. relationships be-

tween atomic positions). A very common method to impose such constraints involves

Gauss's least-constraint principle [47]. To make Newton's equations satisfy given

constraints while minimally deviating from Newtonian dynamics (in the least-squares

sense), we minimize the action S given by:

N 22

S=Emi(d] f 2 (2.8)
i=1

subject to the set of c geometric constraints {G,}. This minimization leads to mod-

ified equations of motion that govern the time-evolution of the system. A popular

implementation of geometric constraints based on this principle is the SHAKE algo-

rithm [48], which minimizes S using Lagrange multipliers.

It is worth noting that in this thesis, we only use Gauss's least-constraint princi-

ple to constrain molecular geometries; however, this concept can also be applied to

thermostats. In particular, if the constraint is taken to be &T/&t = 0, then the re-

sulting equations of motion are guaranteed to conserve temperature. This technique

is known as Evans thermostat [47].

2.3 MD Algorithm Flow

Here, we provide a more detailed sketch for how the MD technique is implemented.

Specific details about the simulations performed for this thesis are discussed in the

following chapter. The basic steps are as follows:

1. Initialize the system by specifying all atomic positions and velocities, as well as

all relevant interatomic potentials.

2. To advance to the next timestep, loop over each particle i {1, ... , N} and:

a) Calculate the force on particle i using the interatomic potentials. Note that

this step is particularly computationally expensive, as it could impose compu-

tational cost up to O(N 2) (for the pair potentials considered in this thesis).
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b) Update the position and velocity of particle i using velocity Verlet. Note that

if one wishes to use the Nos6-Hoover thermostat, then the damping must be

incorporated in this update step via a modified acceleration. If one is using the

Berendsen thermostat, then rescaling can be done after velocities are updated.

3. Save atomic positions and velocities. If the system is sufficiently equilibrated,

one may perform thermodynamic sampling using these trajectories.

4. Return to Step 2 and repeat for as many timesteps as desired.

5. After simulation, trajectories can be post-processed for the purposes of statis-

tical analysis or visualization.

2.4 Interatomic Potentials

We now discuss three interatomic potential models for fluids of interest in this thesis:

The Lennard-Jones (LJ) potential (a good model for simple molecules interacting

primarily through van der Waals effects), and the SPC/E and TIP4P potentials (two

models for water).

2.4.1 The Lennard-Jones Potential

To investigate a molecular-scale system quantitatively, we must begin with a model

that governs the energetic interactions of molecules in our system. One of the most

popular models is the Lennard-Jones (LJ) potential [49]:

S12 - or61

V(r) = 46 (2.9)
[ r r

Here, V(r) denotes the potential energy between a pair of atoms separated by a

distance r. The parameters 6 and a serve as characteristic energy and lengthscales

(respectively) for the potential; in particular, e is the magnitude of the minimum

29



value of the LJ potential and ou/2 is the interatomic spacing at which this minimum

potential is achieved. This potential captures two key features of intermolecular

interactions:

1. Strong repulsion (O(r- )) for small separation distances (r -+ 0), which is due

to quantum-mechanical restrictions on heavily overlapping electron clouds.

2. Weak attraction (O(r- 6)) for large separation distances (r -+ oc), which is

due to electrostatic interactions between induced dipoles. This attraction is

commonly referred to as the van der Waals effect.

In Table 2.1, we list these values for the LJ fluid considered in this thesis, as well

as for the carbon atoms within the CNT. The parameters for monoatomic oxygen are

taken from models of water (described below) that treat the oxygen atom itself as a

LJ atom.

Molecule a [A] E [kJ/mol] Reference(s)
Carbon 3.40 0.3598 [50]

Oxygen (monoatomic) 3.15 0.6364 [51, 52]

Table 2.1: Values for a and 6 for the LJ potentials that are used to model carbon
and monoatomic oxygen.

To calculate LJ parameters for interactions between two different types of molecules

X and Y, it is very common to use the Lorentz-Berthelot mixing rules [53, 54]:

axy ( +0y) (2.10)
2

FXY = 1__XF (2.11)
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Figure 2-1: Schematic of the SPC/E model for the water molecule, from [2].

roH [A] qH [e] qo [e] LHOH [deg]

1.00 0.4238 -0.8476 109.47

Table 2.2: Parameters for the SPC/E water potential.

2.4.2 SPC/E Water Potential

The Extended Simple Point Charge (SPC/E) water potential models the water molecule

using 3 distinct sites [52], with a combination of LJ and electrostatic potentials. In

particular, the oxygen atom is treated as a LJ atom (with the LJ parameters given

above) that also carries electric charge. The hydrogen atoms are treated as point

charges. The electrostatic potential between two atoms, carrying charges qi and q2,

is calculated using the Coulomb potential:

V(r) = 1 qjq2 (2.12)
4 7rFo r

where FO is the electrical permittivity of free space (eo = 8.85 - 10-12 F m 1 ).

The parameters for this model are listed in Table 2.2. MD simulations that use

this model for water must also use the SHAKE algorithm (or another implementation

of geometric constraints) to keep the oxygen-hydrogen separation distance and the

bond angle constant over time.
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Figure 2-2: Schematic of the TIP4P model for the water molecule, from [3].

roH [A] roM [A] qH [e] qm [e] ZHOH [deg]
0.96 0.15 0.52 -1.04 104.52

Table 2.3: Parameters for the TIP4P water potential.

2.4.3 TIP4P Water Potential

The TIP4P water potential models the water molecule using 4 distinct sites [51]. In

particular, the oxygen atom is treated as an electrostatically neutral LJ atom (with

the LJ parameters given above) and the hydrogen atoms are treated as point charges.

There is an additional point charge (labeled as M in Figure 2-2) at a "dummy site"

between the three "real" atoms. The parameters for this model are listed in Table 2.3.

As with the SPC/E model, it is important to use a holonomic constraint to preserve

the water molecule geometry over time.

2.5 Sampling of Thermodynamic Quantities from

Classical Trajectories

For any system observable A, we can define the expectation value of A as the ensemble

average:

(A) = A({f, p-')f ({F, p-'}')dr (2.13)
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where {fr, p'} is the set of positions and momenta for all particles in the system and f
is the probability density in phase-space F.

In equilibrium statistical mechanics, the probability density f can be expressed in

terms of the system Hamiltonian H({fi, p}) as:

f = (2.14)

where 3 is the inverse temperature (kBT) -. Here, Q refers to the partition function,

which is defined as:

Q = j'd (2.15)

Discretely speaking, for an ensemble of M identically prepared systems running

in parallel (each of which yields a measurement of the observable A), the expectation

value of A is given by
M

(A) = A Ai (2.16)

because an MD simulation, by construction, produces samples of f({f, p').
This formulation of expectation value is not particularly efficient for an MD sim-

ulation, which evolves a single system over time. To get a larger sample size without

running many MD simulations in parallel, we can make use of the ergodic hypothesis;

in other words, we assume that successive snapshots of a thermodynamic quantity

over time (for a single system) converge in distribution to that same quantity mea-

sured over a large number of parallel systems. This hypothesis is, of course, only

true in steady state. Given the ergodic hypothesis, M represents the number of snap-

shots over time (as opposed to the number of identically prepared systems running

in parallel).

Now we discuss the specific measurement of several key thermodynamic quantities

of interest in this thesis. The density p in a volume V is calculated according to:

p = Z mi (2.17)
iGV
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In the absence of a fluid-center-of-mass flow velocity, the temperature T in a

volume V is sampled using the Virial Theorem in three dimensions:

T =- 1 |E| T Iu
3NkB ZiI

iCV

(2.18)

2.6 Reduced Units

Finally, we note that in the field of molecular simulation, it is usually preferred to

report quantities in reduced units. For a system of N LJ atoms with parameters a

and E, we define:

1. The reduced particle density

2. The reduced temperature T*

3. The reduced energy E* = E

4. The reduced time t* =
Vma.

N* = No 3

kBT
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Chapter 3

Analytical Modeling of
Nanoconfined Fluid Structure

"No, no! The adventures first, explanations take such a dreadful time."

- The Gryphon in Alice's Adventures in Wonderland

There are several first-principles methods that can, in theory, predict the equilib-

rium structure of a dense fluid subject to an external potential, such as the potential

imposed by the carbon atoms in a CNT. Most notably, this problem can be studied us-

ing either liquid-state density functional theory [55] or the Ornstein-Zernike equation

in conjunction with an approximate closure relation [56]. In some cases, additional

information about equilibrium structure can be obtained through careful geometric

considerations [57, 58]. However, with the exception of a few very simple models, nei-

ther of these approaches can be pursued analytically; moreover, numerical solutions

for the equations that arise from both techniques tend to be very computationally ex-

pensive to calculate. Thus, we seek to develop a simple model for nanoconfined fluid

structure that requires substantially lower analytical and computational overhead.

In this chapter, we develop theoretical predictions for the structure of a fluid con-

fined within a CNT using a mean-field energetics approach, which does not face any

of the difficulties outlined above. We begin by describing the geometry of and no-

tational conventions for CNTs. We also discuss the concept of a fluid radial density

function, which will guide our development of a mean-field potential for fluid within

a CNT. Through analytical manipulation of the mean-field potential, we proceed to

35



develop predictions for the characteristic lengthscales associated with fluid confine-

ment. In particular, we propose a model that gives the locations and widths of the

fluid rings that form within a CNT, as shown in Figure 1-2. We conclude by describ-

ing a method of combining these analytical predictions with results from molecular

dynamics simulations, which allows us to infer the density of each fluid ring.

3.1 Theoretical Background

3.1.1 The Structure of a CNT

A single-walled CNT (SWCNT) can be thought of as a sheet of graphene rolled into

a cylindrical geometry. The specific configuration of this rolling is given by a pair

of integer indices (n, m), also known as the CNT chiral vector. These concepts are

illustrated in Figure 3-1 (a). In particular, this diagram shows an "unraveled CNT"

atop a plane of graphene (one can imagine forming the CNT by cutting along the

dotted lines and joining these lines together in a cylinder with circumference equal to

the length of AA'). The chiral vector is formed by:

1. Selecting a carbon atom that falls on a dotted line (Point A).

2. Tracing along one of the graphene basis vectors (denoted as ai) until reaching

a point of intersection with the other dotted line.

3. Identifying the carbon atom on the opposite dotted line nearest to the point of

intersection (Point A').

4. Constructing a vector (denoted as Ch) pointing from A to A'.

The angle between the chiral vector and the basis vector (used in constructing

the chiral vector) is known as the chiral angle. Given a CNT chiral vector, we can

calculate the CNT's chiral angle 0 as well as its radius R using [59]:

0 = tan-1 (mn+2) (3.1)
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Figure 3-1: Illustration of correspondence between cylindrical CNT geometry and
planar graphene geometry, from [4]. Above, we see the relationship between the
chiral angle 9 and the chiral vector ch. Below are a large number of chiral vectors

(n, m) shown on the graphene sheet.
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aV5
R = 2 2+ m 2 + nm (3.2)

2wr

where a ~ 1.421A is the distance between carbon atoms in graphene.

The geometries corresponding to several values of 9 bear special names. In partic-

ular, a CNT with 9 = 00 is called a zigzag CNT; a CNT with 00 < 9 < 300 is called a

helical CNT; and a CNT with 9 = 300 is called an armchair CNT. These geometries

are illustrated in Figure 3-1 (b). Note that given a fixed 9, the spectrum of possible

values for R is discrete since n and m must be integers.

3.1.2 Fluid Radial Density Function (RDF)

The fine details of the fluid structure inside the CNT - which are responsible for

the anomalously low average density p - can be quantitatively captured by a radial

density function (RDF), denoted here by h(r). This quantity is defined such that

Aph(r)dr is equal to the number of fluid atoms whose molecular centers fall between

r and r + dr, where r represents the distance from a fixed reference location. Here, A

refers to the area of the generalized surface formed by the locus of points at constant

r. For example, if the fixed reference location is a point in space, then A = 47rr2 ,

the surface of a sphere; if the fixed reference location is the central axis of a CNT of

length 1, then A = 27rrl, the surface area of a cylinder.

We note that this definition is similar to, but different from, that of the radial

distribution function, commonly denoted as g(r). The radial distribution function

is frequently used in molecular simulation to study short-range order in materials;

in particular, it quantifies the average distance between molecular centers [56]. Be-

cause of its definition, g(r) uses (and averages over) molecular locations as reference

locations. In contrast, for our purposes, the primary interest is the fluid structure

with respect to a fixed location in space - namely, the CNT wall. In what follows,

h(r) uses the CNT central axis as the fixed reference location. This is slightly more

38



conceptually convenient but clearly an equivalent choice to selecting the CNT wall

(located at a fixed distance R from the CNT central axis) as the reference location.

According to the definition given above, we expect h(r) to feature peaks and valleys

as r -+ R, reflecting the density variations associated with the ring structure observed

close to CNT walls.

3.2 Deriving a Mean-Field Potential Within a CNT

Throughout this work, we will denote interactions between a LJ atom and a carbon

atom using the parameters e and a; interactions between two LJ fluid atoms will be

denoted by Ef and cf. When the fluid of interest is water, these parameters refer to

the water molecule's oxygen atom, which is treated as a LJ atom in all of the water

models discussed in Chapter 2.

Consider a CNT that is sufficiently long compared to its radius R and whose

radius is sufficiently large so that the CNT may be approximated as cylindrical.

Under these assumptions, we can adapt the method followed in [60] to derive a mean-

field interaction potential V(r) acting between the CNT wall and a fluid atom at

distance r from the CNT axis by integrating the LJ potential around the cylindrical

geometry of the CNT:

V(r) = n7r2E2 6 3F 9 (62)R( 62) 1- 3 F A (6 2)(R(_ 6) (3.3)
132 2f 2110

Here, n is the areal density of carbon atoms in the CNT wall, 6 is the normalized

radius J = r/R, and Fe(z) = F,,;i(z) is the Gauss hypergeometric function [61],

given by:

Fe,3,Y(z) = : (a)()Z (3.4)
n (-Y)n n.

where (x)n is the rising Pochhammer symbol, defined by (x)n = x(x+1) ... (x+n-1).

The mean-field potential for a variety of CNT radii is shown in Figure 3-2. Note

that every potential in this family of curves rises very sharply as r -+ R, thus leading
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Figure 3-2: Mean-field potentials due to CNTs of three different radii; rma, rag and

rm.j are labeled for CNT with R = 15A.

to a maximum radius that is energetically accessible to the fluid. This radius will be

referred to as rma. Our work below exploits this very steep rise in the mean-field

potential to obtain an analytical result for rm,. In larger CNTs, where multiple rings

form (as is the case in Figure 1-2), rma will represent the outer radius of the first

ring.

40

I

R= 1oA
R=15A
R=20A
rm

- - - ravg
.......... n

-F



3.3 Characteristic Lengthscales for Nanoconfined
Fluids

3.3.1 Maximum Accessible Radius

We begin by considering CNTs that are sufficiently large for fluid imbibition to occur

(CNT with R ~ 5A are the smallest ones that exhibit single-file imbibition [1]). For

these CNTs, we define the maximum accessible radius rmax (rmax < R) as the location

near the CNT wall where the fluid RDF vanishes. In other words, in equilibrium, no

fluid molecules are found within the CNT at a radius greater than rmax.

We calculate the maximum accessible radius rmax(R, a, e, T) by finding the loca-

tion at which most of the fluid molecules have insufficient kinetic energy to overcome

the potential barrier V(r). The steep rise of V(r) close to r = R (where rmax is ex-

pected to lie) allows us to approximate this location by V(rmax) = 0 with little error

for typical LJ parameters 6 and o and temperature T. A direct consequence is that

our solution for rmax is independent of the temperature.

Setting V(rmax) = 0, we can rearrange Eqn. (3.3) into:

21 6 6 1 6 F 3(oj6 )
-01 = R4 j1 F2 2 (3.5)
32 \ max/ F_ m

where Jmax = rmax/R. This equation shows that the parameter E can be scaled out

of the problem and thus Jmax = 'ma(R, a). To solve, we make the ansatz:

Smax = 1 - kmax/R (3.6)

where kmaxa is the stand-off distance from the CNT wall and kmax = kmax(R, U). This

choice is motivated by the expectation that the standoff distance will be of order a.

Inserting the above expression for 3 max in Eqn. (3.5) we obtain to leading order:

kmax(R, a) = (2/5)1/6 (3.7)

Here, we have used a theorem due to Gauss [61] to expand the hypergeometric
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function near 6 max = 1 in the form:

_F(7y)F(7 - oa - #3) (
Fa~ (I ) (y -= 1 +0 - (3.8)cO;'Y(6ax) = F(7 - a)3 -. R

Having solved for kmax, we can write:

rmax(R, o) = R - (2/5)1/6a (3.9)

The leading-order solution obtained here is equivalent to neglecting the effect of

CNT curvature (i.e. u/R < 1), which explains why the stand-off distance rmax is not

a function of R. Although it is possible to include higher-order terms that couple to

the CNT curvature, the excellent agreement of Eqn. (3.9) with numerical solution of

Eqn. (3.5) for R > 5A (presented in Chapter 5) suggests that higher-order terms are

unnecessary.

3.3.2 First Ring Thickness and Inner Radius

In this section we consider CNTs that are sufficiently large (R > 6A) that at least one

fluid ring can form within the CNT cross-section. In this case, rmax will correspond

to the outer radius of this ring. To describe the thickness of the ring, we also need the

ring inner radius. This quantity can be calculated by again exploiting the shape of

V(r) as r -+ oo. Specifically, we assume that the first ring is centered in a symmetric

fashion around the minimum of V(r), denoted by ravg. We estimate the half-width of

this ring as rmax - ravg, and so the location of the inner radius can be calculated as:

rmin = 2 ravg - rmax (3.10)

The value of ravg is obtained by setting the derivative of Eqn. (3.3) to zero and is

42



given by:

Savg [81F G (vg) 20F A (javg)11Jav+ -6 (3.11)
R11 2(1- J2 )10 (1- vg) I

326 avg [ 9F i ( 2 ) 8F_ a vg)'
___ ~ av2 2Jvg '0

21o 6 R5 2(1 - avg) 4 (1 - J2vg)5 _

where 6avg = ravg/R.

Following the same argument as in the previous section, we write Javg in the form:

6 avg(R, o7) = 1 - kavgo-/R (3.12)

where kavg = kavg(R, o-). We can solve Eqn. (3.11) by substituting Eqn. (3.12) and

neglecting terms smaller than O(R/o) to obtain:

256 R 2kavgc)- 1

216- = _g (3.13)
32 524288 R (2kavgo) 7

which simplifies to kavg = 1. Note that omitting terms that are smaller than O(R/o)

relies again on the assumption that o-/R < 1.

This means that the midpoint of the outermost ring is at a distance - from the

CNT wall. Therefore, by symmetry, we can estimate the inner radius of the outermost

ring as:

rmin = R - kmino- (3.14)

where kmin = 2 - (2/5)1/6.

In the following section we show how this methodology can be extended to the

description of subsequent rings that appear as the CNT radius increases.

3.3.3 Subsequent Rings

Now we consider CNTs for which there are at least two distinct rings (empirically,

R > 9A). We capture the geometry of additional rings within the outermost ring by
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recognizing that the outermost ring itself can be treated as another CNT. The key

insight here is that the perfect solid ordering of atoms within the CNT wall leads

to near-solid ordering of fluid near the CNT wall (Figure 3-3). In fact, this general

approach of recognizing that a cylindrical solid structure induces concentric near-

solid ordering in adjacent fluid has been pursued with success by Koga and Wilson

in numerous molecular dynamics studies [27, 62, 63].

We denote the outermost ring's outer radius by r(1),max and its inner radius by

r(1),min. Then a bound for the second ring's outer radius is:

r(2),ma= r(1),ma - kmax f (3.15)

Similarly, a bound for the second ring's inner radius is:

r(2),min = r(1),min - kminof (3.16)

This bounding process can be repeated indefinitely to fix outer and inner radii for

the n-th ring r(,), but in practice this method loses meaning after the outer radius of

the (j + 1)-st ring is greater than the inner radius of the j-th ring, at which point the

rings are "blurred" into a more uniform background bulk structure. The intuition

behind this "blurring" phenomenon is that fluid within the CNT that is sufficiently

far away from the CNT wall will not be "aware" of the presence of the wall. Thus,

fluid near the center of the CNT (which we will term the "bulk core" of the fluid) will

generally resemble bulk fluid in terms of thermodynamic properties. For the purposes

of later calculations, we will only consider the formation of two rings before relaxation

to the bulk structure.

3.4 Extracting Ring Densities through Molecular
Dynamics Simulation

Thus far, we have developed a model for where rings will form within a CNT, but

we do not know how dense the fluid within these rings will be. Given this information,

we will be able to calculate the overall density of the confined fluid, which in turn
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Figure 3-3: Schematic representation of model for ring formation. Fluid rings are

denoted by blue and CNT wall is denoted by green.
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enables us to quantify the magnitude of the anomalous density. Though one may be

tempted to guess that fluid within the rings will simply be at the bulk density, it is

important to remember that each ring of fluid has equilibrated in the presence of a

non-negligible external potential given by Eqn. (3.3). As such, the density of each

ring is higher than the bulk density, since it is energetically preferable for the fluid

to arrange itself such that fluid atoms are positioned within the mean-field potential

valley.

The analytical methods discussed in the introduction of this chapter could, in

principle, be used to calculate the magnitude of these ring densities. However, we

propose here an alternative method that is more conceptually straightforward and

less computationally expensive. By conducting a small set of equilibrium molecular

dynamics simulations (discussed in Chapter 4), we can empirically determine the

densities of each ring. Here, density is defined as the number of fluid molecular

centers falling between the inner and outer bounds of each ring, given above.

The density of the first (outermost) ring P(i) and the density of the second ring

P(2) can be used in tandem with the predicted locations and widths of the rings to

construct the following expression for the overall (normalized) density as a function

of CNT radius:

p(R) = (r1i),ma - r(),min)p(l) + (rf2),ma - r(2 ),min)P(2 ) + r(3),ma) (3.17)

Figure 3-4 provides a schematic illustration of this process for calculating the

overall density. Note that this density is normalized against the bulk density Pbumi,

since the density of the bulk core (i.e. the fluid at a distance 0 < r < r(3 ),ma from

the CNT axis) is set to unity here but the "actual" density of the bulk core is Pbulk.
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Figure 3-4: Schematic of the method for calculating the overall density in a CNT of

radius R.
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Chapter 4

MD Simulation Details

"Because the truth of the story lies in the details... I have no choice but to tell the
story exactly as it happened.

- Paul Auster in Brooklyn Follies

In this chapter, we discuss how MD simulations were performed using the Large-

scale Atomic/Molecular Massively Parallel Simulation (LAMMPS) code [43]. In par-

ticular, we detail our system initialization (including the definition of atoms and the

construction of an initial set of atomic positions and velocities), relevant simulation

settings, and the post-processing of simulation output.

4.1 Initialization of the CNT-Reservoir Geometry

To study the equilibrium density of a fluid confined within a CNT, we used the simu-

lation geometry of a single CNT immersed within an isothermal fluid bath (reservoir)

subject to periodic boundary conditions. In particular, by fluid bath, we mean a

fixed (and large) number of fluid molecules within a fixed volume. This geometry

can be seen in Figure 4-1. We performed simulations using two different kinds of

fluids: Lennard-Jones fluid and TIP4P water (simulations were also performed using

the SPC/E model to check for agreement with the TIP4P model).

The simulated CNTs were of radii ranging from 9A to 35A. All CNTs were of

armchair chirality; it has been shown that chirality has no observable impact on equi-

librium fluid density within a CNT [1, 6]. The CNT was kept rigid throughout each
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Figure 4-1: Snapshot of CNT in LJ fluid bath, visualized in VMD. 
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simulation by setting the temperature of all carbon atoms to zero; it has been shown

that thermally oscillating CNT walls have only a small impact on equilibrium fluid

structure and density [64]. To mitigate end effects on the calculation of equilibrium

fluid density within the CNT, the length of each CNT was between 2.8 and 3.1 times

its diameter.

The fluid bath was initialized as a simple cubic lattice (except for near the CNT,

where a small amount of space was left open to prevent overlapping atoms). LJ fluid

atoms and water molecules were initialized using the geometric and energetic param-

eters presented in Chapter 2. Initial fluid velocities were drawn from the Maxwell-

Boltzmann probability density function corresponding to T =300 K:

)3/2 m(v -2+2)

f(vjvYvZ) = 27rkBT e 2kBT (4.1)

For LJ fluids, we performed simulations using three different fluid bath densities:

Pbulk E {0.8o-J 3, 1.0aJ 3, 1.1 f 3}; for water, the fluid bath density was chosen to match

1000 kg m-3, the bulk density of liquid water.

To ensure that the finite bath size did not affect simulation results, the size of

the reservoir was at least twice the size of the CNT in each dimension. The reservoir

volume was 100A x 100A x 120A for CNTs with R < 20A and 100A x 1OoA x 200A

for CNTs with R > 20A. These volumes were chosen so that the density change

in the reservoir due to CNT imbibition was negligible. To facilitate convergence to

equilibrium density, CNTs were pre-filled to a relative density of 0.2 (i.e. 20% of the

reservoir density).

For the LJ fluid, we also tested the effect of varying E by conducting simulations

over a decade of E - in particular, 6 E {0.05, 0.10, 0.25, 0.50} kJ mol-1.
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4.2 Simulation Settings

4.2.1 Thermostat

Simulations were conducted at 300 K in LAMMPS in the NVT (canonical) ensemble

coupled to a Berendsen thermostat. Additional simulations were performed at 100K

and 400K to ensure that the excluded-region lengthscales have no dependence on

temperature. Simulations using the Nose-Hoover thermostat were also performed

to check that the choice of thermostat did not affect equilibrium fluid structure or

density within the CNT.

4.2.2 Cutoff Distance

To reduce computational cost, all simulations made use of a cutoff distance. In other

words, when determining the net force on an atom, only neighboring atoms within

a specified radius were included in the calculation. A cutoff distance of 3a- was

used throughout all simulations. Additional simulations were performed with cutoff

distances of 4a- and 5a- to ensure that results did not depend on the cutoff.

4.2.3 Relevant Timescales

The simulation time step was 2.0 fs. Each system was initially thermostatted and

allowed to equilibrate for 2.0 ns, after which the thermostat was turned off. Atomistic

kinematics were then recorded every 2.0 fs for a total of 5.0 ns. A small number of

simulations were performed with kinematics recorded up to 10.0 ns, which confirmed

that 5.0 ns was sufficient for the fluid within the CNT to converge to an equilibrium

structure and density.

4.2.4 Output Format

The output file from each simulation contained the following information at each

timestep:
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1. The x-, y-, and z-coordinates of each atom.

2. The x-, y-, and z-components of velocity for each atom.

3. The temperature, as calculated over all fluid molecules in the system.

4. The kinetic and potential energies of the system.

4.3 Post-Processing of Simulation Output

We performed the following analysis on each simulation output:

1. We identified all fluid molecules within the CNT (imbibed fluid) by comparing

fluid atomic positions to the known location of the CNT.

2. By calculating the radial distance of each imbibed fluid molecule from the CNT

axis, we calculated (at each timestep) the RDF within the CNT.

3. We calculated the maximum accessible radius as the largest distance away from

the CNT axis (but within the radius of the CNT) at which the RDF had a

non-zero value. In the case of water, this calculation was done separately for

oxygen atoms and hydrogen atoms.

4. We applied the model presented in Chapter 3 to predict locations of the fluid

rings and the bulk core, given the CNT radius. Each imbibed fluid molecule was

then assigned to the ring within which it was located or the bulk core. The small

number of fluid molecules not within a ring or the bulk core (approximately 7%

of all imbibed fluid molecules) were assigned to the nearest ring (or the bulk

core, if the molecule was closer to the bulk core than to the second ring).

5. We then computed the density of each ring and the bulk core, as well as the

overall density of the imbibed fluid. Note that these densities were all normal-

ized against the reservoir density (i.e. a reported density of p corresponds to an

actual density ppbulk).
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6. For visualization, we imported simulation output into the software Visual Molec-

ular Dynamics (VMD) [65].
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Chapter 5

Results

"Are we there yet? Are we there yet?... Are we there yet?"

- Bart and Lisa in The Simpsons

In this chapter, we compare the results of our MD simulations with the models

presented in Chapter 3. In particular, we demonstrate that there is very close agree-

ment between the theoretically predicted lengthscales and MD simulation results for

both LJ fluids and water. We also show that (in the case of the LJ fluid) the ring-

formation model can be coupled to ring densities obtained through MD simulation,

yielding accurate predictions of anomalous density as a function of CNT radius. We

also present evidence that the concept of excluded volume can play an important role

in modeling simple flow phenomena.

5.1 Equilibrium Lennard-Jones Fluid

5.1.1 Qualitative Comparison of Theory and MD Simulation

In Figure 5-1, we show a snapshot of the equilibrium configuration of LJ atoms

within a CNT (with R = 10.18A), with theoretical predictions for the ring locations

overlaid. We observe good qualitative agreement between the analytically calculated

lengthscales and the results from MD simulation. In the following sections, we present

further quantitative evidence of this close agreement between the model and the MD

simulations.
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Figure 5-1: Theoretical predictions for ring locations in a CNT (R = 10.18 A) and
equilibrium positions of LJ fluid atoms from MD simulation. For clarity, the outer
and inner radii are shown for the outermost ring; only the outer radius is shown for
the second ring and the bulk core.
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5.1.2 Maximum Accessible Radius

To validate the analytical result in Eqn. (3.9), we calculated maximum accessible

radii according to the procedure described in Chapter 4. We also calculated numerical

solutions of the equation expressing the energetic condition that defines the maximum

accessible radius (Eqn. (3.5)). The results are shown in Figure 5-2. This figure shows

that Eqn. (3.9) is in excellent agreement with but also explains our MD results as

well as MD results by other groups [8, 29] for R > 5A.

5.1.3 Fluid Radial Density Function

Figure 5-3 shows a comparison between the analytically predicted fluid-structure

lengthscales and our MD simulation results for a temperature of 300K and Pbulk =

1f . We note that the two largest peaks of the RDF, corresponding to the two fluid

rings near the wall, are bounded very accurately by the analytical predictions (shown

as dashed lines). For radii less than the location of the second RDF peak, we observe

that there are still oscillations in the RDF; however, we can see that identifying this

region as the bulk core (having average relative density of unity) is a good approxi-

mation. The good agreement extends to the whole range of simulations performed in

this work (0.8o- 3 <-Pbulk < 1.ij3 and 100K < T < 400K).

In agreement with our model prediction, our MD simulations (in the temperature

range 100K < T < 400K) as well as simulations from other groups [35, 36, 64] show

negligible dependence of the inner and outer radii of each ring on temperature. We

also note that Eqn. (3.9) is valid for a wide range of bulk fluid densities; specifically,

we found agreement for the full range of MD simulations conducted (spanning the

range 0.8o--3 < Pbulk < 1.1j-3).

5.1.4 Overall Fluid Density in "Large" CNTs

As discussed in Chapter 3.3.3, we can combine the analytical expressions for ring loca-

tions and widths with information from MD simulations about the fluid density inside

the first two rings to obtain predictions for the overall nanoconfined fluid density.
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We calculated the densities of each fluid ring following the procedure outlined in

Chapter 4.3. The mean ring densities are reported in Table 5.1. We note that the

relatively high densities reported in this table, especially for the outermost ring, are

a result of using the volume which encloses all atomic centers to define density. If, for

example, one extends this volume by 0.5c in each direction to account for the true

volume occupied by the atoms, the ring densities would be much closer to unity.

Ring Normalized Density
1st p(i) = 3.15 0.04
2nd P(2) = 1.40 0.07

Bulk core 1.01 0.02

Table 5.1: Densities of each ring, calculated from MD simulation at T = 300K,
normalized by the bulk density.

Using these ring densities, we can construct a closed-form expression for the equi-

librium density of this LJ fluid inside a CNT as a function of the CNT radius using

Eqn. (3.17):

p(R) = ),ma - rTi),min)3.15 + (r(2),ma- r2),min)1.40 + r(3),m (5.1)

It can be readily verified that this expression asymptotically approaches unity

(from below) for large R, as expected. Here, it is important to emphasize that this

density is normalized by the bulk density Pbulk of the fluid with which the fluid in the

CNT is in equilibrium; in other words, for a CNT placed in a bath of fluid at density

Pbulk, the density of the fluid in a CNT of radius R is p(R)pbulk.

Figure 5-4 shows that Eqn. (5.1) is in excellent agreement with densities measured

in MD simulations at a bulk density of 1.0af 3 and T = 300K. For R > 15A, the

discrepancy is within 3% for all simulated CNTs in the range 0.8oJ 3 < Pbulk i.i-3

It is important to note at this point that the fluid density inside the rings is,

in general, dependent on temperature. Therefore, the simulation process must be

repeated at each system temperature of interest or the fluid ring densities must be

calculated through other means that take temperature into account [57, 58].
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5.1.5 Effect of Varying E

We found that variations over a decade of 6 (0.05 kJ mol- 1 < 6 < 0.50 kJ mol- 1) re-

sulted in changes in the mean density of each ring that are less than 6% (as compared

to results for the baseline value of E = 0.48 kJ mol- 1). In other words, provided the

carbon-fluid interaction is within this hydrophobic range, P(i) and P(2) are approxi-

mately independent of E. We also note that the excluded-region lengthscales exhibit

negligible sensitivity to variations in E, which confirms our intuition that 6 scales out

of the problem when calculating equilibrium stand-off distances.

5.2 Equilibrium TIP4P Water

5.2.1 Maximum Accessible Radius for Oxygen

We note that in the most common water models for MD simulations (e.g. SPC/E

[52], TIP3P [66], TIP4P [51], TIP5P [67], as well as a popular six-site model [68]), the

interaction between the oxygen atom and other atoms is described by a LJ potential.

Since these models assume that LJ interactions between hydrogen and carbon are

negligible compared to LJ interactions between oxygen and carbon, we can use Eqn.

(3.9) to predict the point at which the oxygen RDF for water confined within a CNT

vanishes.

These predictions agree closely with results from six sets of MD simulations as

shown in Fig. 5-5. The analytical prediction given by Eqn. (3.9) is a definite im-

provement over current approaches found in the literature, which rely on empirical

measurements from MD simulations [10, 29]. It is noteworthy that the presence of

electrostatic interactions has a remarkably small effect on the prediction of the zero of

the oxygen RDF; this is in agreement with the physical basis of our model, which at-

tributes ring formation to the interplay between short-range attractive and repulsive

molecular interactions.

We also found that these results did not depend on the water model used - in

particular, the maximum accessible radius results were identical for simulations using
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the SPC/E model. Moreover, the maximum accessible radius results did not change

within the simulated temperature range 100K < T < 400K.

5.2.2 Maximum Accessible Radius for Hydrogen

This approach can also be used to calculate the maximum accessible radius of hy-

drogen atoms in water. Since there is no significant interaction between carbon and

hydrogen in these water models, the maximum accessible radius of hydrogen is iden-

tical to that of oxygen, extended by 0.96A (the length of the O-H bond in the TIP4P

model). Fig. 5-6 shows that this purely geometric argument captures simulation re-

sults accurately. On the other hand, this geometric argument contains no information

about the angular distribution of water molecules [29]. As a result, additional ingre-

dients are required before the equilibrium density of water in CNTs can be described

analytically with high precision. This will be the subject of future work.

5.3 Application to a Simple Flow Problem

Since non-equilibrium MD simulations have shown that fluid flow does not appreciably

modify oxygen and hydrogen RDFs from their equilibrium shapes [8], we can use

the equilibrium results obtained above to gain insight into simple non-equilibrium

problems. Specifically, these results can be useful in situations where knowledge of

the density distribution is useful (e.g. for constructing models of other thermodynamic

properties [21, 69, 70, 71]), as well as in cases where fluid flow rates are related to

"geometric" effects within the fluid.

5.3.1 The Nanoscale Convergent Nozzle

As an example of such a geometric effect of fluid structure on flow, we consider a

nanofluidic system studied by Hanasaki and Nakatani described in Ref. [10] and

illustrated in Figure 5-7. This system uses a CNT junction to emulate a nanoscale

convergent nozzle, with potential applications in molecular-sensing technology [72]
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and nanoscale hydraulic actuators [73].

These nozzles were constructed by gradually tapering one armchair CNT into

another armchair CNT with smaller radius. Water molecules were pushed into the

larger CNT from a fluid reservoir held at fixed pressure. Average flow velocities

were computed within both CNTs. These velocities were used to calculate a velocity

enhancement, defined as the ratio of the downstream fluid velocity to the upstream

fluid velocity.

Hanasaki and Nakatani found in their MD simulations that classical fluid me-

chanics fails dramatically in predicting the velocity enhancement. In particular, the

classical approach relates the velocity enhancement to the ratio of cross-sectional

areas. However, cross-sectional area ratios based on nominal CNT radii are very

inaccurate for predicting velocity enhancement downstream of a constriction.

5.3.2 Improved Analysis using Maximum Accessible Radius

It is only when the excluded volume (due to the stand-off distance between the water

and the CNT) is taken into account that the MD simulation results can be explained.

Figure 5-8 shows that using Eqn. (3.9) as the basis for a more representative cross-

sectional area 7rr 2 leads to much closer agreement with Hanasaki and Nakatani's

MD results. Hanasaki and Nakatani ultimately also recognized that the maximum

accessible radius was the most accurate basis for the effective cross-sectional area;

however, their values for the maximum accessible radius were only determined em-

pirically.
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Figure 5-7: Nanoscale nozzle geometry proposed by Hanasaki and Nakatani, consist-
ing of two CNTs joined at a convergent neck. Figure from [10].
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Chapter 6

Conclusions and Future Work

"I'm your density... I mean, your destiny!"

- George McFly in Back to the Future

6.1 Summary

Fluid densities are low in CNTs (compared to the bulk density) due to the finite range

of molecular interactions, which is non-negligible compared to typical CNT radii. The

largest contributor to this phenomenon is the excluded volume between the CNT wall

and the fluid, whose thickness is on the order of one molecular diameter. As the CNT

radius approaches this lengthscale, the area that contains no fluid molecules becomes

a large fraction of the total CNT cross-sectional area. For example, for a CNT with

R ~ 1oA, the excluded volume between the wall and the first ring alone accounts for

approximately half of the CNT volume. This is the key molecular-scale ingredient

underlying the anomalous density phenomenon. In fact, no physically attainable

packing within the first ring could possibly yield a first-ring density high enough to

make up for this volume deficiency - thus, the density of the nanoconfined fluid will

have to be quite low relative to the bulk fluid.

To investigate the anomalous density phenomenon, we have used a mean-field

model for fluid-CNT interactions to develop an energetics approach that predicts the

structure of fluids confined in CNTs. In particular, this approach yields lengthscales
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for the fluid rings and bulk core that form within a CNT. We find that these length-

scales agree very closely with results from MD simulations of both LJ fluids and

water.

Combining the analytical description of the fluid structure with a characteriza-

tion of the density in the first two rings from MD simulation provides a closed-form

expression for the anomalous density of a confined fluid as a function of CNT radius.

This expression is in excellent agreement with MD simulations.

These contributions represent a clear improvement over previous methods used

to understand nanoconfined fluid structure and the anomalous density phenomenon.

Whereas previous methods relied exclusively on empirical fits to MD simulation re-

sults, our model presents new physical insights and accurate quantitative predictions

for nanoconfined fluids.

Despite the focus on equilibrium densities, the results discussed here are in some

cases already useful for non-equilibrium settings involving fluid flow. For example,

our results can be used to estimate the effective cross-sectional area of a CNT, which

is vital for accurately predicting the flow velocity enhancement downstream of a

constriction.

6.2 Future Directions

The current work suggests several avenues for future investigation. These future

directions can be divided into two categories:

1. Improvements to the models presented in Chapter 3.

2. Application of these principles to other nanofluidic systems.

In the case of the former, we first note that the current mean-field approach ac-

counts only for interactions between LJ atoms. Although electrostatic effects between

water and carbon are negligible (and so it is possible to use the same mean-field ap-

proach to predict the stand-off distance between water and its confining CNT wall),

electrostatic effects between water and itself are substantial. Capturing these effects
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is important for building a model that quantifies subsequent-ring formation within the

outermost fluid ring. After incorporating electrostatic effects, it may be possible to

predict the equilibrium nanoconfined density of fluids featuring charged atoms, most

notably water. We also note that the expression for predicting the anomalous density

presented here (Eqn. (3.17)) still relies on MD simulations to extract the densities

of the first two rings. Through more careful statistical mechanical considerations, it

may be possible to develop a purely analytical model for these ring densities.

With regard to the latter category, there are numerous potential applications of

the concepts developed in this thesis to problems of nanoengineering interest. For

example, the energetics approach underlying our models could be used to predict

the equilibrium nanoconfined fluid structure for more-complex fluids (e.g. oils or

polymers), fluids confined by non-carbon materials (e.g. silica nanopores or boron

nitride nanotubes), or fluids confined within non-cylindrical geometries (e.g. conical

nanopores). Moreover, we note that non-equilibrium MD simulations have shown that

water flow in CNTs does not appreciably affect water structure [8]. Thus information

about the equilibrium spatial distribution of density may also prove useful in the

development of models that predict water flow rates in CNTs [20], a topic which has

attracted considerable attention [11, 12, 13, 14].
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