
An experimental and theoretical investigation of the

rheological properties and degradation of mucin solutions

(or why saliva becomes watery when removed from your

mouth)

by

Caroline Wagner

Honours B.Eng, Mechanical Engineering, McGill University (2013)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
I

C;

M w

cr)

June 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Author.....

Certified by.

Signature redacted
7 gDepartment

Signature redacted
of Mechanical Engineering

May 19, 2015

Protessor,

Gareth H. McKinley
Mechanical Engineering
,o7,Thesj Supervisor

Signature redacted
A ccep ted b y ....................................................................

David E. Hardt
Graduate Officer, Department Committee on Graduate Students



2



An experimental and theoretical investigation of the rheological

properties and degradation of mucin solutions (or why saliva becomes

watery when removed from your mouth)

by

Caroline Wagner

Submitted to the Department of Mechanical Engineering
on May 19, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

The use of biological fluids such as saliva and cervical mucus as diagnostics for measurements of
health status is becoming increasingly popular in the fields of biology and medecine, particularly
given the non-invasiveness and ease of obtaining such fluids [39, 78]. In general, these biological
fluids are polymeric, and as a result tend to be viscoelastic. However, as a result of protease
and enzymatic activity, these fluids are often unstable and can degrade with time [23, 65]. This
was observed in the case of saliva by Aggazzotti nearly a century ago [1]. Therefore, in order to
reliably quantify their rheological properties for diagnostic purposes, it is essential to understand
how their microstructure affects the bulk rheological behaviours observed under testing conditions.
We develop two models to simulate the behaviour of saliva during simple elongational flow and
account for the decrease in viscoelasticity with time. The first model considerd is the FENE-
P model of a fluid, which is particularly suitable for describing the rheology of dilute polymer
solutions (Newtonian solvents containing small amounts of dissolved polymer) as a result of its
ability to capture nonlinear effects arising from the finite extensibility of the polymer chains.
In extensional flows, these polymer solutions exhibit dramatically different behaviour from the
corresponding Newtonian solvents alone, notably through the creation of persistent filaments when
stretched. By using the technique of capillary thinning to study the dynamics of the thinning
process of these filaments, the transient extensional rheology of the fluid can be characterized.
We show that under conditions of uniaxial elongational flow, a composite analytic solution can be
developed to predict the time evolution of the radius of the filament. Furthermore we derive an
analytic expression for the finite time to breakup of the fluid filaments. This breakup time agrees
very well with results obtained from full numerical simulations, and both numerics and theory
predict an increase in the time to breakup as the finite extensibility parameter b, related to the
molecular weight of the polymer, is increased. As b -+ oo, the results converge to an asymptotic
result for the breakup time which shows that the breakup time grows as tbrea~k ln(Mw), where
Mw is the molecular weight of the dilute polymer solution. We then consider the importance
of the network properties of saliva that arise due to entanglements of the polymer chains. In
order to account for this, we combine the FENE-P model with the Rolie-Poly model developed
by Graham et al [45, 50] to obtain the Rolie-Poly-FENE-P model. We show that this model
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is better able to accurately predict the extensional behaviour of both polyethylene oxide (PEO)
solutions and saliva based on actual properties of these materials. This model cannot capture
the sudden filament breakup observed in young saliva samples, however, which motivates the
incorporation of a mechanism for network junction association or 'stickiness', as has been done
by [71, 74, 40, 25] amongst others in biological networks. We draw largely off of the work for
Tripathi et al [67] who modeled the rheology of hydrophobically modified ethoxylate-urethane
(HEUR) polymer solutions as associating networks in order to develop an analogous model for
saliva. We show that this model can reproduce the asymptotic 'middle elastic time' exponential
radius decay described by Entov and Hinch [22], the dynamics upon which CaBER experimental
interpretation of the system relaxation time AH is based. We also show that incorporation of a
stickiness parameter allows for good agreement between the model and experimental CaBER data
for saliva samples at various ages.

Thesis Supervisor: Gareth H. McKinley
Title: Professor, Mechanical Engineering
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Chapter 1

Introduction

The addition of a small amount of polymer to a Newtonian solvent can yield rather dramatic

differences in the behaviour of the fluid under various flow conditions. When subjected to shear-

ing flows, the ability of the polymer chains to align themselves and unravel in the flow direction

leads to phenomena such as shear thinning, where the viscosity of the fluid is observed to decrease

with increasing applied rate of shear due to the increasing orderliness of the contained polymer

(although a very small number of polymeric fluids exhibit shear thickening, where the opposite

effect of increasing viscosity with shear rate is observed due to dilation of the polymers [12]). This

feature is heavily employed in the food industry with various polysaccharides such as Xanthan

gum and Guar gum [35], where the imparted shear thinning permits many desirable behaviours.

For instance, addition of Xanthan gum to salad dressing increases the viscosity when the dressing

is on the shelf (at rest, low rate of shear), allowing the various herbs contained to remain in suspen-

sion and hence look more attractive to the buyer. When shaken (resulting in an increased shear

rate), however, the viscosity decreases and the solution can be easily poured. When stretched

as a result of being subjected to an extensional flow, polymer solutions tend to form persistent

filaments and delay capillary breakup as a result of the increased resistance to flow provided by the

polymer chains [47, 12]. These phenomena make polymer solutions attractive for many industrial

applications, including extrusion processing and inkjet printing. In the latter, droplets of ink are

ejected at high speed from a small nozzle, resulting in the formation of a near spherical droplet

with a trailing filament [31]. It is desired that the trailing filament remain intact and not break up

15



into smaller trailing droplets (known as satellite droplets), as the printing sharpness and quality

can be compromised by impact of these undesired and uncontrolled droplets on the printing sur-

face [31]. Polymer is therefore added to the ink in order to delay this undesired breakup [31, 68, 51].

Many biological fluids are also polymeric, and the rheological properties that they possess are

crucial for many of the functions that they serve. For instance, the polysaccharides found in

mammalian synovial fluid are responsible for its lubricating properties, and the mucins found in

saliva and mucous impart the elasticity needed for (amongst other things) lubrication, facilitated

swallowing, and barriers against bacterial penetration [61, 35]. In as early as 1908, Fano studied

these phenomena in biopolymer solutions such as egg white, bile, and plant extracts [26]. Since

then, characterization and quantification of this polymer-induced elasticity has been of great aca-

demic interest, with one current application being use as a diagnostic tool to monitor the state of

the fluid in question. For instance, Kopito and Kosasky [39] performed fertility studies to assess

hormone levels during the menstrual cycle by measuring the rheological properties of cervical mu-

cus. Further, Basilevsky and coworkers have explored the degradation of sputum upon exposure

to certain bacteria as measured through changes in its elastic properties [9]. As a final example,

Zussman and coworkers have noted that differences in saliva viscoelasticity between teenagers and

the elderly may explain why the most common dental health issues plaguing these two age groups

differ [78].

In a similar vein, the modelling of the fragmentation process of mucosalivary fluid during a violent

expiratory event such as a cough or a sneeze is a crucial aspect of the study of respiratory disease

transmission [14, 76, 6]. During such an event, an inspiration of air is followed by closure of the

glottis and simultaneous contraction of the abdominal and intercostal muscles, which raises the

diaphragm and results in a decrease in the effective volume surrounding the lungs [17]. This leads

to an increase in the intrapleural pressure, which causes the glottis to open partially, sending out

a short burst of high speed air. This shearing flow over the mucus in the trachea and saliva in

the mouth leads to a complex process of fragmentation and droplet breakup in these fluids layers,
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and the size of the resulting emitted droplets is crucial in the determination of the transmission

mechanism of any potential contained pathogens [14, 6, 62, 60]. Smaller droplets (< 5 - 10pum)

generally favour airborne transmission, as they dry very quickly and result in the pathogen re-

maining suspended in the air (where it is susceptible to being inhaled). On the other hand, larger

drops, which tend to settle quickly under gravity, pose a greater threat of direct disease trans-

mission through spraying onto susceptible surfaces [14]. As could be expected, the rheological

properties of these mucosalivary fluids lead to their fragmentation processes differing greatly from

a simple Newtonian fluid such as water. The polymer-induced elasticity from the mucin in these

fluids leads to the creation of long filaments and delayed capillary breakup (as described above

for inkjet printing), which affects the size distribution of droplets created [14]. Proper viscoelastic

characterization of these fluids is therefore essential for the study and understanding of how res-

piratory diseases are transmitted.

In attempting to characterize the shear and extensional properties of saliva, it quickly becomes

apparent that unlike synthetic non-Newtonian fluids which have repeatable rheological properties,

those of saliva are highly variable. Firstly there is variability amongst subjects [61], but also

within a given donor depending on time of day, proximity to last meal, and even hormonal cycle

[64]. To complicate things further, the viscoelasticity of saliva decreases with time once the sample

has been extracted from the mouth. Aggazzotti reported this observation in as early as 1922 [1]

in his ground-breaking studies of potere filante or filament forming potential. He performed a

series of experiments on saliva at various ages, such as stretching filaments until they broke and

recording their maximum extensions, and examining the solubility of salivary components through

the addition of acetic acid. His results showed a decrease in the maximum extension length of the

thread, as well as an increase in the solubility of saliva as it aged. Although he did not draw this

conclusion himself, both results suggest that as saliva ages, the molecular weight of the biopolymer

contained in saliva decreases as a result of biological degradation mechanisms.

The importance of the ability to correctly quantify the viscoelastic properties of biological poly-
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meric fluids is therefore clear. However, just as clear is the difficulty of being able to do so,

particularly in the context of degradation and time-dependent evolution of the fluid properties.

Therefore, the primary objective of this thesis is to provide a model to explain the observed changes

in the rheological behaviour of saliva (and biopolymer fluids in general) as it ages, and to compare

this model with experimental data. Ultimately, the goal of this work is to relate the molecular

structure of biopolymers to the macroscale rheological properties that are observable in the fluids

that contain them through both rheological experimentation and mathematical modelling.
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Chapter 2

Saliva

2.1 Structure and Function

Saliva is composed primarily of water (99.5%) as well as proteins (0.2%) and other inorganic and

trace substances (0.2%) [61]. Various glands in the mouth secrete different salivary components,

the nature of which varies according to the ratio of serous to mucous cells that comprise the given

gland. Serous cells, dominant in the parotid and submandibular glands, produce a more watery

secretion that is strongly activated by stimuli, whereas mucous cells which are large components

of the sublingual gland produce a more mucous-rich secretion [61]. All together, these various

secretions as well as sloughed off endothelial cells, traces of food, blood, and other components

comprise the complex network of whole saliva.

The list of essential bodily functions facilitated or permitted by saliva is a lengthy one. The major-

ity of these functions arise from the viscoelasticity of saliva imparted by the network components.

For instance, the ability of saliva to form a film that coats the various oral components is essential

for lubrication, without which speech and swallowing is extremely difficult [13]. Additionally, food

texture, taste perception, and mouth feel are all strongly dependent on the viscoelastic properties

of saliva [64]. The salivary film is also crucial for the maintenance of oral health, as it protects

the mucosa from bacterial attack and the teeth from demineralisation [61, 13].
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The primary type of protein secreted in saliva is the glycoprotein mucin, of which MUC5B is

the major component associated with the gel matrix of saliva [61]. However, Raynal et al have

shown that solutions of pure MUC5B mucin at concentrations comparable to those found in saliva

(approximately 200pg/ml), do not reproduce the same rheological properties [56]. Indeed, other

salivary components have more recently been identified as important players in the network, such

as salivary micelles [61]. These are casein-like micelles composed of a wide range of molecules such

as MUC7 mucin, sIgA antibody, lactoferrin, amylase, glycosylated PRP proteins, and lysozymes

[61]. Figure 2-1 shows a summary cartoon of the various components that constitute the salivary

network.

MUC5B mucin chain
50-100 subunits
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Figure 2-1: Cartoon recreation of the components of saliva based off the work of Schipper et al
[61].
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The structure of the high molecular weight MUC5B mucin (MW 1 - 2MDa [37]) deserves par-

ticular attention. Like the other members of the MUC family, MUC5B is highly glycosylated, con-

sisting of about 80% carbohydrates: predominantly N-acetylgalactosamine, N-acetylglucosamine,

fucose, galactose, sialic acid, and traces of mannose and sulfate [5, 20]. These carbohydrates form

moderately branched oligosaccharide chains that attach to the protein core in a "bottle brush"

configuration via 0-glycosidic bonds to the hydroxyl side chains of serines and theonines [5]. Five

such heavily glycosylated areas exist in MUC5B, and interspersed with them are an additional five

relatively unglycosylated, cysteine rich regions, whose structure is more representative of globular

proteins [37, 5]. The end regions of the mucin consist of one amino (NH2) terminal and one car-

boxyl (COOH) terminal, which are both unglycosylated and cysteine rich [5]. The intact MUC5B

molecule found in secretions consists of 50 - 100 subunits assembled in a linear fashion [37]. The

individual monomers form dimers through disulfide bonds at the COOH terminals, and subse-

quently polymerize into lengthy chains through similar disulfide bonds at the NH2 terminals [37].

Figure 2-2 A, taken from Schipper et al [61] shows a Cryo-SEM image of saliva in which the mucin

network is clearly visible. In Figure 2-2 B, taken from Kesimer et al [37], the structure of the

MUC5B molecule is clearly shown. The arrows indicate the NH2 and COOH terminal regions

highlighted by 5nm colloidal gold markers. The average length between gold labels is 500nm, the

approximate length of a MUC5B monomer [37].

Figure 2-2: A: Detailed image of the mucin network from a Cryo-SEM image of saliva from

Schipper et al [61]. B: An individual MUC5B polymer from Kesimer et al [37].

As suggested by the heavily entangled network depicted in Figure 2-2 A, mucin interactions also

21



play a large role in contributing to the viscoelasticity of saliva [72, 61]. Although the heavy gly-

cosylation of the mucins is thought to inhibit any disulfide bond crosslinking , the long, linear

MUC5B chains undoubtedly entangle to form a network [72]. There is also evidence of additional

ion-mediated interactions. By decreasing the pH of purified porcine gastric mucin solutions (PGM,

to which the human mucin MUC5AC expressed in the gastic mucosa is analogous), Celli et al have

shown that the viscoelasticity and gel-like nature of the solution can be increased significantly [16].

They theorize that this is due to the mucin taking on a more rod-like configuration under acidic

conditions, as opposed to a more random coil at neutral pH, and a subsequent exposure of pre-

viously hidden hydrophobic regions which provide new sites for interactions [16]. Other proposed

interaction mechanisms within the salivary network include carbohydrate-carbohydrate interac-

tions and calcium-mediated crosslinks [61].

All together, this mucin network imparts saliva with unique viscoelastic properties that are es-

sential for the many functions that it serves. The detailed rheology of saliva is the subject of the

next section.

2.2 Rheological Properties

In the sections to follow, the shear rheology of saliva is discussed in the context of both Small

Amplitude Oscillatory Shear (SAOS) and Steady State Shear Flow, and the extensional rheology

is examined using the technique of Capillary Breakup Extensional Rheomoetry (CaBER). First,

however, we provide a brief discussion of the various methods of saliva collection.

2.2.1 Saliva Collection Methods

One interesting subtlety of performing rheological measurements with saliva is the choice of the

method for procurement of the sample, which is known to have a significant impact on the prop-

erties of the collected saliva despite there being limited studies in the literature that investigate

this quantitatively. Stokes et al [64] study three methods: mechanical stimulation using flavour-
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less gum, stimulation by citric acid, and no stimulation. Their data suggests that the viscosity

of acid-stimulated saliva is highest, and that the rheological properties of unstimulated and me-

chanically stimulated saliva are similar [64]. In contrast, Rantonen et al [55] collected samples

from 30 different subjects and found that the viscosity of stimulated saliva is lower than that

of unstimulated saliva. Both studies note that the properties of saliva change from individual to

individual as well as with time of day, hormonal cycle, and consumption of food and liquids [64, 55].

To test individual variation, we obtained saliva samples from two different donors. We tested

time of day changes by collecting either in the early morning or early afternoon, and attempted

to control for effects of food consumption by requiring donors to abstain from eating or drinking

one hour prior to collection [64]. Our observations of the effect of collection method on saliva

properties are not in complete agreement with either Stokes [64] or Rantonen [55]. We observed

that the viscosity of saliva was relatively unaffected by collection method, donor, or time of day

at collection, as is shown in Figure 2-3. However, the elasticity of saliva (discussed in detail in

Section 2.2.3) was much lower for mechanically stimulated samples, and despite being relatively

insensitive to collection conditions was extremely sensitive to sample age. There is no literature to

the best of our knowledge on the effect of collection method of saliva on its extensional rheology,

and so we believe that these findings are amongst the first of their kind in this field. This obser-

vation of decreased elasticity upon stimulation is consistent with the more serous cell-rich glands

being more sensitive to stimuli, as discussed in Section 3. Since our interest was to study the

degradation of the mucin network, it was therefore preferable to ensure that the collected saliva

was high in mucin content.

For all data presented in this thesis, saliva was collected without stimulation according to the

method described in [28]. Vacuum was drawn in a closed collection vial into which appropriately

sized holes were drilled in the cap to accommodate two plastic tubes. The end of one tube was

connected to a vacuum pump, and the end of the other was inserted into the mouth of the donor.

Once collected, the saliva was stored and tested at room temperature. Using this procedure
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allowed for reasonably consistent rheological properties across donor and time of day at collection.

Although evidence suggests that freezing saliva may delay protease breakdown [23], this was not

of concern to us, as the degradation and subsequent changes in rheological properties of saliva

were the primary concern of this investigation.

2.2.2 Shear Rheology

All shear rheology presented in this paper was obtained using a TA Instruments (New Castle, DE,

USA) stress-controlled ARG2 rheometer with a 40mm or 60mm, 20 cone and plate fixture. The

temperature was maintained at 250C for all experiments using a Peltier plate.

Figure 2-3 presents SAOS data for a sample of saliva collected in the early morning and tested

at various times over the course of a 24 hour period. The response was very similar for all tests

performed, and so only one data set is shown for clarity. Tests were performed at 9% strain after

insuring that this value was within the linear elastic range for the sample, and data for which the

raw phase angle < 1750 is shown in order to exclude effects of instrument inertia.
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Figure 2-3: SAOS data for saliva samples at various ages

One immediately striking feature of the data is that the classical Maxwellian behaviour of a poly-

mer melt or solution is not observed. Indeed the response can more appropriately be described as

power-law like, which is a common feature of biological fluids as a result of the multiple relaxation

modes created by the various length scales of their microstructures [33]. For all sample ages, the

loss modulus G" lies above the storage modulus G', suggesting a more fluid-like than solid-like

response on the part of the sample. Less clear is the effect of age on the moduli. Although it

could be expected that degradation of the chains leads to a weakening of the elastic component

of the network as the sample ages, the data at 5 and 8 hours is not consistent with the trend of

decreasing G'. In Section 5.4.2, when the elastic modulus is used to compute the parameters of

the Rolie-Poly model for saliva, an average over several experiments is taken in order to determine

an approximate form for the change of G' with sample age.

25

101

E

U

U

D

U



- U
I.

U
- * U
-U. Em
- I U

101

10 0

10-

10-2

I I I
-2

S3

. 2

10-1 100 10 1 102

Figure 2-4: Shear viscosity data for saliva samples at various ages

In Figure 2-4, the shear viscosity as a function of shear rate is plotted for the same sample. As

can be seen, saliva is quite shear thinning with a high shear rate plateau viscosity very close to

that of water (r ~ 0.002Pa), but does not appear to demonstrate a zero shear plateau viscosity.

Furthermore, the viscosity does not appear to be sensitive to the age of the sample.

One concern when performing rheological measurements on biological materials is the possibility

of the development of a film of adsorbed protein at the solution/air interface which can affect

the measurements of interest: those of the rheological properties of the bulk fluid [34, 13]. In

order to evaluate whether this was affecting the observed rheological measurements, a test was

run with a thin coating of SDS oil placed around the rim of the cone, eliminating direct exposure

of the saliva sample to air [13]. The results of this test are shown in red in Figure 2-4, where
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it is readily observed that the viscosity profile is nearly identical to the results without the SDS

coating, suggesting that we are indeed measuring the bulk rheological properties of the fluid.

2.2.3 Extensional Rheology

Measurement of the viscoelasticity of saliva and other biological fluids has been of experimental

interest for over a century [26, 1]. In 1908, Fano published a qualitative analysis of the spinnability

of egg white, submaxillary saliva, gallbladder bile, and solutions of various plant extracts, namely

from fragments of the Opuntia ficus indica leaf [26]. Although he proposed experiments to quantify

the spinnability of these materials, he does not provide any experimental values in his work. In

1922, Aggazzotti performed a series of experiments on saliva that built off of the proposed exper-

imental method of Fano [1]. Using a capillary tube, he stretched samples of saliva and measured

the length at which the filaments ruptured, and used this as a measure of the spinnability, or

potere filante, of the sample. He repeated these experiments after subjecting the saliva to various

procedures such as heating, cooling, centrifugation and, most interestingly in the context of this

work, simply allowing it to age. He observed that the maximum stretch length of the filament

decreased as the sample aged, and that the solubility of the sample (as measured by the amount

of precipitate that formed following the addition of a specified amount of acetic acid) increased.

He concluded that these trends arise due to changes in the "molecular constitution of the mucin"

[1].

Despite this early interest, there are very few other studies in the literature on the extensional

rheology of saliva, and none apart from that by Aggazzotti [1], to the best of our knowledge,

that examines the age dependence of saliva extensional properties. In terms of the literature that

does exist, Haward et al studied the extensional rheology of saliva using a modified extensional

flow oscillatory rheometer (EFOR) [29]: a cross-slot device that induces a local stagnation point

in the flow, at which the flow velocity becomes zero but the shear rate remains significant. This

causes the contained polymer chains to stretch, and the extensional viscosity can correspondingly
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be measured. They observed an increase in the extensional viscosity with strain rate, up until a

maximum strain rate of e ~ 1200s-1 at which point the extensional viscosity was observed to drop.

At this strain rate, corresponding birefringence in the cross slot was also observed, suggesting flow

modification along the central axis, which they attribute to possible inertial effects as well as

rupture of disulphide bonds in the mucin chains [29]. Zussman and colleagues performed CaBER

experiments on saliva samples obtained from patients of different age groups in order to quantify

how saliva properties change between the young and the elderly as a potential explanation for

why the most prevalent dental problems within these two age groups differ [78]. They found that

the elasticity of saliva amongst the elderly, as measured by the relaxation time, was significantly

higher than in young adults, and corresponded to a higher salivary protein content within this

older age group. In general, however, a major difficulty with performing extensional rheology

measurements on saliva and getting repeatable and consistent results is that saliva is unstable:

the contained mucin begins to degrade over time due to protease and enzyamtic activity once the

sample has been extracted from the mouth [23, 65]. Bongaerts and Stokes allude to this in their

work [13, 64] but do not demonstrate how the measured viscoelastic properties are affected by this

degradation.

Following the original analysis by Entov and coworkers [8, 7, 22], capillary thinning rheometry

has become a standard technique for rapidly measuring the extensional properties of a wide range

of viscoelastic fluids, including polymer solutions. The Capillary Breakup Extensional Rheometer

(CaBER) is a commercially available instrument that is frequently used to perform these types of

measurements. During the capillary thinning experiments performed in this work, a small sample

of the test fluid is placed between the two rheoemter plates, each approximately RO = 3mm in

diameter and separated initially by approximately 2mm. The plates are suddenly stretched to a

final separation of approximately 9 - 10mm in a strike time of approximately tstrike ~ 50ms in

order to form a liquid bridge, and a laser micrometer tracks the midpoint radius of the filament

as it thins under the action of capillary forces. In general for dilute polymer solutions, once fluid

inertia can be neglected, the filament thinning process is initially governed by a viscocapillary
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force balance in which viscous extensional stresses from the solvent oppose the increasing capil-

lary pressure, and is followed by a later elastocapillary stage in which stresses generated by the

stretching of the polymer chains dominate [48]. From measurements of the time evolution of the

filament radius, the breakup time of the filament and relaxation time of the fluid can be obtained,

both of which provide quantitative measures of the fluid's viscoelastic properties.

In Figure 2-5, a series of still images taken during the course of a CaBER experiment on a 30

minute old sample of saliva is shown. As is typical for more strongly elastic fluids, the assumption

that the thinning filament is nearly exactly cylindrical and axisymmetric during the entire thin-

ning process appears to be a good one [49].

t - tstrike 0 0.17 0.33 0.66 1

tbreak - tstrike

Figure 2-5: Still images at various stages of filament thinning during a capillary breakup exten-
sional rheometry (CaBER) experiment with a sample of 30 minute old saliva.

In Figure 2-6, the results of Figure 2-5 are translated into plots of the nondimensional radius as

a function of time t for the saliva samples at various ages. Data is only shown for times later than

the strike time (when the plates have reached their final separation height), and is normalized by

the radius of the filament at the strike time. It is immediately apparent that the time to breakup

of the filaments and the relaxation time of the samples decrease as the age of the saliva increases.

As will be explained in detail in Section 4.4 the relaxation time is in general obtained from CaBER

data by fitting a curve proportional to exp (- ) through the section of the radius evolution

which follows an exponential decay; a signature of the elasto-capillary regime.
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Figure 2-6: CaBER data of filament midpoint radius for saliva samples at various ages

In Figure 2-7, the measured average relaxation times AH with standard deviations are shown as a

function as the age of the saliva sample. Data is shown for two different donors as an indicator of

individual specimen variations, as well as for samples of saliva collected early in the morning and

in the afternoon in order to be indicative of the effects of diurnal cycles on saliva properties. Al-

though there is undoubtedly variation between samples, the overall trend of decreasing relaxation

time with age is very apparent.
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Figure 2-7: Average relaxation time of saliva samples as a function of their age for two different

donors. Data is shown for saliva collected in the morning and the afternoon to demonstrate cyclical

changes in properties

These results clearly suggest that the microstructure of the saliva is being modified as the sample

ages, as suggested by Aggazzotti nearly a century ago [1]. Indeed, it is known that protease and

enzymatic activity can cause salivary mucins to degrade with time [23, 65]. Therefore, the re-

mainder of this thesis is devoted to the development of polymer models that can account for these

changes in microstructure, and reproduce these experimentally observed macro-scale rheological

findings under conditions of simple elongational flow. However, before exploring this topic, we

provide a brief discussion of the development of substitute or analogue saliva fluids that possess

comparable rheological properties to human saliva. These fluids present tremendous potential

gains both for patients suffering from a wide range of diseases, and for biological experimentation

and research.
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2.3 Development of Saliva Substitute Fluids

2.3.1 Motivation

The need for the development of substitute saliva fluids for patients suffering from 'dry-mouth'

or xerostomia has been recognized for over a century [27] as a result of the essential roles that

saliva plays in the ability to speak, swallow, maintain oral health, and much more (see Section

3). The aetiology of salivary dysfunction is diverse, and can result either from diminished levels

of salivation or structural damage to the salivary glands [27]. Certain clinical conditions such as

anxiety and depression are known to decrease salivation, as well as some medications (particularly

some tricyclic antidepressants) [27]. Furthermore, structural damage to the salivary glands arises

due to some autoimmune diseases such as Sj6rgen's syndrome which targets and destroys glands

in the body, as well as diabetes and its associated neuropathies [27, 29]. Chemotherapy and radio-

therapy treatments for cancers of the head and neck, although potentially helpful at eliminating

cancerous cells, can also have the unfortunate effect of destroying the salivary glands [27].

Additionally, as explained earlier in this section, there is ongoing research related to epidemiology

of respiratory diseases, for which the study of the fragmentation process of saliva during a cough

or sneeze is of the utmost interest [14, 6, 76]. Since obtaining large quantities of saliva for such

experiments is often not feasible, having a synthetic substitute with similar rheological properties

would be extremely advantageous from an experimental point of view. In particular, it is desired

rheologically-speaking that an appropriate saliva substitute should possess a similar shear viscosity

profile to saliva (in the same numerical range and shear thinning), as well as comparable elasticity

as measured through its relaxation time and filament radius evolution profile under the conditions

of simple elongational flow during a CaBER experiment.

Clearly, there are other criteria beyond the matching of rheological properties which must be met

when developing a substitute saliva to administer to patients (such as biological and dental com-

patibility). However, given the detailed rheological characterization of saliva that was performed
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for this thesis, thought has been placed into finding suitable biopolymer solutions which could, at

least from an experimental point of view, be used as substitutes for saliva. Although this is not

intended to be a fully comprehensive discussion, the results found are promising that such a fluid

can be found.

2.3.2 Current Technologies

Although some attempts have been made to develop saliva substitutes using animal mucins such

as those extracted from bovine salivary glands, as was the case with reconstituted solutions of

human salivary mucins [56], these solutions often do not yield the same viscoelastic properties

as the saliva in its original form [27]. As a result, many of the products on the market today

are biopolymer based, with Xanthan gum (eg. used in the product Xialine) and carboxymethyl-

cellulose (eg. used in the product Saliveze) being two of the most popular biopolymers used [54, 27].

We therefore selected Xanthan gum (obtained from Sigma Aldrich, Saint-Louis MO) as a first

biopolymer candidate in the development of a rheologically appropriate saliva substitute. Solu-

tions of 0.05wt% Xanthan gum in DI water were found to reproduce the shear viscosity profile of

saliva quite well, as seen in Figure 2-8. The shear thinning behaviour is well captured, and the

viscosity values obtained are very close to those of saliva, particularly at higher shear rates.

When CaBER was performed with the same 0.05wt% solution of Xanthan gum, filament formation

was impossible, meaning that the solution was nearly inelastic. In an attempt to reproduce the

elasticity of saliva, 2 x 106g/mol MW polyethylene oxide (PEO) (obtained from Sigma Aldrich,

Saint-Louis MO) was added to the Xanthan gum solution at various concentrations. It should

be noted that there is some precedent in the literature for the addition of polymeric materials to

saliva substitutes in order to enhance their rheological properties, an example being Preetha et al

who added phosphatidylethanolamine (PE) to the substitute Saliveze [54].
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Three different concentrations of PEO (0.05wt%, 0.3wt%, and 1.5wt%) were added to the 0.05wt%

Xanthan gum solution, and relaxation times were obtained using CaBER. In order to reproduce the

elasticity of young saliva (less than one hour old), it was required that the PEO/Xanthan solution

have a relaxation time of approximately 50ms (see Figure 2-7). In Figure 2-8, the shear viscosity

profiles and relaxation times of all three PEO/Xanthan solutions are presented, along with the

shear viscosity profiles of the pure Xanthan solution and saliva. As can be seen, although the

highest concentration PEO solution was sufficiently elastic, the addition of such large quantities

of PEO had the deleterious effect of increasing the viscosity of the solution by more than an order

of magnitude at all shear rates tested.
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to those of saliva at the appropriate concentrations, the inability to produce a suitably viscous

and elastic solution using easily obtained synthetic polymers (such as PEO) made this approach

undesirable. We subsequently attempted to find a biopolymer with intrinsic viscoelasticity in order

to eliminate the need to enhance elasticity using synthetic polymers. Two candidates: Mamaku

gum and flax seed extract were found to be quite suitable, and details of the preparation and

rheological properties of these solutions are presented in the next subsections.

2.3.3 Novel Biopolymer Solutions

2.3.3.1 Flax Seed Extract

Following interesting discussions with Oswaldo Oliva and the other head chefs at the Michelin

star rated restaurant Mugaritz in Guipdizcoa, Spain, it was suggested that a solution of flax seed

extract could be a suitable analogue fluid for saliva. Indeed, flax seed extract is often used in

vegan cooking as a substitute for egg whites as a result of its similar consistency.

The component of the flax seed extract responsible for imparting the desired viscoelastic prop-

erties is the mucillage [77]. The mucillage is composed of a mixture of of neutral arabinoxylans

and acidic rhamnose-containing polysaccharides at a ratio of approximately 1:0.7, and makes up

approximately 6.5% by weight of the flax seeds [77]. The neutral polysaccharide arabinoxylan is

the main polysaccharide contained in the mucillage (approximately 75%)[77]. Structurally, ara-

binoxylan contains a uniform arabinose: xylose ratio of 0.24, along with varying galactose and

fucose residues in its sidechain [77]. Its molecular weight is approximately 1.2 x 106g/mol [77].

Following 'Stage 1' of the extraction procedure outlined by Ziolkovska [77], 3g of whole flax seeds

(obtained from a local Whole Foods grocery store) were combined with 75 mL of DI water and

stirred using a magnetic stirrer on a hot plate at 300rpm and 800C for 30 minutes. Once cool,

the supernatant solution was separated from the seeds, and diluted to a ratio of 5mL flax seed

extract: 7mL of DI water. Assuming that 50% of solids are extracted from the seeds following

this Stage 1 extraction as reported by Ziolkovska [77], it was therefore estimated that the final
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flax seed extract solution had a mucillage concentration of approximately c = 0.054g/L. To date,

no thermogravimetric analyses (TGA) have been performed to verify this concentration. It is

additionally likely that other seed components, such as flax seed oil, were also extracted in the

process. Regardless, this first attempt at an extraction yielded a suitable fluid which resembled

saliva qualitatively, and with which rheological measurements could be performed.

2.3.3.2 Mamaku Gum

The second novel biopolymer considered was Mamaku gum. Mamaku gum is extracted from the

fronds of the black fern tree and has traditionally been used by the Maori tribes of New Zealand

for the treatment of boils, burns, wounds, rashes, and diarrhea [35]. The shear and extensional

rheology of Mamaku gum has been characterized extensively elsewhere by Jaishankar et al [35].

A sample of unpurified dried Mamaku gum was kindly obtained from collaborators at Massey

University in New Zealand. A 2.5wt% solution of Mamaku gum was prepared using DI water,

and was combined using a magnetic stirrer at 300rpm for approximately 5 hours until the solution

looked entirely homogeneous.

2.3.3.3 Rheological Comparison with Saliva

In Figure 2-9, the shear viscosity profiles of 30 minute old saliva as well as the flax seed and

Mamaku gum solutions described above are compared.

Although to a lesser degree than saliva, the flax seed solution is also shear thinning, although

significantly more viscous at high shear rates (j > 1s-1) than saliva. The 2.5wt% Mamaku

gum solution is only moderately shear thinning, and in fact exhibits a range of shear thickening

behaviour between shear rates of approximately 40s-1 < - < 70s-1 . This behaviour is well docu-

mented in [35], and is believed to arise as a result of unfolding of the polymer chains due to the

imposed shear flow, which exposes more previously hidden sites that permit hydrogen bonding

between the chains.
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Figure 2-9: Shear viscosity comparison of saliva, flax seed extract, and 2.5wt% unpurified Mamaku

gum

In Figure 2-10, SAOS data is presented for the same fluids with the % strain indicated, determined

for each sample to lie within the linear elastic range. For all three fluids over the entire testable

frequency range (save the highest frequencies in the case of the Mamaku gum solution), the loss

modulus G" exceeds the storage modulus G'. Furthermore, as previously mentioned, all three

fluids exhibit a distinct power-law like response of the moduli, which has been well documented

in biopolymer solutions [33].
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Finally, in Figure 2-11, CaBER data is shown for the 2.5'wt% Mamaku gum solution, the flax seed

solution, and saliva at two ages (30 minutes and 1 hour). The relaxation times AH are shown in

the figure, and additionally the average relaxation time for all runs performed of the Mamaku gum

and flax seed solutions are reported. For the Mamaku gum solution, consistent and reproduceable

CaBER data was obtained (and evidenced by the small disparity between the relaxation time for

the run shown and the average value obtained). Conversely, it was difficult to obtain consistent

CaBER data for the flax seed solution. As a result, there is significant disparity amongst the

breakup time results and relaxation time values for the different runs performed. It is believed

that this could be due to inhomogeneity within the solution as created thus far. In future, cen-

trifugation and prolonged mixing could be attempted in order to eliminate this variability. We

therefore report two characteristic CaBER runs for the flax seed solution in Figure 2-11 in order
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to be more indicative of the range of behaviours observed.
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Figure 2-11: CaBER comparison of saliva, flax seed extract, and 2.5wtc unpurified Mamaku gum
with relaxation times indicated

Encouragingly, both the Mamaku gum and flax seed solutions were comparably viscoelastic to

young saliva (less than one hour old), as can readily be seen in Figure 2-11 by the comparable

times to breakup and relaxation times of the samples. The viscoelasticity of the 2.5wtc Mamaku

gum solution was found to be very comparable to that of one hour old saliva, which would make it

a promising candidate for use in experiments for which relatively fresh saliva samples are desired.

The flax seed solution on one run was comparably viscoelastic to one hour old saliva, and then

on additional runs demonstrated very large relaxation times (AH ~-- 500ms) and filament breakup

times. These results are nevertheless encouraging, and suggest that with appropriate homogeniza-

tion and dilution, flax seed solutions could also be very suitable candidates for a substitute saliva
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Chapter 3

Determination of molecular modeling

properties for MUC5B mucin

Before proceeding to the various models used to simulate the behaviour of saliva under simple

elongational flow conditions, it is useful to carefully detail the steps by which the molecular pa-

rameters of the mucin used in the various models were determined.

We model the MUC5B mucins (the biological properties of which have been described in Section

3 as bead spring chain polymers, following the method of Bird et al [10]. In Figure 3-1, a repre-

sentative segment of molecular weight MW of a MUC5B chain is shown, taken from Bansil and

Turner [5]. In the FENE-P model, this segment is taken to be the entire mucin chain, while in the

Rolie-Poly-FENE-P and Sticky Network models, it is taken to be an entanglement segment (Me

instead of MW).
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Figure 3-1: Detailed description of the method of determination of the model parameters for
MUC5B from physiological properties.

The repeat unit of MUC5B mucin is estimated to be around 8 amino acids in length, as reported

by Inatomi et al in human MUC5AC mucin (genetically very similar to MUC5B) [32]. Using stan-

dard values for the molecular weight and size of an amino acid, we can approximate the length I

and molecular weight M, of a repeat unit to be I = 6.4nm and Mo = 880.

The persistence length of mucin has been estimated by Round et al for ocular mucins as approx-

imately 1P = 36nm [58]. From this result, we obtain an estimate for the Kuhn length between

adjacent beads in the chain as

bk - 2l- 72nm.

Additionally, from the definition of the Kuhn length [67]

bk = CO (3.1)
Cos (0)

we can obtain an estimate for the characteristic ratio for MUC5B as Co" ~ 6.53, where 0 is the

carbon-carbon bond angle in the chain back bone 0 = 1090.
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With the characteristic ratio determined, it is possible to evaluate the number of Kuhn steps (or

spring segments in the chain) [67]

MWCos 2 (0)

Nk = Moo (3.2)
Co

Finally, we calculate the finite extensibility of the mucin segment in question by making use of

the equation [18]

jTsin2 (0) MW
b = 3 2(3.3)

where j is the number of carbon-carbon bonds in the repeat unit and v is the Flory exponent,

estimated as v = 0.6 for a good solvent.

With these definitions established, we proceed to the details of the models considered in this work.
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Chapter 4

The FENE-P model

The first attempt made at simulating the behaviour of saliva under CaBER conditions was to

model saliva as a Finitely Extensible Nonlinear Elastic (FENE) fluid. This section outlines the

details of this modelling, and in particular highlights the composite analytic solution that was

developed [73].

4.1 Motivation

Entov and Hinch [22] provide a full numerical solution for the evolution in the radius of a fila-

ment of a FENE fluid undergoing uniaxial elongational flow during elastocapillary thinning. The

FENE model for a polymer solution assumes a Newtonian solvent containing a dilute suspension

of polymer chains that are modelled as finitely extensible (with maximum extensibility b) and

non-linearly elastic. To date, CaBER analysis has typically consisted of experimental measure-

ment and comparison with numerical simulations of filament thinning using the FENE model.

Select examples include Liang and Mackley [44], who studied the concentration-dependent relax-

ation times of polyisobutylene (PIB) solutions, as well as Anna [2, 3] and Clasen and coworkers

[18], who studied the dynamics of elastocapillary thinning in various concentrations and molecular

weights of polystyrene-based Boger fluids and compared their results with numerical simulations

of the FENE model to determine the effective elongational relaxation time.

45



As a result of the continued interest in capillary thinning rheometry, it would be useful to have

an analytic solution that gives the finite time to breakup and describes the evolution in the mid-

filament radius R(t) as one varies the concentration, molecular weight, or solvent viscosity of a

polymer solution. Recently, Torres and coworkers [66] developed an exact implicit analytic solu-

tion for the finite time to breakup and time evolution of the radius for a Giesekus fluid undergoing

capillary-driven thinning. They studied semi-dilute and concentrated guar gum solutions, and

because of the very viscous nature of these entangled systems, their analytic model for the forces

acting on the filament was able to neglect the contributions of solvent viscosity with negligible

consequence. Many biological fluids, however, are dilute polymer solutions, and in this concen-

tration regime, the solvent viscosity is known to play an important role in the overall extensional

stress response, particularly at early times [48]. Motivated by these developments, we analyse

the elastocapillary thinning of a filament of a Finitely Extensible Nonlinear Elastic (FENE) fluid,

paying special attention to the different phases of the process including the initial solvent response,

the intermediate elastic regime when the chains are partially stretched, and the ultimate approach

to maximum extensibility as the polymer chains become fully stretched.

We begin by revisiting the derivation of the FENE-P constitutive equation (where the -P indicates

the Peterlin approximation) in several different forms, from which we derive an analytic expression

for the time evolution of the mid-filament radius R(t). Using this result, we can then determine the

finite time to breakup when the polymer stress contribution is considered in isolation of the viscous

solvent response. We subsequently consider the special limit of infinite extensibility, and show via

comparison with the corresponding result from Entov and Hinch [22] how the solvent viscosity

must be explicitly accounted for. We ultimately present a composite analytic solution, which

incorporates both an initial viscous-dominated phase and a later polymer-dominated phase. We

explore the level of extensional strain at which the transition from a viscocapillary to elastocapillary

balance occurs. For real fluids, the viscous phase can be followed by either an intermediate elastic

phase or by transition directly to the fully stretched FENE phase depending on the magnitude

of the finite chain extensibility b. We conclude by comparing the finite breakup times predicted
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from the numerical and composite analytic results as the molecular extensibility of the chains

varies, and show how these predictions compare with those from Entov and Hinch [22] when the

extensibility parameter b becomes very large.

4.2 Definitions and derivations

In what follows, we consider a cylindrical filament of initial radius RO, consisting of a dilute poly-

mer solution with solvent viscosity r, surface tension -, at temperature T, containing polymer

chains of number density n and molecular weight Mw. The polymer chains are modelled as finitely

extensible dumbbells with spring constant H, and fully stretched chain length Qo. The finite ex-

tensibility parameter, related to the ratio between the fully stretched length and equilibrium coil

size, is defined as b = _ HQ= , where k is the Boltzmann constant and (Q 2 )eq is the equilib-sie(sdfnda Q
2

)eq -kT q

rium mean square size of the chain. The characteristic relaxation time of the dumbbell is defined

as AH = , where ( is the Langevin friction coefficient of the beads [12].

In real solutions, the finite extensibility parameter and the relaxation time are related to the

molecular weight and the solvent quality through scalings of the form b ~ M1-", and AH ~ MW"

respectively, where v, the excluded volume coefficient characterizing the quality of the solvent,

is in the range 0.5 < v < 0.6 [18]. However, for what follows in this work, in keeping with the

approach of Entov and Hinch [22], we treat the relaxation time AH and the finite extensibility

parameter b as independent variables. Later work will focus on reconciling these parameters with

changes in actual molecular structure of the polymer chains, e.g. due to oxidative or mechanical

degradation.

4.2.1 Derivation of the Bird form of the FENE-P constitutive equation

We begin by deriving the FENE-P constitutive equation as is detailed in [12] by Bird et al. The

force in a FENE dumbbell as a function of the dumbbell stretch is given by
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F HQ
Q2

(4.1)

where Q is the connector vector (of magnitude Q) between the two ends of the dumbbell of max-

imum extension Qo.

The Kramer's expression for the polymer contribution to the stress tensor can then be written as

rT -n (QF) + nkTb = -nH QQ
Q 2 ) + nkT6,

where (.) indicates an ensemble average over all dumbbells.

In order to find a closed form solution to this equation, Peterlin suggested the use of the approxi-

mation ( KQ)) [53], from which we arrive at the final form of the Kramer's polymer stress

tensor equation

TP = -nH + nkT6. (4.3)

Similarly, the Giesekus expression for the polymer stress tensor for Hookean dumbbells is given

by

rp = n (QQ)(1) (4.4)
4

where the subscript (1) denotes the upper convected derivative of the tensor, defined in [12] for a

representative tensor r as

DT(D) = -r -{(Vv)T - r + r - (Vv)}
Dt

(4.5)

where v is the velocity vector.

To develop a closed-form expression for the stress tensor, we need to eliminate the microscopic
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variable (QQ) and its invariants such as tr(QQ), where by definition tr(QQ) -- (Q 2 ). Taking the

trace of Eq. (4.3), it can readily be shown after some algebraic manipulation that we can rewrite

the FENE term in the form of a new parameter, f:

1 =f 1 +-3 1 . (4.6)
2 b 3nkT

Using this new parameter, we can rewrite the Kramers stress tensor in Eq. (4.3) as

7, = -nHf (QQ) + nkT6. (4.7)

Finally, by taking the upper convected derivative of Eq. (4.7) and combining it with the Giesekus

expression in Eq. (4.4), the constitutive relation for the stress tensor in a dilute suspension of

FENE-P dumbbells can be found to be

fr-p + AHrp(1) - AH [rp - nkT D = nKf TAH Y. (4.8)

where -,r is the polymer stress tensor, f is the FENE term defined as

f = 1+-3 (1- _ (4.9)
b 3nkT '

' is the symmetric rate of strain tensor and 6 is the unit tensor. This is the form considered by

Bird et al [11] which we later use to derive our analytic result.

The dynamics of the problem as well as the governing force balance are specified by assuming a

time-varying and axisymmetric uniaxial elongational flow (Vr = -- e(t)r, v, = e(t)z) in a cylindrical

filament of radius R(t), from which it follows that the time-varying strain rate is given by

e(t) = .2(4.10)
R dt

Combining the force balances in the radial and axial directions, we can eliminate the unknown

pressure inside the thinning filament and obtain the following force balance in which the capillary
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stress is balanced by a combination of the viscous extensional stress difference and the polymer

stress difference:

0-
= 3r1s - (Tzz - Trr). (4.11)R

Eqs. (4.8)-(4.11) yield a closed set of equations which can be solved simultaneously in order to

obtain the time evolution of the various experimentally observable variables of the problem such

as the mid-filament radius R(t).

4.2.2 Derivation of the Entov and Hinch form of the FENE-P consti-

tutive equation

Additional physical insight can be gained if we express these equations in terms of the microstruc-

tural deformation tensor A, as is done by Entov and Hinch [22], instead of the polymer stress

tensor rP, . The dimensionless tensor A is related to the ensemble average of the second moment

tensor, (QQ) through A = where Q is the connector vector (of magnitude Q) between the
3

two ends of the dumbbell, and (.) indicates an ensemble average over all dumbbells. As previously

stated, the equilibrium coil size is related to the fully stretched coil length through Q2 =

[18]. The polymer stress is related to the microstructural deformation through the expression

-nkT(f A - 6), where using this notation, the FENE term f can be expressed as

f = f(tr(A)) = . (4.12)
1 - b

Note that since b is generally quite large, we will make the approximation for all that follows that

(b + 3) ~ b. Finally, in order to simplify the calculations to follow, we introduce the parameters

B = , and G = nkT.

By re-expressing the constitutive relation derived in the previous section using this notation, we

obtain two ordinary differential equations for the radial and axial microstructural deformations
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1
22 2MA2 - (f A2 - 1) (4.13)

AH

Arr = Arr - 1 (f Arr - 1). (4.14)

In order to form a closed set of equations, we once again combine these evolution equations for

the dumbbell stretch with the kinematic expression for the strain rate e given in Eq.(4.10) and

the force balance from Eq.(4.11) expressed in terms of the microstructural deformation tensor:

-= 3re + nkTf (A22 - Ar,). (4.15)
R

In the numerical sections of the work to follow, the coupled system of equations (Eqs. (4.13)-

(4.15) in combination with Eq. (4.10)) is solved using the Matlab integration routine odei5s

with real and absolute tolerances of 10-4 in order to obtain convergent numerical integrations of

the complete equation set. The solution of the full system of equations is treated as a reference

or 'exact' solution. However, we show in the following section that with a couple of additional

simplifications, an analytic solution for the capillary thinning of a solution of FENE dumbbells

can also be obtained.

4.3 Analytic solution

Numerical simulations suggest that after an initial phase in which the solvent viscosity is impor-

tant (and which we consider in detail later in Section 4.5), the capillary pressure becomes nearly

entirely balanced by the axial contribution to the polymer stress in the thinning and elongating

filament. In this regime, it is justified to make two additional assumptions in order to simplify

the problem further: firstly, that the radial and tangential contributions to the stress tensor are

negligible; and secondly that the viscous extensional stress difference is negligible.

From Eq. (4.11), the approximate force balance becomes
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r z ~ -g(4.16)

Substituting this result, as well as that for the strain rate e(t) given in Eq. (4.10) into the

constitutive equation given in Eq. (4.8) yields an ordinary differential equation for the midpoint

radius R in terms of time t only.

dR ( 3- + (a + _GB_ + 4G) 1 + ( +41
dt R R 3GR(B+1)+Bu or AH 3GR

At this point, it is useful to define some non-dimensional numbers in order to further simplify

the equations to follow. We introduce a non-dimensional radius, = 11, a non-dimensional time,

A 
= , and an elastocapillary number, E, = GR, which is the ratio between the elastic modulus

G =nkT of the dilute suspension of dumbbells and the initial capillary pressure --. Following [22],

we also introduce a final non-dimensional parameter to scale the relative magnitude of the solvent

viscosity, S = - 8, which we discuss in detail further below. Typical ranges of these parame-

ters for biological fluids are rI, ~ 1- 100 mPa s, AH 1- 1000 ms, E, ~ 0.001-1 [61], and S > 1.

Eq. (4.17) can be solved analytically, and using the initial condition that at non-dimensional time

r = 0 the non-dimensional radius is ( 1, we obtain an implicit solution for the evolution of the

radius with time, given by

1 1 () 3nl1 + Ec(b+ 3) 4 E(b 3 ) (b+ 3)2
1 + Ec(b + 3) 1+ Ec(b + 3)) 1 + Ec(b + 3) (b + 2) b(b + 2 )T.

(4.18)

In Figure 4-1, we plot the evolution of the nondimensional radius against the nondimensional time

for various values of the finite extensibility parameter, b. In keeping with the choice of Entov

and Hinch, the elastocapillary number is taken to be E, = 0.001 [22]. The effect of increasing b

is clearly to slow down the thinning of the filament and delay the time to breakup. When b is

small, the polymer chains reach their fully stretched length relatively early in the thinning process.

At this point, the viscosity of the FENE fluid essentially becomes constant at a high value corre-
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sponding to the steady state extensional viscosity, and the radius decays linearly in time. However,

when b becomes sufficiently large, the chains continue to be able to stretch elastically and resist

the increasing capillary pressure for progressively longer filament thinning times before reaching

their finite extensibility limit. In the limit of b -+ oo, finite extensibility effects are never felt, and

the Oldroyd-B solution corresponding to an exponential decrease in the radius is recovered. This

limit will be explored in detail in the next section.

100

10-1

II

102

0 2 4 6 8 10 12 14 16 18 20
t

AH

Figure 4-1: Evolution of the non-dimensional radius versus non-dimensional time T for various
values of the finite extensibility parameter b with an elastocapillary number E, = 0.001 and S = 0.

Perhaps the most useful outcome of this solution is the ability to obtain an exact analytic result

for the finite time to breakup of the filament, tbreak. By substituting ( = 0 into Eq. (4.18), we

obtain the following expression

tbreak Tbreak b(b + 2) Ec(b+ 3) +'1+ EA(b + 3)( 3))
AH (b + 3)2 (1 + Ec(b + 3) (b + 2))

(4.19)
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This result allows us to quantify an important experimentally observable property for a thinning

thread of a complex fluid, the finite time to breakup, using only two non-dimensional microstruc-

tural parameters; the molecular extensibility b of the chain and the elastocapillary number Ec.

As b -+ oc, the breakup time diverges because the chains can stretch indefinitely. This limit of

infinite extensibility is considered in the next section.

4.4 Limit of infinite extensibility (b -+ c)

In the limit of infinite extensibility of the chains, b -÷ oc

of the non-dimensional radius reduces to

(or B = 0), Eq. (4.18) for the evolution

3 ln( ) + 4Ec( - 1) = -T. (4.20)

At early times, when the mid-filament radius is still close to RO, can be written as = 1 - J,

where 6 << 1. Substituting this expression into Eq. (4.20) and expanding the logarithmic term,

we see that the radius initially evolves linearly in time as

TC ~ 1 -- .c
3 +4Ej

(4.21)

At later times, as -+ 0, the logarithmic term dominates and Eq. (4.20) predicts that the radius

decays exponentially as

= e4
E/3 e-'/3 (4.22)
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Figure 4-2: Effect of the elastocapillary number E, on the evolution of the non-dimensional radius

as a function of the non-dimensional time T, for the infinite extensibility limit of b -+ oc. The
linear limit given in Eq. (4.21) is shown by the dotted line, and the later exponential limit in Eq.
(4.22) is shown by the dashed line.

Entov and Hinch also present an analytic result for the radius evolution derived from Eqs. (4.13)-

(4.15) during what they term the 'middle elastic time'; the period following the viscous dominated

regime, when viscous contributions to the extensional stress can be ignored and finite extensibility

effects are negligible. It is evident from Figure 4-1 that when b is small, this period is not neces-

sarily encountered, as finite extensibility effects become important essentially as soon as polymer

stresses become significant enough to play a role in the force balance. This is an important con-

sideration when attempting to extract viscoelastic properties from CaBER experiments for dilute

polymer solutions, as the relaxation time can only be obtained from radius evolution data if the

exponential decay regime characteristic of elastocapillary thinning is encountered [15, 59, 68]. A

criterion for achieving this exponential elastocapillary balance based on a minimum polymer con-

centration and molecular weight (or extensibility) argument has been discussed by Campo-Deano
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and Clasen [15]. Recently, however, Sachsenheimer et al have shown that good measurements of

the extensional relaxation time can still be obtained from filament sagging measurements and force

calculations using a tilted CABER, even if this exponential thinning regime is not established [59].

We examine the detailed dynamics of this transition to polymer stress dominated thinning later

in this work.

The appropriate analogous period to Entov and Hinch's [22] "middle elastic time" in the present

analytic solution corresponds to late times when b -+ oc, for which the solution to the capillary

thinning equation is given in Eq. (4.22). Following the arguments of Entov and Hinch [22], analysis

of Eq. (4.9) indicates that when finite extensibility effects are negligible, we can take f ~ 1.

Substituting this approximation and Eq. (4.10) along with the assumption that A,, - 1 Azz

into Eq. (4.13), we obtain the following evolution equation

d__ (4dR 1
S-Azz + (4.23)

dt (R dt AHI

which, using the initial condition (R = Ro and t = to), as previously done, yields

Azz = )e-. (4.24)

Under these conditions and the assumption that the radial and tangential contributions to the

polymer stress are again negligible, the force balance in Eq. (4.15) reduces to an elastocapillary

balance of the form

o-- = GAZZ. (4.25)
R

Finally, combining Eqs. (4.24) and (4.25) yields Entov and Hinch's expression [22] for the non-

dimensional radius evolution during the middle elastic time:

&(EH) = E/3e--/3 = nkTRo /3 exp (-t/ 3AH) (4.26)

This result is clearly inconsistent with what was obtained analytically in Eq. (4.22). For a typ-
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ical value of the elastocapillary number E, = 0.001 at time T = 0, Eq. (4.26) predicts that

-= = 0.1, while Eq. (4.22) predicts that e = ec/3 ~ 1. It is clear then that the assumption

made in deriving our analytic solution in Eq. (4.18) that the solvent viscosity could be neglected

entirely is not true in this parameter range. Indeed, for dilute polymer solutions, there is an initial

period of filament thinning during which the viscous extensional stress dominates over the poly-

mer stress contribution. Results derived from the full numerical solution accurately capture this

initial period (see for example Clasen at al [18]), which explains why, unlike the analytic result,

simulations show that when the middle elastic time begins, the corresponding value of the radius

is R < RO.

This analysis motivates the need for a composite analytic result, in which the analytic solution

derived above for the radius evolution during the polymer stress-dominated capillary thinning

regime is combined with an appropriate short time solution in the early viscous regime. Deter-

mining how to construct this composite analytic result and comparing it with direct numerical

solution of Eqs. (4.13)-(4.15) will be the focus of the remainder of this manuscript.

4.5 Composite analytic result

In order to formulate the composite analytic solution, two remaining items are needed: first, we

must solve for the temporal evolution of the radius during the initial viscous regime, and second,

we must determine the point at which the transition to the polymer stress dominated regime occurs.

At this time, we more formally introduce the final non-dimensional parameter, S - -= 1 ,
T/p GAH'

which gives the ratio between the solvent and polymer contributions to the viscosity, where the

latter is given by r, = GAH. We can also express this ratio in terms of polymer concentration by

writing the zero-shear viscosity in expanded form as 7o = ,(1 + c[17] + ... ) = q, + 77p, where c is the

concentration of polymer chains and [77] is the intrinsic viscosity. It follows that S = !. Since

the coil overlap concentration c* scales as c* then S ~ f* [18]. From this result, it is clear

that in order for the polymer solution to be dilute, which is the case for many biological fluids, we
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require that S > 1, and for the remaining figures, we generally use S = 1 to be consistent with

Entov and Hinch [22]. The solution given in Eqs.(4.18),(4.19) is relevant only in the limit S << 1.

4.5.1 Early viscous regime

Addressing the first item noted above, if S > 1, then early in the thinning process (before the

polymer chains have been sufficiently stretched to begin contributing to resisting the capillary

pressure that drives the thinning filament) the force balance in Eq. (4.11) simplifies to

= 371,. (4.27)
R

Before continuing on to the solution of this equation during the early viscous regime, however, a

more in-depth consideration of the viscocapillary balance in Eq.(4.27) is merited.

Up until this point, all derivations have assumed a perfectly cylindrical filament at all times during

the thinning process. Although this is a reasonably good approximation late in the thinning pro-

cess when polymer stresses are dominant (which is the case that the analytic solution considers),

there is ample evidence that early on during the initial viscous thinning phase, the curvature of

the filament is quite important [49, 21] (though this will not affect the agreement between the

analytic model and numerical simulations since both assume a cylindrical filament). We therefore

introduce the notation of Tripathi and McKinley [49], derived for viscous Newtonian fluids, to ac-

count for the axial filament curvature and enable quantitative agreement between the composite

analytic solution and experimental data.

By assuming a perfectly cylindrical thread of Newtonian fluid attached to infinite reservoirs at

either end, the solution assumes that the net longitudinal stress in the solvent is 0 for all times.

In this limit, the axial tension in the filament arising from surface tension is

Fz(t) = 21ru-Rmid(t ).
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Tripathi and McKinley show that in fact the axial curvature and the resulting viscous longitudinal

stress in the filament is non-zero, and good agreement can be achieved with experimental data by

incorporating a correction factor X(t) such that Fz (t) = X(t) x 27ruRmid (t). Numerical solution

of the similarity solution presented by Papageorgiou for slender viscous threads shows that the

value of X(t) converges to a constant given by X(t) ~ 0.7127 [52]. As such, the modified force

balance during the initial viscous thinning period is found to be

(2X - 1) = 3rqj, (4.28)
R

where it is simple to see that X = 1 recovers the initial cylindrical filament solution [49].

Substituting the expression given in Eq. (4.10) for e into Eq. (4.28) and integrating using the

initial condition R = RO at t = 0, we find the well known result that during the initial viscous

regime, the filament radius decays in a linear fashion given by

(2X - 1)T
1 = --7. (4.29)

6S E,

From this relationship, we can derive the viscous breakup time t, at which a Newtonian filament

(in which the only term opposing the capillary pressure is the viscous extensional stress difference)

would break. To find tc, we set c= 0 in Eq. (4.29), and obtain

6SEcAH 6sRo(.
(2X - 1) -u(2X - 1)

From Eq. (4.10), it follows that the strain rate during the viscous regime is given by

S=, (4.31)
AH(Tc - T)

where Tc = / 6SE)
\H (2X-1)'

Since elastic stretching of the chains starts from equilibrium conditions, during this period finite

extensibility effects are negligible, and so again we take Z = 1. From Eq. (4.13) and the rela-
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tionship for e during the linear viscocapillary period (Eq. (4.31)), we find that the early axial

microstructural deformation is given by

Azz= (TC ) 4 e-r. (4.32)

Figure 4-3 shows the evolution of the axial microstructural deformation Azz (a), the Weissenberg

number Wi = AHe (b), and the FENE parameter f (c) at very early times for various values of

the finite extensibility parameter b. The solid black lines correspond to the numerical simulations,

and the solutions obtained for Azz and e during the initial linear viscous period are shown by the

dashed blue lines. It can be seen that this expression diverges at the viscous breakup time, Tr,

as derived in Eq. (4.30) and shown in Figure 4-3 by the broken (black) line. However, for short

times r <Tc, these expressions provide a very good analytic expression for the evolution in A~z(t)

and e(t) for all values of b (large or small).

The solid dots denote the transition points (T*, A~z) that need to be determined for the composite

analytic solution and their counterparts at identical times for Wi and f. The breakup time for a

Newtonian fluid, Tc, and the transition time , in the limit of infinite extensibility, are shown with

dot-dashed lines. As b is reduced, the level of axial microstructural deformation departs from the

viscocapillary solution increasingly early as a result of the limited extensibility of the constituent

dumbbells and plateaus at A* = b (1 - 1i) ~ b as given in Eq. (4.35). As b becomes very

large, T* approaches the infinite extensibility transition time 4, , and the plateau value of Az

approaches that predicted during the "middle elastic time", A*z,, given in Eq. (4.24) and shown

by the dashed black line. The FENE parameter f behaves in a similar way, beginning at f = 1

when when chains are unstretched,and increasing as time progresses and the strain rate increases.

In the limiting case of b -+ oc, the FENE parameter is f = 1 for all times, as expected. In contrast

to Azz and f, the behaviour of the strain rate is not monotonic, as is detailed in the next section.
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Figure 4-3: Effect of varying the finite extensibility parameter b on the level of axial microstructural
deformation A,, (a), the Weissenberg number Wi (b) and the FENE parameter f (c).

61

102

101

100

10"

103

:t; 102

101

10,

10-
10 2

10,

100

S
1

* 2Wi*
b =150

............ . ............. .

- -

b =3000

Ib 30x106

oo C (c)

b = 300

b =150

zzI I

(a)

2
WT ---

(r*,Wi*) ,r - T

i* =i*AH\
Wi* b= 150

b = 1000
\Ib = 3000

Wi* -+ 2/3 I =30 x 106

(b)



4.5.2 Transition to the polymer stress dominated regime

Now to address the second remaining issue, we note from Figure 4-3 that at some time t* and

radius R* and corresponding value of the polymer stretch A* (where the star superscript denotes

the transition point value of each variable) the extensional stress resulting from the stretching of

the polymer chains becomes comparable in magnitude to the viscous contribution from the solvent.

We determine this transition time by considering the point at which both the viscocapillary and

elastocapillary balances hold simultaneously. The former arises from the early linear viscocapillary

regime and is given by

(4.33)R* (2X - 1)

where Ce* is the strain rate at time V, as determined from Eq. (4.31), e* = __. Simultane-

ously, a new force balance (as given in Eq.(4.15) with only the axial stress term retained) develops

between the capillary pressure and the combined resistance of the viscous and the polymer contri-

butions to the tensile stress. In order to be able to satisfy this new relationship for the same value

of the capillary stress, the strain rate must instantly drop to some new lower value, e* < 4"* (as

seen in Figure 4-3(b)), and equating this force balance with the viscous one from Eq.(4.33) yields

the relationship

3- e* + nkTf*A* . (4.34)
(2X - 1) R* zz

It remains to determine the transition point values of the axial microstructural deformation A*

axial polymer stress Tr*, = -nkTf*A*,, and finite extensibility parameter f*. At the transition

point (t*, R*), the numerical simulations shown in Figure 4-3 as the solid black lines indicate

that the axial microstructural deformation reaches an approximate plateau value. The maximum

deformation the polymer chains can reach is limited by the finite extensibility parameter, b. When

b is small, the chains are nearly fully extended once this plateau occurs and A* b. Clearly,

FENE effects are non-negligible in this regime, and so the force balance derived during the "middle

elastic time" is not valid. As b increases, the chains continue to extend after the linear viscous
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regime ends, but it is evident from Figure 4-3 that the time rate of change of A,. is comparatively

very small (in dimesionless terms because of the large elastic stress difference that arises for finitely

extensible chains). Therefore, at the transition point, we make the approximation that Azz ~ 0,

which from Eq. (4.13) yields that f* ~ 2Wi*, where Wi* is the Weissenberg number at this

transition, defined as Wi* = AH-*. From the definition of f (Eq. (4.9)) we obtain

1
A* = b 1- . (4.35)

zz 2Wi*

By substituting the expression for A*z given in Eq.(4.35) and the expression for e&* derived above

into Eq.(4.34) we obtain the final result for the crossover force balance

2 u3 1 ~ - ~ 37,s* + 2GAHW 1 - (4.36)
AH(T, - 7-)(2X - 1) R* 2Wi*

Both the solvent contribution and the FENE contribution from the extended polymer chains are

therefore viscous in character (i.e. they scale linearly with e*). For all that follows, we take

X = 1 for simplicity, and drop the factor of (2X - 1) from the initial viscous solution, although

retention of this factor or substitution of X = 0.7127 from the Papageorgiou similarity solution

would neither be difficult nor would it alter the nature of the analysis to follow. Solving Eq.(4.36)

yields a first relationship between the rate of strain at the crossover e* and the crossover time -r*

2 Gb

e AH(T1c7-rr*) 37s (4.37)
1 + 2GbA H

The second relationship is found from the fact that at the transition point, the axial microstructural

deformation is constant in both regimes on either side of the 'pinch'. In other words, because

Az, ~ 0 we have at V that

T dd e =hA* ybie- ef.(4.38)
TC - T* zz 2W i*

This yields a second equation for * in terms of r*,
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* (1 1 - C4 .3
-2 AH b Tc- - (439

Finally, we solve for the crossover or transition time T* by equating Eqs. (4.37) and (4.39) to

obtain, in non-dimensional form, the following implicit expression for r*:

1 er* ( 4 1 2 +b
1 - 14 Wi* = r-r . (4.40)

2 b I ) -Wr* + (4

From this expression, T* can be solved for numerically, and the result is then used to compute the

modified strain rate e* and the plateau value of the various other parameters such as f* and Wi*.

The dimensionless radius at the transition point, *, is found from substituting this result for r*

into Eq. (4.29).

It is important to note that when b approaches the limit of infinite extensibility (b -+ oc), FENE

effects and the viscous contribution to the total extensional stress are indeed negligible during

this elastocapillary period, and at the end of the viscous regime the solution does transition to

the "middle elastic time" defined by Entov and Hinch [22] and in Section 4.2.2. In Eq. (4.26), we

derived an explicit result for the rate of radius evolution in this regime. We can therefore combine

this result with the linear evolution of the filament radius (Eq. (4.29) here with X = 1) expected

in the initial viscocapillary regime in order to determine the transition time * =*/ZH in the

limit of infinite extensibility

1 - =E 1/3 e- 3. (4.41)
6SEc

The value of the filament radius at the transition point (denoted R* ), follows from either equation

((4.26) or (4.29)). Since the "middle elastic time" is simply a special case of the early FENE period

with f = 1 and * sufficiently small that the viscous extensional stress is negligible, as b -+ oc the

two transition points converge with

lim (t*, R*) -+ (t*, R). (4.42)
b-0oo
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The plateau value for the microstructural deformation in the limit of b -+ oc can also be derived

by combining Eqs. (4.24) and (4.26), which are both valid during the "middle elastic time", to

obtain

A*, E- 4/3eT/3. (4.43)

Although in general we must solve for this crossover time r* given in Eq.(4.40) numerically, in

certain limits an analytic expression can be obtained. If we consider S to be of order unity,

then the non-dimensional transition time r* is very small (typically on the order of 10-3) and

the exponential term in Eq. (4.40) can be approximated as unity. In the limit of large finite

extensibility parameter b, a Taylor expansion of Eq.(4.40) then gives

I* ~ TC(1 - E'/3) (4.44)

It is simple to see that this analytic result for the case of b -+ oc is in agreement with the solution

obtained for the "middle elastic time" (Eq. (4.41)) for the limit of -r* = -*/3XH + 0.

Finally, we summarize the steps required in order to construct the composite analytic solution,

and then plot and compare this result with the numerical solution. We first obtain the transi-

tion time for crossover from a viscocapillary to elastocapillary balance T* by solving Eq. (4.40)

numerically, where for T < T*, the radius evolution is given by the linear viscous result from Eq.

(4.29). For times T > T*, the mid-filament radius evolution (T) is given by the analytic result

in Eq. (4.18), although the initial radius is no longer RO since there has already been capillary

thinning during the initial linear viscocapillary regime. We account for this by defining a new ef-

fective elastocapillary number E,*, which reflects the fact that the elastocapillary thinning period

actually begins with a smaller effective initial mid-filament radius, R* than the initial plate radius

RO. We obtain this new radius by numerically solving Eq. (4.18) for the value of E* that permits

the analytic solution to pass through the point (T*, *). We can then calculate the effective initial

radius R* through the rescaling E* = Ec R. Finally, with this effective elastocapillary number,
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we can obtain an exact analytic expression for the finite time to breakup of the filament (which

has taken account of the initial importance of the viscosity of the solvent at early times using Eq.

(4.19)).

In Figure 4-4, we plot the evolution of the non-dimensional radius as a function of the non-

dimensional time r for the numerical, analytic, and composite analytic solutions with Ec = 0.01

and a reasonably large value of the finite extensibility parameter, b = 3 x 104, for three different

values of the non-dimensional solvent viscosity, S. The analytic elastocapillary solution from Eq.

(4.18), shown by the dashed-dotted black line, clearly overpredicts the full numerical result on ac-

count of its neglect of the initial period of rapid viscocapillary thinning. The inset shows how the

composite analytic solution is created, as summarized above. We begin with the linear viscocap-

illary balance (from Eq. (4.29)), shown by the dotted line for each value of S, which matches the

corresponding numerical result very well at early times T < r*. At the transition point, denoted

(T*, *), (and shown by a large star in the inset figure), we reinitialize our analytic elastocapil-

lary result, defined with a new effective radius R* (or equivalently a new elastocapillary number

E*), and depicted by a solid line. The reinitialized form of Eq.(4.19) then can be used to find

Tbreak. Especially for small and moderate values of S, the composite analytic result matches the

numerical solution nearly exactly for the entire thinning process, as can be seen in the main graph.

Clearly, the effect of increasing the non-dimensional solvent viscosity ratio S is to delay the tran-

sition time at which the thinning becomes dominated by elastic polymer stresses as opposed to

viscous extensional ones. We note that S is increased by increasing the solvent viscosity qr.s, and

that a delay in the transition time is associated with a decreased value in the filament radius

R* at which the transition ultimately occurs. This can clearly be seen in the inset of Figure

4-4. As the solvent viscosity is increased from S = 1 -+ 10, the viscous extensional stress grows

correspondingly as well, and so the polymer chains must be stretched more and more before the

polymer stresses become significant components of the total force balance. It follows that the finite

time to breakup also increases with S (for fixed values of AH and b), although for the parameter
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Figure 4-4: Comparison of the numerical, analytic, and composite analytic results for the evolution

of the non-dimensional radius as a function of the non-dimensional time 'r for Ec = 0.01,
b = 3 x 104 , and three different values of the non-dimensional viscosity S =77 17/0,. The red curve
denotes S = 1, the blue curve denotes S = 3, and the green curve denotes S = 10. The composite

analytic result, composed of the linear viscous result and the analytic result from Eq. (4.18)

adjusted for the new effective initial radius RO*, matches the full numerical solution very well. The

analytic result from Eq. (4.18) overpredicts the radius due to its neglect of the solvent viscosity

which dominates the initial rapid stretching phase. The inset shows that the solvent viscosity ratio

S affects the solution only at very early times. The principal effect being to delay the transition

point (lr*, *), denoted by a star, as a result of the polymer stresses being comparatively smaller

for longer times. However, once elastic stresses dominate, the value of S becomes irrelevant.
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range chosen in Figure 4-5 the overall effect is rather small. From Eq. (4.26), it is clear that

the effect of increasing the elastocapillary number Ec, either by increasing the initial radius RO,

the temperature T, or chain density n, or decreasing the surface tension of the solution a-, is to

increase the radius at the transition point R*, which implies an earlier transition to the elasto-

capillary thinning regime. As a result, the effect is also to increase the time to breakup of the

filament, since more of the thinning process occurs at the relatively lower exponential thinning

rate of the elastocapillary regime as opposed to the initial rapid linear thinning rate that results

from a viscocapillary balance.

4.6 Analytic expression for the breakup time

The use of the new effective initial radius for the elastocapillary balance R* and a corresponding

effective elastocapillary number Ec* in order to account for the initial viscous thinning period al-

lows us to solve for the finite time to breakup of the filament analytically using Eq. (4.19).

In Figure 4-5, this breakup time is plotted as a function of the finite extensibility parameter b for

both our composite analytic result (solid line) and the numerical solution of Eqs. (4.10) and (4.13)

-(4.15) (filled points). For the purposes of numerical computation, the breakup time is chosen to

correspond to the time at which * _ 10-4. It can be seen that the two results match very well

over the whole range of values of b considered.
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Figure 4-5: Comparison of the predicted breakup time from the numerical and composite analytic
solutions, as a function of the finite extensibility parameter b. The elastocapillary number is taken
to be E, = 0.001 and the non-dimensional viscosity is taken to be S = 1 in order to provide
comparison with the results presented by Entov and Hinch [22]. The two results agree very well,
and converge to the limiting analytic result when the finite extensibility parameter approaches
infinity.

Entov and Hinch [22] present an analytic result for the breakup time at large b (for a simplified

case of their model in which the fluid is assumed to have a single relaxation time) given by

T j -+ 3 In )+ 4 n(Ec) + 3. (4.45)

They state that this equation overpredicts the results that they obtain from their full numerical

solution rather significantly [22]. By using the solution for the breakup time given in Eq. (4.19),it

can readily be shown that in the limit of b -+ oc, Eq. (4.19) becomes

Tbreak - 31n(b) + 31n(Ec*,) * +4E*, + 1 (4.46)
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where EO*, = Ecg* is the effective rescaled elastocapillary number in the limit of infinite extensi-

bility that is relevant after crossover to the elastocapillary balance.

This result is plotted as the dotted line in Figure 4-5. At large values of the finite extensibility pa-

rameter corresponding to Vb" > 300, both the composite analytic and numerical solutions converge

to this asymptotic result that is appropriate for very large (but finite) values of the extensibility

parameter. Thus, our result improves on the expression derived by Entov and Hinch [22] (Eq.

(4.45)).

4.7 FENE-P experimental comparison

As validation of the FENE-P model described above, we attempt to describe the CaBER data for

saliva at various ages presented in Section 2.2.3. We estimate the solvent viscosity of saliva to be

77S = 0.003Pas from the shear rheology data in Section 2.2.2 and approximate the surface tension

as o- = 0.06Nm [41]. Furthermore, the concentration of MUC5B in human saliva is approximately

c = 233L [57]. The initial radius RO is taken to be the experimental value of the filament radius

at the strike time (when the plates have reached their final separation height), and the relaxation

time AH is measured from the slope of the experimental curve during the exponential thinning

region. The rest of the parameters are determined by fitting an appropriate value for the molecular

weight MW at each given age. The fit values for the molecular weight MW, and the correspond-

ing values of the finite extensibility parameter b, elastocapillary number Ec, and dimensionless

viscosity S are shown in Table 4.1.
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Time[min] MW[x10 6  ] b Ec S

30 0.12 747.84 0.0505 0.005

60 0.15 894 0.0362 0.00857

120 0.28 1473 0.0199 0.0197

300 0.7 3065.8 0.0057 0.110

660 9 23651.6 368.8 x 10-6 1.948

Table 4.1: FENE-P model parameters for saliva at various ages.

In Figure 4-6, the predictions of the model using the parameters described above are plotted

against the experimental CaBER data for saliva at various ages. Several model defficiencies are

immediately apparent.
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Figure 4-6: Fit of FENE-P model to CaBER data for saliva at different ages.

Firstly, the model predicts a rapid initial viscocapillary dominated drop in the filament radius by
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approximately one order of magnitude before the elastocapillary region begins, which is evidently

not observed in the experimental data. Additionally, this model of a dilute solution of dumbbells

is unable to capture the observed phenomenon seen experimentally of a sudden and dramatic

filament rupture, particularly for younger saliva samples.

Additionally, in order to capture the decreasing breakup time observed with age, it is necessary

to increase the molecular weight in the model. Doing so decreases the number density of polymer

chains n more dramatically than it increases the finite extensibility parameter b, which has the

effect of decreasing the elastocapillary number E, and increasing the dimensionless viscosity S.

Correspondingly, the rapid initial viscocapillary drop is predicted to increase with age, and the time

to breakup shortens. It is not physical to believe that degradation and enzymatic activity would

lead to an increase in the mucin molecular weight, and furthermore, the fit values of molecular

weight are several orders of magnitude lower than those reported in the literature of nearly 200 x

106 [61]. This motivates the development of alternative model systems in the chapters to follow.
M01

4.8 FENE-P model conclusions

In this section we have derived a composite analytic solution that describes the complete time

evolution of the filament radius and the finite time to breakup of a FENE-P fluid filament under-

going elastocapillary thinning. The composite analytic solution consists of an initial viscocapillary

regime characterized by an initial linear decrease in the filament radius (see Eq. (4.29)), followed

by a rapid crossover (or 'pinch point') to an elastocapillary regime dominated by the polymer

stress, for which we have determined an analytic expression for the evolution of the filament ra-

dius (see Eq. (4.18)). The time and radius at which the crossover between the two regimes occurs,

denoted (t*, R*) respectively, can be approximated analytically by considering simultaneous force

balances: during the initial linear regime, it is assumed that the viscous extensional stress alone

balances the capillary force; while in the second regime, both the viscous extensional stress and

the FENE polymer stress are important. By determining this pinch point and rescaling the initial

radius for our analytic elastocapillary balance to be R*, the finite breakup time can be derived
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and is given by Eq. (4.19). We have also noted that in the limit of infinite chain extensibility

(b -+ oc), this transition point converges to values (t* , R* ), which correspond to an alternate

elastocapillary balance in which capillary forces are opposed only by neo-Hookean polymer stresses

(without FENE effects) and the viscous extensional stress is negligible. This corresponds to the

"middle elastic time" regime first considered by Entov and Hinch [22]. We have also shown that

our composite analytic solution matches very well with the full numerical simulations over a wide

range of fluid parameters in terms of both the time evolution of the mid-filament radius R(t)

and the finite time to breakup. Although negligibly small, these simulations do incorporate the

contribution of the radial stresses.

Part of the challenge in determining the composite analytic solution arises from determining the

crossover point (t*, R*) between the initial viscocapillary and (finitely extensible) elastocapillary

balance that develops at later times. Determining this crossover accurately is important for estab-

lishing the characteristic length scale on which elastic effects become important in dilute polymer

solutions. However, as the concentration of dissolved polymer increases (and S decreases), or

as the network forming character of the fluid sample increases, this term becomes progressively

less important. This can be easily observed experimentally by the absence of an initial viscocapil-

lary thinning phase (see for example the filament thinning measurements in [44], [2], [66] and [30]).

Although the FENE-P model can qualitatively capture some of the behaviour observed with

CaBER of saliva, it is severely deficient in many respects. Firstly, it predicts an increase in

MUC5B molecular weight with age as a result of polymer density dominating the mechanics of

the flow, which is unphysical and inconsistent with the hypothesis that enzymatic activity leads to

degradation and shortening of the chains. Furthermore, the model predicts a rapid initial visco-

capillary decrease in the filament radius, and smooth decrease to breakup, which is not observed

experimentally.

Both of these deficiencies suggest that modeling saliva as a dilute polymer solution may not be
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ideal. Upon examination of Figure 2-2, further thought suggests that perhaps the network forming

properties of the large mucins cannot be neglected in the development of a molecular model. As

such, a subsequent model, the Rolie-Poly-FENE-P model based off of the Rolie-Poly model created

by Graham et al [45, 50] was developed.
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Chapter 5

The Rolie-Poly-FENE-P model

5.1 Brief overview of the rheology of entangled polymers

Graham, Likhtman et al have developed a model for fast flows of entangled polymer melts which

they term the Rolie-Poly (Rouse Linear Entangled Polymers) Model [45, 50]. In contrast to the

FENE-P model developed previously, in which the time rate of change of the microstructural

deformation tensor A depended only on the flow and the FENE term related to chain stretching

(see Equations (4.13) and (4.14)), the Rolie-Poly model accounts for the processes of reptation,

constraint release, chain stretch, and contour length fluctuations in addition to the external flow.

Before considering the governing equations, it is useful to consider what these various terms mean

physically. Consider Figure 5-1 below taken from Larson [42]. In Figure 5-1 A, a sketch of a

random entangled polymer network is shown, with one chain bolded for clarity. As originally

theorized by de Gennes in 1971 [19], the surrounding polymers effectively confine the chain in

question to move within a tube, and this idea is shown in Figure 5-1 B. The segments of the tube

are modelled as a random walk, with each step size, or tube segment, equivalent in size to the

tube diameter [42, 19]. The tube contour length is known as the primitive path, and this length

is much less than the total length of the polymer chain [42, 19].
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Figure 5-1: A: Sketch of an entangled polymer network. B: The surrounding polymers confine the
chain in question to a 'tube'. Images taken from [42]

In an entangled network, each entanglement segment is characterized by an entanglement relax-

ation time Ae. When subjected to an external flow, the relaxation process of chain retraction in

response to being stretched, also considered in the FENE-P model, occurs on the time-scale of the

Rouse time, AR [45]. By definition, the Rouse time is related to the entanglement relaxation time

by

AR =2

where z is the number of entanglement segments in one chain. As a result of the entanglements,

however, there are additional relaxation mechanisms to consider other than chain retraction, as

shown in Figure 5-2 from Larson [42].

LA

C

A0

46

A

0

0

0 B

Figure 5-2: Illustration of the mechanisms of reptation (A), constraint release (B), and fluctuta-
tions of the primitive path length (C)

The first additional mechanism to consider is that of reptation. As developed by de Gennes,

reptation is the notion that a chain can migrate out of its confining tube as a result of thermal
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motion and reorient [42, 19]. This occurs over a time-scale known as the reptation time, defined

as

AD = 3z 3Ae.

A schematic of this process is shown in Figure 5-2 A. Furthermore, since all of the polymers in

the network are reptating, then during the reptation time of one chain, the constraints that are

confining it to its original tube are changing. As constraints are relaxed, the tube and chain are

able to take on new configurations and reorient [42]. This process, known as constraint release, is

illustrated in Figure 5-2 B. A final mechanism to consider is that of primitive path fluctuations,

shown in Figure 5-2 C. This process occurs when one end of the polymer chain is tethered, say to

a polymer branch point [42, 19]. This tethering does not allow the chain to reptate, but instead

the free end of the chain can relax away from the end of the tube, releasing those constraints on

its configuration [42].

With these concepts defined, it is now possible to derive the full Rolie-Poly Equations as done in

[45].

5.2 Rolie-Poly equations derivation

Analogously to Equations (4.13) and (4.14), the governing equation for the time rate of change of

the polymer microstructural deformation A for the Rolie-Poly model is given by

dA = (Vv) - A + AD (VV)T -- D - I) - fretr(trA)A - fccr(trA)(A - I), (5.1)(Vv AAD.(vT _ -I

where fretr is the function describing chain retraction, fccr is the function describing constraint

release, and I is the identity matrix [45].

In the limit of small stretch (tr(A) - 3 < 1), Likhtman et al [45] show that the retraction and
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constraint release terms can be expressed as

fretr(trA) = 2(tr(A) - 3)
AR

and

fccr(trA) - 2#(tr(A) - 3)
AR

where # is the CCR coefficient originally introduced by Marrucci [46] and generally taken to be

/ = 0.5 [45]. Similarly, in the large stretch limit (tr(A) - 3 > 1),

fretr(trA) = 2
AR

and

2/ 3 ) 2

fee(trA) AR

By interpolating between the small and the large stretch regimes, Likhtman et al arrive at the

general Rolie-Poly constitutive equation

1 2 1_ A) 2 1 3) tr(A) '
A(,) = AD (A-I R A R 0 3 (A - I), (5.2)

where again the subscript (1) denotes the upper convected derivative and 6 is a negative power

obtained by a fit to their full theory, generally chosen to be 6 = -0.5 [45].

This constitutive equation is applicable for both large and small chain stretch. However, exam-

ination of Figure 4-3 A shows that the large stretch criterion of tr(A) - 3 > 1 is satisfied for

essentially all times during the flow. As such, we can derive a simplified form of the Rolie-Poly-

FENE-P equations which retains only the large stretch limiting forms of frer and fcc, namely
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A(,) = (A - I) - +A - 2/3 (A - I). (5.3)
AD AR AR

At this point, the dynamics of the network have been accounted for, but there is no inclusion

of any finite extensibility effects of the polymer chains. Likhtman et al suggest that this could

be included by modifying the Rouse time scale AR in order for it to depend on the amount of

stretch in the chain [45]. Physically, when the chain is unstretched, the retraction time scale

should be undisturbed and equal to the Rouse time AR. Conversely as the chain becomes very

stretched, similar to pulling a spring towards its maximum extension, the retraction time-scale

should decrease until AR - 0 when the finite extensibility of the chain is reached. In other words,

we seek a solution of the form

AR -+ AR x func (1 - tr(A)b

so that when
tr(A) «1, AR -+ AR

b

and when

>tr(A) 1, AR - 0-
b

In order to choose the exact functional form for the effective Rouse time, we require that in the

limit of no entanglements, or equivalently only one entanglement segment (z = 1), the FENE-P

form of the constitutive equation be recovered. Comparison of Equations (5.5) and (4.13) in the

limit of large stretch (A > I) reveals, as expected, that the reptation and constraint release terms

are not encountered in the FENE-P equation. In the limit of z = 1, we can ignore those two terms,

as we have eliminated interactions with other chains in this limit.

With these terms eliminated then, comparison of Equations (5.5) and (4.13) reveals that the

functional form chosen should be
2

AR - AR-
f
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where f is the FENE parameter defined in Equation (4.12) as

f = f(tr(A)) 1 .
1 tr(A)

b

Substituting this result into the complete Rolie-Poly constitutive equation ((5.2)) yields the com-

plete Rolie-Poly-FENE-P constitutive equation

1 (1 ~7Af) -f (AA 6
AM - )) tr (A) (A - I), (5.4)

and similarly substituting into the simplified Rolie-Poly constitutive equation in the limit of large

stretch (5.3) yields the simplified Rolie-Poly-FENE-P constitutive equation

1 f tr(A)

A(,) = (A -I) - IA - (A - I). (5.5)
AD AR AR

It should be noted that Kabanemi and Hetu have discussed a similar method for inclusion of finite

extensibility for FENE-CR springs in the Rolie-Poly model [36]. Although they arrive at a slightly

different functional form for the effective Rouse time AR, the overall principles are very similar.

With these new constitutive equations and the governing equation of the flow, CaBER simulations

of the Rolie-Poly-FENE-P fluid can be performed exactly as was done in Section 4. The only sub-

tlety to note is the slight change in the dependence of the relationship between the polymer stress

Ir, and the microstructural deformation A. Because the Rolie-Poly-FENE-P model considers the

stretch of a polymer entanglement segment and not an entire chain, the density term n effectively

becomes

ne = zn

in order to denote the entanglement segment density as opposed to the chain density. Correspond-
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ingly, the appropriate elastic modulus to use when calculating the polymer stresses is

Ge = zG

We can also consider the analogous Rolie-Poly-FENE-P "middle elastic regime" (f - 1 and

A > I) to that derived in Section 4.4 for the FENE-P model in order to obtain a relationship

between the relaxation time predicted by the FENE-P fluid and measured directly from CaBER

experiments, AH, and the entanglement relaxation time A,. In order to compare Equations (5.5)

and (4.23), it is once again required that constraint release be "turned off' by setting #3 = 0. Ye et

al [75] and van Meerveld [70] have shown that although constraint release is important in weaker

extensional flows where Afl,, < AD, it is generally not a significant component of chain relaxation

for stronger extensional flows such as those found in CaBER. This appears to be reasonable: if the

chains are not able to reptate within the time scale of the flow, then there is no real mechanism

for releasing constraints on the tube configuration.

Reexpressing AH and AR in terms of Ae and using the approximations A - I ~ A and / 0 allows

us to arrive at a "middle elastic regime" form for the Rolie-Poly-FENE-P model, analogous to the

result in Equation (4.23) for the FENE-P mode:

(3z+1 A
Ag) - 3 3 Je (5.6)

which by direct comparison with Equation (4.23) yields that

H - (5.7)
3z+1I

In order to summarize these ideas, the complete Rolie-Poly constitutive equation without finite ex-

tensibility in Equation (5.2) and the complete Rolie-Poly-FENE-P constitutive equation in Equa-

tion (5.4) with b = 1000 are combined with the governing equations of simple elongational flow
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(Vr = -1e(t)r, v = e(t)z) and solved numerically for Ec = 0.001, z = 10, Ae 0.001s, and

various values of the strain rate e. In Figure 5-3, the axial microstructural deformation Az and

the extensional viscosity e = ''zz'T"pr are plotted as a function of the strain rate e.

When the time scale of the flow Af. = is greater than the reptation time AD, the chains have

time to reptate and reorient during the flow and the viscosity initially remains approximately

constant. As the flow time scale Af , becomes smaller than the reptation time AD but still larger

than the Rouse chain relaxation time AR, the chains can no longer reptate and begin to align with

the flow, but are still not noticeably stretched by the flow as they still have time to retract within

their confinement tubes. As a result, the viscosity is seen to decrease. Finally, as A!l, l becomes

shorter AR, the chains are no longer able to retract and begin to be stretched by the flow. The

viscosity correspondingly increases, either indefinitely in the case of no finite extensibility, or until

the chains reach their maximum extension in the case of the Rolie-Poly-FENE-P model, at which

point the the viscosity reaches a final plateau value.

5.3 Parameter definition

In order to be able to model CaBER experiments of saliva or other entangled polymer systems

using the Rolie-Poly-FENE-P theory, it is necessary to go through the derivation for how the var-

ious parameters of the model are derived from the molecular properties of the polymer of interest.

In Figure 5-4, a side-by-side sketch of the systems considered in both the FENE-P and Rolie-

Poly-FENE-P models is presented. In the Rolie-Poly-FENE-P model, we consider an entangled

network of polymer chains of molecular weight MW composed of N repeat units of molecular

weight M and length 1 within a solvent of viscosity 71. Each entanglement segment contains N

repeat units, leading to a total of z = - entanglements or entanglement segments per chain.
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Figure 5-3: Illustration of the extensional viscosity T1e of the Rolie-Poly network during simple

elongational flow with and without finite extensibility as a function of the strain rate e.
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Figure 5-4: Comparison and explanation of the various parameters for the FENE-P and Rolie-
Poly-FENE-P models.

In comparison to the FENE-P model where the polymer chain force F was a function of the

end-to-end vector Q of the entire chain (see Equation (4.1)), we consider instead for the Rolie-

Poly-FENE-P model the force Fe in an entanglement segment as a function of q, the end-to-end

vector between two entanglements. The remainder of the derivations for the polymer stress tensor

rp are identical to the FENE-P model, with the exception that the density term is the entangle-

ment segment density ne as opposed to the chain density n, where ne = zn.

It remains to determine the number of entanglements z and the entanglement relaxation time

Ae for the network in question. Following the definitions of Larson et al [43], the entanglement

molecular weight Me = NeMo is defined as

4 CkBT NA
Me= -4 (5.8)

5 GN

where c is the polymer concentration and GN is the plateau value of the elastic modulus for

the polymer solution. In general, this plateau modulus GN is not as clearly defined as the anal-

ogous one for a polymer melt, GoN, [75], but it can nevertheless be approximated using SAOS data.
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The number of entanglements then follows immediately as

MWz M W (5.9)
Me

The entanglement relaxation time Ae is obtained using Equations (5.7) and (5.9) and from the

system relaxation time AH obtained from CaBER data. The entanglement relaxation time is also

defined as[43]

A _)Me2 ,2s

(,)2 () 2 kBT (5.10)

which allows us to estimate the friction coefficient ( discussed in Section 4.2.

With these parameters defined, we first compare the CaBER predictions of the Rolie-Poly-FENE-

P model with a test system of entangled polyethylene oxide (PEO) solutions taken from Arnolds

et al [4]. We then consider the problem of the degrading saliva network.

5.4 Comparison with experiment

5.4.1 Entangled PEO solutions from Arnolds et al [4]

Arnolds et al [4] investigated the shear and extensional rheology of PEO solutions in the concen-

trated to entangled regimes, which is a very similar system to the one of interest to this thesis of

entangled mucin networks. Consequently, there is excellent shear and extensional rheology data

available in this paper with which to validate the results of the current model. We choose to focus

on the data for the 1 x 106 9 PEO solution at concentrations of 1,2,3, 5wt%.

In keeping with the procedure defined in the previous section, the plateau modulus GN and the

system relaxation time AH are determined respectively from SAOS and CaBER data from [4]. We

furthermore assume an initial radius Ro = 3mm of the plate radius, and use molecular properties

for PEO in water to determine the molecular properties of the solution. Equations (5.8)-(6.4) can
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then be used to determine the remaining parameters for the Rolie-Poly-FENE-P model. Table 5.1

summarizes all of this data for the various runs.

Table 5.1: Rolie-Poly-FENE-P model parameters
trations based off of data from Arnolds et al [4].

for MW = 1 x 1069/mol PEO at various concen-

Arnolds et al report that for MW - 1 x 106g/mol PEO in water, the critical overlap concentration

(above which a solution is no longer defined as semi-dilute) is c* = 0.41wt%, and the critical

entanglement concentration is ce = 2.48wt%. This appears to be quite consistent with the predic-

tions of the model, where we see that the number of entanglements drops to approximately z =1

at c = lwt%. It is clear though from the values of the dimensionless viscosity that none of the

solutions are dilute (S < 1).

In Figure 5-5, CaBER data for MW = 1 x 106g/mol PEO solutions at concentrations of c =

1, 2, 3, 5wt% from Arnolds et al [4] (shown as solid squares) is compared to the predictions of the

Rolie-Poly-FENE-P model (solid lines) using the parameters tabulated in Table 5.1.
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wgt % GN[Pa] Me [MDa] z Ae[ms] AH[ms] b S Ec

5 800 0.131 7.64 0.651 36.5 1028.85 0.00153 9.7

3 150 0.419 2.39 6.87 34.4 2608.98 0.000776 1.92

2 90 0.465 2.15 4.77 19.1 2838.42 0.00187 0.995

1 40 0.523 1.91 2.92 9.1 3118.88 0.00684 0.449
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Figure 5-5: Comparison of CaBER data (solid squares) for MW = 1 X 106 g/moi PEO in water
at various concentrations from Arnold et al (2010) [4] and the FENE-P and Rolie-Poly-FENE-P
models (solid lines). The various model parameters are tabulated in Table 5.1.

Clearly, the data is well captured by the models at all concentrations considered. The dashed lines

drawn are representative of the exponential thinning region predicted during the "middle elastic

regime" and are of the form

(c exp (-H

where AH is obtained from the relationship in Equation (5.7). In Figures 4-2 and 4-4, it was

shown with the FENE-P model that the initial viscocapillary period can be prolonged by either an

increase in relative importance of the solvent viscosity (large S) or an increase in the concentration

of the polymer and hence the elastocapillary number (large Ec). A large elastocapillary number

essentially means that capillary forces remain unimportant in comparison to polymer stresses

for longer times, delaying the onset of the elastocapillary regime. Initially with c = 5wt%, the

elastocapillary number E, = 9.7 is large as a result of the high polymer concentration and S =
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1.53 x 10-3 is very small, reflecting the relative importance of polymer over solvent viscosity. This

large E, effect outweighs the effect of the small value of S and the initial viscocapillary region is

indeed very prolonged. As the polymer concentration is decreased, E, decreases and S increases (as

seen in Table 5.1). This is demonstrated by an increasingly short viscocapillary regime. Eventually

at c = lwt%, closer to the concentration limit c* and below the entanglement limit ce, E, = 0.49

and S = 0.0068. Since the value of b is still relatively small (b = 3118.8) and the relaxation

time AH is on the order of only a few milliseconds, there is no significant "middle elastic time"

region observed. However, the trend of rapid initial viscous decay followed by polymer dominated

thinning as seen in Figure 4-4 is recovered.

5.4.2 Saliva at various ages

The problem of determining the parameters for the Rolie-Poly-FENE-P model for saliva is slightly

more challenging than for the test model of PEO because of the process of degradation. As a re-

sult, it was assumed that the molecular weight of the mucin MW as well as the plateau modulus

GN were time dependent.

Esser et al [23] present data on the protein profiles of saliva after 0, 0.5, 1 and 4 hours. Using a

combination of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) fraction-

ation of saliva proteins and liquid chromatography tandem mass spectrometry (LC-MS/MS) to

identify excised bands, they are able to track the degradation of salivary proteins over time [23].

By assuming that the intensity of the reported data for each protein size is directly related to the

quantity of protein present at a given size, an average function can be determined for the decrease

in molecular weight of MUC5B as a function of time.

Analysis of intensity peaks for proteins of a given size from the data in [23] allows us to develop

an estimate for the rate of degradation of MUC5B, or in other words, a time dependent equation

for the mucin molecular weight MW. The obtained result was from examination of protein sized

4610Da in the paper, for which the fit equation yields
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t -0.259

MW(t) = MW 0  -0 , (5.11)
to

where MWO is the initial molecular weight of MUC5B (150 x 106g/moi), to is the time corresponding

to MWO artificially set to 1 minute, and t is the current time.

The plateau value of the elastic modulus GN was treated as a fit parameter in order to obtain a

reasonable estimate for the number of entanglement segments z which yielded results consistent

with the CaBER data. GN was found to decrease with time, and the numerical values appear

largely consistent with the SAOS saliva data presented in Figure 2-3.These values are compiled

in Table 5.2, with the remainder of the Rolie-Poly-FENE-P values calculated using Equations

(5.8)-(6.4)).

Time[min] MW[MDa] GN[Pa] M, [MDa] z AH [ms] b

30 62.16 0.45 1.026 60.57 123 4165.23

60 51.95 0.4 1.155 44.99 91 4576.79

120 43.40 0.38 1.215 35.72 74 4768.51

300 34.24 0.3 1.539 22.24 33 5761.19

660 27.91 0.1 4.618 6.04 24 13874.24

Table 5.2: Sticky Network model parameters for saliva at various ages.

In Figure 5-6, the CaBER data reported earlier in Figure 2-6 is plotted as solid squares with the

Rolie-Poly-FENE-P model (solid lines) for the various values in Table 5.2. It is clear that the

Rolie-Poly-FENE-P performs better than the FENE-P model in terms of reducing the large initial

viscous drop in the filament radius, which is not observed experimentally. The network model ef-

fectively increases the number density of the mucin chains, by considering entanglement segments

as opposed to chains as a whole, which effectively increases the elastocapillary number E, of the

solution. Furthermore, the network interactions and deformation provide greater opposition to
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the imposed capillary stress in contrast to the dilute solution considered in the FENE-P model.

Additionally, through only changing the molecular weight MW of the mucin and adjusting the

plateau modulus GN accordingly, the Rolie-Poly-FENE-P model is indeed able to capture the

trends of decreasing relaxation time AH = 3z3A and breakup time that are observed as the saliva(3z 1)

sample ages. Finally, the "middle elastic time" of the FENE-P model as derived in Equation (5.6)

is indeed recovered by the model, as seen by the exponential region (linear on the log-lin graph)

for the majority of the filament thinning process.
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Figure 5-6: Comparison of the Rolie-Poly-FENE-P model with CaBER data for saliva at various
ages

One trend that is not at all well captured, however, is the very rapid filament decrease and breakup

following the exponential thinning period, observed most noticeably for the younger saliva samples.

Examination of Figure 5-6 reveals that at a certain time during the filament thinning process,

the entire network collapses in a 'glassy' or 'sticky' rupture, leading to a dramatic decrease in
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polymer stresses and rapid breakup of the filament. This sort of behaviour has been previously

in the literature by Haward et al in their studies of cross slot extensional flows of saliva [291.

They observe that the extensional viscosity of saliva begins to decrease at shear rates exceeding

e ~ 1200s- 1 , and suggest that this could be due to rupture of the disulphide bonds forming the

large mucin polymers, and corresponding flow-induced scission of the structures [29].

Therefore, the Rolie-Poly-FENE-P Model accounts for finite extensibility of the polymer chains,

but not for a maximum stress that the chains can endure before they rupture. This concept of a

dynamic strength for molecular bond adhesion has been considered in many different contexts in

the literature. A couple of notable examples can be found in Evans and Ritchie [24], the modeling

of 'glassy' or 'sticky' biological networks by Kroy et al [71, 74, 40], and the modeling of Hagfish

slime by Ewoldt et al [25]. In the next section, we build on the work by Tripathi et al [67] to

develop an analogous Sticky Network model for saliva, and demonstrate that the glassy behaviour

observed in CaBER experiments can indeed be observed by considering associating interactions

between the mucin chains.
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Chapter 6

The Sticky Network Model

6.1 Motivation

The development of a model that can capture the dynamics of a sticky, or associative, network

of polymer chains has applications to a wide variety of fields. In many biological systems, it is

common to have large macromolecular assemblies in an aqueous solution, in which ion-mediated

interactions, hydrogen bonding, protein-protein interactions, etc play a large role in determining

the macroscopic mechanical behaviour of the network. Animal cytoskeletons and plant cell walls

are ubiquitous examples of such systems [71]. Furthermore, the mechanism by which DNA inter-

acts with proteins is highly dependent on interactions with the surrounding tissue network, as well

as much of the process of cell division [40]. There is also precedent for modeling the macroscopic

rheological response of mucus and other bodily fluids by associative network models, as has been

done by Ewoldt et al in their studies of Hagfish slime. The gel-like nature of saliva is known to

be attributed in large part to hydrophobic interactions, calcium-mediated crosslinking, and carbo-

hydrate interactions amongst others between the large mucin chains and their surroundings [61].

As such, it seems reasonable to attempt to extend the concepts of the glassy or sticky network

towards the modeling of saliva.

It is often not possible to describe the mechanics of such systems by considering the dynamics of

the constituent chains alone [24, 40]. This has motivated the development of the Glassy Worm-
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Like Chain model, in which a stickiness parameter is introduced in order to simulate the energy

well that the cross-linked chain segments must overcome in order to be able to dissociate from

the rest of the network [71]. The depth of the energy well is dependent on the type and strength

of interactions in the system and the amount of stretch in the constituent chains: as they are

stretched, the energy well they face becomes more shallow, and the chains are more likely to be

able to dissociate. This is analogous to what is found in soft glasses, where thermally activated

jumping between local traps occurs [71].

In this work, we closely follow the method of Tripathi et al [67], who modeled the shear and

extensional rheological properties of hydrophobically modified ethoxylate-urethane (HEUR) sys-

tems, and extend their analysis to the modeling of the salivary network under simple elongational

flow. HEUR polymers contain both hydrophilic central regions and hydrophobic end groups which

associate with one another to minimize their exposure to the surrounding water [67], introducing

the 'sticky' character to the network. Tripathi et al model this network as temporary, and allow

for destruction and reformation of the network junctions [67]. As such, they consider two network

species able to sustain polymer stresses: bridged chains, which join two separate micelles, and

dangling chains, for which one end is attached to a micelle and the other is free [67].

The approach taken in this section is to combine the entanglement theory presented in Chapter 5

with the sticky or glassy energy framework presented in [67]. We simplify the model presented by

Tripathi et al [67] by considering polymeric stress contributions to accumulate in bridged chains

only. This is also the approach taken by Ewoldt et al in their modeling of Hagfish slime [25].

We make the further simplification that only junction destruction occurs, and do not include a

mechanism for association. This is motivated by the observations of Haward et al in extensional

flows of saliva, who observed a breakdown in the network above a characteristic strain rate [29].

Comparison with saliva CaBER data at the end of the chapter reveals that these provisions for

associations between mucin chains allow for much better agreement with experimental data com-

pared to the previous modeling attempts.
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6.2 Definition of the Sticky Network model parameters

As was done for the Rolie-Poly-FENE-P model, we consider an entangled network of bead-spring-

chain polymers of molecular weight MW. The number of entanglements z and hence the en-

tanglement molecular weight Me is established using the theory outlined in Section 5.3. Each

entanglement segment can be stretched as a result of imposed external flow, and the stress build

up in the chain is related to its finite extensibility parameter b (see Equation (3.3)). The param-

eters of this model are outlined in detail in Chapter 3.

We introduce the concept of associative junctions by considering each entanglement to lie in an

energy well of depth AG. Physically, this energy well represents the network interactions such as

calcium-mediated crosslinks and hydrogen bonds discussed earlier, although in this work we do

not attempt to reconcile from a biological perspective the exact form of AG in relation to these

interactions. The fraction of active chains (meaning those participating in the network, either

dangling or bridged) is denoted by v and depends on the depth of the energy wells through

exp (AG)
(ex=kkT}(6.1)

+ exp ( AG
kBT

where as before, n is the total number density of chains. Clearly, when AG is large compared to

the thermal energy, v ~ n and all entanglement segments are considered active [67]. At any given

time, the subset of elastically active entanglement segments that are bridged, or in other words

can contribute to the accumulation of polymer stresses in the network, is defined as va.

The entanglement segments have a characteristic size on the order of their gyration radius given

by 1C (Nkb), and the entanglements themselves are assumed to lie within micelles of width

rc, which sets the width of the energy activation barrier and is defined as
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rc = lc3 (k Nagg 2 (6.2)

where Nk is the number of Kuhn steps in each entanglement segment (Equation (3.2)), v is the

Flory exponent again taken to be v ~ 0.6, 3 is a fitting parameter taken to be 3 = 0.0077 in

this work, and Nagg is the micelle aggregation number [67]. This value is estimated to lie between

18 - 28 for most micellar systems [67], and was taken to be Nagg = 20 in this work.

The characteristic spacing between micelles is defined as

2

(a) 2  (Na ) . (6.3)

Clearly, the spacing is related to the number density of polymer chains n. When the network

is very dense and n is large, (a)2 < 1,2, and as a result the chains interact with other network

elements before they have a chance to completely relax along their entire length once dissociation

occurs. Although we do not specifically consider associations in this model, this concept will nev-

ertheless be important for defining the network junction dissociation rate M(q, t), where q is the

entanglement end-to-end vector.

The rate at which chains exit the network, or the rate of dissociation, is taken to be a product

of the natural thermal vibration frequency Q (where 10' < Q < 10") and the quasi equilibrium

likelihood of reaching a transition state given the activation barrier, exp (- AG) [67]. Hence

Ae = Q exp -A . (6.4)

With these concepts in place, it is possible to define the system of equations governing the model.

96



6.3 Derivation of the Sticky Network model equations

Following the work of Tripathi et al [67], we define a distribution function Pa to specify the fraction

of bridged chains as a function of chain stretch and time, ie Ta(q, t). 'Pa can also be defined in

terms of the volumetric distribution function Oa through

Iva = VaVi~a

where 'a is normalized by f OadV = 1.

By considering the interactions of the junction points with the flow as done by van den Brule and

Hoogerbrugge [69] and Bird et al [10], the continuity equation for the distribution function can be

found to be

" = --- [(Vv)T - q a] - M(q, t)Pa. (6.5)
Ot Oq

As in the FENE-P model, we introduce the microstructural deformation tensor A, to describe

the stretch in the entanglement segments. Unlike before, A now depends on whether the chain is

bridged or not, and hence

A qqPadV. (6.6)

The force in each entanglement segment Fe is again defined using a non-linear spring equation as

Fe = Hf(A)A, where H is the spring constant (H - 3kBT ) and the FENE-P spring term is given
Nkbk

by
1

f(A) = .
1-tr(A)

b

Multiplying Equation (6.5) by the second moment tensor qq and integrating over configuration

space [67] allows us to arrive at the differential equation governing the evolution of A

(vaA)(1) = -MvaA (6.7)
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where as before, the subscript (1) notes the upper convected derivative defined in Equation (4.5).

The final element required is the expression for the destruction rate term M(q, t). Following

Tripathi et al [67], we can express the destruction rate as

M = g(c, M6)Qexp (k> {AG - j Fe - dq (6.8)

where q is the magnitude of the entanglement end-to-end vector, q = Iql and g is a front factor

term that depends on the entanglement segment concentration c and molecular weight Me. The

idea of the decreasing depth of the energy well as a function of entanglement section stretch is

clearly demonstrated in the form of Equation (6.8). As the end-to-end vector q increases, the

integral of the work term increases, lowering the effective energy barrier term (AG - Work), and

correspondingly increasing the destruction rate M.

Using the definition of Fe as well as the relationship between V/tr(A) - we arrive at an

expression for the destruction rate M

b

tr(A)- ( Nagg )

M(A t) = 9- V:N b

Ae _tr(A)
b

(6.9)

Tripathi et al define g in terms of the equilibrium destruction rate (when tr(A) = 3) and hence

< a >2
g(C, Me) = 1Ic2L 6 .~

b -

1 bJ

All of these concepts are summarized in Figure 6-1.
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Figure 6-1: Physical description of the system considered in the Sticky Network model. The
mucin chains are assumed to be entangled, with the number of entanglements set by the equations
outlined in Chapter 5. Furthermore, ion interactions establish an energy well at each of these
network junctions, the depth of which depends on the amount of stretch A in each entanglement
segment. As the chains become very stretched, the energy well becomes more shallow, and the
likelihood of chain detachment increases.

Finally, by imposing the velocity field for simple elongational flow as was done in Chapter 4, we

arrive at the final form of the governing equations for the Sticky Network model.

The first equation specifies the time rate of change of the fraction of elastically active entangle-

ment segments that are bridged va, the second specifies the evolution of the axial microstructural

deformation A, the third specifies the evolution of the radial microstructural deformation A,,

and the final one specifies the overall constitutive equation for the force balance, as expressed in

Equation (4.15).
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du,"d =-Ma (6.11)
dt

dAz 4 dR=~z -d 2MAZZ (6.12)
dt R dt

d Ar _ 2 d R
dt = dt - 2MArr (6.13)dt R dt

6 dR
R = --- +s vakBTf (Azz - Arr) (6.14)R R dt

where M is given by Equation (6.9), and f is the FENE spring term defined above. The simul-

taneous solution of Equations (6.11)-(6.14) allows for us to solve for the radius evolution in a

CaBER type experiment for the Sticky Network model. The initial conditions are similar to those

imposed with the FENE-P model: initially, the radius is set to RO, there is no stretch in the

chains (A,, = Arr = 1) and the initial fraction of bridged chains is taken to be the total fraction

of elastically active chains (va,o = v).

6.4 Asymptotics analysis

It is of interest to verify whether the 'middle elastic time' of Entov and Hinch [22] discussed in

detail in Section 4.4 upon which the extraction of the relaxation time is based for CaBER exper-

iments is recovered by the Sticky Network model. If so, then presumably a relationship between

the CaBER relaxation time AH observed from the exponential thinning regime of the filament

thinning experiment and the parameters of the Sticky Network model can be obtained.

The 'middle elastic time' is defined as the the period of filament thinning in which capillary forces

are resisted by and large by axial polymer stresses, before significant enough chain stretch has set in

that the FENE spring term becomes significantly different than 1. In other words b >> A, > Arr

and f ~ 1 [22]. Introducing these simplifications into Equations (6.9)-(6.14), we arrive at
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dva, gd.a AVa (6.15)
dt A

dAzz 4 dR -2 1 A (6.16)
dt R dt Ae

-+va kBTAzz (6.17)
R

From (6.15), it follows that during the 'middle elastic time',

va -+ v exp (- (6.18)

and

(1)4 (2gt)A zz -4 - exp . (6.19)

Combining these results with Equation (6.17) gives us the expression for the evolution of the

filament radius during the 'middle elastic time'

vakBT 3

- , exp (6.20)

Comparison of Equation (6.20) with the the analogous result from the FENE-P model, Equation

(4.26) reveals that during the middle elastic regime, there should indeed be an exponential thinning

period for the Sticky Network model. Furthermore, the system relaxation time AH as typically

measured with CaBER is related to the sticky network junction exit rate through

AH - e ~ (6.21)
3g

A summary of these results are shown in Figure 6-2, where the nondimensional radius as well
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as the axial and radial microstructural deformations (A,_ and A,,) are plotted as function of the

nondimensional time r = - .3 t for two different sets of parameters. In the following section,AH A I

we will show that these correspond to the values chosen for a young saliva sample (t = 30min)and

an older sample (t = 5 hours). The major differences between the two parameter choices are the

resulting elastocapillary numbers E, = 'kBT, and non dimensional viscosities S =-9 . These

results are tabulated in Table 6.1. It is clear that between the two samples, E, drops from nearly

unity at the 30 minute parameter choice (E, = 0.875) to an order of magnitude lower, E, = 0.094

at the 5 hour parameter range. This corresponds to a decrease in polymer stress relative to cap-

illary stresses. At the same time, S drops increases from S = 0.0013 at the 30 minute parameter

choice to S = 0.042 at 5 hours, reflecting a decrease in relative importance of polymer viscosity

compared to solvent viscosity. The combined effect of these two changes is to increase the duration

and decrease in filament radius during the viscocapillary regime, as can be seen by comparison of

Figures 6-2a and 6-2b.

102 102

102A .... 10 ......

18 - 10 2o

A= - e(t
102 101
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(a) 30 minutes (b) 5 hours

Figure 6-2: Examination of the axial and radial microstructural deformation A,- and A,, for two
model systems of saliva at 30 minutes and 5 hours. The nearly non-existant viscocapillary period
in the 30 minute simulation results in the radial microstructural deformation A,, being comparable
to the axial microstructural deformation A,, when elastocapillary thinning sets in, resulting in
some initial curvature in the radius profile and delay of the onset of the middle elastic time [22].
This is not observed in the 5 hour model where the initial viscous drop is much larger, and as a
consequence no radial curvature is observed.
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As a result of the very small viscous period in the 30 minute simulation, the radial microstructural

deformation term A,, is comparable to the axial term A,, when the elastocapillary regime begins.

As a result, there is some curvature observed in the filament radius evolution which is not seen in

the 5 hour case, when the 'middle elastic time' requirement of A,, < A;- is immediately met.

With this subtlety in mind, however, it is clear that the exponential decay regime of the 'middle

elastic time' is indeed met with the Sticky Network model, validating its use for analysis of CaBER

data.

6.5 Comparison of Sticky Network model with saliva ex-

periments

Similarly to the procedure followed for the Rolie-Poly-FENE-P model, we specify the chain molec-

ular weight at every time using the approximation developed using data from Esser et al [23] given

in Equation (5.11). We furthermore impose the system relaxation AH using the value obtained

from the CaBER data, and solve for the exit rate Ae accordingly using Equation (6.21). This also

permits the determination of the energy barrier AG using Equation (6.4). The procedure is then

to fit the plateau modulus GN in order to obtain a value for the number of entanglements z and

entanglement molecular weight Me, from which the remainder of the molecular properties such as

the finite extensibility b can be determined.

The obtained results for these parameters are shown in Table 6.1. The fit values of GN are slightly

higher for the younger samples than we have observed in SAOS data with saliva (see Figure 2-3.

However, they are reasonably consistent with other data reported in the literature (see, for exam-

ple Stading et al [63]), especially considering the fact that in general, salivary literature does not

report or account for the age of the sample in question. Furthermore, it is not straightforward

to measure the plateau elastic modulus for solutions [75], and so the fact that the values for GN

lie within the appropriate order of magnitude range compared to reported literature is relatively
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Sticky Network model parameters for saliva at various ages.

In Figure 6-3, the results for the Sticky Network model using the parameters listed in Table 6.1

are compared with the experimental CaBER data for saliva. Consistent with the experimental

data, the large initial viscous drop observed with the FENE-P model is nearly eliminated for the

heavily entangled younger samples. As z and Me decrease with sample age and correspondingly,

E, decreases and Sincreases, the model does predict a substantial viscocapillary dominated re-

gion. Although this is not observed in the CaBER data presented, it is not necessarily unphysical.

Since the CaBER data is shown only after the strike time, when the plates have reached their final

separation height, it is possible that any initial viscous response that could have been observed

had the experiment started immediately from the final stretch position is missed since it occurs

during the plate separation; a period of the experiment that the model cannot capture.
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reassuring.

Time[min] MW[MDa] GN[Pa Me [Da] z Au[ms] b Er S

30 62.16 14 3.30 x 104 1884.4 123 266.2 0.875 0.0013

60 51.95 8 5.77 x 104 899.85 91 416.62 0.5 0.0034

120 43.40 5 9.24 x 104 469.98 74 606.78 0.31 0.0077

300 34.24 1.5 3.08 x 105 111.2 33 1589.78 0.094 0.042

660 27.91 0.3 1.54 x 106 18.13 24 5761.2 0.019 0.32

Table 6.1:
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Figure 6-3: Comparison of the Sticky Network model with CaBER data for saliva at various ages

The sticky network model is also able to capture the exponential decay region characteristic of the

'middle elastic time', during which the strain rate is essentially constant and the slope matches

that obtained from the CaBER data.

Ultimately, however, the most significant improvement of this model compared to the FENE-P

and Rolie-Poly-FENE-P models is its ability to capture the sharp filament rupture behaviour

characteristic of the sticky network nature of salivary fluid, particularly for the younger samples.

Equation (6.15) reveals that during the middle elastic time, the fraction of bridged chains decays

as ~ exp - . However, as the chain begin to reach their extension limits, the term in square

brackets in the expression for M (Equation (6.9)) begins to deviate significantly from 1, and

the decay rate of nua begins to increase dramatically, leading to a sudden failure of the network

and plummeting of the filament radius. This idea of a 'glassy' rupture is in line with the work
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done by Kroy et al in their considerations of other sticky biological networks ([40, 71]), as well

as the observations by Haward et al [29] regarding the rather sudden and dramatic rupture of

the salivary network above a certain strain rate under elongational crossflow. Additionally, the

parameters calculated for the model are physical and consistent with biological data available in

the literature. As such, modeling saliva as an associative entangled mucin network seems like

a promising approach for future understanding of its rheological behaviour under various flow

conditions.
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Chapter 7

Conclusion

To conclude, this thesis provides new and thorough data for the shear and extensional rheology

of saliva. One of the major contributions presented by this data is the inclusion of the notion of

salivary degradation, and a characterization of the properties of saliva at various ages. Consider-

ing the increasing frequency with which the properties of salivary fluid and other bodily mucus

secretions are being used as medical diagnostic tools, being able to account for the stability of

their rheological properties with an accurate model is of tremendeous use [39, 9, 78]. Following

the observation that in particular the extensional rheological properties of saliva are unstable with

time, the primary objective of this thesis was to develop a model that could capture the observed

trends of decreasing time to breakup and relaxation time observed by CaBER for samples of saliva

at different ages following extraction from the mouth.

Examination of the structure of saliva reveals that much of its viscoelasticity can be attributed

to the presence of large salivary MUC5B mucins [61]. We hypothesized that over time, once the

saliva was extracted from the mouth, enzymatic activity and degradation cause a decrease in the

molecular weight of the constituent MUC5B chains. This hypothesis was reinforced by protein

profile data from Esser et al [23] for saliva, which appears to show a decrease in intensity of

salivary proteins of specific sizes as a function of time following extraction from the mouth. By

fitting a crude power law to this intensity data, an estimate for the time rate of change of MUC5B

molecular weight was developed. It was therefore desired to develop a model for which decreasing
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the polymer molecular weight could result in a decrease in the observed relaxation time and time

to breakup under simple elongational flow.

As a result, the first modeling attempt was to assume a dilute solution of FENE-P springs (rep-

resenting the mucins) in a Newtonian solvent, and attempt to relate the model parameters from

the biological properties of the mucin. The advantage of this simple approach was the ability to

derive a composite analytic solution (with an explicit result for the breakup time and an implicit

equation for the radius evolution as a function of time) that matched the numerical solution ex-

amined in detail by Entov and Hinch [22] extremely well. The disadvantage was that the model

missed some of the key aspects of the dynamics of the filament thinning process. In particular, the

model predicted a large initial viscocapillary decrease in the filament radius that was not observed

experimentally, and the sharp filament rupture behaviour observed particularly in the younger

samples was not captured.

The next attempt was to consider the dynamics of an entangled network, including the relaxation

mechanisms of reptation, retraction, and constraint release, through the Rolie-Poly Model devel-

oped by Graham et al [45, 50]. To this model, we added in chain finite extensibility using the

same principles as in the FENE-P model, in order to develop the Rolie-Poly-FENE-P model. By

considering the dynamics of the entangled network as a whole, and the stretch of entanglement

segments as opposed to the entire chain, the initial viscocapillary drop was largely eliminated,

which was more consistent with the experimental results. However, this model still had no mech-

anism to account for glassy or sticky behaviour that could cause the network to collapse at a

particular level of stress, and so the dramatic filament rupture behaviour observed experimentally

could not be reproduced.

The final model considered built off of the foundation of the finitely extensible entanglement net-

work developed in the Rolie-Poly-FENE-P model, but following the method of Tripathi et al [67],

allowed for inclusion of junction interactions in the form of a 'stickiness' parameter, or energy
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well, that the junctions needed to be able to overcome in order to dissociate from the remainder

of the network. This approach of treating saliva as a sticky or glassy gel has much precedent in

the literature for the modeling of biopolymer systems. Kroy et al applied it to the study of plant

polysaccharide systems and DNA/protein interaction systems [40, 71] while Ewoldt et al applied

it towards the modeling of Hagfish slime [25]. The depth of the energy well faced by the junctions

was modeled to decrease as a function of stretch in the entanglement segments. In the context of

a CaBER experiment, this implies that as the chains begin to reach their finite extensibility, the

likelihood that they will detach from the rest of the network increases very quickly. Ultimately,

there is a point at which most of the chains detach, and the polymer stress that the network is able

to sustain plummets dramatically, leading to a sudden rupture in the filament radius. With this

model, the CaBER data for saliva at various ages (accessed by decreasing the molecular weight of

the chains) was able to be reproduced very well.

In terms of future work, it would still be of great interest to understand more about the biological

side of the process of degradation, which would shed light on whether the assumption of decreasing

mucin molecular weight with time is a valid one. Suggested experiments include adding protease

inhibitors or accelerators to the saliva, in order to try to be able to tune the degradation process

and understand more about the conformational changes to the biopolymers. It is also of interest

to apply this notion of the effect of mucin structure on mucus and saliva rheology towards using

the properties of these fluids as diagnostic tools for disease. There is evidence that different ratios

of various mucins can lead to pathologies in mucus structure in cystic fibrosis and other diseases,

which can result in extreme difficulty in clearing mucus for those afflicted [38]. Developing this

model further to be able to account for protein structure more carefully and different mucin species

could therefore be extremely useful for developments in this field.
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