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Anisotropic Noise
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Anisotropic noise Isotropic filtering, no distortion compensation
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Figure 1: We present a technique for fast, high quality rendering of noise textures in interactive applications. We perform anisotropic
�ltering, which leads to higher image quality compared to isotropic �ltering, as shown by the difference between close-ups (a). Our method
uses 2D noise tiles and we present a technique to compensate for parametric distortions to achieve similar effects as with solid texturing. Our
technique avoids texture distortions as shown by the difference between close-ups (b).

Abstract

Programmable graphics hardware makes it possible to generate pro-
cedural noise textures on the �y for interactive rendering. However,
�ltering and antialiasing procedural noise involves a tradeoff be-
tween aliasing artifacts and loss of detail. In this paper we present
a technique, targeted at interactive applications, that provides high-
quality anisotropic �ltering for noise textures. We generate noise
tiles directly in the frequency domain by partitioning the frequency
domain into oriented subbands. We then compute weighted sums
of the subband textures to accurately approximate noise with a de-
sired spectrum. This allows us to achieve high-quality anisotropic
�ltering. Our approach is based solely on 2D textures, avoiding the
memory overhead of techniques based on 3D noise tiles. We de-
vise a technique to compensate for texture distortions to generate
uniform noise on arbitrary meshes. We develop a GPU-based im-
plementation of our technique that achieves similar rendering per-
formance as state-of-the-art algorithms for procedural noise. In ad-
dition, it provides anisotropic �ltering and achieves superior image
quality.

1 Introduction

Noise functions are widely used in computer graphics to ef�ciently
generate complex textures resembling natural phenomena. Essen-
tially, these textures consist of a sum of band-limited noise images.
By applying carefully designed functions to the noise bands, one
can produce a variety of textures that resemble wood, marble, or
clouds, etc. [Peachey 2003]. Noise functions are also often added

to other textures to provide detail and a more natural look.

Perlin [1985] originally proposed to generate the noise bands pro-
cedurally. His approach amounts to evaluating a low-pass �lter on
the �y when the texture is sampled. With programmable graph-
ics hardware it is possible to use procedural noise for interactive
rendering [Min·e and Neyret 1999; Hart 2001; Green 2005; Olano
2005]. This is desirable because only minimal texture memory must
be allocated for noise evaluation. However, it is dif�cult to perform
high-quality antialiasing of procedural noise. Antialiasing is typ-
ically achieved by truncating the noise frequencies to the Nyquist
limit of the display. In theory, this can be done simply by omitting
the summation of high frequency noise bands. Unfortunately, be-
cause Perlin noise is not narrowly band-limited, there is always a
trade-off between aliasing and blurriness.

Lewis [1989] has addressed this problem with two alternative algo-
rithms that allow the user to control the noise spectrum more pre-
cisely. Cook and DeRose [2005] point out, however, that Lewis’ ap-
proach is not suf�cient to solve the loss-of-detail vs. aliasing prob-
lem. Instead, they propose to construct noise bands using wavelet
analysis. Wavelet noise bands are more narrow-band than Perlin
noise and allow for more accurate antialiasing. An alternative ap-
proximation of isotropic antialiasing is to pre-�lter the color look-
up table as proposed by Hart et al. [1999]. It is well known, how-
ever, that high-quality texture antialiasing requires anisotropic �l-
tering, which is not supported by these techniques.

In this paper we propose a technique, targeted at interactive appli-
cations, to ef�ciently generate and render noise textures with high-
quality anisotropic antialiasing. As shown in Figure 1, our tech-
nique provides higher-quality antialiasing than isotropic �lters such
as wavelet noise. It also avoids the use of 3D textures.

We generate noise textures by tiling the frequency domain into ori-
ented subbands. Typically, we use between four and eight bands at
different orientations. Our approach is similar to wavelet noise in
that we precompute texture tiles instead of sampling noise proce-
durally. However, the frequency content of our tiles is strongly ori-
ented and anisotropic. This allows us to perform anisotropic �lter-
ing during rendering, leading to higher image quality. Our approach
is also based solely on 2D textures, which reduces the storage re-
quirements compared to 3D textures by an order of magnitude. If



we were to na¤�vely generate noise in 2D texture space, however,
distortions of the surface parameterization would lead to nonuni-
form frequencies on the surface. We address these problems by an-
alyzing and compensating for the parametric distortions (Figure 1,
compare uniform noise features on the left to stretched texture on
the right). We locally compute weighted combinations of the ori-
ented subbands that approximate a uniform frequency spectrum on
the surface. We present a GPU implementation of our technique
that includes high-quality anisotropic antialiasing. In addition, it
achieves similar rendering performance as state-of-the-art procedu-
ral algorithms.

In summary, we make the following contributions:

� We propose a novel construction of noise textures by tiling the
frequency domain into oriented subbands.

� We introduce a method to generate uniform 2D noise on pa-
rameterized surfaces. Our approach compensates for distor-
tions of the parameterization.

� We develop an algorithm for anisotropic �ltering of noise tex-
tures based on oriented noise bands.

� We demonstrate a GPU implementation that provides
anisotropic �ltering and higher image quality than procedural
techniques. Our implementation produces good results with a
single 256�256 RGBA texture tile, requiring only 256KB of
memory.

Our technique has three major components: In Section 2 we de-
scribe how we construct oriented 2D noise tiles using frequency
domain �ltering. The main feature of this approach is that we can
approximate arbitrary noise spectra by simply computing weighted
sums of the texture tiles. In Section 3 we propose a method to gen-
erate uniform noise on arbitrary meshes with two-dimensional tex-
ture coordinates. This ensures that our noise textures look like solid
textures, without exhibiting distortion artifacts due to the underly-
ing 2D parameterization. In Section 4 we present our rendering al-
gorithm with anisotropic antialiasing. We show that this improves
image quality over state-of-the-art isotropic noise �ltering. Finally,
we provide an implementation of our technique for programmable
graphics hardware in Section 5.

2 Frequency Domain Noise Construction

The main idea of our approach is to construct noise subbands using
frequency domain �ltering. We generate noise bands that are not
only narrowly band-limited in scale, but they also have a preferred
orientation. We next discuss a frequency domain decomposition
that partitions the frequency domain into oriented subbands. Then
we show how we construct noise textures for each subband.

Frequency Domain Decomposition. We partition the fre-
quency domain into subbands using steerable �lters [Simoncelli
and Freeman 1995; Portilla and Simoncelli 2000]. These �lters
provide a number of properties that are crucial for our application.
First, each �lter de�nes a subband that is tightly localized in scale
and orientation. Second, the �lters implement an invertible trans-
form. This implies that we can exactly recover a signal from its
decomposition into subbands. Finally, the �lters are steerable in
orientation. This essentially means that we can linearly interpolate
between the �lters to generate a �lter with the exact same pro�le,
but at an intermediate orientation. This property is useful because it
avoids interpolation artifacts when linearly blending the subbands
as in Sections 3 and 4. Ashikmin and Shirley [2002] also exploited
steerable �lters to smoothly interpolate illumination textures.

We can express the subband �lters in the frequency domain explic-
itly in a polar-separable form Di;j(r; �) = Gi(�)H(2jr), where i
and j are indices for orientation and scale respectively. The angular
and radial parts are de�ned as

Gi(�) =
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where K is the number of orientations, i 2 [0;K � 1], and
�K = 2i�1(K � 1)!=

p
K[2(K � 1)]!. Note that we use the

square of the �lters proposed by Portilla and Simoncelli [2000].
This is because they apply the �lters twice in their scheme, �rst
in the analysis and then in the synthesis step. Therefore, our �l-
ters correspond to a combined analysis-synthesis sequence in their
framework.

Spectral Noise Synthesis. We now describe how to precompute
noise textures in the spatial domain using the frequency domain
�lters discussed above. Our approach is illustrated in Figure 2:

1. Create a frequency spectrum F consisting of complex valued,
uniform white noise in the Fourier domain.

2. Decompose the uniform noise spectrum into oriented sub-
bands by multiplying with the �lters Di;j described above.
We obtain noise subbandsNi;j = FDi;j , which are narrowly
band-limited in scale and orientation.

3. Perform an inverse Fourier transform of each individual sub-
bandNi;j to get the band-limited spatial domain noise images
ni;j .

Because the frequency domain decomposition is invertible, the fre-
quency spectrum of the sum of all spatial domain noise images
corresponds to the uniform white noise that we used as an in-
put in the �rst step. By summing only select subband images we
can quickly generate noise images with custom-tailored frequency
spectra. Note that we sum the subband images directly in the spa-
tial domain. Therefore, this approach is well suited for interactive
applications and GPU implementation.

For example as shown in Figure 3, summing all orientations of the
same scale leads to noise that is isotropically band-limited, similar
to wavelet noise [Cook and DeRose 2005]. However, we can also
generate noise images with anisotropic spectra. This is the core idea
of our algorithms that we present Sections 3 and 4.

3 Steerable Noise on Surfaces

Mapping 2D textures onto 3D surfaces will almost always intro-
duce parametric distortions of the texture. These distortions cause
variations in the frequency spectra of noise textures, which are vi-
sually disturbing. In this section we present a method to combat
parametric distortions by generating noise bands that exhibit uni-
form spectra on the surface. In addition, our method can be used
to steer noise to obtain user speci�ed and spatially varying spectra.
We compute weighted sums of the precomputed noise subbands to
approximate the desired spectra. Our approach leads to uniform
noise even on meshes with highly distorted parameterizations. This



1. Uniform white noise

2. Frequency domain decomposition

3. Inverse transform

Figure 2: Illustration of spectral noise generation. The frequency
domain decomposition has three orientations. We show three ori-
ented subbands at the same scale and their corresponding spatial
domain images, which we store as textures.

allows us to achieve similar effects as solid texturing, without re-
vealing the underlying 2D parameterization.

Alternatively, we could extend the frequency domain decomposi-
tion approach from Section 2 to 3D. This would allow us to eval-
uate 3D noise textures that do not suffer from parametric distor-
tions. However, this approach would increase the number of ori-
ented noise subbands by an order of magnitude. We would have to
store and access dozens of 3D textures, which would not be practi-
cal for hardware-accelerated interactive rendering.

3.1 Distortion Compensation

Our goal is to generate uniform 2D noise textures on parameterized
triangle meshes. We compensate for parametric distortions on a
per-triangle basis as illustrated in Figure 4. Let us de�ne a local
coordinate system with coordinates s and t on the plane of each
triangle (Figure 4a). We strive to generate uniform noise with an
isotropic, band-limited spectrum in (s; t) coordinates as shown in
Figure 4c. This target spectrum is identical for each triangle, such
that the noise texture will be uniform over the whole triangle mesh.
For some applications it may also be interesting to use spatially
varying or anisotropic target spectra. In this case, the user de�nes
the target spectra on a per triangle basis. We show an example of
this in Section 6.

We represent parametric distortions by linear mappings (u; v) =
T(s; t) from local (s; t) to (u; v) texture coordinates. Here T is a
2�2 matrix and (s; t) denotes a column vector. Note that we ignore
translations. We compute T from the correspondence of (s; t) and
(u; v) coordinates at each triangle vertex. Our goal now is to com-

Frequency domain Spatial domain

Figure 3: We obtain noise with custom-tailored frequency spectra
by summing subband images. Here we add three orientations of the
same scale, shown in Figure 2, to get perfectly isotropic noise.

pute a spectrum in texture space that will match the target spectrum
when it is mapped to object space. When a noise texture is mapped
from texture to object space using (s; t) = T�1(u; v), its spectrum
is distorted by TT and the amplitudes of the spectrum are scaled
by a factor

p
jT�1j (Figure 4d). The scaling factor follows from

Parseval’s theorem. Note that, under af�ne deformations of the tex-
ture, the integral of the squared noise values over each triangle in
the spatial domain remains constant. We generate noise that ap-
proximates the distorted spectrum by computing a weighted sum of
the subband textures that we precomputed in Section 2. We present
a least-squares and a heuristic approach to determine the subband
weights.

Least Squares Approximation. Let us denote the isotropic tar-
get spectrum in object space by E. Note that E is the same for all
triangles. We also denote the frequencies corresponding to texture
coordinates u; v by �;  . We write the least squares optimization to
approximate the distorted spectrum in texture space as

min
i;j

ZZ  p
jT�1jE(TT (�; )) �

X

i;j

i;jDi;j(�;  )

!2

d�d ;

where Di;j are the �lters forming the frequency domain decom-
position from Section 2. We solve this system for each triangle
in a preprocess. We evaluate the integrals numerically. Note that
each �lter Di;j corresponds to a precomputed spatial domain tex-
ture ni;j . Therefore, we obtain the noise texture with the desired
spectrum by summing the spatial domain tiles, i.e., the texture isP

i;j i;jni;j .

Heuristic Approximation. The disadvantage of the least squares
method is that we cannot use it for dynamically deforming meshes.
In this case we need to update the weights on the �y while tri-
angles deform. As an alternative, we use a heuristic approach
that is very fast to compute. We associate a center �i;j ;  i;j
with each subband and simply de�ne the weights as i;j =p

jT�1jE(TT (�i;j ; i;j)). We compare the least squares and the
heuristic approximation in Section 3.2.

In Figure 5, we illustrate the least-squares and heuristic approxi-
mation of the target spectrum shown in Figure 4d. We used noise
subbands at three different scales and six orientations.

Multiple Octaves. One target band as shown in Figure 4 is usu-
ally not suf�cient to generate interesting noise textures. Instead,
one uses a weighted sum of several octaves of noise. We need to
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Figure 4: Distortion compensation: Figure (a) shows the desired
uniform noise texture in object space; the corresponding target
spectrum is in Figure(c). The surface parameterization leads to dis-
tortion in texture space, as in Figure (b). The corresponding noise
spectrum in texture space is shown in (d). This is the spectrum we
need to generate to obtain uniform noise in object space.

(a) (c)(b) (d)

Figure 5: Approximations of the target spectrum in Figure 4d for
distortion compensation. (a) Spectrum of the least squares approx-
imation and its corresponding �lter weights (b); (c) spectrum of the
heuristic approximation and its corresponding �lter weights (d).

compute the distortion compensation weights only for a single oc-
tave and can easily derive the weights for all other octaves from
it.

Each octave has a band-limited spectrum as in Figure 4c, with
the frequencies scaled by a factor of two from one octave to the
next. Let us assume we have computed the distortion compensation
weights for the lowest octave. We denote them by 0;i;j , where 0
is the index of the octave, and i and j are the indices for scale and
orientation. Because the scales of our subband decomposition in-
crease by a factor of two as well, we obtain the subband weights
for the next higher octave as 1;i;j = 0;i�1;j . In general we have
n;i;j = 0;i�n;j . If i � n < 0 we set the weight to zero. Note
that regardless of the number of scales required to represent a single
octave of noise on a mesh, each additional desired octave increases
the total number of scales by one.

3.2 Results and Comparisons

Figure 6 illustrates our distortion compensation approach using a
fractal noise texture consisting of two octaves of noise. We map a

(a) No distortion
 compensation

(b) Least squares
weights

(c) Heuristic 
weights

Figure 6: Illustration of the distortion compensation technique us-
ing fractal noise with two octaves. (a) Without distortion compen-
sation, undesirable compression of the noise texture appears. (b)
Distortion compensation using least-squares �tting, and (c) using
the heuristics. The results are visually comparable.

square region of texture space, i.e., (u; v) 2 [0; 1] � [0; 1] onto a
trapezoid. This leads to undesirable compression of the noise tex-
ture as shown in Figure 6a. We compare distortion compensation
using least-squares �tting and our heuristics in Figures 6b and 6c.
We used a frequency domain decomposition with �ve scales and
four orientations. The heuristics produces results that are visually
comparable to least-squares �tting. Therefore, unless otherwise
noted, all images in this paper were generated using the heuristic
method.

4 Anisotropic Filtering

In this section we describe an algorithm for high-quality,
anisotropic antialiasing of noise textures based on oriented sub-
bands. Our algorithm builds on a frequency domain formulation of
texture �ltering, which we describe in Section 4.1. We present an
ef�cient, constant time approximation of this approach using pre-
computed subband images in Section 4.2. We discuss results of our
approximation in Section 4.3.

4.1 Frequency Domain Texture Filtering

We derive our approach from an analytic formulation of anisotropic
texture �ltering introduced by Heckbert [1989], which we summa-
rize �rst. Heckbert showed that we can formulate anisotropic �lter-
ing as a convolution in texture space. We write this as

P (x0; y0) =
Z
f(u; v)g(M(x0; y0) � (u; v))dudv

= (f 
 g)(M(x0; y0)): (2)

Here, P (x0; y0) is the anisotropically �ltered texture value at a
pixel x0; y0. We denote the texture by f(u; v), where u; v are tex-
ture coordinates. In addition, (u; v) = M(x; y) is the mapping
from image to texture coordinates. Heckbert derives the low pass
�lter g(u; v) in texture space from the low pass �lter h(x; y) in
image space as

g(u; v) =
��J�1

��h(J�1(u; v)):



Here, J is the 2 � 2 Jacobian matrix of M de�ned by

J =
� @u

@x
@u
@y

@v
@x

@v
@y

�

x0;y0

;

and the notation J(�; �) is a multiplication with a column vector.

We now express the convolution in Equation 2 as a multiplication
in the frequency domain. Let us denote the Fourier transform pair
of the low-pass �lter in image space by h $ H . This implies
that we also have the Fourier transform pair g $ G for the low-
pass �lter in texture space, where the Frequency domain �lter is
G = H(JT ( ; �)). Therefore, the frequency domain formulation
of Equation 2 is

f 
 g $ FG = F ( ; �)H(JT ( ;�)); (3)

where F is the Frequency domain representation of the texture.

We ef�ciently evaluate the frequency domain low pass �lter in tex-
ture space using Gaussians. The Gaussian low-pass �lter in image
space is

h(x; y) =
1p
2��

e� 1
2�2 (x2+y2);

where we typically use � = 1. The corresponding frequency do-
main �lter in texture space is

H(JT ( ;�)) = e� �2
2 ( ;�)T JJT ( ;�): (4)

4.2 Constant Time Approximation

We now derive an ef�cient, constant time approximation of Equa-
tion 3 based on precomputed subband textures in the spatial do-
main. This leads to a technique similar to the constant time �ltering
methods by Fournier and Fiume [1988] and Gotsman [1994]. They
also rely on a set of basis �lters to approximate arbitrary low pass
�lters. Our approach, however, uses different basis �lters that are
tailored to generate noise textures.

We approximate the frequency domain low-pass �lter in Equation 3
as a weighted sum of the �lters Di;j from Section 2,

H(JT ( ;�)) �
X

i;j

�i;jDi;j( ; �); (5)

where �i;j are suitable weights. We can determine these weights
using a least squares approximation or a simple heuristics similar
as in Section 3. For the heuristics, we choose the weights as �i;j =
H(JT ( i;j ;�i;j)). We compare the two approaches in Section 4.3.

Substituting Equation 5 into Equation 3 we obtain

F ( ; �)H(JT ( ;�)) �
X

i;j

�i;j(FDi;j)( ; �): (6)

Since we precomputed the Fourier transform pairs ni;j $ Ni;j =
FDi;j , we immediately get the spatial domain counterpart of Equa-
tion 6,

(f 
 g)(M(x0; y0)) �
X

i;j

�i;jni;j(M(x0; y0)): (7)

This is the basis of our texture �ltering algorithm, which is illus-
trated in Figure 7. At each pixel (x0; y0) we compute the fre-
quency domain representation of the Gaussian low-pass �lter in
texture space as in Equation 4, and the approximation weights �i;j .

We look up each subband image ni;j at the corresponding texture
location M(x0; y0) using bilinear interpolation. The �nal texture
value is the weighted sum of the values from all subband images.
The complexity of this approach is constant at each pixel, and it
is proportional to the number of subbands that we use to represent
the texture. Note that, in principle, this technique is applicable to
arbitrary textures, not only noise textures.

(a)

(b) (c) (d)

x

y

u

v

u

v

�

�

�

�

Figure 7: Illustration of our anisotropic �ltering algorithm. Image
(a) visualizes a rendered plane, where the colors encode the magni-
tudes of the texture space partial derivatives with respect to screen
space. Image (b) shows the low-pass �lter kernel at the red pixel
mapped to texture space, and (c) is a frequency space representa-
tion of this �lter. Image (d) visualizes the subband weights �i;j that
we computed to approximate the frequency space representation of
the �lter.

4.3 Results and Comparisons

We compare the results of least squares �tting and the heuristics
in Figure 8. Note that the least squares approach is not suitable
for interactive rendering because we would have to solve a small
system of linear equations at each pixel. Our comparison shows,
however, that the heuristic approach does not signi�cantly reduce
image quality.

We resampled a test image containing high frequencies under an
af�ne mapping that includes shearing and non-uniform scaling.
Figure 8a shows the reference solution using Gaussian �ltering; the
inset depicts the frequency spectrum of the �lter. To apply our al-
gorithm we precomputed a frequency domain decomposition of the
test image with different numbers of oriented subbands. In Fig-
ure 8b we used a decomposition with eight orientations and least-
squares �tting to compute the approximation weights. The result is
practically indistinguishable from the reference solution. We used
least squares �tting with four orientations in Figure 8c and with
heuristic weights in 8d. Reducing the number of orientations in-
creases aliasing artifacts. However, least squares �tting and heuris-
tic weight computation are visually very similar. We provide Fig-
ure 8d as a reference showing bilinear resampling.

5 GPU Implementation

Rendering anisotropic noise is a three step process. We �rst syn-
thesize and store noise tiles in an of�ine process as discussed in
Section 2. We pack an oriented subband image into each chan-



(a) Gaussian
reference

(b) 8 Orientations,
least-squares, 0.5 MSE

(c) 4 orientations,
least-squares, 0.9 MSE

(d) 4 orientations,
heuristics, 4.4 MSE

(e) Bilinear

Figure 8: We evaluate our least-squares �tting and heuristic weight computation in an image resampling application. We use Gaussian
�ltering as a reference for comparison. The insets depict the frequency spectra of the �lters, and we provide the mean square error (MSE)
to the reference. Least-squares �tting using eight orientations is very close to the reference. With four orientations more aliasing appears.
While the heuristic weight computation is visually very close to the least-squares �t, the numerical error is signi�cantly higher. We show a
result of bilinear resampling for comparison.

nel of a 32-bit RGBA image, yielding four orientations per tex-
ture. Note that we precompute noise subbands at a single scale
only. We generate all other scales on the �y by simply scaling the
precomputed textures. We have found that a single 256 � 256 four-
orientation texture produces very good results, and eight orienta-
tions (using two textures) produces excellent results. We generate
distortion compensation weights for each mesh on the CPU. We ei-
ther use least-squares �tting in an of�ine process, or compute the
weights with the heuristic approach at runtime. The noise tile tex-
tures and per-vertex distortion compensation weights are the input
to the shader programs.

During rendering, we compute a nested sum of noise subbands at
each pixel (x0; y0),

OctX

k

fk
OrX

i

ScX

j

f;i;j�i;jni;j [M(x0; y0)]:

The inner two sums compute a noise value of a single octave by it-
erating over all subbands. Here ni;j are the scaled subband images,
and M(x0; y0) are the texture coordinates at pixel (x0; y0). We
weight each subband i; j with its distortion compensation weights
f;i;j for octave k, and the weights �i;j that approximate the low
pass �lter. In addition, fk is a user speci�ed function applied to
noise at octave k. For example, fractal noise has fk(t) = pkt,
where t is the noise value and p is the persistence, which is a scalar
parameter that controls noise amplitude as a function of the fre-
quency band.

In our unoptimized implementation, we evaluate the triple sum
above in the pixel shader. If the function fk is linear, as for ex-
ample for fractal noise, we can swap the order of operations and
sum over octaves �rst. This allows us to precompute a single dis-
tortion compensation weight for each subband and eliminate the
loop over octaves from the pixel shader. We refer to this version as
the optimized implementation.

For most real-world meshes the anisotropic �ltering weights vary
gradually across each triangle. Therefore, instead of computing
them on a per-pixel basis, we compute them on a per vertex basis
and interpolate them during rasterization. This requires calculating
the Jacobian of the screen-space to texture-space mapping on a per-
vertex basis. We accomplish this by precomputing and storing each
triangle’s texture- to object-space transformation. We concatenate it
at runtime with the rest of the viewing transformation to obtain the
full texture- to screen-space mapping. We use its Jacobian to com-
pute the �lter weights as described in Section 4.2. This approach

leads to visually identical results as the per-pixel computation, ex-
cept for meshes that are extremely coarsely triangulated.

Because our technique is based on 2D textures one could also rely
on hardware anisotropic antialiasing instead of using our �ltering
weights. However, hardware antialiasing does not address param-
eterization distortion. One could resort to 3D texture tiles to avoid
the distortion issues, but graphics hardware does not support proper
anisotropic �ltering for 3D textures. In addition, in our framework
there is no measurable performance penalty for anisotropic �lter-
ing, since we compute the antialiasing weights in the vertex shader
and premultiply them with the distortion compensation weights.

The heuristics to determine subband weights described in Section 4
uses only the center of the spectrum of each subband. This can lead
to minor aliasing artifacts at grazing angles. We avoid these artifacts
by weighting three radial points from each subband instead of one
in the center. Since this computation occurs in a vertex shader, the
additional performance overhead is negligible.

6 Results

We demonstrate the image quality achieved with our GPU imple-
mentation in Figure 9. The textures contain two octaves of noise.
Figure 9a shows our result with four oriented subbands, and 9b
uses eight orientations. The additional orientations lead to a notice-
able increase in sharpness without introducing any aliasing. Fig-
ure 9c shows procedural noise for comparison. The noise pattern
is not exactly the same as with our techniques, but we adjusted it
to match as well as possible. We do not use any �ltering, which
leads to strong aliasing artifacts. They become even more evident
in animations.

Table 10 reports the rendering performance of our GPU imple-
mentation. We rendered noise at 1680 � 1050 full screen resolu-
tion, which means that each frame consisted of 1:764 million noise
shaded pixels. We used a single-core 3.0GHz Pentium 4 with 2
GBytes of memory and a GeForce 6800 Ultra GPU. We provide
performance numbers for both the optimized and unoptimized im-
plementation (Section 5). Note that the number of scales in the
optimized version does not directly correspond to the number of
octaves. We need more scales to generate a desired number of oc-
taves depending on the severity of distortions. For the unoptimized
implementation, we report performance depending on the number
of scales per octave. The required number again depends on the
severity of parameterization distortion. For the examples shown in
this paper we never needed more than four scales per octave. We
compared our technique to our own implementation of Olano’s ap-



(a) 4 orientations

(b) 8 orientations

(c) Procedural without filtering

Figure 9: We compare image quality with two octaves of fractal
noise using our GPU implementation: (a) four oriented subbands
and heuristic antialiasing weights, (b) eight oriented subbands, and
(c) procedural noise without �ltering.

Optimized Unoptimized
S O 2 S/O 3 S/O 4 S/O
2 465 1 465 377 307
3 377 2 220 167 125
4 307 3 165 115 80
5 263 4 99 76 58

Figure 10: Rendering performance of anisotropic noise in frames
per second. We distinguish between the optimized and the unop-
timized implementation of anisotropic noise. S indicates the num-
ber of scales. For the unoptimized implementation, O indicates the
number of octaves, and S/O is the number of scales per octave.

proach [2005]. We found that the rendering performance of our
optimized approach is slightly faster. The performance of our un-
optimized technique is very similar to theirs, with an advantage for
our approach on lower-end GPUs. Their approach, however, does
not include antialiasing.

We can also perturb the noise textures using additional functions
as described in Section 5. Figure 11 shows combinations of bump
mapping, turbulence, and color look-up tables. Our distortion com-
pensated noise can be the basis for many effects that are otherwise
achieved with procedural solid noise. The main difference is that
our approach requires a surface parameterization. For example, we
can animate the noise by blending between several base textures.
We use histogram matching to avoid blurriness in interpolated tex-
tures. We also shift texture coordinates over time to achieve the
effect of moving �ames. However, our antialiasing technique does
not lead to correct results if the perturbation functions are non-
linear. This is a limitation that our technique shares with other
approaches such as wavelet noise. Correct anisotropic �ltering of
procedural textures is a challenging open problem.

The frequency domain noise generation described in Section 2 leads
to textures that are tileable on a torus topology as well as on the

(a) with distortion
compensation

(b) animated
corona

(d) parameterization(c) without distortion
compensation

Figure 11: Distortion compensated noise as a basis for advanced
effects that perturb the noise bands: (a) bump-mapped turbulence
with a color look-up, (b) turbulence as a displacement to look-up
a color texture. We can also animate textures such as this one. In
(c) we show a noise texture without un-distortion, which reveals the
parametric distortions shown using a checkerboard texture in (d).
Colored checkers indicate boundaries in the 2D texture.

plane. We can also make the textures tileable on the sphere us-
ing standard techniques based on �nding inconspicuous boundaries
and Poisson image blending [Efros and Freeman 2001; P·erez et al.
2003]. In Figure 12 we show examples with spherical topology.
The bust is parameterized using the scheme proposed by Gu et
al. [2002]. The terrain texture can be modi�ed interactively at high
framerates.

We can also steer noise explicitly by encoding a spatially varying,
anisotropic target spectrum in an additional texture map, instead
of using a uniform, isotropic target. The texture de�nes per triangle
target spectra, which allows us to obtain interesting effects as shown
in Figure 13. The orientation �eld can be manipulated interactively
to modify the texture.

7 Conclusions

We presented a novel approach to render high-quality noise textures
that is targeted at interactive applications. Similar to wavelet noise
by Cook and DeRose, we generate noise tiles that are narrowly
band-limited and, therefore, suitable for antialiasing. However, we
construct the noise tiles directly in the frequency domain, and we
use a partition of the frequency domain into oriented subbands. We
use the oriented noise subbands as building blocks to approximate
noise with desired spectra. Our approach is based solely on 2D tex-
tures, which are more suitable for interactive rendering and reduce
memory requirements. We developed a technique to compensate
for parametric distortions and generate noise with uniform frequen-
cies on surfaces. This allows us to obtain effects similar to 3D
solid texturing, without any visible distortions due to 2D textur-
ing. We perform high quality anisotropic �ltering using an ef�cient



Noise textures on meshes with spherical topology Procedural terrain

Figure 12: We demonstrate meshes with spherical topology on the left. We avoid seams by preprocessing the textures to make them tileable
on the spherical topology. We use bump mapping and color look-up tables. The terrain on the right also uses bump mapping, where the bump
scale is modulated using a look-up table.

Orientation FieldSteerable Noise

Figure 13: We use the distortion compensation technique to gen-
erate noise with a spatially varying, anisotropic spectrum. The ori-
entation �eld on the right encodes the direction of anisotropy.

GPU implementation. Our approach provides higher image quality
through anisotropic �ltering than procedural techniques.

In the future, we will further investigate correct anisotropic �ltering
of non-linearly perturbed noise. This is a very challenging problem
that has withstood a principled solution so far. We will also extend
our system using Wang tiling to enable texturing of arbitrarily large
geometry without periodic patterns. This could be particularly use-
ful for terrain rendering. We believe that our approach could �nd
widespread application for interactive rendering of noise textures
because of its performance and its quality advantages.
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