
MIT Open Access Articles

Monte-Carlo planning in large POMDPs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Silver, David, and Joel Veness. "Monte-Carlo planning in large POMDPs." Advances in
Neural Information Processing Systems 23 (NIPS) (2010).

As Published: http://papers.nips.cc/book/advances-in-neural-information-processing-
systems-23-2010

Publisher: Neural Information Processing Systems

Persistent URL: http://hdl.handle.net/1721.1/100395

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100395

Monte-Carlo Planning in Large POMDPs

David Silver
MIT, Cambridge, MA 02139
davidstarsilver@gmail.com

Joel Veness
UNSW, Sydney, Australia

jveness@gmail.com

Abstract

This paper introduces a Monte-Carlo algorithm for online planning in large
POMDPs. The algorithm combines a Monte-Carlo update of the agent’s
belief state with a Monte-Carlo tree search from the current belief state.
The new algorithm, POMCP, has two important properties. First, Monte-
Carlo sampling is used to break the curse of dimensionality both during
belief state updates and during planning. Second, only a black box simu-
lator of the POMDP is required, rather than explicit probability distribu-
tions. These properties enable POMCP to plan effectively in significantly
larger POMDPs than has previously been possible. We demonstrate its ef-
fectiveness in three large POMDPs. We scale up a well-known benchmark
problem, rocksample, by several orders of magnitude. We also introduce
two challenging new POMDPs: 10 × 10 battleship and partially observable
PacMan, with approximately 1018 and 1056 states respectively. Our Monte-
Carlo planning algorithm achieved a high level of performance with no prior
knowledge, and was also able to exploit simple domain knowledge to achieve
better results with less search. POMCP is the first general purpose planner
to achieve high performance in such large and unfactored POMDPs.

1 Introduction

Monte-Carlo tree search (MCTS) is a new approach to online planning that has provided
exceptional performance in large, fully observable domains. It has outperformed previous
planning approaches in challenging games such as Go [5], Amazons [10] and General Game
Playing [4]. The key idea is to evaluate each state in a search tree by the average outcome
of simulations from that state. MCTS provides several major advantages over traditional
search methods. It is a highly selective, best-first search that quickly focuses on the most
promising regions of the search space. It breaks the curse of dimensionality by sampling
state transitions instead of considering all possible state transitions. It only requires a black
box simulator, and can be applied in problems that are too large or too complex to represent
with explicit probability distributions. It uses random simulations to estimate the potential
for long-term reward, so that it plans over large horizons, and is often effective without any
search heuristics or prior domain knowledge [8]. If exploration is controlled appropriately
then MCTS converges to the optimal policy. In addition, it is anytime, computationally
efficient, and highly parallelisable.

In this paper we extend MCTS to partially observable environments (POMDPs). Full-width
planning algorithms, such as value iteration [6], scale poorly for two reasons, sometimes
referred to as the curse of dimensionality and the curse of history [12]. In a problem with
n states, value iteration reasons about an n-dimensional belief state. Furthermore, the
number of histories that it must evaluate is exponential in the horizon. The basic idea of
our approach is to use Monte-Carlo sampling to break both curses, by sampling start states
from the belief state, and by sampling histories using a black box simulator.

Our search algorithm constructs, online, a search tree of histories. Each node of the search
tree estimates the value of a history by Monte-Carlo simulation. For each simulation, the

1

start state is sampled from the current belief state, and state transitions and observations
are sampled from a black box simulator. We show that if the belief state is correct, then
this simple procedure converges to the optimal policy for any finite horizon POMDP. In
practice we can execute hundreds of thousands of simulations per second, which allows us
to construct extensive search trees that cover many possible contingencies. In addition,
Monte-Carlo simulation can be used to update the agent’s belief state. As the search tree
is constructed, we store the set of sample states encountered by the black box simulator
in each node of the search tree. We approximate the belief state by the set of sample
states corresponding to the actual history. Our algorithm, Partially Observable Monte-
Carlo Planning (POMCP), efficiently uses the same set of Monte-Carlo simulations for both
tree search and belief state updates.

2 Background

2.1 POMDPs

In a Markov decision process (MDP) the environment’s dynamics are fully determined by
its current state st. For any state s ∈ S and for any action a ∈ A, the transition probabilities
Pass′ = Pr(st+1 = s′|st = s, at = a) determine the next state distribution s′, and the reward
function Ras = E[rt+1|st = s, at = a] determines the expected reward. In a partially observ-
able Markov decision process (POMDP), the state cannot be directly observed by the agent.
Instead, the agent receives an observation o ∈ O, determined by observation probabilities
Zas′o = Pr(ot+1 = o|st+1 = s′, at = a). The initial state s0 ∈ S is determined by a prob-
ability distribution Is = Pr(s0 = s). A history is a sequence of actions and observations,
ht = {a1, o1, ..., at, ot} or htat+1 = {a1, o1, ..., at, ot, at+1}. The agent’s action-selection
behaviour can be described by a policy, π(h, a), that maps a history h to a probability
distribution over actions, π(h, a) = Pr(at+1 = a|ht = h). The return Rt =

∑∞
k=t γ

k−trk is
the total discounted reward accumulated from time t onwards, where γ is a discount factor
specified by the environment. The value function V π(h) is the expected return from state
s when following policy π, V π(h) = Eπ[Rt|ht = h]. The optimal value function is the maxi-
mum value function achievable by any policy, V ∗(h) = max

π
V π(h). In any POMDP there

is at least one optimal policy π∗(h, a) that achieves the optimal value function. The belief
state is the probability distribution over states given history h, B(s, h) = Pr(st = s|ht = h).

2.2 Online Planning in POMDPs

Online POMDP planners use forward search, from the current history or belief state, to
form a local approximation to the optimal value function. The majority of online planners
are based on point-based value iteration [12, 13]. These algorithms use an explicit model
of the POMDP probability distributions, M = 〈P,R,Z, I〉. They construct a search tree
of belief states, using a heuristic best-first expansion procedure. Each value in the search
tree is updated by a full-width computation that takes account of all possible actions,
observations and next states. This approach can be combined with an offline planning
method to produce a branch-and-bound procedure [13]. Upper or lower bounds on the
value function are computed offline, and are propagated up the tree during search. If the
POMDP is small, or can be factored into a compact representation, then full-width planning
with explicit models can be very effective.

Monte-Carlo planning is a very different paradigm for online planning in POMDPs [2, 7].
The agent uses a simulator G as a generative model of the POMDP. The simulator pro-
vides a sample of a successor state, observation and reward, given a state and action,
(st+1, ot+1, rt+1) ∼ G(st, at), and can also be reset to a start state s. The simulator is used
to generate sequences of states, observations and rewards. These simulations are used to
update the value function, without ever looking inside the black box describing the model’s
dynamics. In addition, Monte-Carlo methods have a sample complexity that is determined
only by the underlying difficulty of the POMDP, rather than the size of the state space or
observation space [7]. In principle, this makes them an appealing choice for large POMDPs.
However, prior Monte-Carlo planners have been limited to fixed horizon, depth-first search
[7] (also known as sparse sampling), or to simple rollout methods with no search tree [2],
and have not so far proven to be competitive with best-first, full-width planning methods.

2

2.3 Rollouts

In fully observable MDPs, Monte-Carlo simulation provides a simple method for evaluating
a state s. Sequences of states are generated by an MDP simulator, starting from s and using
a random rollout policy, until a terminal state or discount horizon is reached. The value of

state s is estimated by the mean return of N simulations from s, V (s) = 1
N

∑N
i=1R

i, where

Ri is the return from the beginning of the ith simulation. Monte-Carlo simulation can be
turned into a simple control algorithm by evaluating all legal actions and selecting the action
with highest evaluation [15]. Monte-Carlo simulation can be extended to partially observable
MDPs [2] by using a history based rollout policy πrollout(h, a). To evaluate candidate action
a in history h, simulations are generated from ha using a POMDP simulator and the rollout
policy. The value of ha is estimated by the mean return of N simulations from ha.

2.4 Monte-Carlo Tree Search

Monte-Carlo tree search [3] uses Monte-Carlo simulation to evaluate the nodes of a search
tree in a sequentially best-first order. There is one node in the tree for each state s, con-
taining a value Q(s, a) and a visitation count N(s, a) for each action a, and an overall
count N(s) =

∑
aN(s, a). Each node is initialised to Q(s, a) = 0, N(s, a) = 0. The value

is estimated by the mean return from s of all simulations in which action a was selected
from state s. Each simulation starts from the current state st, and is divided into two
stages: a tree policy that is used while within the search tree; and a rollout policy that is
used once simulations leave the scope of the search tree. The simplest version of MCTS
uses a greedy tree policy during the first stage, which selects the action with the highest
value; and a uniform random rollout policy during the second stage. After each simula-
tion, one new node is added to the search tree, containing the first state visited in the
second stage. The UCT algorithm [8] improves the greedy action selection in MCTS. Each
state of the search tree is viewed as a multi-armed bandit, and actions are chosen by using
the UCB1 algorithm [1]. The value of an action is augmented by an exploration bonus

that is highest for rarely tried actions, Q⊕(s, a) = Q(s, a) + c
√

logN(s)
N(s,a) . The scalar con-

stant c determines the relative ratio of exploration to exploitation; when c = 0 the UCT
algorithm acts greedily within the tree. Once all actions from state s are represented in
the search tree, the tree policy selects the action maximising the augmented action-value,
argmaxaQ

⊕(s, a). Otherwise, the rollout policy is used to select actions. For suitable choice
of c, the value function constructed by UCT converges in probability to the optimal value

function, Q(s, a)
p→ Q∗(s, a),∀s ∈ S, a ∈ A [8]. UCT can be extended to use domain knowl-

edge, for example heuristic knowledge or a value function computed offline [5]. New nodes
are initialised using this knowledge, Q(s, a) = Qinit(s, a), N(s, a) = Ninit, where Qinit(s, a)
is an action value function and Ninit indicates its quality. Domain knowledge narrowly
focuses the search on promising states without altering asymptotic convergence.

3 Monte-Carlo Planning in POMDPs

Partially Observable Monte-Carlo Planning (POMCP) consists of a UCT search that selects
actions at each time-step; and a particle filter that updates the agent’s belief state.

3.1 Partially Observable UCT (PO–UCT)

We extend the UCT algorithm to partially observable environments by using a search tree
of histories instead of states. The tree contains a node T (h) = 〈N(h), V (h)〉 for each
represented history h. N(h) counts the number of times that history h has been visited.
V (h) is the value of history h, estimated by the mean return of all simulations starting with h.
New nodes are initialised to 〈Vinit(h), Ninit(h)〉 if domain knowledge is available, and to 〈0, 0〉
otherwise. We assume for now that the belief state B(s, h) is known exactly. Each simulation
starts in an initial state that is sampled from B(·, ht). As in the fully observable algorithm,
the simulations are divided into two stages. In the first stage of simulation, when child

nodes exist for all children, actions are selected by UCB1, V ⊕(ha) = V (ha) + c
√

logN(h)
N(ha) .

Actions are then selected to maximise this augmented value, argmaxaV
⊕(ha). In the second

3

N=1
V=2

a1 a2

o1 o2 o1 o2

o1 o2

a1 a2 a1 a2

N=1
V=-1

N=1
V=-3

N=2
V=-2

N=3
V=-1

N=1
V=4

N=1
V=6

N=2
V=5

N=1
V=-1

N=3
V=3

N=3
V=1

N=6
V=2

N=9
V=1.5

a=a2

o=o2

o1 o2

a1 a2

N=1
V=4

N=1
V=6

N=2
V=5

N=1
V=-1

N=3
V=3

S={17,34,26,31}

S={27,36,44} S={42}

o1 o2

a1 a2

N=1
V=4

N=1
V=6

N=2
V=5

N=1
V=-1

N=3
V=3 S={27,36,44}

S={7} S={7} S={38} S={38}

S={27,36,44}

h h

hao

S={7} S={38}

r=-1r=+2 r=+3 r=+4 r=+6 r=-1

Figure 1: An illustration of POMCP in an environment with 2 actions, 2 observations, 50 states,
and no intermediate rewards. The agent constructs a search tree from multiple simulations, and
evaluates each history by its mean return (left). The agent uses the search tree to select a real
action a, and observes a real observation o (middle). The agent then prunes the tree and begins a
new search from the updated history hao (right).

stage of simulation, actions are selected by a history based rollout policy πrollout(h, a) (e.g.
uniform random action selection). After each simulation, precisely one new node is added
to the tree, corresponding to the first new history encountered during that simulation.

3.2 Monte-Carlo Belief State Updates

In small state spaces, the belief state can be updated exactly by Bayes’ theorem, B(s′, hao) =∑
s∈S Z

a
s′oP

a
ss′B(s,h)∑

s∈S
∑

s′′∈S Za
s′′oP

a
ss′′B(s,h)

. The majority of POMDP planning methods operate in this man-

ner [13]. However, in large state spaces even a single Bayes update may be computationally
infeasible. Furthermore, a compact represention of the transition or observation proba-
bilities may not be available. To plan efficiently in large POMDPs, we approximate the
belief state using an unweighted particle filter, and use a Monte-Carlo procedure to update
particles based on sample observations, rewards, and state transitions. Although weighted
particle filters are used widely to represent belief states, an unweighted particle filter can
be implemented particularly efficiently with a black box simulator, without requiring an
explicit model of the POMDP, and providing excellent scalability to larger problems.

We approximate the belief state for history ht by K particles, Bit ∈ S, 1 ≤ i ≤ K. Each
particle corresponds to a sample state, and the belief state is the sum of all particles,

B̂(s, ht) = 1
K

∑K
i=1 δsBi

t
, where δss′ is the kronecker delta function. At the start of the

algorithm, K particles are sampled from the initial state distribution, Bi0 ∼ I, 1 ≤ i ≤ K.
After a real action at is executed, and a real observation ot is observed, the particles are
updated by Monte-Carlo simulation. A state s is sampled from the current belief state
B̂(s, ht), by selecting a particle at random from Bt. This particle is passed into the black
box simulator, to give a successor state s′ and observation o′, (s′, o′, r) ∼ G(s, at). If the
sample observation matches the real observation, o = ot, then a new particle s′ is added
to Bt+1. This process repeats until K particles have been added. This approximation to

the belief state approaches the true belief state with sufficient particles, limK→∞ B̂(s, ht) =
B(s, ht),∀s ∈ S. As with many particle filter approaches, particle deprivation is possible
for large t. In practice we combine the belief state update with particle reinvigoration. For
example, new particles can be introduced by adding artificial noise to existing particles.

3.3 Partially Observable Monte-Carlo

POMCP combines Monte-Carlo belief state updates with PO–UCT, and shares the same
simulations for both Monte-Carlo procedures. Each node in the search tree, T (h) =
〈N(h), V (h), B(h)〉, contains a set of particles B(h) in addition to its count N(h) and value
V (h). The search procedure is called from the current history ht. Each simulation begins
from a start state that is sampled from the belief state B(ht). Simulations are performed

4

Algorithm 1 Partially Observable Monte-Carlo Planning

procedure Search(h)
repeat

if h = empty then
s ∼ I

else
s ∼ B(h)

end if
Simulate(s, h, 0)

until Timeout()
return argmax

b
V (hb)

end procedure

procedure Rollout(s, h, depth)
if γdepth < ε then

return 0
end if
a ∼ πrollout(h, ·)
(s′, o, r) ∼ G(s, a)
return r + γ.Rollout(s′, hao, depth+1)

end procedure

procedure Simulate(s, h, depth)
if γdepth < ε then

return 0
end if
if h /∈ T then

for all a ∈ A do
T (ha)← (Ninit(ha), Vinit(ha), ∅)

end for
return Rollout(s, h, depth)

end if

a← argmax
b

V (hb) + c
√

logN(h)
N(hb)

(s′, o, r) ∼ G(s, a)
R← r + γ.Simulate(s′, hao, depth+ 1)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
N(ha)← N(ha) + 1

V (ha)← V (ha) + R−V (ha)
N(ha)

return R
end procedure

using the partially observable UCT algorithm, as described above. For every history h
encountered during simulation, the belief state B(h) is updated to include the simulation
state. When search is complete, the agent selects the action at with greatest value, and
receives a real observation ot from the world. At this point, the node T (htatot) becomes the
root of the new search tree, and the belief state B(htao) determines the agent’s new belief
state. The remainder of the tree is pruned, as all other histories are now impossible. The
complete POMCP algorithm is described in Algorithm 1 and Figure 1.

4 Convergence

The UCT algorithm converges to the optimal value function in fully observable MDPs [8].
This suggests two simple ways to apply UCT to POMDPs: either by converting every belief
state into an MDP state, or by converting every history into an MDP state, and then
applying UCT directly to the derived MDP. However, the first approach is computationally
expensive in large POMDPs, where even a single belief state update can be prohibitively
costly. The second approach requires a history-based simulator that can sample the next
history given the current history, which is usually more costly and hard to encode than a
state-based simulator. The key innovation of the PO–UCT algorithm is to apply a UCT
search to a history-based MDP, but using a state-based simulator to efficiently sample states
from the current beliefs. In this section we prove that given the true belief state B(s, h),
PO–UCT also converges to the optimal value function. We prove convergence for POMDPs
with finite horizon T ; this can be extended to the infinite horizon case as suggested in [8].

Lemma 1. Given a POMDP M = (S,A,P,R,Z), consider the derived MDP with his-

tories as states, M̃ = (H,A, P̃, R̃), where P̃ah,hao =
∑
s∈S

∑
s′∈S
B(s, h)Pass′Zas′o and R̃ah =∑

s∈S
B(s, h)Ras . Then the value function Ṽ π(h) of the derived MDP is equal to the value

function V π(h) of the POMDP, ∀π Ṽ π(h) = V π(h).

Proof. By backward induction on the Bellman equation, starting from
the horizon, V π(h) =

∑
s∈S

∑
a∈A

∑
s′∈S

∑
o∈O
B(s, h)π(h, a) (Ras + γPass′Zas′oV π(hao)) =∑

a∈A

∑
o∈O

π(h, a)
(
R̃ah + γP̃ ah,haoṼ

π(hao)
)

= Ṽ π(h).

Let Dπ(hT) be the POMDP rollout distribution. This is the distribution of histories gener-
ated by sampling an initial state st ∼ B(s, ht), and then repeatedly sampling actions from
policy π(h, a) and sampling states, observations and rewards from M, until terminating at

5

time T . Let D̃π(hT) be the derived MDP rollout distribution. This is the distribution of
histories generated by starting at ht and then repeatedly sampling actions from policy π
and sampling state transitions and rewards from M̃, until terminating at time T .

Lemma 2. For any rollout policy π, the POMDP rollout distribution is equal to the derived
MDP rollout distribution, ∀π Dπ(hT) = D̃π(hT).

Proof. By forward induction from ht, Dπ(hao) = Dπ(h)π(h, a)
∑
s∈S

∑
s′∈S B(s, h)Pass′Zas′o =

D̃π(h)π(h, a)P̃ah,hao = D̃π(hao).

Theorem 1. For suitable choice of c, the value function constructed by PO–UCT converges

in probability to the optimal value function, V (h)
p→ V ∗(h), for all histories h that are

prefixed by ht. As the number of visits N(h) approaches infinity, the bias of the value
function, E [V (h)− V ∗(h)] is O(logN(h)/N(h)).

Proof. By Lemma 2 the PO–UCT simulations can be mapped into UCT simulations in the
derived MDP. By Lemma 1, the analysis of UCT in [8] can then be applied to PO–UCT.

5 Experiments

We applied POMCP to the benchmark rocksample problem, and to two new problems:
battleship and pocman. For each problem we ran POMCP 1000 times, or for up to 12 hours
of total computation time. We evaluated the performance of POMCP by the average total
discounted reward. In the smaller rocksample problems, we compared POMCP to the best
full-width online planning algorithms. However, the other problems were too large to run
these algorithms. To provide a performance benchmark in these cases, we evaluated the
performance of simple Monte-Carlo simulation without any tree. The PO-rollout algorithm
used Monte-Carlo belief state updates, as described in section 3.2. It then simulated n/|A|
rollouts for each legal action, and selected the action with highest average return.

The exploration constant for POMCP was set to c = Rhi −Rlo, where Rhi was the highest
return achieved during sample runs of POMCP with c = 0, and Rlo was the lowest return
achieved during sample rollouts. The discount horizon was set to 0.01 (about 90 steps
when γ = 0.95). On the larger battleship and pocman problems, we combined POMCP with
particle reinvigoration. After each real action and observation, additional particles were
added to the belief state, by applying a domain specific local transformation to existing
particles. When n simulations were used, n/16 new particles were added to the belief set.
We also introduced domain knowledge into the search algorithm, by defining a set of preferred
actions Ap. In each problem, we applied POMCP both with and without preferred actions.
When preferred actions were used, the rollout policy selected actions uniformly from Ap,
and each new node T (ha) in the tree was initialised to Vinit(ha) = Rhi, Ninit(ha) = 10
for preferred actions a ∈ Ap, and to Vinit(ha) = Rlo, Ninit(ha) = 0 for all other actions.
Otherwise, the rollouts policy selected actions uniformly among all legal actions, and each
new node T (ha) was initialised to Vinit(ha) = 0, Ninit(ha) = 0 for all a ∈ A.

The rocksample (n, k) problem [14] simulates a Mars explorer robot in an n × n grid con-
taining k rocks. The task is to determine which rocks are valuable, take samples of valuable
rocks, and leave the map to the east when sampling is complete. When provided with an ex-
actly factored representation, online full-width planners have been successful in rocksample
(7, 8) [13], and an offline full-width planner has been successful in the much larger rock-
sample (11, 11) problem [11]. We applied POMCP to three variants of rocksample: (7, 8),
(11, 11), and (15, 15), without factoring the problem. When using preferred actions, the
number of valuable and unvaluable observations was counted for each rock. Actions that
sampled rocks with more valuable observations were preferred. If all remaining rocks had a
greater number of unvaluable observations, then the east action was preferred. The results
of applying POMCP to rocksample, with various levels of prior knowledge, is shown in Fig-
ure 2. These results are compared with prior work in Table 1. On rocksample (7, 8), the
performance of POMCP with preferred actions was close to the best prior online planning
methods combined with offline solvers. On rocksample (11, 11), POMCP achieved the same
performance with 4 seconds of online computation to the state-of-the-art solver SARSOP
with 1000 seconds of offline computation [11]. Unlike prior methods, POMCP also provided
scalable performance on rocksample (15, 15), a problem with over 7 million states.

6

Rocksample (7, 8) (11, 11) (15, 15)
States |S| 12,544 247,808 7,372,800
AEMS2 21.37 ±0.22 N/A N/A
HSVI-BFS 21.46 ±0.22 N/A N/A
SARSOP 21.39 ±0.01 21.56 ±0.11 N/A
Rollout 9.46 ±0.27 8.70 ±0.29 7.56 ±0.25
POMCP 20.71 ±0.21 20.01 ±0.23 15.32 ±0.28

Table 1: Comparison of Monte-Carlo planning with full-width planning on rocksample. POMCP and
the rollout algorithm used prior knowledge in their rollouts. The online planners used knowledge
computed offline by PBVI; results are from [13]. Each online algorithm was given 1 second per
action. The full-width, offline planner SARSOP was given approximately 1000 seconds of offline
computation; results are from [9]. All full-width planners were provided with an exactly factored
representation of the POMDP; the Monte-Carlo planners do not factor the representation. The
full-width planners could not be run on the larger problems.

In the battleship POMDP, 5 ships are placed at random into a 10× 10 grid, subject to the
constraint that no ship may be placed adjacent or diagonally adjacent to another ship. Each
ship has a different size of 5 × 1, 4 × 1, 3 × 1 and 2 × 1 respectively. The goal is to find
and sink all ships. However, the agent cannot observe the location of the ships. Each step,
the agent can fire upon one cell of the grid, and receives an observation of 1 if a ship was
hit, and 0 otherwise. There is a -1 reward per time-step, a terminal reward of +100 for
hitting every cell of every ship, and there is no discounting (γ = 1). It is illegal to fire twice
on the same cell. If it was necessary to fire on all cells of the grid, the total reward is 0;
otherwise the total reward indicates the number of steps better than the worst case. There
are 100 actions, 2 observations, and approximately 1018 states in this challenging POMDP.
Particle invigoration is particularly important in this problem. Each local transformation
applied one of three transformations: 2 ships of different sizes swapped location; 2 smaller
ships were swapped into the location of 1 larger ship; or 1 to 4 ships were moved to a new
location, selected uniformly at random, and accepted if the new configuration was legal.
Without preferred actions, all legal actions were considered. When preferred actions were
used, impossible cells for ships were deduced automatically, by marking off the diagonally
adjacent cells to each hit. These cells were never selected in the tree or during rollouts. The
performance of POMCP, with and without preferred actions, is shown in Figure 2. POMCP
was able to sink all ships more than 50 moves faster, on average, than random play, and more
than 25 moves faster than randomly selecting amongst preferred actions (which corresponds
to the simple strategy used by many humans when playing the Battleship game). Using
preferred actions, POMCP achieved better results with less search; however, even without
preferred actions, POMCP was able to deduce the diagonal constraints from its rollouts,
and performed almost as well given more simulations per move. Interestingly, the search
tree only provided a small benefit over the PO-rollout algorithm, due to small differences
between the value of actions, but high variance in the returns.

In our final experiment we introduce a partially observable version of the video game Pac-
Man. In this task, pocman, the agent must navigate a 17×19 maze and eat the food pellets
that are randomly distributed across the maze. Four ghosts roam the maze, initially ac-
cording to a randomised strategy: at each junction point they select a direction, without
doubling back, with probability proportional to the number of food pellets in line of sight in
that direction. Normally, if PocMan touches a ghost then he dies and the episode terminates.
However, four power pills are available, which last for 15 steps and enable PocMan to eat
any ghosts he touches. If a ghost is within Manhattan distance of 5 of PocMan, it chases him
aggressively, or runs away if he is under the effect of a power pill. The PocMan agent receives
a reward of −1 at each step, +10 for each food pellet, +25 for eating a ghost and −100 for
dying. The discount factor is γ = 0.95. The PocMan agent receives ten observation bits at
every time step, corresponding to his senses of sight, hearing, touch and smell. He receives
four observation bits indicating whether he can see a ghost in each cardinal direction, set
to 1 if there is a ghost in his direct line of sight. He receives one observation bit indicating
whether he can hear a ghost, which is set to 1 if he is within Manhattan distance 2 of a ghost.
He receives four observation bits indicating whether he can feel a wall in each of the cardinal
directions, which is set to 1 if he is adjacent to a wall. Finally, he receives one observation
bit indicating whether he can smell food, which is set to 1 if he is adjacent or diagonally ad-

7

 0

 5

 10

 15

 20

 25

 10 100 1000 10000 100000 1e+06

 0.01 0.1 1 10

A
ve

ra
ge

 D
is

co
un

te
d

R
et

ur
n

Simulations

Search Time (seconds)

Rocksample (11, 11)
POMC: basic

POMC: preferred
PO-rollout: basic

PO-rollout: preferred
SARSOP

 0

 5

 10

 15

 20

 25

 10 100 1000 10000 100000 1e+06

 0.01 0.1 1 10 100

A
ve

ra
ge

 D
is

co
un

te
d

R
et

ur
n

Simulations

Search Time (seconds)

Rocksample (15, 15)
POMC: basic

POMC: preferred
PO-rollout: basic

PO-rollout: preferred

 0

 10

 20

 30

 40

 50

 60

 70

 10 100 1000 10000 100000

 0.001 0.01 0.1 1

A
ve

ra
ge

 R
et

ur
n

Simulations

Search Time (seconds)

Battleship
POMCP: basic

POMCP: preferred
PO-rollouts: basic

PO-rollouts: preferred
PO-rollouts: preferred

 0

 50

 100

 150

 200

 250

 300

 350

 10 100 1000 10000 100000

 0.001 0.01 0.1 1

A
ve

ra
ge

 U
nd

is
co

un
te

d
R

et
ur

n

Simulations

Search Time (seconds)

PocMan
POMCP: basic

POMCP: preferred
PO-rollout: basic

PO-rollout: preferred

Figure 2: Performance of POMCP in rocksample (11,11) and (15,15), battleship and pocman. Each
point shows the mean discounted return from 1000 runs or 12 hours of total computation. The
search time for POMCP with preferred actions is shown on the top axis.

jacent to any food. The pocman problem has approximately 1056 states, 4 actions, and 1024
observations. For particle invigoration, 1 or 2 ghosts were teleported to a randomly selected
new location. The new particle was accepted if consistent with the last observation. When
using preferred actions, if PocMan was under the effect of a power pill, then he preferred to
move in directions where he saw ghosts. Otherwise, PocMan preferred to move in directions
where he didn’t see ghosts, excluding the direction he just came from. The performance
of POMCP in pocman, with and without preferred actions, is shown in Figure 2. Using
preferred actions, POMCP achieved an average undiscounted return of over 300, compared
to 230 for the PO-rollout algorithm. Without domain knowledge, POMCP still achieved
an average undiscounted return of 260, compared to 130 for simple rollouts. A real-time
demonstration of POMCP using preferred actions, is available online, along with source code
for POMCP (http://www.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html).

6 Discussion

Traditionally, POMDP planning has focused on small problems that have few states or can
be neatly factorised into a compact representation. However, real-world problems are often
large and messy, with enormous state spaces and probability distributions that cannot be
conveniently factorised. In these challenging POMDPs, Monte-Carlo simulation provides
an effective mechanism both for tree search and for belief state updates, breaking the curse
of dimensionality and allowing much greater scalability than has previously been possible.
Unlike previous approaches to Monte-Carlo planning in POMDPs, the PO–UCT algorithm
provides a computationally efficient best-first search that focuses its samples in the most
promising regions of the search space. The POMCP algorithm uses these same samples to
provide a rich and effective belief state update. The battleship and pocman problems provide
two examples of large POMDPs which cannot easily be factored and are intractable to prior
algorithms for POMDP planning. POMCP was able to achieve high performance in these
challenging problems with just a few seconds of online computation.

8

http://www.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html

References

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-armed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[2] D. Bertsekas and D. Castañon. Rollout algorithms for stochastic scheduling problems.
Journal of Heuristics, 5(1):89–108, 1999.

[3] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In
5th International Conference on Computer and Games, 2006-05-29, pages 72–83, 2006.

[4] H. Finnsson and Y. Björnsson. Simulation-based approach to general game playing. In
23rd Conference on Artificial Intelligence, pages 259–264, 2008.

[5] S. Gelly and D. Silver. Combining online and offline learning in UCT. In 17th Inter-
national Conference on Machine Learning, pages 273–280, 2007.

[6] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 101:99–134, 1995.

[7] M. Kearns, Y. Mansour, and A. Ng. Approximate planning in large POMDPs via
reusable trajectories. In Advances in Neural Information Processing Systems 12. MIT
Press, 2000.

[8] L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In 15th European
Conference on Machine Learning, pages 282–293, 2006.

[9] H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning
by approximating optimally reachable belief spaces. In Robotics: Science and Systems,
2008.

[10] R. Lorentz. Amazons discover Monte-Carlo. In Computers and Games, pages 13–24,
2008.

[11] S. Ong, S. Png, D. Hsu, and W. Lee. POMDPs for robotic tasks with mixed observ-
ability. In Robotics: Science and Systems, 2009.

[12] J. Pineau, G. Gordon, and S. Thrun. Anytime point-based approximations for large
POMDPs. Journal of Artificial Intelligence Research, 27:335–380, 2006.

[13] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for
pomdps. Journal of Artificial Intelligence Research, 32:663–704, 2008.

[14] T. Smith and R. Simmons. Heuristic search value iteration for pomdps. In 20th con-
ference on Uncertainty in Artificial Intelligence, 2004.

[15] G. Tesauro and G. Galperin. Online policy improvement using Monte-Carlo search. In
Advances in Neural Information Processing 9, pages 1068–1074, 1996.

9

