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Abstract

Learning a low-dimensional representation of images is
useful for various applications in graphics and computer
vision. Existing solutions either require manually speci�ed
landmarks for corresponding points in the images, or are
restricted to speci�c objects or shape deformations. This
paper alleviates these limitations by imposing a speci�c
model for generating images; the nested composition of
color, shape, and appearance. We show that each compo-
nent can be approximated by a low-dimensional subspace
when the others are factored out. Our formulation allows
for ef�cient learning and experiments show encouraging re-
sults.

1. Introduction

One of the fundamental problems in computer vision is
to characterize the “space” of images in some meaningful
parametrization. Ideally, the parameters of this represen-
tation would correspond to pertinent variations of the con-
sidered data. For example, thinking of the space of horse
images, these parameters could control different color, tex-
ture, and pose of the horses.

Such representations can be useful for some image edit-
ing applications like image morphing [13], shape transfer
[14], or pose manipulation [20]. It can also provide an ef�-
cient way to navigate large datasets by automatically order-
ing the set w.r.t. a speci�c variation parameter [4]. Finally,
this may have potential applications in detection and recog-
nition problems [1].

The stated problem naturally falls into the category of
manifold learning for natural images. There are two classes
of mainstream methods for this application. The �rst is
to perform manifold analysis at the local level, e.g. using
patches [6, 17, 23, 15]. However, this approach inevitably
ignores the spatial structure of the image, which is crucial
for representing images at the object level.

The second case is when manifold analysis is applied to
the entire image. Such techniques have been successfully

used to discover the manifold of pose changes [18]. How-
ever, they require very dense sampling of the image space.
This is expected, because this approach does not make
much structural assumption about how images are gener-
ated, other than forcing them to be on a low-dimensional
manifold. However, the dense sampling constraint can be
very restrictive. For example, a tremendously large num-
ber of images is required to densely capture all the gradual
change of horse shapes and colors.

In order to cope with this problem, and yet work with
an entire image, we propose a latent structure to constrain
how images are generated. Our model takes into account
variations in color, appearance, and shape in a nested and
compositional way. In addition, the manifolds of shape and
appearance are restricted tolow-dimensional subspacesto
further reduce sample complexity of the learning problem.
We argue that this choice is a reasonable regularization for
each of these components.

Each component used in our model is well-known and
has been successfully used when other sources of variations
are factored out. For example, in absence of shape and color
variations, principal component analysis has been used to
capture the variations in appearance [7]. When appearance
and color are �xed, and only shape changes, optical �ow [9,
22, 16] and its variants such as SIFT �ow [14] can be used
to infer geometric deformation across the images. Finally,
if shape and appearance are not of any concern, global color
transfer methods can be used to match the color spaces [21].

However, we believe it is the interaction of these three
that makes the problem interesting and allows for less con-
trolled scenarios. Our proposed scheme resembles some
similarity to Active Appearance Model [7] and Morphable
Models [10]. However, the former requires manually pro-
vided landmarks while the latter needs pre-aligned im-
ages. In contrast, our method is fully unsupervised. An-
other related work is Collection Flow [12] which provides
an elegant formulation tailored for human faces. How-
ever, our proposed approach is designed to handle a larger
class of image categories. Finally, we remind that Trans-
formed Component Analysis (TCA) [8] also aims at cap-
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I 1 I 2 Our method SIFT �ow Optical �ow
Figure 1. Our compositional model can transfer shape between
quite dissimilar images, while optical �ow and SIFT �ow fail.

turing a low-dimensional appearance subspace by factor-
ing out shape deformations. However, it works for shape
models that have a small number of parameters (e.g. global
translation). TCA does not scale to more complex motions
as it must exhaustively process the entire (discretized) pa-
rameter space. In contrast, our method handles arbitrary
motions represented by dense motion �elds.

To better understand the problem addressed in this paper,
consider the following example. Suppose we want to trans-
fer the shape of imageI 1 to imageI 2 (see Figure 1). This
may require knowing a dense correspondence �eld between
two totally different objects, which cannot be obtained by
classic solutions such as optical �ow or even SIFT �ow.
None of these two methods know what the “space of mush-
rooms” looks like. In fact, their obtained solution drasti-
cally exists such space as seen in Figure 1. In contrast, our
composition scheme is able to provide a reasonable shape
transfer, as it relies on a learned model for the space of
mushroom images in terms of their color, appearance and
shape.

In this work, we present a simple algorithm for recov-
ering low-dimensional representation simultaneously for
color, appearance and shape. The problem is formulated as
an optimization task. The compositional and subspace as-
sumptions in our model provide very ef�cient update rules
for optimization. Our quantitative and qualitative results in
some related tasks such as image editing and image brows-
ing are encouraging.

2. Compositional Low-Dimensional Model

2.1. De�nitions

We denote sets byX , vectors byx , and matrices by
X . Scalar valued functions are denoted asf (:), vector val-
ued functions asf (:), and functionals asF [ : ]. We de-
note a subspace byX . The symbol, refers to equal-
ity by de�nition. A set f x1; : : : ; xn g is alternatively writ-
ten asf xk gn

k=1 . By k:k we meank:k2. De�ne jX j to be
the number of elements ofX whenX is discrete, and let
jX j ,

R
X dx whenX is continuous.

The operatorvec(f (x ) ; X 0) is de�ned to take a map
f : X ! R and evaluate it on a uniformly spaced grid
X 0 � X . It returns a vectorf by concatenating all these
evaluations. The size of this vector is obviouslyjX 0j. The
operatorunvec(f ; X ) approximates the original mapf on

the domainX by interpolating1 between the elements off .
When f (x ) is multivalued, say consisting ofr com-

ponents(f 1(x ); : : : ; f r (x )) , we de�ne vec(f (x ) ; X 0) ,�
vec(f 1(x ) ; X 0) : : : vec(f r (x ) ; X 0)

�
, which is simply

concatenating all single valued components off (x ). The
operatorunvec(f ; X ) in this case is de�ned similar to sin-
gle valued maps, except that it approximates the original
multivaluedf by interpolating2 between the elements off .

Throughout the paper, we drop the second argument of
vecandunvecfor brevity. It should be clear thatX 0 is sim-
ply the pixel space of the images andX � R2 is the tightest
region that enclosesX 0.

2.2. Model Description

Let X � R2 and C � R3 be location and color
spaces respectively. Given a set of input color images
F , f f k (x )gn

k=1 , where each image isf k : X ! C .
We model each input imagef k (x ) 2 F by the following
composition of functions,

f k (x ) � h k

�
gk

�
u k (x )

� �
for k = 1 ; : : : ; n ; (1)

where the maps areh k : C ! C , gk : X ! C and
u k : X ! X . This nested form imposes a speci�c latent
structure on how the imagesF are generated. Based on the
nature of each map, we can think of them respectively as
photometric, appearance, andgeometrictransforms.

The goal is to estimate these maps from the given data
F . We adopt̀ 2 norm to quantify the approximation error.
Hence, we aim at solving the following optimization task,

min
f (h k ;gk ;u k )gn

k =1

nX

k=1

Z

X
k h k

�
gk

�
u k (x )

� �
� f k (x ) k2 dx :

(2)
The problem (2) is obviouslyill-posed; there are

many different ways to choose equally good maps
f h k (c); gk (x ); u k (x )gn

k=1 to approximateF . Therefore,
we need to restrict the solution space.

We control the capacity of the mapsf gk (x )gn
k=1 and

f u k (x )gn
k=1 by forcing them to be constructed from a

small number ofbasis functions. In addition, we regularize
the problem by imposingspatial smoothnesson geometric
transforms. We also restrict each color transform function
h k to be ashift and rotation, i.e. h k (c) , A k c+ bk . Here,
the rotation matrixA k is 3 � 3 and the vectorbk is 3 � 1.
Hence, the regularized problem is the following,

1In this paper we always use bilinear interpolation, as our functions are
2D .

2We interpolate each component independently. This is for computa-
tional advantage of being able to use bilinear interpolation again.



min
f (A k ;bk ;gk ;u k )gn

k =1

nX

k=1

� Z

X
k A k gk

�
u k (x )

�
+ bk

� f k (x ) k2 dx + R [ u k ]
�

s.t. 8k ; gk (x ) 2 G ; u k (x ) 2 U ; A k 2 SO(3) : (3)

HereR is a functional that penalizes spatial variations of
its argument. The spacesG andU have the property that
there exist for themdg anddu basis functionsf � p(x )gdg

p=1

andf  q(x )gdu
q=1 such thatG = span(� 1(x ); : : : ; � dg

(x ))
andU = span( 1(x ); : : : ;  du

(x )) .
In the following we discuss the rationale behind the reg-

ularization choices. Af�ne maps have shown to be rich
enough for transferring color across natural images with a
reasonable quality [21]. Inspired by this model, we work
with a special case of af�ne transform where the matrixA
is restricted to a rotation. This is merely for its numerical
advantage; we will see in the next section that our method
relies onA � 1. By choosingA to be a rotation, it is guaran-
teed thatA � 1 can be stably computed.

Basic deformations are low-rank, e.g. motion �eld of
global translation or global scaling is rank one. The object
may have a mixture of basic motions (e.g. due to articula-
tion, in a piecewise or combined fashion). The total rank of
the motion is not more than sum of the rank of basic mo-
tions. The latter is typically much smaller than the dimen-
sion of the entire �eld. Finally, it is empirically observed
that when similar objects are registered and brightness nor-
malized, they lie on a low-dimensional subspace relative to
the dimension of the pixel space [2]. This is also a key as-
sumption in Active Appearance Models [7].

2.3. Illustrative Example

Suppose we are interested in parameterizing the space
of mushrooms. These objects vary in their texture, color,
and shape. Nevertheless, these variations are not arbitrary,
and our goal is to approximate the space of these variations
using the proposed model.

Let dim(G) = 1 anddim(U ) = 6 . Using the proposed
scheme, we obtain a subspace for appearance and another
for shape as shown in Figure 2. Interestingly, one can se-
mantically interpret what each basis function tries to cap-
ture. For example, moving along the� 1(x ) sweeps dark
background and bright mushroom to the opposite case. In
addition, 1(x ) controls height, 2(x ) changes cap's an-
gle,  3(x ) chooses �atness of cap, 4(x ) leans mushroom
toward left or right, and so forth. In addition, the evolution
of the internal representation to the input image is depicted
in Figure 3.

� 1(x )  1(x )  2(x )  3(x )  4(x )  5(x )  6(x )
Figure 2. The effect of moving along each basis function in nega-
tive (top) and positive (bottom) directions.

(a) (b) (c) (d)
Figure 3. Evolution of mushrooms fromg to f . (a): gk (x ), (b):
A k gk (x ) + bk , (c): A k gk (u k (x ))+ bk , (d): f k (x )

3. Optimization

Finding the exact solution of the problem (3) is dif�-
cult, due to its non-convexity. We obtain an approximate
solution to this problem by alternating between subprob-
lems. Speci�cally, there are three sets of variables, namely
color transformf (A k ; bk )gn

k=1 , appearancef gk (x )gn
k=1 ,

and shape deformationf u k (x )gn
k=1 .

By focusing only on one category at a time (�xing the
other two), we can derive ef�cient update rules that reduce
the objective function (3). These update rules either have
closed form expression, or there exist ef�cient algorithms
to solve them. In the sequel, we study each of these sub-
problems and eventually propose a complete algorithm that
puts the pieces together.

3.1. Solving for f gk (x )gn
k=1

Remember from (1) that the model tries to satisfy
f k (x ) � A k gk

�
u k (x )

�
+ bk for k = 1 ; : : : ; n. The

rotation matrixA k is obviously invertible. In addition,
suppose the shape deformation is invertible or its inverse
can be approximated (details at the end of this subsection).
Now we alternatively express the model requirement as

gk (x ) � A � 1
k

�
f k

�
u � 1

k (x )
�

� bk

�
. Sincef (A k ; bk )gn

k=1



andf u k (x )gn
k=1 are �xed, the optimization subproblem be-

comes as follows,

min
f gk gn

k =1

nX

k=1

Z

X
k gk (x ) � A � 1

k

�
f k

�
u � 1

k (x )
�

� bk

�
k2 dx

s.t. 8k ; gk (x ) 2 G : (4)

Let z(x ) , A � 1
k

�
f k

�
u � 1

k (x )
�

� bk

�
, which does not

depend ongk (x ). The problem then becomes minimizing
the`2 reconstruction error

P n
k=1

R
X k gk (x ) � z(x ) k2 dx

subject to subspace rank beingdg. The solution to this prob-
lem is known to be related to the eigenfunctions of the co-
variance operator off zk (x )gn

k=1 .
The algorithm actually applies spectral decomposition

to the covariance of the discretizedgk (x ) and zk (x ),
using the vec operator de�ned in Section 2.1. Let
~zk , vec(zk (x )) and �z , 1

n

P n
k=1 ~zk . Then, the

top dg eigenvectors of
P n

k=1 (~zk � �z)( ~zk � �z)T , namely
(� 1; : : : ; � dg

) are computed. It then follows that~gk =

�z +
P dg

p=1 � p� T
p (~zk � �z)

The �eld u k (x ) is not necessarily invertible; there might
be locationsx whereu � 1

k (x ) is not de�ned, or has multiple
values. Thus, instead of working withu � 1

k , we de�ne a
function u ]

k : X ! X that approximatesu � 1
k . We �rst

resolve multi-valued issue ofu � 1
k in the following way,

8x 2 X ; ju � 1
k (x )j � 2 ) u ]

k (x ) = arg min
û 2 u � 1

k (x )
kû � �u x k ;

where�u x , 1
jU x j

P
~u 2U x

~u, Ux , [ y 2N (x ) f u � 1
k (y )g

andN (x ) is some small neighborhood ofx . After handling
multivalued points, we get to pointsx whereu � 1

k (x ) has no
value. We �ll in these points by interpolating them from the
remainingu ]

k that has value.
With abuse of notation, in the rest of the paper we write

u � 1 to refer tou ] , as the former better conveys the notion
of inverse.

3.2.Solving for f u k (x )gn
k=1

Sincef (A k ; bk )gn
k=1 and f gk (x )gn

k=1 are �xed, opti-
mization (3) simpli�es to the following,

min
f u k gn

k =1

nX

k=1

� Z

X
k A k gk

�
u k (x )

�
+ bk � f k (x ) k2 dx

+ R [ u k ]
�

s.t. 8k ; u k (x ) 2 U : (5)

For ef�ciency, we relax this task to two simpler subprob-
lems. We �rst solve (5) without subspace constraint, and

then project the solution of that onto the subspace. Speci�-
cally, in the �rst step we compute,

û k (x ) , arg min
u k

Z

X
k A k gk

�
u k (x )

�
+ bk � f k (x ) k2 dx

+ R [ u k ] ; (6)

and then solve the following,

min
f u k gn

k =1

nX

k=1

Z

X
k u k (x ) � û k (x ) k2

s.t. 8k ; u k (x ) 2 U : (7)

The task in (6) is a standard optical �ow problem, for
which there exist ef�cient algorithms. Speci�cally, we use
the optical �ow method of [22] which has shown to have a
good performance. This method usesCharbonnierpenalty
function

p
x2 + � 2 [5] to construct a robust spatial regular-

izer functionalR[ : ] (see [22] for details).
The subproblem (7) is again minimization of`2 recon-

struction error, subject to subspace rank constraint. Similar
to section 3.1, the solution of this problem can be derived
by spectral decomposition.

3.3.Solving for f (A k ; bk )gn
k=1

The subproblem is as below,

min
f A k ;bk gn

k =1

nX

k=1

Z

X
k A k gk

�
u k (x )

�
+ bk � f k (x ) k2 dx

s.t. A k 2 SO(3) :

This problem has a closed form answer known asKab-
sch's solution[11]. De�ne T k as the following,

T k ,
� Z

X

�
f k (x ) � �f k

��
gk

�
u k (x )

�
� �gk

� T
dx

�
;

where �f k , 1
jX j

R
X f k (x ) and �gk ,

1
jX j

R
X gk (u k (x )) . Let T k = USV T be the singu-

lar value decompositionof the 3 � 3 matrix T k . Then it
follows that,

A k = UV T

bk = �f k � A k �gk :

3.4. Algorithm

We can now construct an algorithm for computing the
low-dimensional representation of image data. The algo-
rithm essentially uses the ideas introduced above.



Algorithm 1 Computing Low Dimensional Representation
of an Image Set.
Input: A set of imagesf f 1(x ); : : : ; f n (x )g.

u k (x ) = x for k = 1 ; : : : ; n
A k = I ; bk = 0 for k = 1 ; : : : ; n
repeat

for k = 1 ; : : : ; n do
~f k (x ) = A � 1

k

�
f k (u � 1

k (x )) � bk
�

~f k = vec( ~f k (x ))
end for
�f = 1

n

P n
k=1

~f k

(� 1; : : : ; � dg
)  Topdg eigenvectors of

P n
k=1 ( ~f k �

�f )( ~f k � �f )T

for k = 1 ; : : : ; n do
~g = �f +

P dg
p=1 � p� T

p ( ~f k � �f )
gk (x ) = unvec( ~g)

û k (x ) = arg min u
R

X

�
k A k gk

�
u (x )

�
+ bk �

f k (x ) k2 + R(u)
�

dx

û k = vec( û k (x ))
end for
�u = 1

n

P n
k=1 û k

( 1; : : : ;  du
)  Top du eigenvectors of

P n
k=1 (û �

�u )( û � �u )T

for k = 1 ; : : : ; n do
~u = �u +

P du
p=1  p T

p (û � �u )
u k (x ) = unvec( ~u)
�f k = 1

jX j

P
x 2X f k (x )

�gk = 1
jX j

P
x 2X gk (x )

T =
P

x 2X

�
f k (x ) � �f k

��
gk (x ) � �gk

� T

(U ; S; V ) = svd(T )
A k = UV T

bk = �f k � A k �gk
end for

until Convergence
Output: f g1(x ); : : : ; gn (x )g, f u 1(x ); : : : ; u n (x )g,

f � 1(x ); : : : ; � dg
(x )g, andf  1(x ); : : : ;  du

(x )g.

4. Quantitative Evaluation

We can quantitatively evaluate our method based on the
accuracy of its estimated deformation �eldsf u k (x )gn

k=1 .
We compare the quality of these �elds against those esti-
mated by robust optical �ow and SIFT �ow.

Datasets : We test our method on four object categories,
namely, horses, mushrooms, �owers, and birds. For horses,
we use publicly available Weizmann dataset [3] that con-
sists of 327 color images. For each remaining category, we
collected 120 images by Google's image search. In all these
four sets, the border of the image almost coincides with the

bounding box of the object. Each datasetF comes with a
ground truth image setB, i.e. for eachf (x ) 2 F there is a
corresponding mapb(x ) 2 B , whereb : X ! f 0; 1g.

Performance Criteria :
Each of the compared methods produces a deformation

�eld u jk (x ), which provides dense correspondence from
locations in imagef j to locations in imagef k . For optical
�ow and SIFT �ow, one needs to run these algorithms for
each pair ofi; j by providing(f j ; f k ) as input in order to
getu jk (x ) as output. We used publicly available codes for
computing robust optical �ow [22] and SIFT �ow [14]. We
used the default parameters shipped with these packages.
In the implementation of our algorithm, we use the same
optical �ow package of [22] with the same parameters. For
our method,u jk (x ) can be constructed for any pair(i; j )
using the output setf u k (x )g. Speci�cally, it follows that
u jk (x ) = u � 1

j

�
u k (x )

�
(see Section 5.1 for details).

To evaluate a method, we consider two performance cri-
teria, namely region based and boundary based. Each cri-
terion, is a functionalz that takes two binary maps and
measures similarity or dissimilarity of the pair, i.e. it is of
form z

�
bj (:); bk (:)

�
. Since both region based and bound-

ary based criteria operate on image pairs, their performance
on the entire set is de�ned as their average value over all
possible pairs,

�z ,
1
n2

nX

j =1

nX

k=1

z
�
bj (u jk (:)) ; bk (:)

�
:

The region based criterion for a pair of binary maps is
de�ned as below,

zR (bj (:); bk (:)) ,
P

x bj (x )bk (x )
P

x bj (x )
:

This essentially captures what fraction of �gure points
in bj coincide with �gure points inbk . Observe that when
bj = bk , thenzR (bj (:); bk (:)) = 1 . Hence, the larger values
of zR are better, as they indicate larger overlap.

The boundary based criterionzB measures boundary dis-
placement error. LetQk the set of boundary coordinatesx
in the maskbk (x ). ThenzB is de�ned as below,

zB (bj (:); bk (:)) ,
1

jQ j j

X

x 2Q j

min
y 2Q k

kx � yk :

Result : Tables 1 and 2 summarize the performance of
each method. For all cases of our method, we setdg =
1 and du = 6 , which was empirically observed to work
well jointly for all of the data we used here3. The proposed

3This setting was selected by exhaustively searching the10� 10 space
of (dg ; du ), where each dimensionality ranges from 1 to 10.



Mushroom Flowers Birds Horses
Optical Flow 0.76 0.61 0.69 0.62
SIFT Flow 0.70 0.62 0.67 0.59

Proposed Method 0.73 0.68 0.71 0.64
Table 1. Region based criterion�zR (higher is better).

Mushroom Flowers Birds Horses
Optical Flow 11.54 15.34 14.27 9.62
SIFT Flow 13.73 15.39 14.31 9.72

Proposed Method 5.69 5.65 6.10 4.61
Table 2. Boundary based criterion�zB (lower is better).

method outperforms via boundary displacement error and
achieves good performance w.r.t. region based score.

5. Qualitative Evaluation

5.1. Scene Alignment

Suppose we want to align two scenesf 1(x ) andf 2(x )
via non-parametric deformation. Speci�cally, we are look-
ing for a deformation �eldu � (x ) so that the deformed im-
agef 1(u � (x )) “looks like” f 2(x ). If the two scenes are
quite similar, e.g. they are two consecutive frames of a
video, the problem is well-de�ned. In fact, in this case the
solution u � (x ) can be often recovered by computing the
optical �ow between the two images.

Raising the dissimilarity can break down the “bright-
ness constancy” assumption and hence optical �ow cannot
be used. If the changes, however, are invariant to some
feature-based representation, one can try to establish cor-
respondence between pair of features instead of pixel inten-
sity values. In this regime, tools such asSIFT �ow [14]
can be used. However, using the proposed scheme, we can
even go beyond this, i.e. when there is no clear match solely
using local invariant features.

The key here is that, rather than working with just two
images, we work with a large set of imagesF . The pair
of interest,f 1(x ) andf 2(x ), are just two elements ofF .
The setF can regularize our choice ofu � (x ), because all
elements ofF are supposed to be related to each other after
factoring out their color and geometry. The latter point is an
important implication of working with a large set of related
images, as opposed to just having two images.

Speci�cally, our model provides a common coordinate
system in latent space, where pixels correspond to each
other, regardless of their color and geometric variations.
That is, for any pair of imagesf j and f k in F , it holds
thatgj (x ) � gk (x ), wheregj (x ) � A � 1

j f j

�
u j (x )

�
� bj

(gk (x ) is de�ned in a similar fashion). This provides
a correspondence between images ofF ; for every possi-
ble x , the locationu � 1

j (x ) in f j corresponds to location

f 1(x ) f 2(x ) f 1(u �
p(x )) f 1(u �

s (x )) f 1(u �
o(x ))

Figure 5. Example alignments by our proposed methodu �
p (x )

against SIFT Flowu �
s (x ) and Optical Flowu �

o (x ).

u � 1
k (x ) in f k . Hence, our model easily provides the solu-

tion u � (x ) = u � 1
1

�
u 2(x )

�
. See Figure 5 for some exam-

ples.

5.2. Image Morphing

The goal of morphing is to gradually convert an im-
agef 1(x ) to another imagef 2(x ), such that the transition
looks natural, e.g. without tearing apart the objects or ex-
hibiting other artifacts. There are two conditions required
for high quality morphing. First, a meaningful correspon-
dence is needed between the pixels off 1(x ) and pixels
of f 2(x ). This determines where inf 2(x ) each pixel of
f 1(x ) should land at. For example, when morphing a pair
of mushroom images, we want to morph a cap to the other's
cap, and not to the other's stem. The other important factor
is that intermediate images must look natural. This requires
knowing the space of images thatf 1(x ) andf 2(x ) live in,
so that the intermediate images are maintained in that space.

Both of these conditions are dif�cult to ful�ll when
f 1(x ) and f 2(x ) are not similar. Our proposed scheme,
however, can bene�t both of these conditions . First, es-
timating the low-dimensional representation from a collec-
tion of imagesF restricts the space of transformations to
those needed for construction ofF . Second, while �nd-
ing correspondence across two dissimilar images is dif�cult
or even not well-de�ned, the collective relationship of ele-



Figure 4. Some images from the puppet sequence.

ments inF can guide howf 1(x ) andf 2(x ) are related in
particular.

We now discuss how the learned model can be used for
morphing. Remember thatgk (x ) = A � 1

k f k

�
u k (x )

�
� bk

and thus for anyx , the locationu � 1
j (x ) in f j corresponds

to locationu � 1
k (x ) in f k . We can make this correspon-

dence gradual by introducing a time parametert and vary-
ing it from 0 to 1,

f morph
�
(1� t)u � 1

1 (x )+ tu � 1
2 (x )

�
= (1 � t)f 1(x )+ tf 2(x ) :

Observe that att = 0 we havef morph(u
� 1
1 (x )) =

f 1(x ) and att = 1 we havef morph(u
� 1
2 (x )) = f 2(x ).

By varying t between0 and1 we achieve morphing while
the deformation is constructed from the subspace-restricted
learned deformationsf u k (x )gn

k=1 . Obviously, since the
�rst two methods are inferior in establishing desired corre-
spondence, as shown in scene alignment section, they also
fail for morphing.

5.3. Image Browsing

Consider browsing a large collection of imagesF to �nd
a speci�c item, or to learn about variations across the im-
ages in the dataset. Doing these tasks by sequentially nav-
igating through an unordered sequence of images likeF is
tedious and inef�cient. Instead, we would like to browse an
ordered sequence, where the ordering of each sequence is
associated with some dominant structure in the dataF .

Our proposed method naturally provides a solution to
this problem by discovering a low dimensional representa-
tion of F . In fact, we can order the elements ofF based on
the values they attain when projected to a subspace axis.

For example, consider Weizmann horse dataset [3]. Let
dg = 1 anddu = 6 . Our method discovers the basis shown
in Figure 6. Similar to mushroom example presented ear-
lier, the subspace axes seem to be semantically meaningful.

� 1(x )  1(x )  2(x )  3(x )  4(x )  5(x )  6(x )
Figure 6. The effect of moving along each basis function in nega-
tive (top) and positive (bottom) directions.

Figure 7. Seven images fromF with smallest (top) and largest
(bottom) projectionsu k onto 5 .

For example 5(x ) turns a horse from pro�le view to head
facing camera. We can now assign tok'th element ofF a
scalarck obtained by projectingu k (x ) onto  5(x ). This
allows to order images inF based on their associated pro-
jection valuesf cqg for q = 1 ; : : : ; du (see Figure 7).

5.4. Articulation Learning

Consider an articulated object appearing in different
poses in a set of imagesF . The goal of articulation learning
is to provide a few parameters, by which you can manipu-
late the object. We show that the proposed framework can
be used to achieve this goal at a reasonable quality.

We used the Youtube video of a puppet as the input. We
extracted a portion of the video and sampled 100 frames
from it to constructF (see Figure 4). Although these
images were taken from a video with known image se-
quence order, our algorithm does not rely on this informa-
tion. Therefore, the concept described here is also applica-
ble to an unordered image sequence.



Figure 8. Novel synthesized poses. Top Left: Original image. Top
Middle: Manipulation via 1(x ). Top Right: Manipulation via
 2(x ). Bottom: Corresponding Motion Fields.

By applying our algorithm to this set, we obtain
the setf u k (x )gn

k=1 , and consequently the inverse maps
f u � 1

k (x )gn
k=1 , as well as the basis functionsf  q(x )gdu

q=1 .
The geometric deformations of the puppet are captured by
the learned subspaceU . Hence, the coef�cientcq each ba-
sis function q(x ) serves as a parameter which can manip-
ulate the puppet along its dominant deformations within the
sequence.

Now suppose we want to manipulate the puppet at the
k'th image ofF , e.g. the one highlighted by red in Figure
4. We can achieve that using the following equation,

f y
k (x ; c1; : : : ; cdu ) = f k

�
u � 1

k

�
u k (x ) +

duX

q=1

cq q(x )
� �

;

wheref y
k is the updated pose off k , andcq determines

the contribution of theq'th basis function. Note that at
the origin, i.e. cq = 0 for all q = 1 ; : : : ; du , we have
f y

k (x ; c1; : : : ; cdu ) = f k (x ).
Figure 8 shows images synthesized this way.We can cap-

ture up/down and left/right movements of the hand. These
give us completely new images; the synthesized images are
novel and do not exist in the original set.

6. Conclusion

In this work we presented a simple compositional model
of color, shape, and appearance to approximate image sets.
The model is regularized by having shape and appearance
representations be on a low-dimensional subspace, and hav-
ing color be a global shift and rotation. The learned rep-
resentation was applied to establish dense correspondence
across instances of some object categories. The proposed
method signi�cantly outperforms robust optical �ow and
SIFT �ow.

An interesting observation in our experiments is that the
dimensionality that worked jointly well on all of our data is
larger for shape relative to appearance. This is well aligned
with recent theories that claim the sample complexity of vi-
sual learning is mainly due to the pose variations, not the
appearance [19].
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