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Gaussian Process Decentralized Data Fusion and
Active Sensing for Spatiotemporal Traffic Modeling

and Prediction in Mobility-on-Demand Systems

Abstract—Mobility-on-demand (MoD) systems have recently
emerged as a promising paradigm of one-way vehicle sharing
for sustainable personal urban mobility in densely populated
cities. We assume the capability of a MoD system to be enhanced
by deploying robotic shared vehicles that can autonomously
cruise the streets to be hailed by users. A key challenge of
the MoD system is that of real-time, fine-grained mobility
demand and traffic flow sensing and prediction. This paper
presents novel Gaussian process (GP) decentralized data
fusion and active sensing algorithms for real-time, fine-grained
traffic modeling and prediction with a fleet of MoD vehicles.
The predictive performance of our decentralized data fusion
algorithms are theoretically guaranteed to be equivalent to
that of sophisticated centralized sparse GP approximations.
We derive consensus filtering variants requiring only local
communication between neighboring vehicles. We theoretically
guarantee the performance of our decentralized active sensing
algorithms. When they are used to gather informative data
for mobility demand prediction, they can achieve a dual effect
of fleet rebalancing to service mobility demands. Empirical
evaluation on real-world datasets shows that our algorithms are
significantly more time-efficient and scalable in the size of data
and fleet while achieving predictive performance comparable to
that of state-of-the-art algorithms.

Note to Practitioners—Knowing, understanding, and predicting
spatiotemporally varying traffic phenomena in real time has
become increasingly important to the goal of achieving smooth-
flowing, congestion-free traffic in densely-populated urban cities,
which motivates our work here. This paper addresses the
following fundamental problem of data fusion and active sensing:
How can a fleet of autonomous robotic vehicles or mobile
probes actively cruise a road network to gather and assimilate
the most informative data for predicting a spatiotemporally
varying traffic phenomenon like a mobility demand pattern or
traffic flow? Existing centralized solutions are poorly suited
because they suffer from a single point of failure and incur
huge communication, space, and time overheads with large
data and fleet. This paper proposes novel efficient and scalable
decentralized data fusion and active sensing algorithms with
theoretical performance guarantees. The practical applicability
of our algorithms is not restricted to traffic monitoring; they
can be used in other environmental sensing applications such as
precision agriculture, monitoring of ocean/freshwater phenomena
(e.g., plankton bloom), forest ecosystems, pollution (e.g., oil
spill), or contamination. Note that the decentralized data fusion
component of our algorithms can also be used for static sensors
and passive mobile probes and, interestingly, adapted to parallel
implementations to be run on a cluster of machines for achieving
efficient and scalable probabilistic prediction (i.e., with predictive
uncertainty) with large data. Empirical results show that our
algorithms can perform well with two datasets featuring real-
world traffic phenomena in the densely-populated urban city of
Singapore. A limitation of our algorithms is that the decentralized
data fusion components assume independence between multiple
traffic phenomena while the decentralized active sensing com-
ponents only work for a single traffic phenomenon. So, in our

future work, we will generalize our algorithms to perform active
sensing of multiple traffic phenomena and remove the assumption
of independence between them.

Index Terms—Decentralized/distributed data fusion,
decentralized active sensing, distributed consensus filtering,
Gaussian process, log-Gaussian process, relational Gaussian
process, adaptive sampling, active learning, mobility demand
prediction, traffic flow forecasting, spatiotemporal modeling,
environmental sensing and monitoring, vehicular sensor network

Methodologies and Applications

8. Sensing and networks, 7. mobility and navigation, 5.
transportation

Preliminary results of this research have been published
in Proceedings of the 28th Conference on Uncertainty in
Artificial Intelligence (UAI), 2012 [1] and the Robotics: Sci-
ence and Systems Conference (RSS), 2013 [2]. This paper
is an expanded version of the conference papers with new
algorithmic and empirical results.

I. INTRODUCTION

PRIVATE automobiles are becoming unsustainable per-
sonal mobility solutions in densely populated urban cities

because the addition of parking and road spaces cannot keep
pace with their escalating numbers due to limited urban land.
For example, Hong Kong and Singapore have, respectively,
experienced 27.6% and 37% increase in private vehicles
from 2003 to 2011 [3]. However, their road networks have
only expanded less than 10% in size. Without implementing
sustainable measures, traffic congestions and delays will grow
more severe and frequent, especially during peak hours.

Mobility-on-demand (MoD) systems [4] (e.g., Vélib system
of over 20000 shared bicycles in Paris, experimental car-
sharing systems described in [5]) have recently emerged as a
promising paradigm of one-way vehicle sharing for sustainable
personal urban mobility, specifically, to tackle the problems of
low vehicle utilization rate and parking space caused by private
automobiles. Conventionally, a MoD system provides stacks
and racks of light electric vehicles distributed throughout a
city: When a user wants to go somewhere, he simply walks
to the nearest rack, swipes a card to pick up a vehicle,
drives it to the rack nearest to his destination, and drops
it off. In this paper, we assume the capability of a MoD
system to be enhanced by deploying robotic shared vehicles
(e.g., General Motors Chevrolet EN-V 2.0 prototype [6]) that
can autonomously drive and cruise the streets of a densely
populated urban city to be hailed by users (like taxis) instead
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of just waiting at the racks to be picked up. Compared to the
conventional MoD system, the fleet of autonomous robotic
vehicles provides greater accessibility to users who can be
picked up and dropped off at any location in the road network.
As a result, it can service regions of high mobility demand but
with poor coverage of stacks and racks due to limited space
for their installation.

The key factors in the success of a MoD system are the costs
to the users and system latencies, which can be minimized by
managing the MoD system effectively. To achieve this, two
main technical challenges need to be addressed [7]: (a) Real-
time, fine-grained mobility demand sensing and prediction,
and (b) real-time active fleet management to balance vehicle
supply and demand and satisfy latency requirements at sustain-
able operating costs. Existing works on load balancing in MoD
systems [5], dynamic traffic assignment problems [8], dynamic
one-to-one pickup and delivery problems [9], and location
recommendation and dispatch for cruising taxis [10]–[14] have
tackled variants of the second challenge by assuming the nec-
essary inputs of mobility demand and traffic flow information
to be perfectly or accurately known using prior knowledge
or offline processing of historic data. Such an assumption
does not hold for densely populated urban cities because their
mobility demand patterns and traffic flow are often subject
to short-term random fluctuations and perturbations due to
frequent special events (e.g., storewide sales, exhibitions), un-
predictable weather conditions, unforeseen emergencies (e.g.,
breakdowns in public transport services), or traffic incidents
(e.g., accidents, vehicle breakdowns, roadworks). So, in order
for the active fleet management strategies to perform well
in fleet rebalancing and route planning to service the mo-
bility demands, they require accurate, fine-grained predictive
information of the spatiotemporally varying mobility demand
patterns and traffic flow in real time, the former of which is
the desired outcome of addressing the first challenge. To the
best of our knowledge, there is little progress in the algorithm
design and development to take on the first challenge, which
will be a focus of our work in this paper.

In practice, it is non-trivial to achieve real-time, accurate
prediction of spatiotemporally varying traffic phenomena such
as mobility demand patterns and traffic flow because the
quantity of sensors that can be deployed to observe an entire
road network is cost-constrained. For example, static sensors
such as loop detectors [15], [16] are traditionally placed at
designated locations in a road network to collect data for pre-
dicting the traffic flow. However, they provide sparse coverage
(i.e., many road segments are not observed, thus leading to data
sparsity), incur high installation and maintenance costs, and
cannot reposition by themselves in response to changes in the
traffic flow. Low-cost GPS technology allows the collection
of traffic flow data using passive mobile probes [17] (e.g.,
taxis/cabs). Unlike static sensors, they can directly measure
the travel times along road segments. But, they provide fairly
sparse coverage due to low GPS sampling frequency (i.e., often
imposed by taxi/cab companies) and no control over their
routes, incur high initial implementation cost, pose privacy
issues, and produce highly-varying speeds and travel times
while traversing the same road segment due to inconsistent

driving behaviors. A critical mass of probes is needed on each
road segment to ease the severity of the last drawback [18]
but is often hard to achieve on non-highway segments due to
sparse coverage. In contrast, we propose using the autonomous
robotic vehicles as active mobile probes [19] to overcome the
limitations of static and passive mobile probes. In particular,
they can be directed to explore any segments of a road network
to gather real-time mobility demand data (e.g., pickup counts
of different regions) and traffic flow data (e.g., speeds and
travel times along road segments) at a desired GPS sampling
rate while enforcing consistent driving behavior.

How then can the vacant autonomous robotic vehicles in
a MoD system actively cruise a road network to gather
and assimilate the most informative data for predicting a
spatiotemporally varying traffic phenomenon like a mobility
demand pattern or traffic flow1? To solve this problem, a
centralized approach to data fusion and active sensing [15],
[20]–[22] is poorly suited because it suffers from a single
point of failure and incurs huge communication, space, and
time overheads with large data and fleet. Hence, we propose
novel decentralized data fusion and active sensing algorithms
for real-time, fine-grained traffic sensing, modeling, and pre-
diction with a fleet of autonomous robotic vehicles in a MoD
system. Note that the decentralized data fusion component of
our proposed algorithms can also be used for static sensors
and passive mobile probes. The specific contributions of our
work here include:
• Modeling and predicting a mobility demand pattern and

traffic flow using, respectively, rich classes of Bayesian
nonparametric models called a log-Gaussian process (`GP)
model2 (Section II-C) and a relational Gaussian process
model, the latter of whose spatiotemporal correlation struc-
ture can exploit both the road segment features and road
network topology information (Section II-B);

• Developing novel Gaussian process decentralized data fu-
sion algorithms for cooperative perception of traffic phe-
nomena called GP-DDF and GP-DDF+ (Section III) whose
predictive performance are theoretically guaranteed to be
equivalent to that of sophisticated centralized sparse ap-
proximations of the full-rank Gaussian process (full GP for
short) model: The computation of such sparse approximate
GP models can thus be distributed among the MoD vehi-
cles, thereby achieving efficient and scalable probabilistic
prediction;

• Deriving consensus filtering variants of GP-DDF and GP-
DDF+ (Section III-A) that require only local communica-
tion between neighboring MoD vehicles instead of assuming
all-to-all communication between MoD vehicles;

• Devising decentralized active sensing algorithms (Sec-
tion IV) (a) whose performance, when coupled with GP-
DDF, can be theoretically guaranteed to realize the effect

1When a vacant autonomous robotic vehicle is tasked as an active mobile
probe to gather the most informative mobility demand (traffic flow) data, it
can simultaneously serve as a passive mobile probe to collect traffic flow
(mobility demand) data, albeit not most informative.

2The `GP model is widely used in geostatistics to model natural environ-
mental phenomena, but not urban traffic. Hence, its application to modeling
a traffic phenomenon (e.g., mobility demand pattern) is novel.
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of the spatiotemporal correlation structure of the traffic
phenomenon and various parameter settings of the MoD
system, and (b) that, when used for sampling a mobility
demand pattern, can be analytically shown to exhibit, in-
terestingly, a cruising behavior of simultaneously exploring
demand hotspots and sparsely sampled regions that have
higher likelihood of picking up users, hence achieving a dual
effect of fleet rebalancing to service the mobility demands;

• Analyzing the time and communication overheads of our
proposed algorithms (Section V): We prove that our algo-
rithms can scale better than existing state-of-the-art central-
ized algorithms in the size of the data and fleet;

• Empirically evaluating the predictive accuracy, time effi-
ciency, scalability, and performance of servicing mobility
demands (i.e., average cruising length of vehicles, average
waiting time of users, total number of pickups) of our
proposed algorithms on two datasets featuring real-world
traffic phenomena such as a mobility demand pattern over
the central business district of Singapore and speeds of
road segments over an urban road network in Singapore
(Section VI).

II. MODELING TRAFFIC PHENOMENA WITH
GAUSSIAN PROCESSES (GPS)

A Gaussian process (GP) can be used to model a spa-
tiotemporally varying traffic phenomenon as follows: A traffic
phenomenon is defined to vary as a realization of a GP. Let
V be a set of sampling units representing the domain of the
phenomenon such that each sampling unit s ∈ V is associated
with a p-dimensional feature vector xs and a realized (random)
measurement zs (Zs) if s is sampled/observed (unobserved).
Let {Zs}s∈V denote a GP, that is, every finite subset of
{Zs}s∈V has a multivariate Gaussian distribution [23]. The GP
is fully specified by its prior mean µs , E[Zs] and covariance
σss′ , cov[Zs, Zs′ ] for all s, s′ ∈ V , the latter of which
characterizes the spatiotemporal correlation structure of the
phenomenon and can be defined by the widely-used squared
exponential covariance function:

σss′ , σ2
s exp

(
−1

2

p∑
i=1

(
[xs]i − [xs′ ]i

`i

)2
)

+ σ2
nδss′ (1)

where [xs]i ([xs′ ]i) is the i-th component of the feature vector
xs (xs′), the hyperparameters σ2

n, σ
2
s , `1, . . . , `p are, respec-

tively, noise and signal variances and length-scales that can
be learned using maximum likelihood estimation, and δss′ is
a Kronecker delta that is 1 if s = s′ and 0 otherwise.

Given that a column vector zD of realized measurements
is observed for some set D ⊂ V of sampling units, a
full GP model can exploit these data (D, zD) to predict the
measurements for any set S ⊂ V of unobserved sampling units
as well as provide their corresponding predictive uncertainties
using the Gaussian predictive distribution N (µS|D,ΣSS|D)
with the following posterior mean vector and covariance
matrix, respectively:

µS|D , µS + ΣSDΣ−1
DD(zD − µD) (2)

ΣSS|D , ΣSS − ΣSDΣ−1
DDΣDS (3)

where µS (µD) is a column vector with mean components µs
for all s ∈ S (s ∈ D), ΣSD (ΣDD) is a covariance matrix with
covariance components σss′ for all s ∈ S, s′ ∈ D (s, s′ ∈ D),
and ΣSD is the transpose of ΣDS . The posterior mean vector
µS|D (2) is used to predict the measurements for any set S
of unobserved sampling units. The posterior covariance matrix
ΣSS|D (3), which is independent of the measurements zD, can
be processed in two ways to quantify the uncertainty of these
predictions: The trace of ΣSS|D yields the sum of posterior
variances Σss|D over all s ∈ S while the determinant of ΣSS|D
is used in calculating the Gaussian posterior joint entropy

H[ZS |ZD] ,
1

2
log(2πe)

|S| ∣∣ΣSS|D∣∣ . (4)

In contrast to the first measure of uncertainty that assumes
conditional independence between measurements in the set S
of unobserved sampling units, the entropy-based measure (4)
accounts for their correlation, thereby not overestimating their
uncertainty. Hence, we will focus on using the entropy-based
measure of uncertainty in this paper.

A. Subset of Data Approximation
The expressive power of a full GP model comes at a cost of

poor scalability (i.e., cubic time) in the size |D| of data; this
can be observed from computing its Gaussian predictive dis-
tribution (i.e., (2) and (3)), which requires inverting covariance
matrix ΣDD that incurs O(|D|3) time. If |D| is expected to be
large, full GP prediction cannot be performed in real time. For
practical usage, we have to resort to computationally cheaper
approximate GP prediction.

A simple method of approximation is to select only a subset
U of the entire set D of observed sampling units (i.e., U ⊂ D)
to compute the posterior distribution of the measurements for
any set S ⊆ V \D of unobserved sampling units. Such a sparse
subset of data approximation method produces the following
Gaussian predictive distribution, which closely resembles that
of the full GP model (i.e., by simply replacing D in (2) and
(3) with U ):

µS|U = µS + ΣSUΣ−1
UU (zU − µU ) (5)

ΣSS|U = ΣSS − ΣSUΣ−1
UUΣUS . (6)

Notice that the covariance matrix ΣUU to be inverted only
incurs O(|U |3) time, which is independent of |D|.

The predictive performance of subset of data approximation
is sensitive to the selection of subset U . In practice, random
subset selection often yields poor performance. This issue can
be resolved by actively selecting an informative subset U
in an iterative greedy manner: Firstly, U is initialized to be
an empty set. Then, all sampling units in D \ U are scored
based on a criterion that can be chosen from, for example, the
works of [20], [24], [25]. The highest-scored sampling unit
is selected for inclusion into U and removed from D. This
greedy selection procedure is iterated until U reaches a pre-
defined size. Among the various criteria introduced earlier,
the differential entropy score [24] is reported to perform well
[26]; it is a monotonic function of the posterior variance Σss|U
(6), thus resulting in the greedy selection of a sampling unit
s ∈ D \ U with the largest variance in each iteration.
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B. Modeling Traffic Flow with Relational Gaussian Process

To model traffic flow (e.g., speeds of road segments) over an
urban road network with a relational GP, let each sampling unit
s ∈ V denote a road segment and its associated measurement
zs quantify the traffic flow condition such as road speed.
Similar to the standard GP, a relational GP uses the GP prior
covariance σss′ to measure the pairwise “similarity” of road
segments. For traffic flow (e.g., road speeds), the correlation
of measurements between pairs of road segments depends not
only on their features (e.g., length, number of lanes, speed
limit, direction) but also on the relational information residing
within the road network topology. So, different from the
standard GP, a relational GP defines the GP prior covariance
not just in terms of the features, but also by exploiting the
topology information, which will be described next.

Definition 1 (Road Network): Let the road network be rep-
resented as a weighted directed graph G , (V,E,m) that
consists of
• a set V of vertices denoting the domain of all possible road

segments,
• a set E ⊆ V × V of edges where there is a edge (s, s′)

from s ∈ V to s′ ∈ V iff the end of segment s connects to
the start of segment s′ in the road network, and

• a weight function m : E → R+ measuring the standardized
Manhattan distance [27] m((s, s′)) ,

∑p
i=1 |[s]i − [s′]i|/ri

of each edge (s, s′) where [s]i ([s′]i) is the i-th component
of the feature vector specifying road segment s (s′), and ri is
the range of the i-th feature. The weight function m serves
as a dissimilarity measure between adjacent road segments.

The next step is to compute the shortest path distance d(s, s′)
between all pairs of road segments s, s′ ∈ V (i.e., using Floyd-
Warshall or Johnson’s algorithm) with respect to the topology
of the weighted directed graph G. Such a distance function is
again a measure of dissimilarity, rather than one of similarity,
as required by the GP prior covariance. Furthermore, a valid
GP prior covariance needs to be positive semidefinite and
symmetric [28], which are clearly violated by d.

To construct a valid GP prior covariance from d, multi-
dimensional scaling [27] is applied to embed the domain of
road segments into the p′-dimensional Euclidean space Rp′ .
Specifically, a mapping g : V → Rp′ is determined by min-
imizing the squared loss g∗ = arg ming

∑
s,s′∈V (d(s, s′) −

‖g(s) − g(s′)‖)2. With a small squared loss, the Euclidean
distance ‖g∗(s)−g∗(s′)‖ between g∗(s) and g∗(s′) is expected
to closely approximate the shortest path distance d(s, s′)
between any pair of road segments s and s′. After embedding
into Euclidean space, a conventional covariance function such
as the squared exponential one (1) that is modified to reflect
our notations here can be used:

σss′ , σ2
s exp

−1

2

p′∑
i=1

(
[g∗(s)]i − [g∗(s′)]i

`i

)2
+ σ2

nδss′

where [g∗(s)]i ([g∗(s′)]i) is the i-th component of the p′-
dimensional vector g∗(s) (g∗(s′)). The resulting GP prior

covariance σss′3 is guaranteed to be valid. By plugging this
newly constructed GP prior covariance into (2), (3) and (4),
the relational GP model can predict the measurements of the
unobserved sampling units and quantify their corresponding
predictive uncertainties in the same manner as the standard
GP model.

C. Modeling Mobility Demand Pattern with Log-Gaussian
Process (`GP)

To model a mobility demand pattern over an urban city with
a `GP, its service area can be represented as a directed graph
G , (V,E) where V denotes a set of all regions generated
by gridding the service area, and E ⊆ V ×V denotes a set of
edges such that there is an edge (s, s′) from s ∈ V to s′ ∈ V
iff at least one road segment in the road network starts in s
and ends in s′. Then, each sampling unit s ∈ V denotes a
region such that its associated p-dimensional feature vector
xs represents its context information (e.g., location, time,
precipitation) and its corresponding measurement ys quantifies
its mobility demand4. Since it is often impractical in terms of
sensing resource cost to determine the actual mobility demand
of a region, a common practice is to use the pickup count
of the region as a surrogate measure. To elaborate, the user
pickups made by vacant MoD vehicles cruising in a region
contribute to its pickup count. Since we do not assume a data
center to be available to keep track of the pickup count, a fully
distributed gossip-based protocol [29] is utilized to aggregate
these pickup information from the vehicles in the region that
are connected via an ad hoc wireless communication network.
Consequently, any vehicle entering the region can access its
pickup count simply by joining its ad hoc network.

As observed in [11], [13] and our real-world dataset
(Fig. 1a), a mobility demand pattern over a large service area
in an urban city is typically characterized by spatiotemporally
correlated demand measurements and contains a few small-
scale hotspots exhibiting extreme measurements and much
higher spatiotemporal variability than the rest of the demand
pattern. That is, if the measurements are put together into a 1D
sample frequency distribution, a positive skew results. But, the
GP covariance structure is sensitive to strong positive skewness
and easily destabilized by a few extreme measurements [30].
In practice, this can cause reconstructed patterns to display
large hotspots centered about a few extreme measurements
and predictive variances to be unrealistically small in hotspots
[31], which are undesirable. So, if the GP is used to model
a demand pattern directly, it may not predict well. To resolve
this, a standard statistical practice is to take the log of the
measurements (i.e., zs = log ys) to remove skewness and
extremity, and use the GP to model the demand pattern in
the log-scale instead.

3For spatiotemporal traffic modeling, the GP prior covariance σss′ can be
extended to account for the temporal dimension.

4The service area is represented as a grid of regions instead of a network of
road segments like in Section II-B because we observe less smoothly-varying,
noisier demand measurements (hence, lower spatial correlation) for the latter
in our dataset featuring a real-world mobility demand pattern (Section VI-A)
since many road segments do not permit stopping of vehicles.
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Demand measurements may not be observed in some re-
gions because vacant MoD vehicles did not cruise into them.
Since our ultimate interest is to predict them in the original
scale, GP’s predicted log-measurements for these unobserved
regions must be transformed back unbiasedly. To achieve this,
we utilize a widely-used variant of GP in geostatistics called
the `GP that can model the demand pattern in the original
scale. Let {Ys}s∈V denote a `GP: If Zs , log Ys, then
{Zs}s∈V is a GP. So, Ys = exp{Zs} denotes the original
random demand measurement of unobserved region s and is
predicted using the log-Gaussian posterior mean (i.e., best
unbiased predictor):

µ̂s|D , exp(µs|D + Σss|D/2) (7)

where µs|D and Σss|D are simply the Gaussian posterior
mean (2) and variance (3) of GP, respectively. The uncertainty
of predicting the measurements for any set S ⊂ V of
unobserved regions can be quantified by the following log-
Gaussian posterior joint entropy, which will be exploited by
our decentralized active sensing algorithm (Section IV):

H[YS |YD] ,
1

2
log(2πe)

|S| ∣∣ΣSS|D∣∣+ µS|D · 1 (8)

where µS|D and ΣSS|D are the Gaussian posterior mean vector
(2) and covariance matrix (3) of GP, respectively.

III. GAUSSIAN PROCESS DECENTRALIZED DATA FUSION

The mobility demand data (e.g., pickup counts of different
regions) and/or traffic flow data (e.g., speeds of road segments)
are gathered distributedly by the vacant MoD vehicles cruising
the road network in the service area and have to be assimilated
in order to predict the traffic phenomena (i.e., mobility demand
pattern and/or traffic flow). A straightforward approach to data
fusion is to fully communicate all the data to every vehicle,
each of which then performs the same full GP prediction (2)
of traffic flow or `GP prediction (7) of the mobility demand
pattern separately. Such an approach unfortunately cannot
scale well and be performed in real time due to its cubic
time complexity in the size of the data. In this section, we
will discuss two novel Gaussian process decentralized data
fusion algorithms for cooperative perception of the traffic
phenomena called GP-DDF and GP-DDF+ that can distribute
the computational load among the MoD vehicles to achieve
efficient and scalable approximate GP and `GP prediction.

The intuition of our GP-DDF algorithm is as follows:
Each of the K MoD vehicles constructs a local summary
of the data taken along its own path in the road network
and communicates its local summary to every other vehicles.
Then, it assimilates the local summaries received from the
other vehicles into a globally consistent summary, which is
exploited for predicting the traffic phenomena as well as active
sensing. This intuition will be formally realized and described
in the paragraphs below.

While exploring the service area, each MoD vehicle sum-
marizes its local data taken along its path based on a common
support set U ⊂ V known to all the other vehicles. Its local
summary is defined as follows:

Definition 2 (Local Summary): Given a common support
set U ⊂ V known to all K vehicles, a set Dk ⊂ V of
observed regions or road segments and a column vector zDk

of corresponding measurements local to vehicle k, its local
summary is defined as a tuple (żkU , Σ̇

k
UU ) where

żkB , ΣBDk
Σ−1
DkDk|U (zDk

− µDk
) (9)

Σ̇kBB′ , ΣBDk
Σ−1
DkDk|UΣDkB′ (10)

such that ΣDkDk|U is defined in a similar manner to (6).
Remark. Unlike subset of data (Section II-A), the support set
U of regions or road segments does not have to be observed
since the local summary (i.e., (9) and (10)) is independent of
the corresponding measurements zU . So, U does not need to
be a subset of D =

⋃K
k=1Dk. To select an informative support

set U from the set V of all possible regions or road segments,
an offline active selection procedure similar to that in the last
paragraph of Section II-A can be performed just once prior to
observing data to determine U . In contrast, subset of data has
to perform online active selection every time new regions or
road segments are being observed.

By communicating its local summary to every other ve-
hicles, each vehicle can then construct a globally consistent
summary from the received local summaries:

Definition 3 (Global Summary): Given a common support
set U ⊂ V known to all K vehicles and the local summary
(żkU , Σ̇

k
UU ) of every vehicle k = 1, . . . ,K, the global summary

is defined as a tuple (z̈U , Σ̈UU ) where

z̈U ,
K∑
k=1

żkU (11)

Σ̈UU , ΣUU +

K∑
k=1

Σ̇kUU . (12)

Finally, the global summary is exploited by each vehicle to
compute a globally consistent Gaussian predictive distribution,
as detailed in Theorem 1A below, as well as to perform
decentralized active sensing (Section IV):

Theorem 1 (GP-DDF): Let a common support set U ⊂ V
be known to all K vehicles.

A. Given the global summary (z̈U , Σ̈UU ), each vehicle
computes a globally consistent Gaussian predictive
distribution N (µS ,ΣSS) of the measurements for
any set S of unobserved regions or road segments
where

µS , µS + ΣSU Σ̈−1
UU z̈U (13)

ΣSS , ΣSS − ΣSU (Σ−1
UU − Σ̈−1

UU )ΣUS . (14)

B. Let N (µPITC
S|D,Σ

PITC
SS|D) be the Gaussian predictive dis-

tribution computed by the centralized sparse partially
independent training conditional (PITC) approxima-
tion of the full GP model [32] where

µPITC
S|D , µS + ΓSD (ΓDD + Λ)

−1
(zD − µD) (15)

ΣPITC
SS|D , ΣSS − ΓSD (ΓDD + Λ)

−1
ΓDS (16)
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such that

ΓBB′ , ΣBUΣ−1
UUΣUB′ (17)

and Λ is a block-diagonal matrix constructed from
the K diagonal blocks of ΣDD|U , each of which is
a matrix ΣDkDk|U for k = 1, . . . ,K where D =⋃K
k=1Dk. Then, µS =µPITC

S|D and ΣSS =ΣPITC
SS|D.

The proof of Theorem 1B is given in Appendix A.

Remark 1. The computation of the centralized sparse PITC
approximation of the full GP model [32] can be distributed
among the K vehicles, thereby improving the time effi-
ciency of prediction. Supposing |S| ≤ |U | for simplicity,
the O

(
|D|((|D|/K)2 + |U |2)

)
time incurred by PITC can be

reduced to O
(
(|D|/K)3 + |U |3 + |U |2K

)
time of running our

GP-DDF algorithm on each of the K vehicles, the latter of
which scales better with increasing size |D| of data.

Remark 2. We can draw insights from PITC to elucidate an
underlying property of our GP-DDF algorithm: It is assumed
that ZD1

, . . . , ZDK
, ZS are conditionally independent given

ZU . To potentially reduce the degree of violation of this as-
sumption, an informative support set U is actively selected, as
described earlier in this section. Furthermore, the experimental
results on our real-world dataset featuring speeds of road
segments over an urban road network5 (Section VI-B) show
that GP-DDF can achieve predictive performance comparable
to that of the full GP model while enjoying significantly lower
computational cost over it, thus demonstrating the practical-
ity of such an assumption for predicting traffic phenomena.
The predictive performance of GP-DDF can be improved by
increasing the size of U at the expense of greater time and
communication overhead.

Remark 3. The Gaussian predictive mean µs (13) and variance
Σss (14) of GP-DDF can be plugged into (7) to obtain
the log-Gaussian posterior mean for predicting the demand
measurement of any unobserved region in the original scale.

Though GP-DDF scales very well with large data, it can
predict poorly due to (a) loss of information caused by
summarizing the measurements and correlation structure of
the original data; and (b) sparse coverage of the hotspots
(i.e., with higher spatiotemporal variability) by the support
set. To alleviate this drawback suffered by GP-DDF, we will
now describe our GP-DDF+ algorithm that combines the
best of both worlds, that is, the predictive power of full
GP and efficiency of GP-DDF. GP-DDF+ is based on the
intuition that a vehicle can exploit its local data to improve the
predictions for unobserved regions or road segments “close”
to its data (in the correlation sense). At the same time, GP-
DDF+ can preserve the efficiency of GP-DDF by exploiting
its idea of summarizing information, specifically, into the
local and global summaries (Definitions 2 and 3). To improve
the predictive power of GP-DDF, we develop the following
novel GP-DDF+ algorithm that is further augmented by local
information.

5The work of [32] only illustrated the predictive performance of PITC on
a simulated toy example.

Definition 4 (GP-DDF+
k ): Given a common support set

U ⊂ V known to all K vehicles, the global summary
(z̈U , Σ̈UU ), the local summary (żkU , Σ̇

k
UU ), a set Dk ⊂ V of

observed regions or road segments and a column vector zDk

of corresponding measurements local to vehicle k, its GP-
DDF+

k algorithm computes a Gaussian predictive distribution
N (µkS ,Σ

k

SS) of the measurements for any set S ⊂ V of
unobserved regions or road segments where µkS ,

(
µks
)
s∈S

and Σ
k

SS ,
(
σkss′

)
s,s′∈S such that

µks , µs +
(
γksU Σ̈−1

UU z̈U − ΣsUΣ−1
UU ż

k
U

)
+ żks (18)

σkss′ , σss′ −
(
γksUΣ−1

UUΣUs′ − ΣsUΣ−1
UU Σ̇kUs′

− γksU Σ̈−1
UUγ

k
Us′

)
− Σ̇kss′

(19)

and

γksU , ΣsU + ΣsUΣ−1
UU Σ̇kUU − Σ̇ksU . (20)

Remark 1. Both the Gaussian predictive mean µks (18) and
covariance σkss′ (19) of GP-DDF+

k exploit summary informa-
tion (i.e., bracketed term) contributed from exchanged sum-
maries among vehicles and local information (i.e., last term)
contributed from local data.

Remark 2. The Gaussian predictive mean µks (18) and variance
σkss (19) of GP-DDF+

k can be plugged into (7) to obtain
the log-Gaussian posterior mean for predicting the demand
measurement of any unobserved region in the original scale.

Remark 3. Since different vehicles exploit different local data,
their GP-DDF+

k algorithms provide inconsistent predictions of
the traffic phenomena.

It is often desirable to achieve a globally consistent predic-
tion among all vehicles. To do this, each unobserved region or
road segment is simply assigned to the vehicle that predicts its
measurement best, which can be performed in a decentralized
way:

Definition 5 (Assignment Function): An assignment func-
tion τ : V 7→ {1 . . .K} is defined as

τ(s) , arg min
k∈{1...K}

σkss (21)

for all s ∈ S where the predictive variance σkss is defined in
(19). From now on, let τs , τ(s) for notational simplicity.

Using the assignment function τ , each vehicle can now com-
pute a globally consistent Gaussian predictive distribution, as
detailed in Theorem 2A below:

Theorem 2 (GP-DDF+): Let a common support set U ⊂
V and a common assignment function τ be known to all K
vehicles.

A. The GP-DDF+ algorithm of each vehicle computes
a globally consistent Gaussian predictive distribution
N (µS ,ΣSS) of the measurements for any set S ⊂ V
of unobserved regions or road segments where µS ,
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(µτss )s∈S (18) and ΣSS , (σss′)s,s′∈S such that

σss′ ,

{
στsss′ if τs = τs′ ,

Σss′|U + γτssU Σ̈−1
UUγ

τs′
Us′ otherwise ,

(22)
and γτs′Us′ is the transpose of γτs′s′U .

B. Let N (µPIC
S|D,Σ

PIC
SS|D) be the Gaussian predictive dis-

tribution computed by the centralized sparse partially
independent conditional (PIC) approximation of the
full GP model [33] where µPIC

S|D ,
(
µPIC
s|D

)
s∈S

and

ΣPIC
SS|D ,

(
σPIC
ss′|D

)
s,s′∈S

such that

µPIC
s|D , µs + Γ̃sD (ΓDD + Λ)

−1
(zD − µD) (23)

σPIC
ss′|D , σss′ − Γ̃sD (ΓDD + Λ)

−1
Γ̃Ds′ (24)

and Γ̃Ds′ is the transpose of Γ̃s′D such that

ΓBB′ , ΣBUΣ−1
UUΣUB′ (25)

Γ̃sD , (Γ̃ss̄)s̄∈D (26)

Γ̃ss̄ ,

{
σss̄ if τs = τs̄,
Γss̄ otherwise , (27)

and Λ is a block-diagonal matrix constructed from
the K diagonal blocks of ΣDD|U , each of which is
a matrix ΣDkDk|U for k = 1, . . . ,K where D =⋃K
k=1Dk, and let τs̄ , k for all s̄ ∈ Dk. Then,

µs = µPIC
s|D and σss′ = σPIC

ss′|D for all s, s′ ∈ S.

The proof of Theorem 2B is given in Appendix B.
Remark 1. In Theorem 2A, if τs = τs′ = k, then vehicle k
can compute µτss (18) and σss′ (19) locally and send them to
the other vehicles that request them. Otherwise, τs 6= τs′ and
vehicle k has to request |U |-sized vectors γτssU and γτs′s′U from
the respective vehicles τs and τs′ to compute σss′ (22).
Remark 2. The equivalence result of Theorem 2B implies that
the computation of the centralized sparse PIC approximation
of the full GP model [33] can be distributed among K
vehicles, hence improving the time efficiency of prediction.
Supposing |S| ≤ |U | and |S| ≤ |D|/K for simplicity,
the O

(
|D|((|D|/K)2 + |U |2)

)
time incurred by PIC can be

reduced to O
(
(|D|/K)3 + |U |3 + |U |2K

)
time of running our

GP-DDF+ algorithm on each of the K vehicles. Hence, GP-
DDF+ scales better with increasing size |D| of data.
Remark 3. The equivalence result also sheds some light
on an important property of GP-DDF+ based on the struc-
ture of PIC: It is assumed that ZD1

⋃
S1

, . . . , ZDK

⋃
SK

are conditionally independent given the support set U . As
compared to GP-DDF that assumes conditional independence
of ZD1 , . . . , ZDK

, ZS1 , . . . , ZSK
, GP-DDF+ can predict ZS

better since it imposes a weaker conditional independence
assumption. Experimental results on our dataset featuring a
real-world mobility demand pattern (Section VI-A) also show
that GP-DDF+ achieves predictive accuracy comparable to full
GP and significantly better than GP-DDF, thus justifying the
practicality of such an assumption for predicting a mobility
demand pattern.

A. Consensus Filtering-Based GP-DDF and GP-DDF+

GP-DDF and GP-DDF+ have assumed all-to-all communi-
cation between the K vehicles, which does not scale well in
the size of the fleet. More importantly, such an assumption
does not usually hold in practice because each vehicle can
only communicate locally with its neighbors situated within
its communication range that is often much smaller than the
size of the traffic phenomenon of interest. The key idea of
refining GP-DDF and GP-DDF+ to meet the requirement of
only local communication between neighboring vehicles is to
observe that the summation of the local summary (żkU , Σ̇

k
UU )

of every vehicle k = 1, . . . ,K to form the global summary
(z̈U , Σ̈UU ) (i.e., (11) and (12) of Definition 3) makes it
amenable to be approximated using consensus filters [34]–
[36]. In this subsection, we will discuss how a distributed
algorithm called band-pass consensus filter (BCF), which is
previously utilized in distributed Kalman filters [34], [35], can
be used to approximate the global summary.

A consensus filter like BCF is a distributed algorithm that
can be used for calculating the average consensus of the local
summaries of the K vehicles with limited communication
range. Specifically, each vehicle k computes its approximate
consensus (υk,Υk) using the following discrete-time BCF
[35] that asymptotically converges to the average consensus
(K−1z̈U ,K

−1(Σ̈UU − ΣUU )):

qk = pk + żkU

pk ← pk + η
∑
j∈Nk

(qj − qk)

υk ← υk + η
∑
j∈Nk

(υj − υk) + η
∑

j∈Nk

⋃
{k}

(qj − υk)

and
Qk = Pk + Σ̇kUU

Pk ← Pk + η
∑
j∈Nk

(Qj −Qk)

Υk ← Υk + η
∑
j∈Nk

(Υj −Υk) + η
∑

j∈Nk

⋃
{k}

(Qj −Υk)

where pk, qk, Pk, and Qk are necessary internal estimators
stored in vehicle k, Nk ⊆ {1, . . . ,K}\{k} denotes the set of
neighboring vehicles situated within the communication range
of vehicle k, and step size η < 1/maxk{|Nk|+1} guarantees
the asymptotic convergence of its approximate consensus
(υk,Υk) to the average consensus (K−1z̈U ,K

−1(Σ̈UU −
ΣUU )). Then, each vehicle k can approximate the global
summary (z̈U , Σ̈UU ) using (Kυk,KΥk + ΣUU ). Like a low-
pass consensus filter (LCF) [34], BCF can filter out high-
frequency noise. BCF can also provide filtering of slowly-
varying noise like a high-pass consensus filter (HCF) [36].

The connectivity of the communication network is important
to the consensus filters. HCF guarantees to converge to the av-
erage consensus only in a connected network [36]. In contrast,
LCF remains a stable filter regardless of the connectivity of the
network [35]. In the case that a vehicle k leaves the network
(i.e., Nk = ∅), its BCF to calculate υk reduces to

υk ← υk + η
(
pk + żkU − υk

)
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where pk remains unchanged. Then, BCF reduces to a stable
LCF [35] with the input żkU and constant noise pk. Its BCF to
calculate Υk is reduced in a similar manner.

IV. GAUSSIAN PROCESS DECENTRALIZED ACTIVE SENSING

Suppose that there are K vacant MoD vehicles in the
fleet actively cruising the road network G to gather the most
informative traffic flow data (e.g., speeds of road segments)
for predicting traffic flow being modeled with a relational GP
(Section II-B) and each vehicle k ∈ {1 . . .K} has observed a
set Dk ⊂ V of road segments. In an active sensing problem,
all vehicles have to jointly select the most informative walks
w∗1 , . . . w

∗
K of length L along which traffic flow data will be

sampled:

(w∗1 , . . . , w
∗
K) , arg max

(w1,...,wK)

H
[
Z⋃K

k=1 Swk

∣∣∣Z⋃K
k=1Dk

]
(28)

where Swk
denotes the set of unobserved road segments to be

visited by the walk wk. To ease notation, let w , (w1 . . . wK)
and Sw =

⋃K
k=1 Swk

(similarly, for w∗ and Sw∗ ). Then,
each vehicle k executes its walk w∗k while observing the road
segments Sw∗k , and updates its residing road segment and
stored data.

To derive the most informative joint walk w∗, the posterior
entropy (28) of every possible joint walk w has to be evaluated.
Such a centralized active sensing (CAS) algorithm cannot be
performed in real time due to the following two issues: (a)
It relies on all the data that are gathered distributedly by
the vehicles, thus incurring huge time and communication
overheads with large data, and (b) it involves evaluating a
prohibitively large number of joint walks (i.e., exponential in
the fleet size).

The first issue can be alleviated by approximating the Gaus-
sian posterior joint entropy using the decentralized GP-DDF or
GP-DDF+ algorithm, thus distributing its computational load
among all vehicles. Then, the active sensing problem (28) is
approximated by

w∗ = arg max
w

H [ZSw
] (29)

H [ZSw
] ,

1

2
log(2πe)

|Sw| ∣∣ΣSwSw

∣∣ . (30)

To obtain H [ZSw
] (30), ΣSwSw|D in H[ZSw

|ZD] ((4) and (28))
is replaced by ΣSwSw of GP-DDF and GP-DDF+ defined in
Theorems 1A and 2A, respectively.

On the other hand, if the vehicles are actively cruising
the service area to gather the most informative mobility
demand data (e.g., pickup counts of different regions) for
predicting a mobility demand pattern being modeled with
a `GP (Section II-C), then ZSw

and ZD in (28) and (29)
have to be replaced by YSw

and YD, respectively. Similarly,
the active sensing problem (28) is approximated by w∗ =
arg maxw H [YSw ] where

H [YSw
] ,

1

2
log(2πe)

|Sw| ∣∣ΣSwSw

∣∣+ µSw
· 1 . (31)

To obtain H [YSw
] (31), µSw|D and ΣSwSw|D in H[YSw

|YD] (8)
are replaced by µSw

and ΣSwSw of GP-DDF and GP-DDF+

defined in Theorems 1A and 2A, respectively.

To address the second issue, a simple and highly scalable
(i.e., in the fleet size) strategy is to adopt a fully decentralized
active sensing (full DAS) algorithm by assuming that the joint
walk w∗1 . . . w

∗
K is derived by selecting the locally optimal

walk of each vehicle k:

w∗k = arg max
wk

H
[
ZSwk

]
(32)

where H
[
ZSwk

]
is defined in the same way as (30). Then,

each vehicle can select its locally optimal walk independently
of the other vehicles, thus significantly reducing the search
space of joint walks. A consequence of such an assumption is
that, without coordinating their walks, the vehicles may select
suboptimal joint walks (e.g., two vehicles’ locally optimal
walks are highly correlated). In practice, this assumption
becomes less restrictive when the size |D| of data increases
to potentially reduce the degree of violation of conditional
independence of ZSw1

, . . . , ZSwK
.

When our full DAS algorithm is instead used for sampling a
mobility demand pattern being modeled with a `GP, it becomes
w∗k = arg maxwk

H[YSwk
] where H[ZSwk

] is defined in the
same way as (31). It can then be observed from (31) that the
cruising behavior of full DAS trades off between exploring
sparsely sampled regions with high predictive uncertainty
(i.e., by maximizing the log-determinant of Gaussian posterior
covariance matrix ΣSwk

Swk
term) and hotspots (i.e., by max-

imizing the Gaussian posterior mean vector µSwk
term). As

a result, it redistributes vacant MoD vehicles to regions with
high likelihood of picking up users. Hence, besides gathering
the most informative data for predicting the mobility demand
pattern, full DAS is able to achieve a dual effect of fleet
rebalancing to service mobility demands.

A. Partially Decentralized Active Sensing (Partial DAS)

Our full DAS algorithm (32) has assumed no coordination
between the vehicles in their walks, which may not always
seem necessary to gain enough time efficiency to perform real-
time active sensing of any traffic phenomenon. To relax this
assumption while still preserving scalability, our strategy is
to instead partition the vehicles into several small groups such
that each group of vehicles selects its joint walk independently,
which is the intuition underlying our partially decentralized
active sensing (partial DAS) algorithm to be described next.
Note that, unlike full DAS, our partial DAS algorithm can only
be coupled with GP-DDF instead of GP-DDF+ (Section III)
because it exploits an inherent structural assumption of GP-
DDF for decentralization that does not hold for GP-DDF+.

The key idea of our partial DAS algorithm is to construct
a block-diagonal matrix whose log-determinant closely ap-
proximates that of ΣSwSw (14) and exploit the property that
the log-determinant of such a block-diagonal matrix can be
decomposed into a sum of log-determinants of its diagonal
blocks, each of which depends only on the walks of a disjoint
subset of the K vehicles. Consequently, the active sensing
problem can be partially decentralized leading to a reduced
space of possible joint walks to be searched, as detailed in the
rest of this subsection.
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Firstly, we extend an earlier structural assumption of GP-
DDF (Section III): ZD1 , . . . , ZDK

, ZSw1
, . . . , ZSwK

are con-
ditionally independent given ZU . Then, it can be shown via the
equivalence to PITC (Theorem 1B) that ΣSwSw

(14) comprises
diagonal blocks of the form ΣSwk

Swk
for k = 1, . . . ,K

and off-diagonal blocks of the form ΣSwk
U Σ̈−1

UUΣUSw
k′

for
k, k′ = 1, . . . ,K and k 6= k′. In particular, each off-diagonal
block of ΣSwSw

represents the correlation of measurements
between the unobserved road segments Swk

and Swk′ along
the respective walks wk of vehicle k and wk′ of vehicle k′.
If the correlation between some pair of their possible walks
is high enough, then their walks have to be coordinated. This
is formally realized by the following coordination graph over
the K vehicles:

Definition 6 (Coordination Graph): Define the coordina-
tion graph to be an undirected graph G , (V, E) that
comprises
• a set V of vertices denoting the K vehicles, and
• a set E of edges denoting coordination dependencies be-

tween vehicles such that there exists an edge {k, k′} incident
with vehicles k ∈ V and k′ ∈ V \ {k} iff

max
s∈SWk

,s′∈SW
k′

∣∣∣ΣsU Σ̈−1
UUΣUs′

∣∣∣ > ε (33)

for a predefined constant ε > 0 where Wk denotes the set
of possible walks of length L of vehicle k from its residing
road segment and SWk

,
⋃
wk∈Wk

Swk
.

Remark. The construction of G can be decentralized as follows:
Since Σ̈UU is symmetric and positive definite, it can be
decomposed by Cholesky factorization into Σ̈UU = ΨΨ>

where Ψ is a lower triangular matrix and Ψ> is the transpose
of Ψ. Then, ΣsU Σ̈−1

UUΣUs′ = (Ψ\ΣUs)>Ψ\ΣUs′ where Ψ\B
denotes the column vector φ solving Ψφ = B. That is,
ΣsU Σ̈−1

UUΣUs′ (33) can be expressed as a dot product of
two vectors Ψ\ΣUs and Ψ\ΣUs′ ; this property is exploited
to determine adjacency between vehicles in a decentralized
manner:

Definition 7 (Adjacency): Let

Φk , {Ψ\ΣUs}s∈SWk
(34)

for k = 1, . . . ,K. A vehicle k ∈ V is adjacent to vehicle
k′ ∈ V \ {k} in coordination graph G iff

max
φ∈Φk,φ′∈Φk′

∣∣φ>φ′∣∣ > ε . (35)

It follows from the above definition that if each vehicle k
constructs Φk and exchanges it with every other vehicle, then
it can determine its adjacency to all the other vehicles and
store this information in a column vector ak of length K with
its k′-th component being defined as follows:

[ak]k′ =

{
1 if vehicle k is adjacent to vehicle k′,
0 otherwise.

(36)

By exchanging its adjacency vector ak with every other vehi-
cle, each vehicle can construct a globally consistent adjacency
matrix AG , (a1 . . . aK) to represent coordination graph G.

Next, by computing the connected components (say, K of
them) of coordination graph G, their resulting vertex sets

partition the set V of K vehicles into K disjoint subsets
V1, . . . ,VK such that the vehicles within each subset have to
coordinate their walks. Each vehicle can determine its residing
connected component in a decentralized way by performing a
depth-first search in G starting from it as root.

Finally, construct a block-diagonal matrix Σ̂SwSw to com-
prise diagonal blocks of the form ΣSwVn

SwVn
for n =

1, . . . ,K where wVn , (wk)k∈Vn and SwVn ,
⋃
k∈Vn Swk

.
The active sensing problem (29) is then approximated by

max
w

1

2
log(2πe)

|Sw|
∣∣∣Σ̂SwSw

∣∣∣
≡ max

(wV1 ,...,wVK )

K∑
n=1

log(2πe)|SwVn |
∣∣∣ΣSwVn

SwVn

∣∣∣
=

K∑
n=1

max
wVn

log(2πe)|SwVn |
∣∣∣ΣSwVn

SwVn

∣∣∣ ,
(37)

which can be solved in a partially decentralized manner by
each disjoint subset Vn of vehicles:

ŵVn = arg max
wVn

log(2πe)|SwVn |
∣∣∣ΣSwVn

SwVn

∣∣∣ . (38)

Our partial DAS algorithm becomes fully decentralized (i.e.,
full DAS) if ε is set to be sufficiently large: More vehicles
become isolated in G, consequently decreasing the size κ ,
max
n
|Vn| of its largest connected component to 1. As shown

in Section V-B1, decreasing κ improves its time efficiency.
On the other hand, it tends to a centralized behavior (29) by
setting ε → 0+: G becomes near-complete, thus resulting in
κ→ K.

Let
ξ , max

n,wVn ,i,i
′

∣∣∣∣[(ΣSwVn
SwVn

)−1
]
ii′

∣∣∣∣ (39)

and ε , 0.5 log 1
/(

1−
(
K1.5L2.5κξε

)2)
. In the result below,

we prove that the joint walk ŵ , (ŵV1 , . . . , ŵVK) is guar-
anteed to achieve an entropy H[ZSŵ

] (i.e., by plugging ŵ
into (30)) that is not more than ε from the maximum entropy
H[ZSw∗ ] achieved by joint walk w∗ (29):

Theorem 3 (Performance Guarantee): If K1.5L2.5κξε <
1, then H[ZSw∗ ]−H[ZSŵ

] ≤ ε.
The proof of Theorem 3 is given in Appendix C. The im-
plication of Theorem 3 is that our partial DAS algorithm
can perform comparatively well (i.e., small ε) under the
following favorable spatiotemporal correlation structure of the
phenomenon and parameter settings of the MoD system: (a)
The network of K vehicles is not large, (b) the length L
of each vehicle’s walk to be optimized is not long, (c) the
largest subset of κ vehicles being formed to coordinate their
walks (i.e., largest connected component in G) is reasonably
small, which occurs when the phenomenon exhibits a suffi-
ciently small degree of spatiotemporal correlation given some
predefined ε, and (d) the minimum required correlation ε
between walks of adjacent vehicles is kept low. Our partial
DAS algorithm is not used for sampling a mobility demand
pattern being modeled with a `GP: It is not time-efficient when
κ is large, which is indeed the case because many vehicles tend
to cluster within hotspots, as explained earlier.
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TABLE I
COMPARISON OF TIME AND COMMUNICATION COMPLEXITY BETWEEN DATA FUSION AND ACTIVE SENSING ALGORITHMS ANALYZED IN SECTION V.

Algorithm Data Fusion Active Sensing
Computation Communication Computation Communication

GP-DDF++Full DAS O
(

(
|D|
K

)3 + |U |3 + |U |2K
)

O
(
|U |2

)
O
(

∆(L3 + (L|U |)2 + (
|D|
K

)2)

)
O(∆|U |)

GP-DDF+Full DAS O
(

(
|D|
K

)3 + |U |3 + |U |2K
)

O
(
|U |2

) O
(
∆(L3 + (L|U |)2)

)
–

GP-DDF+Partial DAS O
(
κ∆L|U |2 + ∆2L2|U |(K + κ2) + ∆κ(κL)3

)
O(∆L|U | +K)

Full GP+Full DAS O
(
|D|3

)
O
(
|D|
K

)
O
(
∆(L3 + (L|D|)2)

)
–

Full GP+CAS O
(
∆KKL(|D|2 + (KL)2)

)
–

Subset of Data+CAS O
(
|U |3|D|

)
O
(
|D|
K

)
O
(
∆KKL(|U |2 + (KL)2)

)
–

V. TIME AND COMMUNICATION ANALYSIS

A. GP-DDF+ coupled with Full DAS

In this section, the time and communication overheads
(TABLE I) of our proposed GP-DDF+ coupled with full DAS
algorithm (Algorithm 1) are analyzed and compared to that
of both full GP (Section II-C) and GP-DDF (Section III)
coupled with full DAS (Section IV) algorithms. As shown
in Section VI-A later, Algorithm 1 will be run on each
vehicle k to perform active sensing of a real-world mobility
demand pattern being modeled with a `GP. Note that GP-
DDF+ cannot be coupled with partial DAS, as explained
earlier in Section IV-A.

Algorithm 1: GP-DDF++Full DAS(U,K,L, k,Dk, yDk
)

while true do
/* Data fusion (Section III) */
Construct local summary by (9) & (10)
Exchange local summary with every vehicle i 6= k
Construct global summary by (11) & (12)
Construct assignment function by (21)
Predict demand measurements for unobserved regions by (18) & (22)
/* Active Sensing (Section IV) */
Compute local maximum-entropy walk w∗k by (32)
Execute walk w∗k and observe its demand measurements Yw∗

k
Update local information Dk and yDk

1) Time Complexity: Firstly, each vehicle k has to evaluate
ΣDkDk|U in O

(
|U |3 + |U |(|D|/K)2

)
time and invert it in

O
(
(|D|/K)3

)
time. After that, GP-DDF+ constructs the local

summary in O
(
|U |2|D|/K + |U |(|D|/K)2

)
time by (9) and

(10), and subsequently the global summary in O
(
|U |2K

)
time by (11) and (12). To construct the assignment function
for any unobserved set S ⊂ V , vehicle k first computes
|S| number of γksU for all unobserved regions s ∈ S in
O
(
|S||U |2 + |S|(|D|/K)2

)
time by (20). Then, after inverting

Σ̈UU in O
(
|U |3

)
, the predictive means and variances for all

s ∈ S are computed in O
(
|S||U |2 + |S|(|D|/K)2

)
time by

(18) and (22), respectively. Let ∆ , δL denote the number of
possible walks of length L where δ is the maximum out-degree
of graph G. In full DAS, to obtain the locally optimal walk,
the log-Gaussian posterior entropies (32) of all possible walks
are derived from (18) and (22), respectively, in O

(
∆L|U |2

)
and O

(
∆(L|U |)2

)
time. We assume |S| < δ∆ where S

denotes the set
⋃
wk
Swk

of regions covered by any vehicle
k’s all possible walks of length L. Then, the time complexity
for our GP-DDF+ coupled with full DAS algorithm is
O
(
(|D|/K)3 + |U |3 + |U |2K + ∆(L3 + (L|U |)2 + (|D|/K)2)

)
.

In contrast, the time incurred by full GP and
GP-DDF coupled with full DAS algorithms are,
respectively, O

(
|D|3 + ∆(L3 + (L|D|)2)

)
and

O
(
(|D|/K)3 + |U |3 + |U |2K + ∆(L3 + (L|U |)2)

)
. It

can be observed that our GP-DDF+ coupled with full DAS
algorithm can scale better with large size |D| of data and fleet
size K than full GP coupled with full DAS algorithm, and
its increased computational load, as compared to GP-DDF
coupled with full DAS algorithm, is well distributed among
K vehicles.

2) Communication Complexity: In each iteration, each ve-
hicle of the system running our GP-DDF+ coupled with
full DAS algorithm has to broadcast a O

(
|U |2

)
-sized local

summary for constructing the global summary, exchangeO(∆)
scalar values for constructing the assignment function, and
request O(∆) number of O(|U |)-sized γksU components for
evaluating the entropies of all possible local walks. In contrast,
full GP coupled with full DAS algorithm needs to broadcast
O(|D|/K)-sized message comprising all its local data to
handle communication failure, and GP-DDF coupled with full
DAS algorithm only needs to broadcast a O

(
|U |2

)
-sized local

summary.

B. GP-DDF coupled with Partial DAS

In this section, the time and communication overheads
(TABLE I) of our proposed GP-DDF coupled with partial DAS
algorithm (Algorithm 2) are analyzed and compared to that
of both full GP (Section II) and subset of data (Section II-A)
coupled with centralized active sensing (CAS) (28) algorithms.
We call Algorithm 2 D2FAS to follow our original naming
convention in [1]. As shown in Section VI-B later, our D2FAS
algorithm (Algorithm 2) will be run on each vehicle k to
perform active sensing of a real-world traffic phenomenon
featuring speeds of road segments over an urban road network
being modeled with a relational GP. Note that partial DAS
cannot be used for sampling a mobility demand pattern being
modeled with a `GP, as explained earlier in Section IV-A.

1) Time Complexity: The data fusion component of D2FAS
(i.e., GP-DDF) involves computing the local and global
summaries and the Gaussian predictive distribution. To con-
struct the local summary using (9) and (10), each vehicle
has to evaluate ΣDkDk|U in O

(
|U |3 + |U |(|D|/K)2

)
time

and invert it in O
(
(|D|/K)3

)
time, after which the local

summary is obtained in O
(
|U |2|D|/K + |U |(|D|/K)2

)
time.

The global summary is computed in O
(
|U |2K

)
by (11) and
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Algorithm 2: D2FAS(U,K,L, k,Dk, zDk
)

while true do
/* Data fusion (Section III) */
Construct local summary by (9) & (10)
Exchange local summary with every vehicle i 6= k
Construct global summary by (11) & (12)
Predict measurements for unobserved road segments by (13) & (14)
/* Active Sensing (Section IV-A) */
Construct Φk by (34)
Exchange Φk with every vehicle i 6= k
Compute adjacency vector ak by (35) & (36)
Exchange adjacency vector with every vehicle i 6= k
Construct adjacency matrix of coordination graph
Find vertex set Vn of its residing connected component
Compute maximum-entropy joint walk ŵVn by (38)
Execute walk ŵk and observe road segments Sŵk
Update local information Dk and zDk

(12). Finally, the Gaussian predictive distribution is derived
in O

(
|U |3 + |U ||S|2

)
time using (13) and (14). Supposing

|S| ≤ |U | for simplicity, the time complexity of GP-DDF is
then O

(
(|D|/K)3 + |U |3 + |U |2K

)
.

Let the maximum out-degree of G be denoted by δ. Then,
each vehicle has to consider ∆ , δL possible walks of
length L. The active sensing component of D2FAS (i.e., partial
DAS) involves computing Φk in O

(
∆L|U |2

)
time, ak in

O
(
∆2L2|U |K

)
time, its residing connected component in

O
(
κ2
)

time, and the maximum-entropy joint walk by (14) and
(38) with the following incurred time: The largest connected
component of κ vehicles in G has to consider ∆κ possible joint
walks. Note that ΣSwVn

SwVn
= diag

(
(ΣSwk

Swk
|U )k∈Vn

)
+

ΣSwVn
U Σ̈−1

UUΣUSwVn
where diag(B) constructs a diagonal

matrix by placing vector B on its diagonal. By exploiting
Φk, the diagonal and latter matrix terms for all possible
joint walks can be computed in O

(
κ∆(L|U |2 + L2|U |)

)
and

O
(
κ2∆2L2|U |

)
time, respectively. For each joint walk wVn ,

evaluating the determinant of ΣSwVn
SwVn

incurs O
(
(κL)3

)
time. Therefore, the time complexity of partial DAS is
O
(
κ∆L|U |2 + ∆2L2|U |(K + κ2) + ∆κ(κL)3

)
.

Hence, the time complexity of our D2FAS algorithm is
O
(
(|D|/K)3 + |U |2(|U |+K + κ∆L) + ∆2L2|U |(K + κ2)+

∆κ(κL)3
)
. In contrast, the time incurred by full

GP and subset of data coupled with CAS are,
respectively, O

(
|D|3 + ∆KKL(|D|2 + (KL)2)

)
and

O
(
|U |3|D|+ ∆KKL(|U |2 + (KL)2)

)
. It can be observed

that D2FAS can scale better with large size |D| of data and
fleet size K. The scalability of D2FAS vs. full GP and subset
of data will be further evaluated empirically in Section VI-B.

2) Communication Complexity: Let the communication
overhead be defined as the size of each broadcast message.
Recall the data fusion component of D2FAS (i.e., GP-DDF)
in Algorithm 2 that, in each iteration, each vehicle broadcasts
a O
(
|U |2

)
-sized summary encapsulating its local data, which

is robust against communication failure. In contrast, full GP
and subset of data require each vehicle to broadcast, in each
iteration, a O(|D|/K)-sized message comprising exactly its
local data to handle communication failure. If the size of
local data grows to be larger in size than a local summary
of predefined size, then GP-DDF is more scalable than full
GP and subset of data in terms of communication overhead.
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(a) Demand (b) Supply
Fig. 1. Historic (a) demand and (b) supply distribution: ’Hotter’ regions
indicate larger numbers of (a) pickups and (b) cruising taxis within a 30-
minute time slot in the central business district of Singapore.

For the active sensing component of D2FAS (i.e., partial DAS),
each vehicle broadcasts O(∆L|U |)-sized Φk and O(K)-sized
ak messages.

VI. EXPERIMENTS AND DISCUSSION

This section evaluates the performance of our proposed
Gaussian process decentralized data fusion and active sensing
algorithms empirically on two datasets featuring real-world
traffic phenomena, which include a mobility demand pattern
over the central business district of Singapore (Section VI-A)
and speeds of road segments over an urban road network in
Singapore (Section VI-B).

A. Mobility Demand Pattern Modeled with `GP

We use a real-world taxi trajectory dataset taken from the
central business district of Singapore between 9:30 p.m. and
10 p.m. on August 2, 2010. The 29.4 km × 11.9 km service
area is gridded into 100 × 50 regions such that 2506 regions
are included into the dataset as the remaining regions contain
no road segment for cruising vehicles to access. The maximum
out-degree δ of graph G over these regions is 8. The feature
vector of each region is specified by its corresponding location.
In any region, the demand (supply) measurement is obtained
by counting the number of pickups (taxis cruising by) from all
historic taxi trajectories generated by a major taxi company in
a 30-minute time slot. After processing the taxi trajectories,
the historic demand and supply distributions are obtained, as
shown in Fig. 1. Then, a number C of users are randomly
distributed over the service area with their locations drawn
from the demand distribution (Fig. 1a). Similarly, a fleet of K
vacant MoD vehicles are initialized at locations drawn from
the supply distribution (Fig. 1b).

In our simulation, when a vehicle enters a region with
users, it picks up one of them randomly. Then, the MoD
system removes this vehicle from the fleet of vacant cruising
vehicles and introduces a new vacant vehicle drawn from the
supply distribution. Similarly, a new user appears at a random
location drawn from the demand distribution. The MoD system
operates for T time steps and each vehicle plans a walk of
length L = 4 at each time step, with all vehicles running a
data fusion algorithm coupled with our full DAS algorithm.

We will compare the performance of our GP-DDF+ al-
gorithm with that of full GP and GP-DDF algorithms when
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Fig. 2. Performance of MoD systems in sensing, predicting, and servicing mobility demands.

coupled with our full DAS algorithm. Note that our partial
DAS algorithm cannot be used for sampling a mobility demand
pattern being modeled with a `GP, as explained earlier in
Section IV-A. The experiments are conducted on a Linux
system with Intelr Xeonr CPU E5520 at 2.27 GHz.

The tested algorithms are evaluated with two sets of perfor-
mance metrics. The performance of sensing and predicting
mobility demands is evaluated using (a) root mean square

error (RMSE)
√
|V |−1

∑
s∈V

(
ys − µ̂s|D

)2
where ys is the

demand measurement and D is the set of regions observed by
the MoD vehicles, and (b) incurred time of the algorithms.
The performance of servicing mobility demands is evalu-
ated by comparing the Kullback-Leibler divergence (KLD)∑
s∈V Pc(s) log (Pc(s)/Pd(s)) between the fleet distribution

Pc of vacant MoD vehicles controlled by the tested algorithms
and historic demand distribution Pd (i.e., lower KLD implies
better balance between fleet and demand), average cruising
length of MoD vehicles, average waiting time of users, and
total number of pickups resulting from the tested algorithms.

For notational simplicity, we will use GP-DDF+, full GP,
and GP-DDF to represent the algorithms of their correspond-
ing data fusion components coupled with full DAS algorithm.

1) Performance: The MoD system comprises K = 20
vehicles running three tested algorithms for T = 960 time
steps in a service area with C = 200 users. All results are
taken from the average of 40 random instances.

The performance of MoD systems in sensing and predicting
mobility demands is illustrated in Figs. 2a-2b. Fig. 2a shows
that the demand data collected by MoD vehicles using GP-
DDF+ can achieve predictive accuracy comparable to that of
using full GP and significantly better than that of using GP-
DDF. This indicates that exploiting the local data of vehicles
for predicting demands of nearby unobserved regions can
improve the prediction of the mobility demand pattern. Fig. 2b
shows the average incurred time of each vehicle using three
algorithms. GP-DDF+ is significantly more time-efficient (i.e.,
one order of magnitude) than full GP, and only slightly less
time-efficient than GP-DDF. This can be explained by the time
analysis in Section V-A1. The above results indicate that GP-
DDF+ is more practical for real-world deployment due to a
better balance between predictive accuracy and time efficiency.

The performance of MoD systems in servicing the mobility
demands is illustrated in Figs. 2c-2f. Fig. 2c shows that a MoD
system using GP-DDF+ can achieve better fleet rebalancing
of vehicles to service mobility demands than GP-DDF, but
worse rebalancing than full GP. This implies that a better
prediction of the underlying mobility demand pattern (Fig. 2a)
can lead to better fleet rebalancing. Note that KLD (i.e.,

imbalance between mobility demand and fleet) increases over
time because we assume that when a vehicle picks up a user,
its local data is removed from the fleet of cruising vehicles,
and a new vehicle is introduced at a random location that
may be distant from a demand hotspot, hence worsening
the imbalance between demand and fleet. It can also be
observed that an algorithm generating a better balance between
fleet and demand will also perform better in servicing the
mobility demands, that is, shorter average cruising trajectories
of vehicles (Fig. 2d), shorter average waiting time of users
(Fig. 2e), and larger total number of pickups (Fig. 2f). These
observations imply that exploiting an active sensing algorithm
to collect the most informative demand data for predicting the
mobility demand pattern achieves a dual effect of improving
performance in servicing the mobility demands since these
vehicles have higher chance of picking up users in demand
hotspots or sparsely sampled regions (Section IV).

2) Scalability: We vary the number K = 10, 20, 30 of
vehicles in the MoD system, and keep the total length of
walks of all the vehicles to be the same, that is, these vehicles
will walk for T = 960, 480, 320 steps, respectively. All three
algorithms are tested in a service area with C = 600 users. All
results are obtained by averaging over 40 random instances.

From Figs. 3a-3c, it can be observed that all three algorithms
can improve their prediction accuracy with an increasing
number of vehicles in the MoD system because more vehicles
indicate less walks when the total length of walks are the
same, thus suffering less from the myopic planning (L = 4)
and gathering more informative demand data. Figs. 3d-3f show
that, with more MoD vehicles, GP-DDF+ and GP-DDF incur
less time, while full GP incurs more time. This is because the
computational load in decentralized data fusion algorithms are
distributed among all vehicles, thus reducing the incurred time
with more vehicles.

Figs. 4a-4c show that all three algorithms can achieve better
balance between mobility demand and fleet with larger number
of vehicles. It can also be observed that all three algorithms
can improve the performance of servicing the mobility demand
with more vehicles, that is, shorter average cruising trajectories
of vehicles (Fig. 4d), shorter average waiting time of users
(Fig. 4e), and larger total number of pickups (Fig. 4f). This is
because MoD vehicles can collect more informative demand
data with larger number of vehicles sampling demand hotspots
or sparsely sampled regions, which are the regions with higher
chance of picking up users than the rest of the service area.

The above results indicate that more vehicles in MoD sys-
tem result in better accuracy in predicting the mobility demand
pattern, and achieve a dual effect of better performance in
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Fig. 3. Scalability of MoD systems in sensing and predicting mobility
demands.
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Fig. 4. Scalability of MoD systems in servicing mobility demands.

servicing mobility demands.
3) Predictive Performance of Consensus Filtering-Based

GP-DDF+: Fig. 5 compares results of the performance of
MoD systems in sensing and predicting mobility demands
between the all-to-all communication-based GP-DDF+ and
different consensus filtering-based GP-DDF+ (Section III-A)
coupled with full DAS (Section IV) algorithms. In particu-
lar, four consensus filtering variants of GP-DDF+ are im-
plemented: Band-pass consensus filter (BCF) [34], low-pass
consensus filter (LCF) [37], high-pass consensus filter (HCF)
[36], and proportional consensus filter (PCF) [38]. PCF is
an extension of HCF to resolve the incorrect initialization
of internal estimators caused by splitting and merging of
communication network. For notational simplicity, we will use
BCF, LCF, HCF, and PCF to represent their respective im-
plementations of consensus filtering-based GP-DDF+ coupled
with full DAS algorithms.

The MoD system comprises K = 30 vehicles with varying
communication range6 R = 500, 1000, 1500 meters running
the tested algorithms for T = 320 time steps in a service area
with C = 200 users. All results are taken from the average of
40 random instances.

When the total length of walks of all vehicles is less than
3600 (i.e., T ≤ 120), the predictive performance of the

6It is reported in [39] that 802.11b compliant equipments can achieve
connectivity range of up to 1000 meters under suitable driving conditions.
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Fig. 5. Predictive performance of different consensus filtering-based GP-
DDF+ (8 iterations per time step) and all-to-all communication-based GP-
DDF+ coupled with full DAS algorithms with varying communication range
R (meters). The experimental setting for the results in (d-f) differs from that
in (a-c) in that all vehicles are fully dedicated to mobility demand sensing
and are not removed by the MoD system, as elaborated in the main text.

consensus filtering-based GP-DDF+ coupled with full DAS
algorithms are comparable to that of all-to-all communication-
based GP-DDF+ coupled with full DAS algorithm and their
results are hence omitted from Fig. 5.

From Figs. 5a and 5c, it can be observed that HCF and
PCF outperform LCF. This is due to a rapid change in local
data: When a vacant MoD vehicle picks up a user, the MoD
system removes it from the fleet and a new randomly deployed
vehicle is introduced into the fleet. Then, the new vehicle can
gather demand data that is distinct from the previous demand
data. This rapid change in local data will inevitably result
in a rapidly-varying local summary, which favors the HCF
and PCF. Fig. 5b shows that HCF performs worse than LCF
while PCF still achieves similar predictive performance as
LCF. This is because HCF suffers from splitting and merging
of communication network at R = 1000. Furthermore, we
design an additional experimental setup that uses the same
setting as above, except that all vehicles are fully dedicated
to mobility demand sensing and are not removed by the
MoD system. This makes the local data change slowly, hence
yielding slowly-varying local summaries. Figs. 5d-5f show the
corresponding results: It can be observed that LCF achieves
slightly better performance than HCF and PCF, as expected.
In both of the above setups, the performance of BCF is stable
and comparable to that of the best-performing consensus filter,
thus implying that BCF can handle local summaries with wider
range of variations.
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Fig. 6. Speeds (km/h) of road segments over an urban road network.

B. Traffic Flow Modeled with Relational GP

Fig. 6 shows a real-world traffic phenomenon (i.e., speeds
(km/h) of road segments) over an urban road network in the
4.9 km × 4.3 km Tampines area of Singapore during evening
peak hours on April 20, 2011. It comprises 775 road segments
including highways, arterials, slip roads, etc. The mean speed
is 48.8 km/h and the standard deviation is 20.5 km/h.

In our simulation, a network of K MoD vehicles is tasked to
actively cruise the road network to gather a total data size of up
to 960. To reduce computational time, each vehicle repeatedly
computes and executes maximum-entropy walks of length L =
2 (instead of computing a very long walk), unless otherwise
stated.

The performance of D2FAS (i.e., GP-DDF coupled with
partial DAS as shown in Algorithm 2) is compared to that of
both state-of-the-art full GP (Section II) and subset of data
(Section II-A) coupled with centralized active sensing (CAS)
(28) algorithms. Note that GP-DDF+ cannot be coupled with
partial DAS, as explained earlier in Section IV-A. For D2FAS
and subset of data, |U | is set to 64. For the active sensing
component of D2FAS (i.e., partial DAS), ε is set to 0.1, unless
otherwise stated. The experiments are run on a Linux PC with
Intelr CoreTM2 Quad CPU Q9550 at 2.83 GHz.

The first performance metric evaluates the predictive per-
formance of a tested algorithm: It measures the root mean

squared error (RMSE)
√
|V |−1

∑
s∈V (zs − µ̂s)2 over the

entire domain V of the road network that is incurred by the
predictive mean µ̂s of the tested algorithm, specifically, using
(2) of full GP, (5) of subset of data, or (13) of D2FAS. The
second metric evaluates the time efficiency and scalability of
a tested algorithm by measuring its incurred time; for D2FAS,
the maximum of the time incurred by all subsets V1, . . . ,VK
of vehicles is recorded.

1) Predictive Performance and Time Efficiency: Fig. 7
shows results of the performance of the tested algorithms
averaged over 40 randomly generated starting vehicle loca-
tions with varying number K = 4, 6, 8 of vehicles. It can
be observed that D2FAS is significantly more time-efficient
and scales better with increasing size |D| of data (Figs. 7d
to 7f) while achieving predictive performance close to that
of full GP and subset of data coupled with CAS (Figs. 7a
to 7c). Specifically, D2FAS is about 1, 2, 4 orders of magnitude
faster than full GP and subset of data coupled with CAS for
K = 4, 6, 8 vehicles, respectively.
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Fig. 7. Graphs of (a-c) predictive performance and (d-f) time efficiency vs.
total size |D| of data gathered by varying number K of vehicles.
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Fig. 8. Graphs of (a-c) predictive performance and (d-f) time efficiency vs.
total size |D| of data gathered by varying number K of vehicles.

2) Scalability of D2FAS: Using the same results as that in
Fig. 7, Fig. 8 plots them differently to reveal the scalability of
the tested algorithms with increasing number K of vehicles.
Additionally, we provide results of the performance of D2FAS
for K = 10, 20, 30 vehicles; such results are not available
for full GP and subset of data coupled with CAS due to
extremely long incurred time. It can be observed from Figs. 8a
to 8c that the predictive performance of all tested algorithms
improve with a larger number of vehicles because each vehicle
needs to execute fewer number of walks and its performance
is therefore less adversely affected by its myopic selection
(i.e., L = 2) of maximum-entropy walks. As a result, more
informative unobserved road segments are explored.

As shown in Fig. 8d, when the randomly placed vehicles
gather their initial data (i.e., |D| < 400), the time incurred
by D2FAS is higher for greater K due to larger subsets of
vehicles being formed to coordinate their walks (i.e., larger κ).
As more data are gathered (i.e., |D| ≥ 400), its partial DAS
component directs the vehicles to explore further apart from
each other in order to maximize the entropy of their walks.
This consequently decreases κ, thus leading to a reduction in
incurred time. Furthermore, as K increases from 4 to 20, the
incurred time decreases due to its decentralized data fusion
component (i.e., GP-DDF) that can distribute the computa-
tional load among a greater number of vehicles. When the road
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Fig. 9. Graphs of time efficiency vs. total size |D| of data gathered by
varying number K of vehicles.

network becomes more crowded from K = 20 to K = 30
vehicles, the incurred time increases slightly due to slightly
larger κ. In contrast, Figs. 8e and 8f show that the time taken
by full GP and subset of data increase significantly primarily
due to their centralized active sensing incurring exponential
time in K. Hence, the scalability of our D2FAS algorithm
in the number of vehicles allows the deployment of a larger-
scale vehicular sensor network (i.e., K ≥ 10) to achieve more
accurate traffic modeling and prediction (Figs. 8a to 8c).

3) Scalability of Data Fusion: Fig. 9 shows results of the
scalability of the tested data fusion methods with increasing
number K of vehicles. In order to produce meaningful results
for fair comparison, the same active sensing component has
to be coupled with the data fusion methods and its incurred
time kept to a minimum. As such, we impose the use of
full DAS component to be performed by each vehicle k:
w∗k = arg maxwk

H[ZSwk
|ZD]. For D2FAS, this corresponds

exactly to (32) by setting a large enough ε (in our experiments,
ε = 2) to yield κ = 1; consequently, computational and
communicational operations pertaining to the coordination
graph can be omitted.

It can be seen from Fig. 9a that the time incurred by
the decentralized data fusion component of D2FAS (i.e., GP-
DDF) decreases with increasing K, as explained previously.
In contrast, the time incurred by full GP and subset of data
increase (Fig. 9b and 9c): As discussed above, a larger number
of vehicles result in a greater quantity of more informative
unique data to be gathered (i.e., fewer repeated data), which
increase the time needed for data fusion. When K ≥ 10,
D2FAS is at least 1 order of magnitude faster than full GP and
subset of data. It can also be observed that D2FAS scales better
with increasing size of data. So, the real-time performance
and scalability of D2FAS’s decentralized data fusion (i.e.,
GP-DDF) enable it to be used data and fleet (including
static sensors and passive mobile probes) are expected to be
available.

4) Varying Length L of Walk: Fig. 10 shows results of
the performance of the tested algorithms with varying length
L = 2, 4, 6, 8 of maximum-entropy joint walks; we choose
to experiment with just 2 vehicles since Figs. 8 and 9 reveal
that a smaller number of vehicles produce poorer predictive
performance and higher incurred time with large size of data
for D2FAS7. It can be observed that the predictive performance
of all tested algorithms improve with increasing walk length L

7Furthermore, in practice, when the length L of walks is increased, the
number K of vehicles has to be decreased in order to preserve time efficiency
(see TABLE I), which is especially necessary for obtaining experimental
results of those coupled with CAS algorithm in a reasonable amount of time.
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Fig. 10. Graphs of (a-c) predictive performance and (d-f) time efficiency
vs. total size |D| of data gathered by 2 vehicles with varying length L of
maximum-entropy joint walks. (When the lower bound value is negative, the
lower error bar cannot be shown in log-scale.)

because the selection of maximum-entropy joint walks is less
myopic. The time incurred by D2FAS increases due to larger κ
but grows more slowly and is lower than that incurred by full
GP and subset of data coupled with CAS. Specifically, when
L = 8, D2FAS is at least 1 order of magnitude faster (i.e.,
average of 60 s) than subset of data (i.e., average of > 732 s)
and full GP (i.e., not available due to excessive incurred time)
coupled with CAS. Also, notice from Figs. 8a and 8d that if
a large number of vehicles (i.e., K = 30) is available, D2FAS
can select shorter walks of L = 2 to be significantly more
time-efficient (i.e., average of > 3 orders of magnitude faster)
while achieving predictive performance comparable to that of
subset of data with L = 8 and full GP with L = 6.

Fig. 10d shows fluctuations of time (e.g., when L = 8 and
|D| > 720) incurred by D2FAS algorithm due to variations in
the number of possible walks that need to be evaluated in order
to select the maximum-entropy walks at every time step. These
variations are caused by a dynamically changing coordination
graph G being formed with the size κ of its largest connected
component varying over time as well as different out-degrees
(i.e., ranging from 2 to 6) of the segments in the road network
G. The different out-degrees of the road segments can also
be used to explain the small fluctuations of time incurred by
those coupled with CAS algorithm in Figs. 10e and 10f.

5) Varying Degrees of Coordination in Partial DAS: Fig. 11
shows the predictive performance and time efficiency of
D2FAS with varying degrees of coordination between K = 4
vehicles with walk length L = 4 to gather a size of up to |D| =
960 of data. The degree of coordination in the active sensing
component of D2FAS (i.e., partial DAS) is varied by setting
the minimum required correlation ε (33) between walks of
adjacent vehicles to different values: 0, 0.1, 0.01, 0.001, 0.0001
and 2. As explained previously in Section IV-A, when ε = 0,
partial DAS becomes centralized active sensing (CAS). On the
other hand, when ε is set to be sufficiently large (in this case,
ε = 2), partial DAS reduces to full DAS. From Fig. 11a, it can
be observed that though the predictive performance of partial
DAS decreases (i.e., RMSE increases) with an increasing ε,
it can achieve a performance comparable to that of CAS
by setting a small enough ε, thus corroborating the effect
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Fig. 12. Predictive performance of different consensus filtering-based GP-
DDF (4 iterations per time step) and all-to-all communication-based GP-
DDF coupled with full DAS algorithms with varying communication range
R (meters).

of ε on the performance guarantee in Theorem 3. Fig. 11b
shows that the time efficiency of partial DAS can be improved
significantly by increasing ε due to a decreasing κ (i.e., largest
subset of vehicles being formed to coordinate their walks). So,
in contrast to CAS and full DAS, partial CAS can provide the
flexibility in trading off between predictive performance vs.
time efficiency by setting a suitable ε.

6) Predictive Performance of Consensus Filtering-Based
GP-DDF: Fig. 5 compares results of the predictive per-
formance between the all-to-all communication-based GP-
DDF+ and different consensus filtering-based GP-DDF+ (Sec-
tion III-A) coupled with full DAS (Section IV) algorithms. We
vary the vehicles’ communication range R = 300, 500, 1000
meters. All results are obtained by averaging over 40 random
instances.

Fig. 12 shows that the predictive performance of the
consensus filtering-based GP-DDF coupled with full DAS
algorithms approach that of all-to-all communication-based
GP-DDF coupled with full DAS algorithm with an increasing
communication range R. This is expected since a better
connectivity of the communication network allows consensus
filters to better approximate the global summary. The results
also show that LCF tends to outperform HCF and PCF. This
is because LCF performs better with slowly-varying local
summaries that result from gradually increasing local data.
Similar to Fig. 5, the performance of BCF is stable and slightly

better than that of LCF.

VII. RELATED WORKS

A. Models for Predicting Spatiotemporally Varying Traffic Flow

The spatiotemporal correlation structure of traffic flow can
be exploited to predict the traffic flow condition of any
unobserved road segment at any time using the data taken
along the sensors’ paths. To achieve this, existing Bayesian
filtering frameworks [16], [17], [40] utilize various handcrafted
parametric models predicting traffic flow along a highway
stretch that only correlate adjacent segments of the highway.
So, their predictive performance will be compromised when
the current data are sparse and/or the actual spatial correlation
spans multiple segments. Their strong Markov assumption
further exacerbates this problem. It is also not shown how
these models can be generalized to work for arbitrary road
network topologies and more complex correlation structure.
Existing multivariate parametric traffic prediction models [41],
[42] do not quantify uncertainty estimates of the predictions
and impose rigid spatial locality assumptions that do not adapt
to the true underlying correlation structure.

In contrast, we assume the traffic flow over an urban road
network (i.e., comprising the full range of road types like
highways, arterials, slip roads) to be realized from a relational
GP (Section II-B) that can formally characterize its spatiotem-
poral correlation structure and be refined with growing size
of data. More importantly, GP can provide formal measures
of predictive uncertainty (e.g., based on variance or entropy
criterion) for directing the sensors to explore highly uncertain
areas of the road network. The work of [15] used GP to
represent the traffic flow over a network of only highways and
defined the correlation of speeds between highway segments
to depend only on the geodesic (i.e., shortest path) distance of
these segments with respect to the network topology; their
features are not considered. The work of [43] maintained
a mixture of two independent GPs for flow prediction such
that the correlation structure of one GP utilized road segment
features while that of the other GP depended on manually
specified relations (instead of geodesic distance) between
segments with respect to an undirected network topology.
Different from the above works, we propose a relational
GP whose correlation structure exploits the geodesic distance
between segments based on the topology of a directed road
network with vertices denoting road segments and edges
indicating adjacent segments weighted by dissimilarity of their
features, hence tightly integrating the features and relational
information.

B. Data Fusion

The data are gathered distributedly by each vehicle along its
path in the road network and have to be assimilated in order to
predict the traffic phenomenon. Since large data are expected
to be collected, a centralized approach to GP prediction cannot
be performed in real time due to its cubic time complexity.

To resolve this, we propose decentralized data fusion ap-
proaches to efficient and scalable approximate GP prediction
(Section III). Existing decentralized and distributed Bayesian



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 17

filtering frameworks for addressing non-traffic related prob-
lems [34], [44]–[47] will face the same difficulties as their
centralized counterparts described above if applied to pre-
dicting traffic phenomena, thus resulting in loss of predictive
performance. Distributed regression algorithms [48], [49] for
static sensor networks gain efficiency from spatial locality as-
sumptions, which cannot be exploited by vehicles whose paths
are not constrained by locality. The work of [50] proposed a
distributed data fusion approach to approximate GP prediction
based on an iterative Jacobi overrelaxation algorithm, which
incurs some critical limitations: (a) The past data taken along
the vehicles’ paths are assumed to be uncorrelated, which
greatly undermines its predictive performance when they are
in fact correlated and/or the current data are sparse, (b) when
the number of vehicles grows large, it converges very slowly,
and (c) it assumes that the range of positive correlation has
to be bounded by some factor of the communication range.
Our proposed decentralized data fusion algorithms do not
suffer from these limitations and can be computed exactly with
efficient time bounds.

C. Active Sensing

The vehicles have to coordinate to actively gather the most
informative data for minimizing the uncertainty of modeling
and predicting the traffic phenomenon. Existing centralized
[21], [22] and decentralized [51] active sensing algorithms
scale poorly with large data and fleet. We propose decentral-
ized active sensing algorithms that overcome these issues of
scalability (Section IV).

VIII. CONCLUSION

This paper describes novel Gaussian process decentralized
data fusion (GP-DDF and GP-DDF+) and active sensing
(full DAS and partial DAS) algorithms for real-time, fine-
grained traffic sensing, modeling, and prediction with a fleet of
autonomous robotic vehicles in a MoD system. Analytical and
empirical results have demonstrated that (a) GP-DDF and GP-
DDF+ are significantly more time-efficient and scalable in the
size of the data while achieving predictive performance close
to that of state-of-the-art full GP [21], [22] and subset of data,
(b) GP-DDF+ can achieve a better balance between predictive
performance and time efficiency than GP-DDF and full GP, (c)
consensus filtering-based GP-DDF and GP-DDF+ requiring
only local communication between neighboring MoD vehicles
can achieve predictive performance comparable to that of all-
to-all communication-based GP-DDF and GP-DDF+, respec-
tively, (d) GP-DDF coupled with partial DAS is significantly
more time-efficient and scalable in the size of the data and
fleet while achieving predictive performance close to that of
full GP and subset of data coupled with centralized active
sensing, and (e) when full DAS is used to gather the most
informative demand data for predicting a mobility demand
pattern, it can achieve a dual effect of fleet rebalancing to
service the mobility demands. Hence, our proposed algorithms
are practical for deployment in a large-scale vehicular sensor
network to achieve persistent and accurate traffic sensing,

modeling, and prediction. Interestingly, GP-DDF and GP-
DDF+ can be adapted to parallel implementations to be run
on a cluster of machines for achieving efficient and scalable
probabilistic prediction with large data [52].

A limitation of our proposed algorithms is that the decen-
tralized data fusion components assume independence between
multiple traffic phenomena (e.g., mobility demand pattern and
traffic flow) while the decentralized active sensing components
only work for a single traffic phenomenon. So, in our future
work, we plan to generalize our algorithms to perform ac-
tive sensing of multiple traffic phenomena and remove the
assumption of independence between traffic phenomena by
exploiting techniques like multi-output GPs and co-kriging
for modeling their correlation. We also like to generalize our
partial DAS algorithm to be coupled with GP-DDF+ and to
perform active sensing of a traffic phenomenon being modeled
by a `GP. Since the data gathered by each MoD vehicle
streams in over time, we want to develop online learning
variants of GP-DDF and GP-DDF+ based on the online sparse
GP model of [53]. Lastly, as mentioned in Section II, the
hyperparameters of the relational GP and `GP are learned
using the data by maximizing the log marginal likelihood. The
sparse approximation method employed by PITC to improve
the scalability of full GP model can be similarly applied
to computing such a log marginal likelihood scalably, as
explained in [32] (i.e., equation 30 in Section 9). Since GP-
DDF is the decentralized version of PITC (Theorem 1B), the
log marginal likelihood can be computed and maximized in
a decentralized manner as well, albeit mathematically more
tedious. This will be investigated in our future work.
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APPENDIX A
PROOF OF THEOREM 1B

We have to first simplify the ΓSD (ΓDD + Λ)
−1 term in the

expressions of µPITC
S|D (15) and ΣPITC

SS|D (16).

(ΓDD + Λ)
−1

=
(
ΣDUΣ−1

UUΣUD + Λ
)−1

= Λ−1 − Λ−1ΣDU
(
ΣUU + ΣUDΛ−1ΣDU

)−1
ΣUDΛ−1

= Λ−1 − Λ−1ΣDU Σ̈−1
UUΣUDΛ−1 .

(40)
The second equality follows from matrix inversion lemma. The
last equality is due to

ΣUU + ΣUDΛ−1ΣDU

= ΣUU +

K∑
k=1

ΣUDk
Σ−1
DkDk|UΣDkU

= ΣUU +

K∑
k=1

Σ̇kUU = Σ̈UU .

(41)

Using (17) and (40),

ΓSD (ΓDD + Λ)
−1

= ΣSUΣ−1
UUΣUD

(
Λ−1 − Λ−1ΣDU Σ̈−1

UUΣUDΛ−1
)

= ΣSUΣ−1
UU

(
Σ̈UU − ΣUDΛ−1ΣDU

)
Σ̈−1
UUΣUDΛ−1

= ΣSU Σ̈−1
UUΣUDΛ−1

(42)

The third equality is due to (41).
From (15),

µPITC
S|D = µS + ΓSD (ΓDD + Λ)

−1
(zD − µD)

= µS + ΣSU Σ̈−1
UUΣUDΛ−1 (zD − µD)

= µS + ΣSU Σ̈−1
UU z̈U

= µS .

The second equality is due to (42). The third
equality follows from ΣUDΛ−1 (zD − µD) =∑K
k=1 ΣUDk

Σ−1
DkDk|U (zDk

− µDk
) =

∑K
k=1 ż

k
U = z̈U .

From (16),

ΣPITC
SS|D

= ΣSS − ΓSD (ΓDD + Λ)
−1

ΓDS
= ΣSS − ΣSU Σ̈−1

UUΣUDΛ−1ΣDUΣ−1
UUΣUS

= ΣSS −
(

ΣSU Σ̈−1
UUΣUDΛ−1ΣDUΣ−1

UUΣUS

−ΣSUΣ−1
UUΣUS

)
− ΣSUΣ−1

UUΣUS

= ΣSS − ΣSU Σ̈−1
UU

(
ΣUDΛ−1ΣDU − Σ̈UU

)
Σ−1
UUΣUS

−ΣSUΣ−1
UUΣUS

= ΣSS −
(

ΣSUΣ−1
UUΣUS − ΣSU Σ̈−1

UUΣUS

)
= ΣSS − ΣSU

(
Σ−1
UU − Σ̈−1

UU

)
ΣUS

= ΣSS .

The second equality follows from (17) and (42). The fifth
equality is due to (41).

APPENDIX B
PROOF OF THEOREM 2B

We will first derive the expressions of four components
useful for completing the proof later.

Γ̃sDΛ−1(zD − µD)

=
∑
i 6=k

ΓsDiΣ
−1
DiDi|U (zDi − µDi) + ΣsDk

Σ−1
DkDk|U (zDk

− µDk
)

= ΣsUΣ−1
UU

∑
i 6=k

(
ΣUDi

Σ−1
DiDi|U (zDi

− µDi
)
)

+ żks

= ΣsUΣ−1
UU

∑
i 6=k

żiU + żks

= ΣsUΣ−1
UU (z̈U − żkU ) + żks .

(43)
The first two equalities expand the first component using the
definition of Λ (Theorem 2B), (9), (25), (26), and (27). The
last two equalities exploit (9) and (11).

Γ̃sDΛ−1ΣDU

=
∑
i 6=k

ΓsDi
Σ−1
DiDi|UΣDiU + ΣsDk

Σ−1
DkDk|UΣDkU

= ΣsUΣ−1
UU

∑
i 6=k

(
ΣUDiΣ

−1
DiDi|UΣDiU

)
+ ΣsDk

Σ−1
DkDk|UΣDkU

= ΣsUΣ−1
UU

∑
i 6=k

Σ̇iUU + Σ̇ksU

= ΣsUΣ−1
UU

(
Σ̈UU − Σ̇kUU − ΣUU

)
+ Σ̇ksU

= ΣsUΣ−1
UU Σ̈UU − γksU .

(44)
The first two equalities expand the second component by the
same trick as that in (43). The third and fourth equalities
exploit (10) and (12), respectively. The last equality is due
to (20).

Let αsU , ΣsUΣ−1
UU and its transpose is αUs. By using

similar tricks in (43) and (44), we can derive the expressions
of the remaining two components.

If τs = τs′ = k, then

Γ̃sDΛ−1Γ̃Ds′

=
∑
i 6=k

ΓsDiΣ
−1
DiDi|UΓDis′ + ΣsDk

Σ−1
DkDk|UΣDks′

= ΣsUΣ−1
UU

∑
i 6=k

(
ΣUDi

Σ−1
DiDi|UΣDiU

)
Σ−1
UUΣUs′ + Σ̇kss′

= αsU
∑
i 6=k

(
Σ̇iUU

)
αUs′ + Σ̇kss′

= αsU

(
Σ̈UU − Σ̇kUU − ΣUU

)
αUs′ + Σ̇kss′

= αsU Σ̈UUαUs′ − αsUγkUs′ − αsU Σ̇kUs′ + Σ̇kss′ .
(45)



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 20

If τs = i and τs′ = j such that i 6= j, then

Γ̃sDΛ−1Γ̃Ds′

=
∑
k 6=i,j

ΓsDk
Σ−1
DkDk|UΓDks′

+ ΣsDi
Σ−1
DiDi|UΓDis′ + ΓsDj

Σ−1
DjDj |UΣDjs′

= ΣsUΣ−1
UU

∑
k 6=i,j

(
ΣUDk

Σ−1
DkDk|UΣDkU

)
Σ−1
UUΣUs′

+ ΣsDi
Σ−1
DiDi|UΣDiUΣ−1

UUΣUs′ + ΣsUΣ−1
UUΣUDj

Σ−1
DjDj |UΣDjs′

= αsU

(
Σ̈UU − Σ̇iUU − Σ̇jUU − ΣUU

)
αUs′ + Σ̇isUαUs′ + αsU Σ̇jUs′

= αsU

(
Σ̈UU + ΣUU

)
αUs′ − αsU

(
Σ̇iUU + ΣUU

)
αUs′

− αsU

(
Σ̇jUU + ΣUU

)
αUs′ + Σ̇isUαUs′ + αsU Σ̇jUs′

= αsU

(
Σ̈UU + ΣUU

)
αUs′ −

(
αsU Σ̇iUU + αsUΣUU − Σ̇isU

)
αUs′

− αsU

(
Σ̇jUUαUs′ + ΣUUαUs′ − Σ̇jUs′

)
= αsU

(
Σ̈UU + ΣUU

)
αUs′ − γisUαUs′ − αsUγ

j
Us′

= αsU Σ̈UUαUs′ + ΣsUΣ−1
UUΣUs′ − γisUαUs′ − αsUγ

j
Us′

(46)
If τs = k, then

µPIC
s|D

= µs + Γ̃sD (ΓDD + Λ)
−1

(zD − µD)

= µs + Γ̃sDΛ−1(zD − µD)

− Γ̃sDΛ−1ΣDU Σ̈−1
UUΣUDΛ−1(zD − µD)

= µs + Γ̃sDΛ−1(zD − µD)− Γ̃sDΛ−1ΣDU Σ̈−1
UU z̈U

= µs + ΣsUΣ−1
UU (z̈U − żkU ) + żks − Γ̃sDΛ−1ΣDU Σ̈−1

UU z̈U
= µs + ΣsUΣ−1

UU (z̈U − żkU ) + żks

−
(

ΣsUΣ−1
UU Σ̈UU − γksU

)
Σ̈−1
UU z̈U

= µs +
(
γksU Σ̈−1

UU z̈U − ΣsUΣ−1
UU ż

k
U

)
+ żks

= µks .

The first equality is by definition (23). The second equality
is due to (40). The third equality is due to the definition of
global summary (11). The fourth and fifth equalities are due
to (43) and (44), respectively.

If τs = τs′ = k, then

σPIC
ss′|D

= σss′ − Γ̃sD (ΓDD + Λ)
−1

Γ̃Ds′

= σss′ − Γ̃sDΛ−1Γ̃Ds′ + Γ̃sDΛ−1ΣDU Σ̈−1
UUΣUDΛ−1Γ̃Ds′

= σss′ − Γ̃sDΛ−1Γ̃Ds′

+
(
αsU Σ̈UU − γksU

)
Σ̈−1
UU

(
Σ̈UUαUs′ − γkUs′

)
= σss′ − αsU Σ̈UUαUs′ + αsUγ

k
Us′ + αsU Σ̇kUs′ − Σ̇kss′

+ αsU Σ̈UUαUs′ − αsUγkUs′ − γksUαUs′ + γksU Σ̈−1
UUγ

k
Us′

= σss′ −
(
γksUαUs′ − αsU Σ̇kUs′ − γksU Σ̈−1

UUγ
k
Us′

)
− Σ̇kss′

= σkss′
= σss′ .

The first equality is by definition (24). The second equality
is due to (40). The third equality is due to (44). The fourth
equality is due to (45). The last two equalities are by definition
(22).

If τs = i and τs′ = j such that i 6= j, then

σPIC
ss′|D

= σss′ − Γ̃sDΛ−1Γ̃Ds′

+ αsU Σ̈UUαUs′ − αsUγjUs′ − γisUαUs′ + γisU Σ̈−1
UUγ

j
Us′

= σss′ −
(
αsU Σ̈UUαUs′ + ΣsUΣ−1

UUΣUs′ − γisUαUs′ − αsUγ
j
Us′

)
+ αsU Σ̈UUαUs′ − αsUγjUs′ − γisUαUs′ + γisU Σ̈−1

UUγ
j
Us′

= σss′ − ΣsUΣ−1
UUΣUs′ + γisU Σ̈−1

UUγ
j
Us′

= Σss′|U + γisU Σ̈−1
UUγ

j
Us′

= σss′ .

The first equality is obtained using a similar trick as when
τs = τs′ = k. The second equality is due to (46). The second
last equality is by the definition of posterior covariance in GP
model (3). The last equality is by definition (22).

APPENDIX C
PROOF OF THEOREM 3

Let Σ̃SwSw
, ΣSwSw

−Σ̂SwSw
and ρw be the spectral radius

of
(

Σ̂SwSw

)−1

Σ̃SwSw
. We have to first bound ρw from above.

For any joint walk w,
(

Σ̂SwSw

)−1

Σ̃SwSw
comprises di-

agonal blocks of size
∣∣SwVn ∣∣ × ∣∣SwVn ∣∣ with components of

value 0 for n = 1, . . . ,K and off-diagonal blocks of the form(
ΣSwVn

SwVn

)−1

ΣSwVn
SwV

n′
for n, n′ = 1, . . . ,K and n 6= n′.

We know that any pair of vehicles k ∈ Vn and k′ ∈ Vn′ reside
in different connected components of coordination graph G and
are therefore not adjacent. So, by Definition 7,

max
i,i′

∣∣∣[ΣSwVn
SwV

n′

]
ii′

∣∣∣ ≤ ε (47)

for n, n′ = 1, . . . ,K and n 6= n′. Using (39) and (47), each

component in any off-diagonal block of
(

Σ̂SwSw

)−1

Σ̃SwSw

can be bounded as follows:

max
i,i′

∣∣∣∣[(ΣSwVn
SwVn

)−1

ΣSwVn
SwV

n′

]
ii′

∣∣∣∣ ≤ ∣∣SwVn ∣∣ ξε (48)

for n, n′ = 1, . . . ,K and n 6= n′. It follows from (48) that

max
i,i′

∣∣∣∣[(Σ̂SwSw

)−1

Σ̃SwSw

]
ii′

∣∣∣∣ ≤ max
n

∣∣SwVn ∣∣ ξε ≤ Lκξε .
(49)

The last inequality is due to max
n

∣∣SwVn ∣∣ ≤ Lmax
n
|Vn| ≤ Lκ.

Then,

ρw ≤
∣∣∣∣∣∣∣∣(Σ̂SwSw

)−1

Σ̃SwSw

∣∣∣∣∣∣∣∣
2

≤ |Sw|max
i,i′

∣∣∣∣[(Σ̂SwSw

)−1

Σ̃SwSw

]
ii′

∣∣∣∣
≤ KL2κξε .

(50)

The first two inequalities follow from standard properties of
matrix norm [54], [55]. The last inequality is due to (49).

The rest of this proof utilizes the following result of [56]
that is revised to reflect our notations:

Theorem 4: If |Sw|ρ2
w < 1, then log

∣∣ΣSwSw

∣∣ ≤
log
∣∣∣Σ̂SwSw

∣∣∣ ≤ log
∣∣ΣSwSw

∣∣ − log
(
1− |Sw|ρ2

w

)
for any joint

walk w.
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Using Theorem 4 followed by (50),

log
∣∣∣Σ̂SwSw

∣∣∣− log
∣∣ΣSwSw

∣∣≤ log
1

1− |Sw|ρ2
w

≤ log
1

1−(K1.5L2.5κξε)
2

(51)
for any joint walk w.

H[ZSw∗ ]−H[ZSŵ
]

=
1

2

(
(|Sw∗ | − |Sŵ|) log(2πe) + log

∣∣ΣSw∗Sw∗

∣∣− log
∣∣ΣSŵSŵ

∣∣)
≤ 1

2

(
(|Sw∗ | − |Sŵ|) log(2πe) + log

∣∣∣Σ̂Sw∗Sw∗

∣∣∣− log
∣∣ΣSŵSŵ

∣∣)
≤ 1

2

(
(|Sŵ| − |Sŵ|) log(2πe) + log

∣∣∣Σ̂SŵSŵ

∣∣∣− log
∣∣ΣSŵSŵ

∣∣)
≤ 1

2
log

1

1− (K1.5L2.5κξε)
2 .

The first equality is due to (30). The first, second, and last in-
equalities follow from Theorem 4, (37), and (51), respectively.


