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3D Tracking via Body Radio Reflections
Fadel Adib Zachary Kabelac Dina Katabi Robert C. Miller

Massachusetts Institute of Technology

Abstract – This paper introduces WiTrack, a system
that tracks the 3D motion of a user from the radio sig-
nals reflected off her body. It works even if the person
is occluded from the WiTrack device or in a different
room. WiTrack does not require the user to carry any wire-
less device, yet its accuracy exceeds current RF localiza-
tion systems, which require the user to hold a transceiver.
Empirical measurements with a WiTrack prototype show
that, on average, it localizes the center of a human body
to within a median of 10 to 13 cm in the x and y di-
mensions, and 21 cm in the z dimension. It also provides
coarse tracking of body parts, identifying the direction of
a pointing hand with a median of 11.2◦. WiTrack bridges a
gap between RF-based localization systems which locate
a user through walls and occlusions, and human-computer
interaction systems like Kinect, which can track a user
without instrumenting her body, but require the user to
stay within the direct line of sight of the device.

1 INTRODUCTION

Recent years have witnessed a surge in motion tracking
and localization systems. Multiple advances have been
made both in terms of accuracy and robustness. In par-
ticular, RF localization using WiFi and other communica-
tion devices has reached sub-meter accuracy and demon-
strated its ability to deal with occlusions and non-line of
sight scenarios [31, 18]. Yet these systems require the
user to carry a wireless device in order to be localized.
In contrast, systems like Kinect and depth imaging have
revolutionized the field of human-computer interaction by
enabling 3D motion tracking without instrumenting the
body of the user. However, Kinect and imaging systems
require a user to stay within the device’s line-of-sight and
cannot track her across rooms. We envision that if an RF
system can perform 3D motion tracking without requiring
the user to wear a radio, it will motivate the integration of
such a technology in systems like Kinect to expand their
reach beyond direct line of sight and enable through-wall
human-computer interaction.

Motivated by this vision, this paper introduces
WiTrack, a system that tracks the 3D motion of a user
using radio reflections that bounce off her body. It works
through walls and occlusions, but does not require the user
to carry any wireless device. WiTrack can also provide
coarse tracking of a body part. In particular, the user may
lift her hand and point at objects in the environment; the
device detects the direction of the hand motion, enabling
the user to identify objects of interest.

WiTrack has one antenna for transmission and three an-
tennas for receiving. At a high level, WiTrack’s motion
tracking works as follows. The device transmits a radio
signal and uses its reflections to estimate the time it takes
the signal to travel from the transmitting antenna to the re-
flecting object and back to each of the receiving antennas.
WiTrack then uses its knowledge of the position of the an-
tennas to create a geometric reference model, which maps
the round trip delays observed by the receive antennas to
a 3D position of the reflecting body.

Transforming this high-level idea into a practical sys-
tem, however, requires addressing multiple challenges.
First, measuring the time of flight is difficult since RF
signals travel very fast – at the speed of light. To distin-
guish between two locations that are closer than one foot
apart, one needs to measure differences in reflection time
on the order of hundreds of picoseconds, which is quite
challenging. To address this problem, we leverage a tech-
nique called FMCW (frequency modulated carrier wave)
which maps differences in time to shifts in the carrier fre-
quency; such frequency shifts are easy to measure in radio
systems by looking at the spectrum of the received signal.

A second challenge stems from multipath effects,
which create errors in mapping the delay of a reflection
to the distance from the target. WiTrack has to deal with
two types of multipath effects. Some multipath effects are
due to the transmitted signal being reflected off walls and
furniture. Others are caused by the signal first reflecting
off the human body then reflecting off other objects. This
is further complicated by the fact that in non-line-of-sight
settings, the strongest signal is not the one directly bounc-
ing off the human body. Rather it is the signal that avoids
the occluding object by bouncing off some side walls.
WiTrack eliminates reflections from walls and furniture
by noting that their distance (and time of flight) does not
change over time. Hence, they can be eliminated by sub-
tracting consecutive frames of the signals. Reflections that
involve a combination of a human and some static object
are more complex and are addressed through filters that
account for practical constraints on the continuity of hu-
man motion and its speed in indoor settings.

We have built a prototype of WiTrack and evaluated
it empirically. Since off-the-shelf radios do not perform
FMCW, we built an analog FMCW radio frontend, which
operates as a daughterboard for the USRP software radio.
In our evaluation, we use the VICON motion capture sys-
tem [6] to report the ground truth location. VICON can
achieve sub-centimeter accuracy but requires instrument-

1



ing the human body with infrared markers and positioning
an array of infrared cameras on the ceiling. Since VICON
cannot operate in non-line-of-sight, the human moves in
the VICON room while our device is placed outside the
room and tracks the motion across the wall. Our evalu-
ation considers three applications, each of them uses the
developed 3D tracking primitive in a different way.

In the first application, we consider 3D tracking of hu-
man motion through a wall. The objective of such an ap-
plication is to augment virtual reality and gaming systems
to work in non-line-of-sight and across rooms. We com-
pute the tracking error as the difference between the loca-
tion reported by our device and the actual location of the
body center as reported by VICON. Our results show that
WiTrack localizes the center of the human body to within
10 to 13 cm in the x and y dimensions, and 21 cm in the
z dimension. This high accuracy stems from WiTrack’s
ability to eliminate errors due to multipath and the com-
bined performance of FMCW and our geometric mapping
algorithm. The results also show that even the 90th per-
centile of the measurements stays within one foot along
the x/y-axis and two feet along the z-axis.

In the second application, we consider elderly fall de-
tection. Current solutions to this problem include inertial
sensors which old people tend to forget to wear [15], or
cameras which infringe on privacy, particularly in bed-
rooms and bathrooms [20]. In contrast, WiTrack does not
require the user to wear any device and protects her pri-
vacy much better than a camera. However, simply looking
at the change in elevation cannot allow us to distinguish
a fall from sitting on the floor. Thus, WiTrack identifies
a fall as a fast change in the elevation that reaches the
ground level. In a population of 11 users and over 133
experiments, WiTrack distinguishes a fall from standing,
walking, sitting on a chair and sitting on the floor with an
accuracy of 96.9% (the F-measure is 94.34%).

In the third application, we consider a user who desires
to control appliances by pointing at them (e.g., the user
can turn her monitor on or turn the lights off by simply
pointing at these objects.) We consider a gesture in which
the user lifts her arm, points at an appliance, and drops
her arm. By comparing the position of the arm over time,
WiTrack can identify the pointing direction. Our proto-
type estimates the pointing direction with a median of
11.2 degrees and a 90th percentile of 37.9 degrees.

Our results also show that the prototype operates in re-
altime, and outputs the 3D location within 75 ms from the
time the antennas receive the signal. Further, it operates
at a fairly low-power, transmitting only 0.75 milliwatts.
However, our current prototype can track a single person,
and requires the person to move to obtain an initial esti-
mate of his location.
Contributions: This paper introduces the first device that
can achieve centimeter-scale accuracy in tracking the 3D

(a) Antenna “T” Setup (b) FMCW Signal Generation

Figure 1—WiTrack’s Setup and Signal Generation. (a) shows
WiTrack’s directional antennas (dimension of each antenna: 5cm×5cm)
arranged in a “T”: the transmit antenna is placed at the crossing point
of the T, whereas the receive antennas are on the edges. (b) shows the
hardware we built to generate FMCW signals.

motion of a human based on radio reflections off her body.
The paper presents new algorithms for eliminating errors
due to multipath and performing accurate 3D tracking,
both of a whole body and a body part. The paper also
presents a prototype implementation that includes a low-
power FMCW radio frontend and realtime processing, de-
livering accurate 3D motion tracking to within a median
of 10 to 20 centimeters.

Our results demonstrate that WiTrack can expand the
space of human-computer interfaces and enable interac-
tion across walls, and occluded spaces. We believe that
WiTrack also expands the role that wireless computer net-
works may play in the future to enable them to provide a
variety of services: Communication is definitely a major
service, but other services may include motion tracking,
through-wall human-computer interaction, and a gesture
based interface for controlling appliances and interacting
with the environment.

2 WITRACK OVERVIEW
WiTrack is a wireless system that performs 3D motion

tracking in both line-of-sight and through wall scenarios.
It can also provide coarse tracking of body parts, like an
arm movement. WiTrack uses multiple directional anten-
nas: one antenna is used for transmitting, and three an-
tennas for receiving. In its default setup, the antennas are
arranged in a “T” shape, as shown in Fig. 1(a). In its cur-
rent version WiTrack tracks one moving body at any time.
Other people may be around but should be either behind
the antenna beam or they should be approximately static.1

WiTrack operates by transmitting an RF signal and cap-
turing its reflections off a human body. It tracks the mo-
tion by processing the signals from its received antennas
using the following three steps:
1. Time-of-Flight (TOF) Estimation: WiTrack first mea-

sures the time it takes for its signal to travel from its
transmit antenna to the reflecting body, and then back
to each of its receive antennas. We call this time the

1Small moving objects which do not have significant reflections (e.g.,
a plastic fan) create some noise but do not prevent WiTrack’s 3D track-
ing.
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TOF (time-of-flight). WiTrack obtains an initial mea-
surement of the TOF using FMCW transmission tech-
nique; it then cleans this estimate to eliminate multi-
path effects and abrupt jumps due to noise.

2. 3D Localization: Once it obtains the TOF as perceived
from each of its receiving antennas, WiTrack leverages
the geometric placement of its antennas to localize the
moving body in 3D.

3. Fall Detection and Pointing: WiTrack builds on the
3D localization primitive to enable new functionali-
ties. Specifically, WiTrack can detect a fall by moni-
toring fast changes in the elevation of a human and the
final elevation after the change. WiTrack can also dif-
ferentiate an arm motion from a whole body motion; it
can track the motion of raising one’s arm, localize the
initial and final position of the arm, and determine the
direction in which the arm is pointing.

3 TIME-OF-FLIGHT ESTIMATION
The first step for WiTrack is to measure the TOF from

its transmit antenna to each of its receive antennas and
clean this estimate from the effect of multi-path.
3.1 Obtaining Time-of-Flight Estimates

A straightforward approach for estimating the time
of flight is to transmit a very short pulse and measure
the delay between the transmitted pulse and its received
echo. Such a design requires sampling the signal at sub-
nanosecond intervals – i.e, it requires high speed analog-
to-digital converters (ADCs) that operate at multi-GS/s.
Such ADCs are high power, expensive, and have low bit
resolution, making this approach unattractive in practice.

Instead, WiTrack measures the TOF by leveraging
a technique called Frequency-Modulated Carrier Waves
(FMCW). We explain FMCW at a high level, and re-
fer the reader to [19] for a more detailed explanation.
FMCW transmits a narrowband signal (e.g., a few KHz)
whose carrier frequency changes linearly with time. To
identify the distance from a reflector, FMWC compares
the carrier frequency of the reflected signal to that of the
transmitted signal. Since the carrier frequency is chang-
ing linearly in time, delays in the reflected signals trans-
late into frequency shifts in comparison to the transmitted
wave. Therefore, by comparing the frequency difference
between the transmitted signal and the received signal,
one can discover the time delay that the signal incurred,
which corresponds to the TOF of that signal.

Fig. 2 illustrates this concept. The green line is the car-
rier frequency of the transmitted signal which sweeps lin-
early with time. The red line is the carrier frequency of
the reflected signal as a function of time. The time shift
between the two is the time-of-flight (TOF) for that re-
flector. The frequency shift ∆f between the transmitted
and received signals is a function of both the slope of the
sweep and the TOF, i.e.:

TOF = ∆f/slope (1)

f0#
Time#

fx(t)# fy(t)#

Δf#

TOF#

sweep#1# sweep#2#

Frequency#

Figure 2—FMCW operation. The transmitted signal has a carrier fre-
quency fx(t) that is repeatedly swept in time. Because the received sig-
nal is time-shifted with respect to the transmitted signal, its carrier fre-
quency fy(t) is frequency-shifted with respect to fx(t).

Though the above description is for a single reflector,
it can be easily generalized to an environment with many
reflectors. In this case, the transmitted signal would still
consist of a single carrier wave that is linearly swept in
time. However, because wireless reflections add up lin-
early over the medium, the received signal is a linear com-
bination of multiple reflections, each of them shifted by
some ∆f that corresponds to its own TOF. Hence one can
extract all of these TOFs by taking a fourier transform (i.e,
an FFT) of the received baseband signal.2

In comparison to transmitting a very short pulse and
measuring its sub-nanosecond delay in the time domain,
FMCW does not require high speed ADCs because at any
point in time, the received baseband signal is narrowband.
FMCW Resolution: It is important to note that the reso-
lution of an FMCW system is a function of the total band-
width that the carrier frequency sweeps [19]. The resolu-
tion is defined by the ability to distinguish between two
nearby locations, which depends on the ability to distin-
guish their TOFs, which itself depends on the resolution
in distinguishing frequency shifts ∆f . The resolution of
identifying frequency shifts is equal to the size of one bin
of the FFT. The FFT is typically taken over a duration
of one sweep of the carrier frequency (denoted by Tsweep)
and hence the size of one FFT bin is 1/Tsweep. Since the
minimum measurable frequency shift is ∆fmin = 1/Tsweep,
the minimum measurable change in location is:

Resolution = C
TOFmin

2
= C

∆fmin

2× slope
, (2)

where C is the speed of light and the factor 2 accounts for
the fact that the reflected signal traverses the path back
and forth.

The slope, however, is equal to the total swept band-
width B divided by the sweep time Tsweep. Hence after
substituting for the slope in the above equation we get:

Resolution =
C
2B

(3)

Since C is very large, obtaining high resolution requires
a large B, i.e., the system has to take a narrowband signal

2The baseband signal is the received signal after mixing it by the
transmitted carrier. The mixing shifts the spectrum of the received signal
by the transmitted carrier frequency.
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(a) Spectrogram
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(b) After Background Subtraction
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Figure 3—Obtaining the Time-of-Flight (TOF) Estimates. WiTrack takes an FFT of the received signal in baseband over every sweep period to
generate the spectrogram in (a). Then, by subtracting out a given frame from the frame that precedes it, WiTrack eliminates static multipath as in (b).
The blue plot in (c) shows how WiTrack can address dynamic multipath by tracking the bottom contour of (b), and then denoise the signal (red plot)
to obtain a clean TOF estimate.

and sweep its carrier frequency across a wide bandwidth
of multiple GHz.

In our design we chose the following parameter for our
FMCW. We have built an FMCW system that sweeps a
total bandwidth of 1.69 GHz from 5.56 GHz to 7.25 GHz,
and transmits at 0.75 milliwatt. The choice of this band-
width has been dictated by the FCC regulations for civil-
ian use of spectrum [9]. Specifically, it is the largest con-
tiguous bandwidth below 10 GHz which is available for
civilian use at low power.

Based on Eq. 3, our sweep bandwidth allows us to
obtain a distance resolution of 8.8 cm. Hence the aver-
age error in mapping TOF to distance in 1D is about
4.4 cm. Note that the above derivation neglects the im-
pact of noise, and hence provides a lower bound on the
achievable resolution. In practice, the system’s resolution
is affected by the noise level. It also depends on the geo-
metric model that maps TOFs to 3D locations.
3.2 Addressing Static Multi-path

The next step in WiTrack’s operation is to distinguish
a human’s reflections from reflections off other objects
in the environment, like furniture and walls. Recall from
the previous section that every reflector in the environ-
ment contributes a component to the overall received sig-
nal, and that component has a frequency shift that is lin-
early related to the time-of-flight of the reflection based on
Eq. 1. Typically, reflections from walls and furniture are
much stronger than reflections from a human, especially
if the human is behind a wall. Unless these reflections are
removed, they would mask the signal coming from the
human and prevent sensing her motion. This behavior is
called the “Flash Effect”.

To remove reflections from all of these static objects
(walls, furniture), we leverage the fact that since these
reflectors are static, their distance to the WiTrack device
does not change over time, and therefore their induced fre-
quency shift stays constant over time. Fig. 3(a) plots the
spectrogram of the received signal as a function of time,
for one of the receive antennas of WiTrack. In particular,

we take the FFT of the received signal every sweep win-
dow, and compute the power in each frequency as a func-
tion of time. Note that there is a linear relation between
frequency shifts and the traveled distances as follows:

distance = C×TOF = C× ∆f
slope

. (4)

Thus, instead of plotting the power in each frequency as a
function of time, we can use the above equation to plot the
power reflected from each distance as a function of time,
as shown in Fig. 3(a). The color code of the plot corre-
sponds to a heat-map of the power in the reflected signal.
Strong reflectors are indicated by red and orange colors,
weaker reflectors are indicated by yellow and green, and
the absence of a reflector is indicated by blue at the corre-
sponding frequency. The figure indicates the presence of
very strong static reflectors in the environment. Specifi-
cally, it has many horizontal stripes; each of these stripes
signifies the presence of a reflector at the corresponding
round-trip distance. Because these stripes are horizontal,
their corresponding reflectors are stationary over time.
Hence, we eliminate the power from these static reflec-
tors by simply subtracting the output of the FFT in a given
sweep from the FFT of the signal in the previous sweep.
This process is called background subtraction because it
eliminates all the static reflectors in the background.

Fig. 3(b) is the result of applying background subtrac-
tion to Fig. 3(a). The figure shows that all static reflec-
tors corresponding to the horizontal lines have been elim-
inated. This makes it easier to see the much weaker reflec-
tions from a moving human. Specifically, we see that the
distance of the dominant reflector (the red color signal) is
varying with time, indicating that the reflector is moving.

3.3 Addressing Dynamic Multi-path
By eliminating all reflections from static objects,

WiTrack is left only with reflections from a moving hu-
man (see Fig. 3(b)). These reflections include both signals
that bounce off the human body to the receive antennas,
and those that bounce off the human then bounce off other
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objects in the environment before reaching WiTrack’s an-
tennas. We refer to these indirect reflections as dynamic
multi-path. It is quite possible that a human reflection
that arrives along an indirect path, bouncing off a side
wall, is stronger than her direct reflection (which could
be severely attenuated after traversing a wall) because the
former might be able to avoid occlusion.

Our idea for eliminating dynamic multi-path is based
on the observation that, at any point in time, the direct
signal reflected from the human to our device has trav-
elled a shorter path than indirect reflections. Because dis-
tance is directly related to TOF, and hence to frequency,
this means that the direct signal reflected from the hu-
man would result in the smallest frequency shift among
all strong reflectors after background subtraction.

We can track the reflection that traveled the shortest
path by tracing the bottom contour of all strong reflec-
tors in Fig. 3(b). The bottom contour can be defined as
the closest local maximum to our device. To determine
the first local maximum that is caused by human motion,
we must be able to distinguish it from a local maximum
due to a noise peak. We achieve this distinguishability by
averaging the spectrogram across multiple sweeps. In our
implementation, we average over five consecutive sweeps,
which together span a duration of 12.5 ms. For all prac-
tical purposes, a human can be considered as static over
this time duration; therefore, the spectrogram would be
consistent over this duration. Averaging allows us to boost
the power of a reflection from a human while diluting the
peaks that are due to noise. This is because the human
reflections are consistent and hence add up coherently,
whereas the noise is random and hence adds up incoher-
ently. After averaging, we can determine the first local
maximum that is substantially above the noise floor and
declare it as the direct path to the moving human.

The blue plot in Fig. 3(c) shows the output of WiTrack’s
contour tracking of the signal in Fig. 3(b). In practice, this
approach has proved to be more robust than tracking the
dominant frequency in each sweep of the spectrogram.
This is because, unlike the contour which tracks the clos-
est path between a human body and WiTrack’s antennas,
the point of maximum reflection may abruptly shift due
to different indirect paths in the environment or even ran-
domness in the movement of different parts of the human
body as a person performs different activities.

3.4 Dealing with Noise
After obtaining the bottom contour of the spectrogram

of the signal from each receive antenna, WiTrack lever-
ages common knowledge about human motion to miti-
gate the effect of noise and improve its tracking accuracy.
Specifically, by performing the following optimizations,
we obtain the red plot in Fig. 3(c):
• Outlier Rejection: WiTrack rejects impractical jumps

in distance estimates that correspond to unnatural hu-

man motion over a very short period of time. For ex-
ample, in Fig. 3(c) , the distance from the reflector (the
blue line) repeatedly jumps by more than 5 meters over
a span of few milliseconds. Such changes in distance
are not possible over such small intervals of time, and
hence WiTrack rejects such outliers.

• Interpolation: WiTrack uses its tracking history to lo-
calize a person when she stops moving. In particular, if
a person walks around in a room then sits on a chair and
remains static, the background-subtracted signal would
not register any strong reflector. In such scenarios, we
assume that the person is still in the same position and
interpolate the latest location estimate throughout the
period during which we do not observe any motion, en-
abling us to track the location of a subject even after
she stops moving.

• Filtering: Because human motion is continuous, the
variation in a reflector’s distance to each receive an-
tenna should stay smooth over time. Thus, WiTrack
uses a Kalman Filter to smooth the distance estimates.

4 LOCALIZING IN 3D
After contour tracking and de-noising of the estimate,

WiTrack obtains a clean estimate of the distance travelled
by the signal from the transmit antenna to the human re-
flector, and back to one of the receive antennas. Let us call
this estimate the round trip distance. At any time, there are
three such round trip distances that correspond to the three
receive antennas. The goal of this section is to use these
three estimates to identify the 3D position of the human,
for each time instance.

To do so, WiTrack leverages its knowledge of the place-
ment of the antennas. Recall that the antennas are placed
in a T, as in Fig.1(a) where the y-axis is a horizontal line
orthogonal to the plane of the T and the z-axis is along its
vertical line. WiTrack uses this reference frame to track
the 3D location of a moving target.

Let us focus on identifying the location at a particular
time ti. Also for clarity, let us first assume that we would
like to localize the person in the 2D plane defined by the
x and y axes. Consider the transmit antenna and the first
receive antenna. WiTrack knows the round trip distance
from the transmit antenna to the person and back to the
first receive antenna. The region of feasible 2D locations
for the target need to satisfy this constraint; hence, they
fall on the periphery of an ellipse, whose foci are collo-
cated with the Tx and Rx1 antennas and its major axis is
equal to the round trip distance. Now consider the second
receive antenna. WiTrack knows the round trip distance
from the Tx to the person and back to Rx2. Similarly, the
feasible solutions to this constraint in 2D are on the pe-
riphery of another ellipse whose foci are collocated with
the Tx and Rx2 antennas and its major axis is equal to
the round trip distance to Rx2. Since the correct location
is on both ellipses, it is one of the intersection points, as
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Tx	  Rx1	   Rx2	  

Invalid	  	  
(outside	  beam)	  

d1	  

Valid	  (within	  beam)	  

(a) 2D Localization

(b) 3D Localization
Figure 4—WiTrack’s Localization Algorithm. The TOF estimate
from a receive antenna defines an ellipse whose foci are the transmit
antenna and the receive antenna. (a) shows that WiTrack can uniquely
localize a person using the intersection of two ellipses. (b) shows that in
3D, the problem translates into an intersection of three ellipsoids.

shown in Fig. 4(a). In fact, since our antennas are direc-
tional, only one of the two intersection points is feasible,
which is the one that yields a location in the direction of
the antennas beams.

It is straightforward to generalize the argument to lo-
calizing in 3D. Specifically, in a 3D space, the round-trip
distance defines an ellipsoid whose two foci are the trans-
mit antenna and one of the receive antennas. In this set-
ting, the intersection of two ellipsoids would define an arc
in the 3D space, and hence is insufficient to pinpoint the
3D location of a person. However, by adding a third direc-
tional antenna, we obtain a unique solution in 3D that is
within the beam of all the directional antennas as shown in
Fig. 4(b). Therefore, our algorithm can localize a person
in 3D by using three directional receive antennas.

Finally we note two points:
• The T-shape placement for the antennas is chosen be-

cause we assume the user wants to localize motion be-
hind a wall, in which case all the antennas would have
to be arranged in one plane facing the wall. We place
one antenna below to help determine elevation, while
the others are on the same level.

• While the minimum number of Rx antennas necessary
to resolve a 3D location is three, adding more anten-
nas would result in more constraints. This would allow
us to over-constrain the solution and hence add extra
robustness to noise.

5 BEYOND 3D TRACKING
In this section, we build on WiTrack’s 3D localization

primitive to enable two additional capabilities: estimating
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Figure 5—Gestures. The figure shows a human moving then stopping
and pointing with her arm. The small bright regions around t = 18s and
t = 21s correspond to the arm lifting and dropping motions.

a pointing direction from the corresponding arm move-
ment, and detecting a fall.
5.1 Estimation of Pointing Angle

We explain how WiTrack provides coarse estimation of
body part motion. We consider the following motion: the
user starts from a state where her arm is rested next to her
body. She raises the arm in a direction of her choice with
the intention of pointing toward a device or appliance, and
then drops her hand to the first position. The user may
move around and at a random time perform the pointing
gesture. We require, however, that the user be standing
(i.e., not walking) when performing the pointing gesture.
The goal is to detect the pointing direction.

To track such a pointing gesture, WiTrack needs to dis-
tinguish between the movement of the entire body and the
motion of an arm. To achieve this goal, we leverage the
fact that the reflection surface of an arm is much smaller
than the reflection surface of an entire human body. We
estimate the size of the reflection surface from the spec-
trogram of the received signal at each of the antennas.
Fig. 5 illustrates the difference between the spectrogram
of a whole body motion and that of an arm pointing, as
captured by one of WiTrack’s receiving antennas. In the
figure the human was moving then stopped and performed
the pointing gesture. The two bright spots around t = 18s
and t = 21s refer to the arm being lifted and dropped re-
spectively. The figure shows that the signal variance along
the vertical axis is significantly larger when the reflector is
the entire human body than when it is just an arm motion
(note the bright yellow as opposed to the cyan color). If
the reflector is large, its parts have slightly different posi-
tions from each other; hence, at any point in time the vari-
ance of its reflection along the y-axis is larger than that of
an arm movement. WiTrack uses this spatial variance to
detect body part motion from a whole body motion.

Once we detect it is a body part, WiTrack tries to esti-
mate the direction of the motion to identify the pointing
direction, which involves the following steps:
1. Segmentation: The goal of segmentation is to deter-

mine the start and end of a pointing gesture. Fig. 5
shows how WiTrack segments the round trip distance
spectrogram obtained from each receive antenna. In
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our pointing experiments, we ask the user to remain
static for a second before performing the pointing ges-
ture. Thus, we are able to detect the start of a pointing
gesture since it is always preceded by a period of ab-
sence of motion. Similarly, after a person raises her
arm in a pointing direction, we ask her to wait for a
second before resting her arm back to its initial po-
sition. Because WiTrack performs a frequency sweep
every 2.5 ms, we can easily distinguish the silence at
the start and end of a gesture.

2. Denoising: As is the case for a whole body motion, the
contour of the segmented spectrogram is denoised and
interpolated (see §3.4) to obtain a clean estimate of the
round trip distance of the arm motion as a function of
time, for each receive antenna.

3. Determining the Pointing direction: We perform ro-
bust regression on the location estimates of the mov-
ing hand, and we use the start and end points of the
regression from all of the antennas to solve for the ini-
tial and final position of the hand. WiTrack estimates
the direction of pointing as the direction from the ini-
tial state to the final extended state of the hand. Since
the user drops her hand after pointing, WiTrack repeats
the above steps for this drop motion obtaining a second
estimate of the pointing direction. Then, WiTrack es-
timates the pointing direction as the middle direction
between the two.3 Being able to leverage the approxi-
mate mirroring effect between the arm lifting and arm
dropping motions adds significant robustness to the es-
timation of the pointing angle.

We envision that an application of the estimation of
pointing direction can be to enable a user to control house-
hold appliances by simply pointing at them. Given a list of
instrumented devices and their locations, WiTrack would
track the user’s hand motion, determine the direction in
which she points, and command the device to change its
mode (e.g., turn on or off the lights, or control our blinds).

Finally, to demonstrate the pointing gesture within the
context of an application, we created a setup where the
user can control the operation mode of a device or appli-
ance by pointing at it. Based on the current 3D position of
the user and the direction of her hand, WiTrack automat-
ically identifies the desired appliance from a small set of
appliances that we instrumented (lamp, computer screen,
automatic shades). Our instrumentation is a basic mode
change (turn on or turn off). WiTrack issues a command
via Insteon home drivers [2] to control the devices. We en-
vision that this setup can evolve to support a larger set of
functionalities and be integrated within a home automa-
tion systems [16].
5.2 Fall Detection

Our objective is to automatically distinguish a fall from
other activities including sitting on the ground, sitting on

3by zooming on Fig. 5 the reader can see how the arm lifting and
dropping motions approximately mirror each other’s tilt.
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Figure 6—Fall Detection. WiTrack automatically detects falls by mon-
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Figure 7—Schematic of the Front End Design. WiTrack’s front end
consists of an FMCW signal generation component, and a receive chain
that is connected to a USRP.

a chair and walking. To do so, we build on WiTrack’s ele-
vation tracking along the z dimension. Note that simply
checking the person’s elevation is not sufficient to dis-
tinguish falls from sitting on the floor. To detect a fall,
WiTrack requires two conditions to be met: First, the per-
son’s elevation along the z axis must change significantly
(by more than one third of its value), and the final value
for her elevation must be close to the ground level. The
second condition is the change in elevation has to oc-
cur within a very short period to reflect that people fall
quicker than they sit.

Fig. 6 plots WiTrack’s estimate of the elevation along
the z dimension for four activities: a person walking, sit-
ting on a chair, sitting on the ground, and (simulated)
falling on the ground.4 The figure confirms that walking
and sitting on a chair can be identified from falling and
sitting on the floor based on elevation because the final el-
evation is far from z = 0. However, to distinguish a fall on
the ground from a sitting on the ground, one has to exploit
that during a fall the person changes her elevation faster
than when she voluntarily sits on the floor.

6 IMPLEMENTATION

FMCW Radio Front-End Hardware: We have built an
FMCW front-end that operates as a daughterboard for the
USRP software radio [5]. Below, we describe our design,
which is illustrated in the schematic of Fig. 7.

The first step of our front end design is the genera-
tion of an FMCW signal, which consists of a narrowband
signal whose carrier frequency is linearly swept over a
large bandwidth. This signal can be obtained by using

4The fall was performed in a padded room as detailed in §8.5.
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a voltage-controlled oscillator (VCO). Because the out-
put frequency of a VCO is a linear function of its input
voltage, we can generate our desired frequency sweep by
feeding a voltage sweep as an input to the VCO. How-
ever, small errors in the input voltage can create large non-
linearities in the output sweep.

To obtain a highly linear sweep, we use a feedback
mechanism. Specifically, we use a phase frequency de-
tector to compare the output frequency of the VCO with
a highly accurate reference signal, and use the offset be-
tween the two to control the VCO. Note that even though
the reference signal needs to be highly accurate, it does
not need to span the same bandwidth as our desired out-
put signal. In particular, rather than directly comparing
the output of the VCO to the reference signal, we first
use a frequency divider. This allows us to use a reference
signal that sweeps from 136.5–181.25 MHz to generate
an FMCW signal that sweeps from 5.46–7.25 GHz. This
FMCW signal is transmitted over the air using WA5VJB
directional antennas [7] after filtering and amplification.

At the receive chain, the transmitted signal is captured
using WA5VJB directional antennas and passed through
a low-noise amplifier and a high-pass filter to improve its
SNR. Recall from §3 that an FMCW receiver determines
the TOF by measuring the frequency offset between the
transmitted and the received signal. This offset can be
obtained by downconverting (mixing) the received sig-
nal with the transmitted signal. The output of the mixer is
then fed to the LFRX-LF daughterboard on USRP2 which
samples it at 1 MHz and passes the digitized samples to
the UHD driver.
Real-time Software Processing: The implemented pro-
totype performs real-time 3D motion tracking as de-
scribed in §3, §4 and §5. Tracking is implemented di-
rectly in the UHD driver of the USRP software radio. The
signal from each receiving antenna is transformed to the
Frequency domain using an FFT whose size matches the
FMCW sweep period of 2.5ms. To improve resilience to
noise, every five consecutive sweeps are averaged creat-
ing one FFT frame. Background subtraction is performed
by subtracting the averaged FFT frame from the frame
that precedes it. The spectrogram is processed for contour
tracking by identifying for each time instance the small-
est local frequency maximum that is significantly higher
than the noise level. Outlier rejection is performed by
declaring that the contour should not jump significantly
between two successive FFT frames (because a person
cannot move much in 12.5ms). The output is smoothed
with a Kalman filter.

To locate a person, instead of solving a system of el-
lipsoid equations in real-time, we leverage that the loca-
tion of the antennas does not change and is known a pri-
ori. Thus, before running our experiments, we use MAT-
LAB’s symbolic library to find a symbolic representation

of the solutions (x,y,z) as a function of symbolic TOF to
each of the receiving antennas. This means that the ellip-
soid equations need to be solved only once (for any fixed
antenna positioning), independent of the location of the
tracked person. After it obtains the 3D location of a per-
son, WiTrack uses python’s matplotlib library to output
this location in real-time.

Software processing has a total delay less than 75 ms
between when the signal is received an a corresponding
3D location is output.

7 EVALUATION

We empirically evaluate the performance of the
WiTrack prototype by conducting experiments in our lab
building with 11 human users.
(a) Ground Truth: We determine WiTrack’s localization
accuracy by testing it against the VICON motion capture
system. The VICON is a multi-hundred-thousand dollar
system used in filmmaking and video game development
to track the human motion and map it to a 3D charac-
ter animation model. It uses calibrated infrared cameras
and records motion by instrumenting the tracked body
with infrared-reflective markers. The VICON system has
a sub-centimeter accuracy and hence we use it to deter-
mine the ground truth location. To track a moving person
with the VICON, she is asked to wear a jacket and a hat,
which are instrumented with eight infrared markers. To
track a subject’s hand, she is asked to wear a glove that
is also instrumented with six markers. The VICON tracks
the infrared markers on the subject’s body and fits them
to a 3D human model to identify the subject’s location.

The VICON system has a built-in capability that can
track the center of any object using the infrared-reflective
markers that are placed on that object. This allows us to
determine the center position of a human subject who is
wearing the instrumented jacket and hat. WiTrack how-
ever computes the 3D location of the body surface where
the signal reflects. In order to compare WiTrack’s mea-
surements to those obtained by the VICON, we need to
have an estimate of the depth of the center with respect
to the body surface. Thus, we use the VICON to run of-
fline measurements with the person standing and having
infrared markers around her body at the same height as
the WiTrack transmit antenna (about the waist). We use
the VICON to measure the average depth of the center
from surface for each person. To compare the 3D location
computed by the two systems, we first compensate for the
average distance between the center and surface for that
person and then take the Euclidean distance.
(b) Device Setup: WiTrack is placed behind the wall of
the VICON room. The device uses one transmit antenna
and three receive antennas. The transmit antenna and two
receive antennas are lined up parallel to the wall, and a
third receive antenna is placed below the transmit antenna.
The distance between the transmit antenna and each re-
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(b) CDF through-wall
Figure 8—Performance of WiTrack’s 3D Tracking. (a) and (b) show the CDF of the location error for WiTrack in line-of-sight and through-wall
scenarios respectively.

ceive antenna is 1m, unless otherwise noted.
(c) Human Subjects: The experiments are performed
with eleven human subjects: two females and nine males.
The subjects are of different heights and builds, and span
an age range of 22 to 56 years. In each experiment, the
subject is asked to move at will in the VICON room;
he/she is tracked using both the VICON system and
WiTrack. Note that WiTrack tracks the subject through
the wall, from an adjacent room, while the VICON has to
be within direct line of sight from the subject.

8 PERFORMANCE RESULTS
8.1 Accuracy of 3D Tracking

We first focus on the developed 3D tracking primitive
and evaluate its accuracy across all three dimensions.

We run 100 experiments each lasting for 1 minute, dur-
ing which a human subject moves at will in the VICON
room. The VICON room has no windows. It has 6-inch
hollow walls supported by steel frames with sheet rock on
top, which is a standard setup for office buildings. The
WiTrack prototype is placed outside the room with all
transmit and receive antennas facing one of the walls of
the VICON room. Recall that WiTrack’s antennas are di-
rectional; hence, this setting means that the radio beam is
directed toward the wall of the VICON room. In each ex-
periment, we ask the subject to wear the jacket and hat that
were instrumented with VICON markers and move inside
the VICON-instrumented room. The subject’s location is
tacked by both the VICON system and WiTrack.

We note that the VICON IR cameras are set to accu-
rately track the target only when she moves in a 6×5 m2

area in the room. Their accuracy degrades outside that
area. Since VICON provides the ground truth in our ex-
periment, we ask the target to stay within the 6× 5 m2

area where the IR cameras are focused. This area is about
2.5m away from the wall. Thus, the minimum separation
between WiTrack and the human subject in these experi-
ments is 3 m and the maximum separation is about 9 m.

We perform a total of 100 experiments for this eval-
uation, each lasting for one minute. Since each FMCW
sweep lasts for 2.5ms and we average 5 sweeps to obtain
for each TOF measurement, we collect a total of about
480,000 location readings from these 100 experiments.

To show that WiTrack works correctly both in line of

sight and through a wall, we repeat the above 100 ex-
periments with one modification, namely we move the
WiTrack device inside the room and set it next to the wall
from the inside.

Fig. 8(a) and Fig. 8(b) plot the CDFs of the location
error along the x, y, and z coordinates. The figure reveals
the following findings:
• WiTrack’s median location error for the line-of-sight

experiments is 9.9 cm, 8.6 cm, and 17.7 cm along the
x, y, and z dimensions respectively. In comparison, the
median location error in the through-wall experiments
is 13.1 cm, 10.25 cm, and 21.0 cm along the x, y, and z
dimensions. As expected the location accuracy in line-
of-sight is higher than when the device is behind a wall
due to the extra attenuation and the reduced SNR. In
both cases, however, the median error is fairly small.
This is due to the use of an FMCW radio which en-
sures a highly accurate TOF estimate, and the ability to
prevent errors due to multipath and noise, allowing the
system to stay accurate as it moves from TOF to a 3D
location estimate of the human body.

• Interestingly, the accuracy in the y dimension is better
than the accuracy in the x dimension. This difference is
because the x and y dimensions are not equal from the
perspective of WiTrack’s antennas. Recall that in the
xy-plane, WiTrack’s antennas are all along the x-axis.
As a result, the two ellipses in the xy-plane, shown in
Fig. 8, both have their major radius along x and minor
radius along y. Hence, the same error in TOF produces
a bigger component when projected along the x axis
than along the y axis.

• The accuracy along the z-dimension is worse than the
accuracy along the x and y dimensions. This is the re-
sult of the human body being larger along the z dimen-
sion than along x or y.

8.2 Accuracy Versus Distance
We are interested in evaluating WiTrack’s accuracy as

the person gets further away from the device. Thus, we re-
peat the above through-wall experiments. As mentioned
above, VICON requires the human to move in a certain
space that is in line of sight of the IR cameras. Thus,
to increase the distance from WiTrack to the human we
move WiTrack away in the hallway next to the VICON
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(a) Accuracy in x-dimension
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(b) Accuracy in y-dimension
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(c) Accuracy in z-dimension
Figure 9—3D Localization Accuracy Versus Distance to Device. (a)-(c) show the location error along the x, y, and z dimensions as a function of
how far the subject is from WiTrack. The median and 90th percentile errors increase as the distance from the device to the person increases.
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(a) Accuracy in x-dimension
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(b) Accuracy in y-dimension
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Figure 10—3D Localization Accuracy Versus Size of Device. (a)-(c) show the median and 90th percentile location errors as a function of the
antenna separation. Along all three dimensions, a larger separation leads to a decrease in the location error.

room. Again, we collect 100 experiments, each spanning
one minute for a total of 480,000 location measurements.

Fig. 9 plots WiTrack’s localization error as a function
of its distance to the subject. The distance to the subject is
determined using the VICON ground-truth coordinates,
and rounded to the nearest meter. The figure shows the
median and 90th percentile of the estimation error for the
x, y, and z coordinates.

The figure shows that the median accuracy changes by
5 to 10 cm for distances that are 3 to 11 m away from the
device. As expected, the further the human moves from
the device, the larger the estimation error. This increase
in error with distance is expected since as the distance
gets larger the signal gets more attenuated. However, a
second reason stems from the geometry of the ellipsoid-
based localization model. Given the equations of the el-
lipsoid, the TOF multiplied by the speed of light is equal
to the major axis of the ellipsoid/ellipse that describes the
user’s location, and the antenna separation is the distance
between the foci. For a fixed antenna separation, as the
distance/TOF increases the ellipsoid’s surface increases,
increasing the overall space of potential locations.

The figure also shows that the accuracy is best along
the y dimension, then the x, and finally the z, which is due
to the reasons discussed in the previous section.

8.3 Accuracy Versus Antenna Separation
Our default setting places the receive antennas 1 m

away from the transmit antenna. In this section, we ex-
amine the impact of antenna separation on performance.

We evaluate five different configurations. In all of these
configurations, the transmit antenna is at an equal distance
from all receive antennas, and is placed at the crossing

point of a “T” whereas the receive antennas are placed
at the edges. We vary the distance between the transmit
antenna and each of the receive antennas from 25 cm to
2 m. We run 100 one-minute experiments, 20 for each
antenna setting. All experiments are run through a wall.
In each experiment, we ask the human subject to move at
will inside the VICON room, as we record her location
using both the VICON system and WiTrack.

Fig. 10 shows WiTrack’s localization accuracy as a
function of antenna separation. The figure shows that even
if one brings the antennas to within 25cm of each other,
the median location error stays less than 17 cm, 12 cm,
and 31 cm for the x, y, and z dimensions, and 90th per-
centile becomes 64cm, 35cm, and 116cm respectively.
While this is higher than the previous results where the
antennas were separated by 1 m, it is still comparable to
state of the art localization using a WiFi transmitter (in our
case, the user does not need to carry any wireless device).

The plots show that as the antenna separation increases,
the localization accuracy improves along all three dimen-
sions x, y, and z. This behavior is expected, because the
further the receive antennas are from each other, the larger
the spatial diversity between them. Because of the geo-
metric nature of the algorithm, a spatially diverse setup
would lead to a smaller intersection curve between any
pair of ellipsoids.5 For this reason, in a larger setup, the

5For simplicity, consider the 2D case with 1 Tx and 2 Rx antennas.
Because of the system’s resolution, each ellipse has some fuzzy region
about it (i.e., a thickness of +/ε , where ε is determined by the resolu-
tion). Thus, the intersection of two ellipses is a region rather than a sin-
gle point. This region becomes larger when the Rx antennas are closer to
each other, and the larger the region, the larger the ambiguity in localiza-
tion. In the extreme case where the two receive antennas are co-located,
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same noise variance in the TOF estimates would be con-
fined to a smaller curve, thus, minimizing estimate error.

Mathematically, for any TOF, the antenna separation is
the distance between the foci of the ellipsoid that defines
the person’s location. Hence for any given TOF, increas-
ing the antenna separation increases the distance between
the foci while keeping the ellipsoid’s major radius con-
stant. Hence the ellipsoid gets more squashed and its cir-
cumference becomes smaller, reducing the region of po-
tential solutions.
8.4 Accuracy of Estimating Pointing Direction

In the experiments in this section, the human subjects
wear a glove that is instrumented with infrared reflexive
markers, and are asked to stand in a given location in-
side the VICON room and point in a direction of their
choice. Each pointing gesture consists of raising the sub-
ject’s hand in the direction of her choice, followed by the
subject returning her hand to its original resting position.
Across our experiments, we ask the human subjects to
stand in random different locations in the VICON room
and perform the pointing gesture. We determine the di-
rection in which the subject pointed by using both the VI-
CON recordings and WiTrack’s estimates (see §5.1).

Fig. 11 plots a CDF of the error between the angle
as determined by WiTrack and the ground truth angle
based on the VICON measurements. The figure shows
that the median orientation error is 11.2 degrees, and the
90th percentile is 37.9 degrees. These results suggest that
WiTrack provides an enabling primitive to track pointing
gestures. We used this capability to enable controlling dif-
ferent household appliances like shades, lamps and com-
puter screens by sending commands to these different ap-
pliances over Insteon drivers.
8.5 Fall Detection

We test the fall detection algorithm described in §5.2
by asking different participants to perform four different
activities: walk, sit on a chair, sit on the floor, and simulate
a fall. The floor of the VICON room is already padded.
We add extra padding to ensure no injury can be caused
by simulated falls. We perform 132 experiments in total,
33 for each activity. We log the data files from each of
these experiments and process them offline with our fall
detection algorithm. We obtain the following results:
• None of the walking or sitting on a chair activities are

classified as falls.
• One of the sitting on the floor experiments was classi-

fied as a fall.
• Two out of 33 simulated falls were not detected (they

were misclassified as sitting on the ground).
Thus, the precision of the fall detection algorithm is
96.9% (since out of the 32 detected falls only 31 are true
falls) , and the recall is 93.9% (since out of 33 true falls
we detected 31). This yields an F-measure of 94.4%.
the two ellipses perfectly overlap and the ambiguity region is large.
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Figure 11—Orientation Accuracy. The CDF of the orientation accu-
racy shows that the median orientation error is 11.2 degrees, and the 90th

percentile error is 37.9 degrees.

9 RELATED WORK

Indoor wireless localization: WiTrack builds on recent
advances in RF-based localization [31, 18, 28, 11]. These
systems localize a wireless device using RSSI [11, 22],
fine-grained-OFDM channel information [25], antenna
arrays [31, 18], or RFID backscatter [28, 27]. In contrast,
WiTrack localizes a human using body radio reflections.

Some past works in radio tomography use a network of
tens or hundred sensors to track a person even if she does
not carry any wireless device [29, 30]. These works mea-
sure the RSSI for each of the resulting n2 links between
their sensors, and attribute the variation of RSSI on a link
to a human crossing that link. Other works on device-free
localization rely on RSSI fingerprints [32, 24], which are
generated in a training phase by asking a person to stand
in different locations throughout the area of interest. In
the testing phase, they localize a person by mapping the
resulting RSSI to the closest fingerprint. While WiTrack
shares the objective of tracking a person’s motion with-
out instrumenting her body, it differs in both technology
and accuracy. Specifically, WiTrack does not require prior
training and uses a few antennas that generate FMCW sig-
nals and measure the time-of-flight of the signal reflec-
tions to infer location of a human. Its technique extends
to 3D, and its 2D accuracy is more than 5× higher than
the state of the art RSSI-based systems [33, 24].
See through-wall & gesture recognition using WiFi:
WiTrack is motivated by recent research that used WiFi
signals to detect users through walls and identify some
of their gestures [10, 21, 13]. Similar to these systems,
WiTrack captures and interprets radio reflections off a hu-
man body. WiTrack, however, differs from these systems
both in capability and technology. Specifically, these sys-
tems rely on the Doppler shift of WiFi signals. Hence,
they can distinguish only between getting closer or get-
ting further away, but cannot identify the location of the
person.6 In contrast, WiTrack measures the time of flight
and, hence, can identify the exact location of a person.
Among these past systems, WiVi [10] focuses on track-

6The gestures recognized by WiVi and WiSee are sequences of get-
ting closer or getting further away, which translate into positive and neg-
ative Doppler shifts. The work in [13] provides a distance estimate with
an accuracy of about 30 meters.
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ing through dense walls such as concrete by leveraging
interference nulling to eliminate the wall’s reflection. In
contrast, WiTrack focuses on accurate 3D motion track-
ing that operates through interior walls (which are less
dense than concrete)7, pinpointing the exact location of a
user at any point in time.
FMCW Radar: WiTrack builds on past work on FMCW
radar, including work that used FMCW for see-through-
wall that is targeted for the military [23, 12]. WiTrack
however differs along multiple dimensions. First, FMCW
radios in past work were high-power and heavy (needed to
be mounted on a truck). Their tracking capabilities hinge
on using large antenna arrays that can achieve a narrow
beam, which enables tracking a moving target. In con-
trast, we present a light weight, low-power FMCW ra-
dio that complies with the FCC regulations for consumer
devices. We are able to perform accurate tracking with
a low-power, relatively cheap FMCW prototype because
of two innovations: first, a geometric localization algo-
rithm that combines multiple measurements from differ-
ent antenna locations and fits them within a geometric ref-
erence to pinpoint an accurate 3D location, and second,
novel techniques that enable rejecting errors that are due
to both static and dynamic multi-path in indoor environ-
ments. Further, WiTrack extends its techniques to tracking
the motion of body parts, e.g., tracking a hand as it points
in a particular direction.
Motion tracking in user interfaces: Finally, WiTrack is
related to an emerging body of motion-tracking user inter-
faces. These include devices that the person needs to hold
(such as the Nintendo Wii [4]) or wear (e.g., on-body sen-
sors such as wristbands [1, 14, 17]). They also include
vision and infrared-based systems, like Xbox Kinect [8]
and Leap Motion [3], which can track a person’s move-
ment without requiring her to hold or wear any transmitter
or receiver but require the user to maintain a line-of-sight
path to their sensors. Similar to these systems, WiTrack
enables more natural human-computer interaction. How-
ever, in comparison to these systems, WiTrack does not
require the user to hold/wear any device or to maintain a
line-of-sight path to its sensors; it can track a user and her
gestures in non-line-of-sight and across different rooms.
10 LIMITATIONS & CONCLUSION

3D motion tracking based purely on RF reflections off
a human body is a challenging technical problem. We be-
lieve WiTrack has taken an important step toward address-
ing this problem. However, the current version of WiTrack
still has limitations:
Tracking one person: Our current design can track only
one person at any point in time. This does not mean that
WiTrack requires only one person to be present in the en-
vironment. Other people can be around, but they have to

7To enable WiTrack to track through thicker walls such as concrete
(as in WiVi), one may add a filter to remove the wall’s reflection.

be behind the directional antennas. We believe that this
limitation is not fundamental to the design of WiTrack
and can be addressed as the research evolves. Consider
for example, the case of two moving humans. In this case,
each antenna has to identify two concurrent TOFs (one for
each person), and hence two ellipsoids. To eliminate the
ambiguity, one may use more antennas which add more
constraints to the system.

Requiring motion: A second limitation stems from the
fact that WiTrack needs the user to move in order to locate
her. This is because WiTrack receives reflections from all
static objects in the environment; hence, it cannot distin-
guish the static user from a piece of furniture. To elimi-
nate these static reflectors, WiTrack subtracts consecutive
FMCW sweeps. Unfortunately, that eliminates the reflec-
tions of the static user as well. Future research may ad-
dress this issue by having WiTrack go through a training
period where the device is first presented with the space
without any user so that it may learn the TOFs of the
static objects. Naturally, this would require retraining ev-
ery time the static objects are moved in the environment.

Distinguishing between body parts: Currently WiTrack
can provide coarse tracking of the motion of one body
part. The tracked part has to be relatively large like an
arm or a leg. WiTrack however does not know which body
part has moved, e.g., it cannot tell whether it is an arm or
a leg. In our experiments, the users were pointing with
their arms. Extending this basic capability to tracking
more general movements of body parts will likely require
incorporating complex models of human motion. In par-
ticular, Kinect’s ability to track body parts is the result
of the combination of 3D motion tracking using infrared
with complex vision algorithms and advanced models of
human motion [26]. An interesting venue for research is
to investigate how WiTrack may be combined with these
techniques to produce a highly accurate motion tracking
system that operates across walls and occlusions.

While there is scope for many improvements, we be-
lieve WiTrack advances the state of the art in 3D mo-
tion tracking by enabling through wall operation without
requiring any instrumentation of the user body. Further-
more, its fall detection and pointing estimation primitives
enable innovative applications.
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