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AND ANITA LIEBENAU‖

Abstract. For a tree T on n vertices, we study the Maker-Breaker game, played on the edge set
of the complete graph on n vertices, which Maker wins as soon as the graph she builds contains a
copy of T . We prove that if T has bounded maximum degree and n is sufficiently large, then Maker
can win this game within n+ 1 moves. Moreover, we prove that Maker can build almost every tree
on n vertices in n−1 moves and provide nontrivial examples of families of trees which Maker cannot
build in n− 1 moves.
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1. Introduction. Embedding trees into graphs is a fundamental problem in
combinatorics which has attracted a lot of attention and consequently many inter-
esting related results were proved in the last few decades. Two examples are the
result of Komlós, Sárközy, and Szemerédi [17] asserting that graphs with large min-
imum degree contain all bounded degree spanning trees and a recent breakthrough
by Montgomery [19] which asserts that given any bounded degree tree on n vertices,
with high probability, soon after the binomial random graph on n vertices becomes
connected, it contains a copy of T .

In this paper we consider the tree embedding problem from a game-theoretic
perspective. Roughly speaking, we show that in a Maker-Breaker game (to be defined
below), played on the edge set of the complete graph on n vertices, given any tree
T on n vertices, Maker has a strategy to build a copy of T within n + 1 moves; this
is clearly best possible up to an additive constant of 2. This result is also related to
the problem of finding a winning strategy for the corresponding strong game, which
among the so-called positional games is known to be the hardest to analyze.
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Let X be a finite set and let F ⊆ 2X be a family of subsets. In the Maker-
Breaker game (X,F), two players, called Maker and Breaker, take turns in claiming a
previously unclaimed element of X , with Breaker going first. The set X is called the
board of the game and the members of F are referred to as the winning sets. Maker
wins this game as soon as she claims all elements of some winning set. If Maker does
not fully claim any winning set by the time every board element is claimed by some
player, then Breaker wins the game. We say that the game (X,F) is Maker’s win if
Maker has a strategy that ensures her win in this game (in some number of moves)
against any strategy of Breaker; otherwise the game is Breaker’s win. One can also
consider a biased version in which Maker claims p board elements per move (instead
of just 1) and Breaker claims q board elements per move. We refer to this version as
a (p : q) game. For a more detailed discussion, we refer the reader to [4] or [13].

The following game was studied in [10]. Let T be a tree on n vertices. The
board of the tree embedding game (E(Kn), Tn) is the edge set of the complete graph
on n vertices and the minimal (with respect to inclusion) winning sets are the copies
of T in Kn. Several variants of this game were studied by various researchers (see,
e.g., [2, 5, 16]).

It was proved in [10] that for any real numbers 0 < α < 0.005 and 0 < ε < 0.05
and a sufficiently large integer n, Maker has a strategy to win the (1 : q) game
(E(Kn), Tn) within n+ o(n) moves, for every q ≤ nα and every tree T with n vertices
and maximum degree at most nε. The bounds on the duration of the game, on
Breaker’s bias, and on the maximum degree of the tree to be embedded, do not seem
to be best possible. Indeed, it was noted in [10] that it would be interesting to improve
each of these bounds, even at the expense of the other two. In this paper we focus
on the duration of the game. We restrict our attention to the case of bounded degree
trees and to unbiased games (that is, the case q = 1).

The smallest number of moves Maker needs in order to win some Maker-Breaker
game is an important game invariant which has received a lot of attention in recent
years (see, e.g., [3, 7, 8, 9, 10, 11, 14, 15, 21]). Part of the interest in this invariant
stems from its usefulness in the study of strong games. In the strong game (X,F),
two players, called Red and Blue, take turns in claiming one previously unclaimed
element of X , with Red going first. The winner of the game is the first player to fully
claim some F ∈ F . If neither player is able to fully claim some F ∈ F by the time
every element of X has been claimed by some player, the game ends in a draw. Strong
games are notoriously hard to analyze. For certain strong games, a combination of a
strategy stealing argument and a hypergraph coloring argument can be used to prove
that these games are won by Red. However, the aforementioned arguments are purely
existential. That is, even if it is known that Red has a winning strategy for some
strong game (X,F), it might be very hard to describe such a strategy explicitly. The
use of explicit very fast winning strategies for Maker in a weak game for devising
an explicit winning strategy for Red in the corresponding strong game was initiated
in [8]. This idea was used to devise such strategies for the strong perfect matching
and Hamilton cycle games [8] and for the k-vertex-connectivity game [9].

Returning to the tree embedding game (E(Kn), Tn), it is obvious that Maker
cannot build any tree on n vertices in less than n− 1 moves. This trivial lower bound
can be attained for some trees. For example, it was proved in [14] that Maker can
build a Hamilton path of Kn in n − 1 moves. On the other hand it is not hard to
see that there are trees on n vertices which Maker cannot build in less than n moves.
Indeed, consider, for example, the complete binary tree on n vertices BTn. Suppose
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for a contradiction that Maker can build a copy of BTn in n−1 moves. It follows that
after n − 2 moves, Maker’s graph is isomorphic to BTn \ e, where e is some edge of
BTn. Note that for any e ∈ E(BTn), there is a unique edge of Kn which Maker has
to claim in order to complete a copy of BTn \ e to a copy of BTn. Hence, by claiming
this edge, Breaker delays Maker’s win by at least one move. Note that, in contrast, if
e is an edge of a path Pn which is not incident with any of its endpoints, then there
are four edges of Kn whose addition to a copy of Pn \ e yields a copy of Pn.

In this paper we prove the following general upper bound which is only one move
away from the aforementioned lower bound.

Theorem 1.1. Let Δ be a positive integer. Then there exists an integer n0 =
n0(Δ) such that for every n ≥ n0 and for every tree T = (V,E) with |V | = n and
Δ(T ) ≤ Δ, Maker has a strategy to win the game (E(Kn), Tn) within n+ 1 moves.

Note that some nontrivial lower bound n0 = n0(Δ) on the number of vertices of
T is necessary. Indeed, for example, it is easy to see that, playing on E(Kn), Breaker
has a strategy to prevent Maker from claiming the edges of the star K1,n−1. More
generally, it follows from Theorem 16.1 in [4] that Breaker has a strategy to build
a graph with minimum degree at least (1/2 − o(1))n, thus preventing Maker from
winning the game (E(Kn), Tn) whenever n ≤ (2 − o(1))Δ(T ).

A path of a tree T is called bare if all its interior vertices are of degree 2 in T .
We partition the family of large bounded degree trees into two parts—those which
admit a sufficiently long bare path and those which do not. Theorem 1.1 is then an
immediate corollary of the following two theorems (with m2 = m1 being a bound on
the length of a longest bare path and n0 = max{n1, n2}).

Theorem 1.2. Let Δ be a positive integer. Then there exists an integer m1 =
m1(Δ) and an integer n1 = n1(Δ,m1) such that the following holds for every n ≥ n1

and for every tree T = (V,E) with |V | = n and Δ(T ) ≤ Δ. If T admits a bare path of
length m1, then Maker has a strategy to win the game (E(Kn), Tn) within n moves.

Theorem 1.3. Let Δ and m2 be positive integers. Then there exists an integer
n2 = n2(Δ,m2) such that the following holds for every n ≥ n2 and for every tree
T = (V,E) such that |V | = n and Δ(T ) ≤ Δ. If T does not admit a bare path
of length m2, then Maker has a strategy to win the game (E(Kn), Tn) within n + 1
moves.

Recall that Maker cannot build a copy of the complete binary tree on n vertices
in less than n moves. One can adapt the argument used to prove this statement to
obtain many examples of trees which Maker cannot build in n−1 moves. Nevertheless,
the following theorem suggests that such examples are quite rare.

Theorem 1.4. Let T be a tree, chosen uniformly at random from the class of all
labeled trees on n vertices. Then asymptotically almost surely, T is such that Maker
has a strategy to win the game (E(Kn), Tn) in n− 1 moves.

One of the main ingredients in our proof of Theorem 1.4 is the construction of
a Hamilton path with one designated endpoint in optimal time (see Lemma 4.5).
Using this lemma it will be easy to obtain the following generalization of Theorem
1.4 from [14].

Theorem 1.5. Let Δ be a positive integer. Then there exists an integer m3 =
m3(Δ) and an integer n3 = n3(Δ,m3) such that the following holds for every n ≥ n3

and for every tree T = (V,E) with |V | = n and Δ(T ) ≤ Δ. If T admits a bare path
of length m3, such that one of its endpoints is a leaf of T , then Maker has a strategy
to win the game (E(Kn), Tn) in n− 1 moves.

The rest of this paper is organized as follows. In subsection 1.1 we introduce
some notation and terminology that will be used throughout this paper. In section 2
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1686 CLEMENS, FERBER, GLEBOV, HEFETZ, AND LIEBENAU

we prove Theorem 1.2, in section 3 we prove Theorem 1.3, and in section 4 we prove
Theorems 1.4 and 1.5. Finally, in section 5 we present some open problems.

1.1. Notation and terminology. Assume that some Maker-Breaker game,
played on the edge set of some graph G, is in progress. At any given moment dur-
ing this game, we denote the graph spanned by Maker’s edges by M and the graph
spanned by Breaker’s edges by B; the edges of G \ (M ∪B) are called free.

Our graph-theoretic notation is standard and follows that of [22]. In particular,
we use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges, respec-
tively, and let v(G) = |V (G)| and e(G) = |E(G)|. For a set A ⊆ V (G), let EG(A)
denote the set of edges of G with both endpoints in A, and let eG(A) = |EG(A)|.
Similarly, for disjoint sets A,B ⊆ V (G), let EG(A,B) denote the set of edges of G
with one endpoint in A and one endpoint in B, and let eG(A,B) = |EG(A,B)|. For
a set S ⊆ V (G), let G[S] denote the subgraph of G which is induced on the set S.
For disjoint sets S, T ⊆ V (G), let NG(S, T ) = {u ∈ T : ∃v ∈ S, uv ∈ E(G)} denote
the set of neighbors of the vertices of S in T . For a set T ⊆ V (G) and a vertex
w ∈ V (G) \ T we abbreviate NG({w}, T ) to NG(w, T ) and let dG(w, T ) = |NG(w, T )|
denote the degree of w into T . For a set S ⊆ V (G) and a vertex w ∈ V (G) we
abbreviate NG(S, V (G) \ S) to NG(S) and NG(w, V (G) \ {w}) to NG(w). We let
dG(w) = |NG(w)| denote the degree of w in G. The minimum and maximum degrees
of a graph G are denoted by δ(G) and Δ(G), respectively. Often, when there is no risk
of confusion, we omit the subscript G from the notation above. Let P = (v1v2 . . . vk)
be a path in a graph G. The vertices v1 and vk are called the endpoints of P , whereas
the vertices of V (P ) \ {v1, vk} are called the interior vertices of P . We denote the set
of endpoints of a path P by End(P ). Note that |End(P )| = min{2, v(P )}. The length
of a path is the number of its edges. A path of a tree T is called a bare path if all its
interior vertices are of degree 2 in T . Given two graphs G and H on the same set of
vertices V , let G \H denote the graph with vertex set V and edge set E(G) \ E(H).

Let G be a graph, let T be a tree, and let S ⊆ V (T ) be an arbitrary set. An
S-partial embedding of T in G is an injective mapping f : S → V (G), such that
f(x)f(y) ∈ E(G) whenever x, y ∈ S and xy ∈ E(T ). For a vertex v ∈ f(S) let
v′ = f−1(v) denote its preimage under f . If S = V (T ), we call an S-partial embedding
of T in G simply an embedding of T in G. We say that the vertices of S are embedded,
whereas the vertices of V (T ) \ S are called new. An embedded vertex is called closed
with respect to T and f if all its neighbors in T are embedded as well. An embedded
vertex that is not closed with respect to T and f is called open with respect to T
and f . The vertices of f(S) are called taken, whereas the vertices of V (G) \ f(S)
are called available. With some abuse of this terminology, for a closed (respectively,
open) vertex u′ ∈ S, we sometimes refer to f(u′) as being closed (respectively, open)
as well. Moreover, we omit the phrase “with respect to T and f” or abbreviate it to
“with respect to T ” if its meaning is clear from the context. In particular we denote
the set of open vertices with respect to T and f by OT .

2. Trees which admit a long bare path. In this section we will prove The-
orem 1.2. The main idea is to first embed the tree T except for a sufficiently long
bare path P and then to embed P between its previously embedded endpoints. In
the first stage we will waste no moves, whereas in the second we will waste at most
one. Starting with the former we prove the following result.

Theorem 2.1. Let r be a positive integer and let n,m, and Δ ≥ 3 be integers
satisfying n > m ≥ (Δ + r)2. For every 1 ≤ i ≤ r, let Ti = (Vi, Ei) be a tree with
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maximum degree at most Δ and assume that
∑r

i=1 |Vi| = n−m. For every 1 ≤ i ≤ r
let x′i ∈ Vi be an arbitrary vertex. Then, playing a Maker-Breaker game on the edge
set of Kn, Maker has a strategy to ensure that the following two properties will hold
immediately after her (

∑r
i=1 |Vi| − r)th move:

(i) M ∼=
⋃r

i=1 Ti, that is, Maker’s graph is a vertex disjoint union of the Ti’s.
(ii) There exists an isomorphism f :

⋃r
i=1 Ti → M for which eB(A ∪ f({x′1, . . . ,

x′r})) ≤
(
Δ+r−1

2

)
, where A = V (Kn) \ f(

⋃r
i=1 Vi) is the set of available

vertices.

Remark 2.2. In the proof of Theorem 1.2 we will use the special case r = 2
of Theorem 2.1. Another special case, namely, r = 1, will be used in the proof of
Theorem 1.5. It is therefore convenient to prove it here for every r. Moreover, it
might have future applications where other values of r are considered.

Proof of Theorem 2.1. We begin by describing Maker’s strategy. At any point
during the game, if Maker is unable to follow the proposed strategy, then she forfeits
the game. We will prove that Maker can follow this strategy without forfeiting the
game and that, by doing so, she wins the game.

Maker’s strategy. Throughout the game, Maker maintains a set S ⊆
⋃r

i=1 Vi
of embedded vertices, an S-partial embedding f of

⋃r
i=1 Ti in Kn \B, and a set A =

V (Kn)\f(S) such that eB(A∪f({x′1, . . . , x′r})) ≤
(
Δ+r−1

2

)
. Initially S = {x′1, . . . , x′r},

f(x′i) = xi for every 1 ≤ i ≤ r, where x1, . . . , xr ∈ V (Kn) are r arbitrary vertices,
and A = V (Kn) \ {x1, . . . , xr}. At any point during the game we denote the set
A ∪ {x1, . . . , xr} by U .

Maker’s strategy is based on the following potential function: for every vertex
u ∈ V (Kn) let φ(u) = max{0, dB(u, U)− dM (u)} and let

ψ = eB(U) +

r∑
i=1

∑
w∈f(OTi

)

φ(w)

(by abuse of notation we use ψ to denote the potential at any point during the game).

For every 1 ≤ i ≤ r let di = dTi(x
′
i). In her first

∑r
i=1 di moves, Maker closes

x′1, . . . , x
′
r, that is, for every 1 ≤ i ≤ r and every 1 ≤ j ≤ di she claims a free edge xiyij

where the elements of {yij : 1 ≤ i ≤ r, 1 ≤ j ≤ di} are
∑r

i=1 di arbitrary vertices of
A. She then updates A,U, S, and f as follows. For every 1 ≤ i ≤ r let y′i1, . . . , y

′
idi

be
the neighbors of x′i in Ti. Maker deletes the elements of {yij : 1 ≤ i ≤ r, 1 ≤ j ≤ di}
from A (and then also from U), adds the elements of {y′ij : 1 ≤ i ≤ r, 1 ≤ j ≤ di} to
S, and sets f(y′ij) = yij for every 1 ≤ i ≤ r and every 1 ≤ j ≤ di.

For every integer � >
∑r

i=1 di, in her �th move, Maker claims a free edge vz for
which v ∈

⋃r
i=1 f(OTi) and z ∈ A. Furthermore, depending on the value of ψ, she

distinguishes between the following three cases:

Case 1. If ψ ≤
(
Δ+r−1

2

)
, then there are no further restrictions on the edge vz.

Case 2. If ψ > max{
(
Δ+r−1

2

)
, eB(U)}, then she chooses vz such that dB(v, U)

> dM (v).
Case 3. If ψ = eB(U) >

(
Δ+r−1

2

)
, then she chooses vz such that dB(z, U) > 0.

Subsequently, Maker updates A,U, S, and f by deleting z from A (and then also
from U), adding z′ to S, and setting f(z′) = z, where z′ is an arbitrary new neighbor
of f−1(v) in

⋃r
i=1 Ti.

We wish to prove that Maker can follow the proposed strategy without forfeiting
the game. Note first that ψ ≥ eB(U) holds by definition and thus Maker will never
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face a situation which is not covered by Cases 1, 2, and 3 above. Next, we prove the
following claims.

Claim 2.3. For every integer � such that
∑r

i=1 di < � ≤
∑r

i=1 |Vi| − r, Maker
does not increase ψ in her �th move.

Proof. For every
∑r

i=1 di < � ≤
∑r

i=1 |Vi| − r, in her �th move Maker claims
an edge vz such that v ∈

⋃r
i=1 f(OTi) and z ∈ A. Clearly, this does not affect φ(u)

for any u ∈ V (Kn) \ {v, z}. Moreover, φ(v) is not increased, eB(U) is decreased by
dB(z, U), and

∑r
i=1

∑
w∈f(OTi

) φ(w) is increased by at most φ(z) ≤ dB(z, U).

Claim 2.4. ψ ≤
(
Δ+r−1

2

)
holds immediately after Maker’s �th move for every∑r

i=1 di ≤ � ≤
∑r

i=1 |Vi| − r.

Proof. We prove this by induction on the number of Maker’s moves. Since
(
⋃r

i=1 f(OTi)) ∩ {x1, . . . , xr} = ∅ holds after Maker’s (
∑r

i=1 di)th move, it follows
that, from this point onward, every edge e ∈ E(B) contributes at most 1 to ψ. Since
Δ ≥ 3 it thus follows that ψ ≤

∑r
i=1 di ≤ rΔ ≤

(
Δ+r−1

2

)
holds immediately after

Maker’s (
∑r

i=1 di)th move. Assume that ψ ≤
(
Δ+r−1

2

)
holds immediately after her

�th move for some
∑r

i=1 di ≤ � <
∑r

i=1 |Vi| − r; we will show that, unless Maker
forfeits the game, this inequality holds immediately after her (� + 1)st move as well.
Since x′1, . . . , x′r are closed, from now on Breaker can increase ψ by at most 1 per
move. It thus follows by the induction hypothesis that ψ ≤

(
Δ+r−1

2

)
+ 1 holds im-

mediately before Maker’s (� + 1)st move. Assume first that in fact ψ ≤
(
Δ+r−1

2

)
.

It follows by Claim 2.3 that ψ ≤
(
Δ+r−1

2

)
holds immediately after Maker’s (� + 1)st

move as well. Assume then that ψ =
(
Δ+r−1

2

)
+ 1; it suffices to prove that Maker

decreases ψ by at least 1 in her (�+1)st move. Maker plays according to the proposed
strategy, either for Case 2 or for Case 3. In Case 2, ψ is not increased since the value
of
∑r

i=1

∑
w∈f(OTi

) φ(w) is increased by at most dB(z, U) and the value of eB(U) is

decreased by the same amount. Moreover, since dB(v, U) > dM (v), it follows that
φ(v) is decreased by at least 1. Since v ∈

⋃r
i=1 f(OTi) holds before Maker’s (�+ 1)st

move, we conclude that ψ is decreased by at least 1. In Case 3, Maker decreases
eB(U) by dB(z, U). Moreover, if z becomes closed, then

∑r
i=1

∑
w∈f(OTi

) φ(w) is not

increased, whereas if z becomes open, then since dB(z, U) > 0, it is increased by
dB(z, U)− dM (z) = dB(z, U)− 1. Either way, ψ is decreased by at least 1.

We can now prove that Maker is indeed able to play according to the proposed
strategy.

Claim 2.5. Maker can follow the proposed strategy without forfeiting the game
for

∑r
i=1 |Vi| − r moves.

Proof. Since Maker aims to build a copy of
⋃r

i=1 Ti within
∑r

i=1 |Vi| − r moves
and since

∑r
i=1 |Vi| = n − m ≤ n − (Δ + r)2, it follows that |A| ≥ (Δ + r)2 holds

at any point during these
∑r

i=1 |Vi| − r moves; in particular Maker can follow the
first

∑r
i=1 di moves of the proposed strategy. As previously noted, once x′1, . . . , x′r are

closed, Breaker can increase ψ by at most 1 per move. It thus follows by Claim 2.4
that ψ ≤

(
Δ+r−1

2

)
+ 1 holds at any point during the remainder of the game. Assume

first that ψ ≤
(
Δ+r−1

2

)
. Let v ∈

⋃r
i=1 f(OTi), then φ(v) ≤ ψ ≤

(
Δ+r−1

2

)
and thus

dB(v, U) ≤ φ(v) + dM (v) ≤
(
Δ+r−1

2

)
+Δ < (Δ + r)2 ≤ |A|. Hence there exists a free

edge vz such that z ∈ A. We conclude that Maker can follow her strategy for Case 1.
Assume then that ψ =

(
Δ+r−1

2

)
+ 1. Assume further that ψ > eB(U). It follows

that there exists a vertex v ∈
⋃r

i=1 f(OTi) such that φ(v) > 0 and thus dB(v, U) >
dM (v). The same calculation as above shows that dB(v, U) < |A|. Therefore, Maker
can claim a free edge vz as required by her strategy for Case 2.
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Assume then that eB(U) = ψ =
(
Δ+r−1

2

)
+ 1. It follows that there are at least

Δ + r vertices z ∈ U for which dB(z, U) > 0; by the definition of A and U , at least
Δ of them must be in A. Let v ∈

⋃r
i=1 f(OTi). Since ψ = eB(U), it follows that

φ(v) = 0 and thus dB(v, U) ≤ dM (v) < Δ (the last inequality holds since v is open).
Therefore, Maker can claim a free edge vz as required by her strategy for Case 3.

We are now in a position to complete the proof of Theorem 2.1. Since Maker
follows the proposed strategy, it is evident that after

∑r
i=1 |Vi|− r moves she builds a

graph which is isomorphic to
⋃r

i=1 Ti. Moreover, since φ(w) ≥ 0 for every vertex w,

it follows by Claim 2.4 that eB(U) ≤ ψ ≤
(
Δ+r−1

2

)
holds, in particular, immediately

after Maker’s (
∑r

i=1 |Vi|−r)th move. We conclude that Maker can indeed ensure that
Properties (i) and (ii) will hold immediately after her (

∑r
i=1 |Vi| − r)th move.

Our next step toward proving Theorem 1.2 is embedding a Hamilton path whose
endpoints were previously embedded into an almost complete graph. Formally, we
need the following result.

Lemma 2.6. For every positive integer k there exists an integer m0 = m0(k)
such that the following holds for every m ≥ m0. Let G be a graph with m vertices and
e(G) ≥

(
m
2

)
− k edges and let x and y be two arbitrary vertices of G. Then, playing

a Maker-Breaker game on E(G), Maker has a strategy to build a Hamilton path of G
between x and y within m moves.

Lemma 2.6 can be proved similarly to Theorem 1.1 from [15]. We omit the
straightforward details.

We can now combine Theorem 2.1 and Lemma 2.6 to deduce Theorem 1.2.

Proof of Theorem 1.2. Let k =
(
Δ+1
2

)
+1, let m0 = m0(k) be the constant whose

existence follows from Lemma 2.6, and let m1 = max{m0, (Δ + 2)2}. Let P be a
bare path in T of length m1 with endpoints x′1 and x′2. Let F be the forest which
is obtained from T by deleting all the vertices in V (P ) \ {x′1, x′2}. Let T1 be the
connected component of F which contains x′1, and let T2 be the connected component
of F which contains x′2.

Maker’s strategy consists of two stages. In the first stage she embeds T1∪T2 using
the strategy whose existence follows from Theorem 2.1 (with r = 2) while ensuring
that properties (i) and (ii) are satisfied. Let f : T1 ∪ T2 → M be an isomorphism, let
x1 = f(x′1), let x2 = f(x′2), let A = V (Kn) \ f(V (T1) ∪ V (T2)), let U = A ∪ {x1, x2},
and let G = (Kn \B)[U ].

In the second stage she embeds P into G between the endpoints x1 and x2. She
does so using the strategy whose existence follows from Lemma 2.6 which is applicable
by the choice ofm1 and by property (ii). Hence, T ⊆M holds at the end of the second
stage, that is, Maker wins the game.

It follows by Theorem 2.1 that the first stage lasts exactly v(T1) + v(T2) − 2 =
n− |V (P )| = n− |U | moves. It follows by Lemma 2.6 that the second stage lasts at
most |U | moves. Therefore, the entire game lasts at most n moves as claimed.

3. Trees which do not admit a long bare path. In this section we will prove
Theorem 1.3. The main idea is to first embed the tree T except for a large matching
between some of its leaves and their parents and then to embed this matching between
the previously embedded endpoints and the remaining available vertices. In the first
stage we will waste no moves, whereas in the second we will waste at most two.

In order for this approach to be valid, we must first prove that such a matching
exists in T .
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Lemma 3.1. For all positive integers Δ and m there exists an integer n0 =
n0(Δ,m) such that the following holds for every n ≥ n0. Let T be a tree on n vertices
with maximum degree at most Δ and let L denote the set of leaves of T . If T does
not admit a bare path of length m, then |L| ≥ |NT (L)| ≥ n

2Δ(m+1) .

The inequality |L| ≥ |NT (L)| is trivial. Moreover, since the maximum degree of
T is at most Δ, it follows that |L| ≤ Δ · |NT (L)|. Hence, Lemma 3.1 is an immediate
corollary of the following result (with k = m and � = |L|).

Lemma 3.2 (Lemma 2.1 in [18]). Let k, n, and � be positive integers. Let T be
a tree on n vertices with at most � leaves. Then T contains a collection of at least
n−(2�−2)(k+1)

k+1 vertex disjoint bare paths of length k each.

Next, we prove that Maker can build a perfect matching very quickly when playing
on the edge set of a very dense subgraph of a sufficiently large complete bipartite
graph.

Let G = (V,E) be a graph. The winning sets of the perfect matching game, played
on the board E, are the edge sets of all matchings of G of size �|V |/2. The following
theorem was proved in [14].

Theorem 3.3 (Theorem 1.2 in [14]). There exists an integer n0 such that for
every n ≥ n0, Maker has a strategy to win the perfect matching game, played on
E(Kn), within �n/2+ (n+ 1) mod 2 moves.

The following analogous result, which applies to the perfect matching game,
played on a complete bipartite graph, holds as well.

Theorem 3.4. There exists an integer n0 such that for every n ≥ n0, Maker has
a strategy to win the perfect matching game, played on E(Kn,n), within n+1 moves.

One can prove Theorem 3.4 using essentially the same argument as in the proof
of Theorem 3.3 given in [14]. We omit the straightforward details and refer the reader
to [14].

The following lemma, which will be used in the proof of Theorem 1.3, asserts that
Maker can win the perfect matching game very quickly even when the board is a very
dense subgraph of a sufficiently large complete bipartite graph.

Lemma 3.5. For all nonnegative integers k1 and k2 there exists an integer
f(k1, k2) such that the following holds for every n ≥ f(k1, k2). Let G = (U1 ∪ U2, E)
be a bipartite graph which satisfies the following properties:

(i) |U1| = |U2| = n;
(ii) d(u1, U2) ≥ n− k1 for every u1 ∈ U1;
(iii) d(u2, U1) ≥ n− k2 for every u2 ∈ U2.

Then Maker has a strategy to win the perfect matching game, played on E, within
n+ 2 moves.

Remark 3.6. The bound on the number of moves given in Lemma 3.5 is best
possible, even for the case k1 = k2 = 1. Indeed, one can show that when playing
on Kn,n from which a perfect matching was removed, Maker cannot build a perfect
matching within n+ 1 moves; we omit the details.

Proof of Lemma 3.5. The following notation and terminology will be used through-
out this proof. At any point during the game, let S denote the set of vertices of G
which are isolated in Maker’s graph, let S1 = S ∩ U1, and let S2 = S ∩ U2. Let
Br = ((Kn,n \G) ∪B)[S]. For i ∈ {1, 2} let Δi = max{dBr(w) : w ∈ Si}.

We prove Lemma 3.5 by induction on k1 + k2. In the induction step we will need
to assume that k1 + k2 ≥ 3. Hence, we first consider the case k1 + k2 ≤ 2. Note
that if k1 = 0, then k2 = 0, and vice versa. Since, moreover, the case k1 = k2 = 0
follows directly from Theorem 3.4, it suffices to consider the case k1 = k2 = 1. In
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this case Kn,n \ G is a matching. Let U1 = {x1, . . . , xn} and U2 = {y1, . . . , yn}
and assume without loss of generality that E(Kn,n \ G) ⊆ {xiyi : 1 ≤ i ≤ n}.
Moreover, assume without loss of generality that the edge claimed by Breaker in his
first move is either x1y1 or x1y2. Let A1 = {x1, . . . , x�n/2�}, A2 = {y�n/2	+1, . . . , yn},
B1 = U1\A1, and B2 = U2\A2. Moreover, immediately after Breaker’s first move, let
H ′

1 = (G \B)[A1 ∪A2] and let H2 = (G \B)[B1 ∪B2]. Note that H2
∼= K|B1|,|B1| and

that there exists an edge e ∈ E(K|A1|,|A1|) such that H ′
1 ⊇ K|A1|,|A1| \ {e}. Let H1 =

K|A1|,|A1| \ {e} (if H ′
1 = K|A1|,|A1|, then choose e ∈ E(K|A1|,|A1|) arbitrarily). Let

S1 (respectively, S2) be Maker’s strategy for the perfect matching game on K|A1|,|A1|
(respectively, K|B1|,|B1|), whose existence follows from Theorem 3.4. Maker plays her
first move in H1 according to S1. She views the board to be E(K|A1|,|A1|) and assumes
that Breaker claimed e in his first move. In the remainder of the game, Maker plays
on E(H1) and E(H2) in parallel. That is, whenever Breaker claims an edge of Hi for
some i ∈ {1, 2}, Maker claims a free edge of the same board according to Si (unless
she has already built a perfect matching on this board, in which case she claims a
free edge of the other board) and whenever Breaker claims an edge of G \ (H1 ∪H2),
Maker plays in some Hi in which she has not yet built a perfect matching.

Since Maker plays according to S1 and S2, it follows by Theorem 3.4 that she
builds a perfect matching of H1 within |A1|+ 1 moves and a perfect matching of H2

within |B1| + 1 moves. The union of these two matchings forms a perfect matching
of G which Maker builds within n+ 2 moves.

Assume then that k1 + k2 ≥ 3 and that the assertion of the lemma holds for
k1 + k2 − 1. Assume without loss of generality that k2 ≥ k1; in particular, k2 ≥ 2.
We present a strategy for Maker and then prove that it allows her to build a perfect
matching of G within n+2 moves. At any point during the game, if Maker is unable
to follow the proposed strategy, then she forfeits the game. The strategy is divided
into the following two stages.

Stage I. Maker builds a matching while making sure that neither Δ1 nor Δ2 is
increased and trying to decrease Δ1 + Δ2. This stage is divided into the following
two phases.

Phase 1. At the beginning of the game and immediately after each of her moves
in this phase, if Δ1 < k1, then Maker proceeds to Stage II. Otherwise, if there exists
a free edge uv such that

(a) u ∈ S1 and v ∈ S2,
(b) dBr(u) = Δ1,
(c) dBr(v) = max{dBr(w) : w ∈ NG(u, S2) for which uw is free},
(d) dBr(v) ≥ 2,

then Maker claims an arbitrary such edge and repeats Phase 1. If no such edge exists,
then Maker proceeds to Phase 2.

Phase 2. In her first move in this phase, Maker claims a free edge uv such that
u ∈ S1, dBr(u) = Δ1 and v ∈ S2. Let xy denote the edge claimed by Breaker in his
following move, where x ∈ U1 and y ∈ U2. In her next (and final) move in this phase,
Maker plays as follows:

(a) If x /∈ S1 or y /∈ S2, then Maker claims a free edge ab such that a ∈ S1,
b ∈ S2, and dBr(b) = Δ2.

(b) Otherwise, if dBr(y) > k2, then Maker claims a free edge yz for an arbitrary
vertex z ∈ NG(y, S1).

(c) Otherwise, if there exists a vertex w ∈ S2 such that dBr(w) ≥ k2 and xw is
free, then Maker claims xw.
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(d) Otherwise, Maker claims a free edge xz for an arbitrary vertex z ∈ NG(x, S2).

Maker then proceeds to Stage II.

Stage II. Maker builds a perfect matching of G[S] within |S1|+ 2 moves.

It is evident that if Maker can follow the proposed strategy without forfeiting the
game, then she wins the perfect matching game, played on E(G), within n+2 moves.
It thus suffices to prove that she can indeed do so.

We begin by proving the following simple claim.

Claim 3.7. If Maker follows the proposed strategy, then Δ1 ≤ k1 and Δ2 ≤ k2
hold immediately after each of Maker’s moves in Phase 1 of Stage I.

Proof. The claim clearly holds before the game starts. Assume it holds immedi-
ately after Maker’s jth move for some nonnegative integer j. Let xy denote the edge
claimed by Breaker in his (j + 1)st move, where x ∈ U1 and y ∈ U2. Since Maker
does not increase dBr(w) for any w ∈ S in any of her moves, it follows that if x /∈ S1

or y /∈ S2, then there is nothing to prove. Assume then that x ∈ S1 and y ∈ S2. It
follows by our assumption that Δ1 ≤ k1 + 1 and Δ2 ≤ k2 + 1 and that dBr(w) ≤ k1
holds for every w ∈ S1 \ {x} and dBr(w) ≤ k2 holds for every w ∈ S2 \ {y}. Let uv
denote the edge claimed by Maker in her (j +1)st move, where u ∈ S1 and v ∈ S2. If
u = x, then x is removed from S1 and, as a result, dBr(y) ≤ k2 holds after this move.
Assume then that u �= x; it follows by Maker’s strategy that dBr(x) ≤ dBr(u) ≤ k1.
If dBr(y) ≤ k2, then there is nothing to prove. Assume then that dBr(y) = k2 + 1. If
v = y, then y is removed from S2. Assume then that v �= y. Since y is the unique ver-
tex of maximum degree in S2, it follows by Maker’s strategy that uy ∈ E(Br). Hence,
by claiming uv Maker decreases dBr(y). We conclude that Δ1 ≤ k1 and Δ2 ≤ k2 hold
immediately after Maker’s (j + 1)st move.

We will first prove that Maker can follow Stage I of her strategy without forfeiting
the game and, moreover, that this stage lasts at most k1n

k1+1 + 2 moves.

It is obvious that Maker can follow her strategy for Phase 1. We will prove that
this phase lasts at most k1n

k1+1 moves. For every nonnegative integer i, immediately
after Breaker’s (i + 1)st move, let D(i) =

∑
v∈S1

dBr(v). Note that D(i) ≥ 0 holds
for every i and that D(0) ≤ k1n+1. For an arbitrary nonnegative integer j, let uv be
the edge claimed by Maker in her (j + 1)st move. Then D(j + 1) ≤ D(j)− dBr(u)−
dBr(v) + 1 ≤ D(j)− (k1 + 1), where the last inequality follows by properties (b) and
(d) of the proposed strategy for Phase 1. It follows that there can be at most k1n

k1+1
such moves throughout Stage I.

By its description, Phase 2 lasts exactly 2 moves. It follows that indeed Stage I
lasts at most k1n

k1+1 + 2 moves. Therefore, |S1| = |S2| ≥ n
k1+1 − 2 > 2 +max{k1, k2} ≥

max{Δ1,Δ2} holds throughout Stage I, where the second inequality holds since n is
sufficiently large with respect to k1 and k2. Hence, for every u ∈ S there exists some
v ∈ S such that uv ∈ E is free. In particular, Maker can follow the proposed strategy
for Phase 2.

It remains to prove that Maker can follow Stage II of the proposed strategy
without forfeiting the game. Consider the game immediately after Maker’s last move
in Stage I (or before the game starts in case Maker plays no moves in Stage I). As noted
above, at this point we have |S1| = |S2| ≥ n

k1+1−2 ≥ max{f(k1−1, k2), f(k1, k2−1)},
where the last inequality holds for sufficiently large n.

We claim that Δ1 ≤ k1, Δ2 ≤ k2, and Δ1 +Δ2 ≤ k1 + k2 − 1 hold at this point
as well. Note that, by Claim 3.7, Δ1 ≤ k1 and Δ2 ≤ k2 hold after each of Maker’s
moves in Phase 1 of Stage I. If Maker enters Stage II directly from Phase 1 of Stage I,
then Δ1 < k1 holds as well and our claim follows. Assume then that Maker plays the
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two moves of Phase 2. It follows by Claim 3.7 that immediately before Maker’s first
move in this phase there is at most one vertex z ∈ S1 such that dBr(z) > k1 and at
most one vertex z′ ∈ S2 such that dBr(z

′) > k2. In her first move in Phase 2, Maker
claims an edge uv such that dBr(u) = Δ1. Since this is done in Phase 2, it follows
that uw ∈ E(Br) holds at this moment for every w ∈ S2 for which dBr(w) ≥ 2.
Clearly, Δ1 ≤ k1 holds after this move. Moreover, since k2 ≥ 2, by removing u from
S1, Maker decreases dBr(w) for every w ∈ S2 whose degree was at least k2. Hence,
Δ2 ≤ k2 holds after this move and, moreover, there is at most one vertex z′′ ∈ S2 such
that dBr(z

′′) = k2. In his next move, Breaker claims an edge xy. It is not hard to
see that each of the four options for Maker’s next move (as described in the proposed
strategy) ensures that Δ1 ≤ k1 and Δ2 < k2 will hold after this move.

We conclude that |S1| = |S2| ≥ max{f(k1 − 1, k2), f(k1, k2 − 1)}, Δ1 ≤ k1,
Δ2 ≤ k2, and Δ1 +Δ2 ≤ k1 + k2 − 1 hold immediately before Breaker’s first move in
Stage II. It thus follows by the induction hypothesis that Maker can indeed build a
perfect matching of G[S] within |S1|+ 2 moves.

We are now ready to prove the main result of this section.

Proof of Theorem 1.3. Let L denote the set of leaves of T and let ε = (2Δ(m2 +
1))−1. Since Δ(T ) ≤ Δ and since T does not admit a bare path of lengthm2, it follows
by Lemma 3.1 that |L| ≥ |NT (L)| ≥ n

2Δ(m2+1) = εn. Let L′ ⊆ L be a maximal set of

leaves, no two of which have a common parent in T (that is, |L′| = |NT (L)|) and let
T ′ = T \ L′.

First we describe a strategy for Maker in (E(Kn), Tn) and then prove that it
allows her to build a copy of T within n + 1 moves. At any point during the game,
if Maker is unable to follow the proposed strategy, then she forfeits the game. The
proposed strategy is divided into the following two stages.

Stage I. In this stage, Maker’s aim is to embed a tree T ′′ such that T ′ ⊆ T ′′ ⊆ T
and |V (T ′′)| ≤ n− εn/2. Moreover, Maker does so in exactly |V (T ′′)| − 1 moves.

Let k be the smallest integer such that Δ + 3 ≤ εΔk/40. Throughout this stage,
Maker maintains a set S ⊆ V (T ) of embedded vertices, an S-partial embedding f of
T in Kn \ B, a set A = V (Kn) \ f(S) of available vertices, and a set D ⊆ V (Kn) of
dangerous vertices, where a vertex v ∈ V (Kn) is called dangerous if dB(v) ≥ Δk+1

and v is either an available vertex or an open vertex with respect to T . Recall that
the vertices of V (T ) \ S are called new and that the vertices of f(S) are called taken.
Initially, D = ∅, S = {v′}, and f(v′) = v, where v′ ∈ V (T ′) and v ∈ V (Kn) are
arbitrary vertices.

For as long as V (T ′) \ S �= ∅ or D �= ∅, Maker plays as follows:

(1) If D �= ∅, then let v ∈ D be an arbitrary vertex. We distinguish between the
following two cases:

(i) v is taken. Let v′1, . . . , v′r be the new neighbors of v′ := f−1(v) in T . In
her next r moves, Maker claims the edges of {vvi : 1 ≤ i ≤ r}, where
v1, . . . , vr are r arbitrary available vertices. Subsequently, Maker updates
S, D, and f by adding v′1, . . . , v′r to S, deleting v from D and setting
f(v′i) = vi for every 1 ≤ i ≤ r.

(ii) v is available. This case is further divided into the following three sub-
cases:
(a) There exists a vertex u ∈ f(OT ) such that the edge uv is free. Maker

claims uv and updates S and f by adding v′ to S and setting f(v′) =
v, where v′ ∈ NT (f

−1(u)) is an arbitrary new vertex. If v′ is a leaf
of T , then Maker deletes v from D.
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(b) There are two vertices u,w ∈ f(OT ) and new vertices u1, u2, w1, w2 ∈
V (T ) \ S such that f−1(u)u1, u1u2, f

−1(w)w1, w1w2 ∈ E(T ). Let z
be an available vertex such that the edges zv, zu, and zw are free.
Maker claims the edge zv and after Breaker’s next move she claims
zu if it is free and zw otherwise. Assume that Maker claims zu (the
complementary case in which she claims zw is similar). She then
updates S and f by adding u1 and u2 to S and setting f(u1) = z and
f(u2) = v. If u2 is a leaf of T , then Maker deletes v from D.

(c) There exists a vertex u ∈ f(OT ) and new vertices x′, y′, z′ ∈ V (T )\S
such that f−1(u)x′, x′y′, y′z′ ∈ E(T ). Maker claims a free edge vw
for some w ∈ A. Immediately after Breaker’s next move, let x be
an available vertex such that the edges xu, xv, and xw are free.
Maker claims the edge xu and after Breaker’s next move she claims
xw if it is free and xv otherwise. Assume that Maker claims xw
(the complementary case in which she claims xv is similar). She then
updates S and f by adding x′, y′, and z′ to S and setting f(x′) = x,
f(y′) = w, and f(z′) = v. If z′ is a leaf of T , then Maker deletes v
from D.

(2) If D = ∅, then Maker claims an arbitrary edge uv, where u ∈ f(OT ′) and
v ∈ A. Subsequently, she updates S and f by adding v′ to S and setting f(v′) = v,
where v′ ∈ NT ′(f−1(u)) is an arbitrary new vertex.
As soon as V (T ′) \ S = D = ∅, Stage I is over and Maker proceeds to Stage II.
Stage II. Let H be the bipartite graph with parts A and f(OT ) and edge set

E(H) = {uv ∈ E(Kn) \ E(B) : u ∈ A, v ∈ f(OT )}. Maker builds a perfect matching
of H within |A| + 2 moves, following the strategy whose existence is ensured by
Lemma 3.5.

It is evident that if Maker can follow the proposed strategy without forfeiting the
game, then she wins the game within n+1 moves. It thus suffices to prove that Maker
can indeed do so. We consider each of the two stages separately.

Stage I. We begin by proving the following three claims.
Claim 3.8. At most 2n

Δk+1 vertices become dangerous throughout Stage I.
Proof. Stage I of the proposed strategy lasts |V (T ′′)| − 1 ≤ n moves. Since,

moreover, a dangerous vertex has degree at least Δk+1 in Breaker’s graph, it follows
that there can be at most 2n

Δk+1 such vertices.
Claim 3.9. The following two properties hold at any point during Stage I:
(1) |A| ≥ εn/2;
(2) dB(v) ≤ εn/(10Δ) holds for every vertex v ∈ A ∪ f(OT ).
Proof. Starting with (1), note that |A| = n− |S| and that |S| = |V (T ′)|+ |L′ ∩S|

holds at the end of Stage I. Since |V (T ′)| ≤ n− εn it suffices to prove that |L′ ∩ S| ≤
εn/2. Let w′ ∈ L′ ∩ S be an arbitrary vertex and let w = f(w′). Since Maker follows
the proposed strategy, D ∩ {w, f(NT (w

′))} �= ∅ must have been true at some point
during Stage I. Using Claim 3.8 we conclude that

|L′ ∩ S| ≤ 2n

Δk+1
≤ εn

2
.

Next, we prove (2). Let v ∈ A ∪ f(OT ) be an arbitrary vertex. If v was never a
dangerous vertex, then dB(v) < Δk+1 ≤ εn/(10Δ) holds by definition and since n is
sufficiently large with respect to Δ and k. Otherwise, for as long as v ∈ D, Maker
plays according to case (1) of the proposed strategy. Therefore, unless Maker forfeits
the game, at some point during Stage I she connects v to her tree (this requires zero
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FAST SPANNING TREES IN MAKER-BREAKER GAMES 1695

moves in case (i), one move in case (ii)(a), two moves in case (ii)(b), and three moves
in case (ii)(c)). Since v can be removed from D only in case (i) or if f−1(v) is a leaf
of T , it follows that, unless Maker forfeits the game, at some point during Stage I
she closes v. According to the proposed strategy for case (i), this requires at most
Δ moves. We conclude that Maker spends at most Δ + 3 moves on connecting a
dangerous vertex to her tree and closing it. It thus follows by Claim 3.8 that

dB(v) ≤ Δk+1 + (Δ + 3) · 2n

Δk+1
≤ Δk+1 +

εΔk

40
· 2n

Δk+1
≤ εn

10Δ
,

where the last inequality holds since n is sufficiently large with respect to Δ and k.
Claim 3.10. At any point during Stage I, if D �= ∅ and v ∈ D is available, then

at least one of the conditions (a), (b), or (c) of Case (1)(ii) must hold.
Proof. Suppose for a contradiction that none of (a), (b), and (c) hold. Since (a)

does not hold and since dB(v) ≤ εn/(10Δ) holds by part (2) of Claim 3.9, it follows
that |NT (L) ∩ OT | ≤ |OT | ≤ εn/(10Δ). Since (b) does not hold, it follows that
|OT \NT (L)| ≤ 1. Finally, since (c) does not hold, it follows that if x ∈ OT \NT (L),
then x ∈ NT (NT (L)). Therefore

|A| ≤ |NT (L) ∩OT | ·Δ+ |OT \NT (L)| · (Δ +Δ2)

≤ εn/(10Δ) ·Δ+ 1 · (Δ +Δ2)

< εn/2 ,

contrary to Part (1) of Claim 3.9.
Next, we consider each case of Stage I separately and prove that Maker can follow

the proposed strategy for that case.
(1) In this case D �= ∅. Let v ∈ D be an arbitrary vertex.

(i) For as long as v is open we have dB(v) ≤ εn/(10Δ) < εn/2 − 2Δ ≤
|A| − 2Δ, where the first inequality holds by part (2) of Claim 3.9 and
the last inequality holds by part (1) of Claim 3.9. Maker can thus close
v as instructed by the proposed strategy for this case.

(ii) In this case (and all its subcases) v is available.
(a) It readily follows by its description that Maker can follow the pro-

posed strategy for this subcase.
(b) Let u and w be open vertices as described in the proposed strategy

for this subcase. It follows by parts (1) and (2) of Claim 3.9 that

dB(v) + dB(u) + dB(w) ≤ 3εn/(10Δ) < εn/2 ≤ |A| .

We conclude that there exists a vertex z ∈ A such that the edges zv,
zu and zw are free.

(c) Similarly to case (i) above, there exists a vertex w ∈ A such that the
edge vw is free. Similarly to case (ii)(b) above, there exists a vertex
z ∈ A such that the edges zv, zu, and zw are free.

(2) Since D = ∅ and yet Stage I is not over, it follows that V (T ′) \ S �= ∅. It
follows that OT ′ �= ∅. Let u ∈ f(OT ′) be an arbitrary vertex. Since D = ∅, it
follows that dB(u) < Δk+1 < εn/2 ≤ |A|, where the last inequality follows from
part (1) of Claim 3.9. We conclude that there exists a vertex v ∈ A such that uv
is free.
Stage II. SinceD = ∅ holds at the end of Stage I, it follows that δ(H) ≥ |A|−Δk+1.

Since, moreover, n is sufficiently large and |A| ≥ εn/2 holds by part (1) of Claim 3.9,
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1696 CLEMENS, FERBER, GLEBOV, HEFETZ, AND LIEBENAU

it follows by Lemma 3.5 that Maker has a strategy to win the perfect matching game,
played on E(H), within |A|+ 2 moves.

At the end of Stage I, Maker’s graph is a tree isomorphic to T ′′. Hence, Stage
I lasts exactly |V (T ′′)| − 1 moves. By Lemma 3.5, Stage II lasts at most |A| +
2 = |V (T )| − |V (T ′′)| + 2 moves. We conclude that the entire game lasts at most
|V (T )|+ 1 = n+ 1 moves.

4. Building trees in optimal time. In this section we will prove Theorems 1.4
and 1.5. A central ingredient in the proofs of both theorems is Maker’s ability to build
a Hamilton path with some designated vertex as an endpoint in optimal time. Our
strategy for building a path quickly is based on the proof of Theorem 1.4 from [14].
In particular, the first step is to build a perfect matching.

Lemma 4.1. For every sufficiently large integer r there exists an integer n0 =
n0(r) such that for every even integer n ≥ n0 and every graph G with n vertices and
e(G) ≥

(
n
2

)
− n + r edges, Maker has a strategy to win the perfect matching game,

played on E(G), within n/2 + 1 moves.
Proof. The following notation and terminology will be used throughout this proof.

At any point during the game, let S denote the set of vertices of G which are isolated
in Maker’s graph. Let Br = ((Kn \ G) ∪ B)[S]. For every free edge e ∈ G[S], let
D(e) = | {f ∈ E(Br) : e ∩ f �= ∅} | denote the danger of e.

We present a strategy for Maker and then prove that it allows her to build a
perfect matching of G within n/2+ 1 moves. At any point during the game, if Maker
is unable to follow the proposed strategy, then she forfeits the game. The strategy is
divided into the following two stages.

Stage I. If there exists a free edge e ∈ G[S] such that D(e) ≥ 3, then Maker claims
an arbitrary such edge and repeats Stage I. Otherwise, she proceeds to Stage II.

Stage II. Maker builds a perfect matching of G[S] within |S|/2 + 1 moves.
It is evident that if Maker can follow the proposed strategy without forfeiting

the game, then she wins the perfect matching game, played on E(G), within n/2 + 1
moves. It thus suffices to prove that she can indeed do so.

It is clear by its description that Maker can follow Stage I of the proposed strategy
without forfeiting the game. In order to prove that she can also follow Stage II of the
proposed strategy, we first prove the following three claims.

Claim 4.2. e(Br) ≤ v(Br) − 2 holds at any point during Stage I.
Proof. The required inequality holds before and immediately after Breaker’s first

move since e(Br) ≤ e(Kn \G)+1 ≤ n− r+1 ≤ n− 2 = v(Br)− 2 holds at that time,
where the second inequality holds by assumption and the third inequality holds since
r ≥ 3. Assume that this inequality holds immediately after Breaker’s jth move for
some positive integer j. If Maker plays her jth move in Stage I, then she claims an
edge e ∈ G[S] such that D(e) ≥ 3. This decreases v(Br) = |S| by 2 and e(Br) by at
least 3. It follows that e(Br) ≤ v(Br)− 3 holds immediately after Maker’s jth move.
In his (j + 1)st move, Breaker increases e(Br) by at most 1 and does not decrease
v(Br). Hence e(Br) ≤ v(Br) − 2 holds immediately after his (j + 1)st move.

Claim 4.3. Maker plays at most (n− r)/2 moves in Stage I.
Proof. In each round (that is, a move of Maker and a counter move of Breaker) of

Stage I, e(Br) is decreased by at least 2 (it is decreased by D(e) ≥ 3 in Maker’s move
and then increased by at most 1 in Breaker’s move). The claim now follows since
e(Br) ≥ 0 holds at any point during the game and e(Br) ≤ e(Kn \G)+ 1 ≤ n− r+1
holds immediately after Breaker’s first move.
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Claim 4.4. Let m ≥ 6 be an even integer and let H = (V,E) be a graph on m
vertices which satisfies the following two properties:

(i) |{f ∈ E : e ∩ f �= ∅}| ≤ 2 for every e ∈ E(Km) \ E.
(ii) For every u ∈ V there exists a vertex v ∈ V such that uv /∈ E.

Then there exists a partition V = A∪B such that |A| = |B| = m/2 and eH(A,B) ≤ 1.
Proof. Note that Δ(H) ≤ 2. Indeed, suppose for a contradiction that there exist

vertices u, v1, v2, v3 ∈ V such that uv1, uv2, uv3 ∈ E. It follows by property (ii) that
there exists a vertex v4 ∈ V such that uv4 /∈ E. We thus have uv1, uv2, uv3 ∈ {f ∈
E : uv4 ∩ f �= ∅}, contrary to property (i).

Assume first that Δ(H) = 2 and let u, v, w ∈ V be such that uv, uw ∈ E.
Let A be an arbitrary subset of V \ {u, v, w} of size m/2 (such a set A exists since
m ≥ 6) and let B = V \ A. We claim that eH(A,B) = 0. Indeed, suppose for a
contradiction that there exist vertices x ∈ A and y ∈ B such that xy ∈ E. Since
Δ(H) ≤ 2 and uv, uw ∈ E, it follows that ux ∈ E(Km) \ E. However, we then have
uv, uw, xy ∈ {f ∈ E : ux ∩ f �= ∅}, contrary to property (i).

Assume then that Δ(H) ≤ 1, that is, H is a matching. Let E = {xiyi : 1 ≤ i ≤ �},
where 0 ≤ � ≤ m/2 is an integer. Let A = {x1, . . . , x�m/4�, y1, . . . , y�m/4	} and let
B = V \ A. Note that |A| = |B| = m/2 and that EH(A,B) ⊆ {x�m/4�y�m/4�} and
thus eH(A,B) ≤ 1 as claimed.

We are now ready to prove that Maker can follow Stage II of the proposed strategy
without forfeiting the game. It follows by the description of Stage I of the proposed
strategy that D(e) ≤ 2 holds for every free edge e ∈ G[S] at the beginning of Stage
II. Moreover, it follows by Claim 4.2 that, immediately after Breaker’s last move in
Stage I, for every u ∈ V there is a free edge e such that u ∈ e. Therefore, the
conditions of Claim 4.4 are satisfied (with H = Br). Hence, there exists a partition
S = A ∪ B such that eBr(A,B) ≤ 1. Let e be an edge for which EG[S](A,B) ⊇
EKn(A,B)\{e}. Maker (being the first to play in Stage II) plays the perfect matching
game on EKn(A,B)\{e}. She pretends that she is in fact playing as the second player
on EKn(A,B) and that Breaker has claimed e in his first move. Since r is sufficiently
large and |S| ≥ n − 2(n − r)/2 = r holds by Claim 4.3, it follows by Theorem 3.4
that Maker has a strategy to win the perfect matching game, played on EKn(A,B),
within |S|/2 + 1 moves.

We will use Lemma 4.1 to prove the following result.
Lemma 4.5. There exists an integer m0 such that the following holds for every

m ≥ m0. Let G be a graph with m vertices and
(
m
2

)
− k edges, where k is a non-

negative integer. Assume that k ≤ (m − 25)/2 if m is odd and k ≤ (m− 28)/2 if m
is even. Let x be an arbitrary vertex of G. Then, playing a Maker-Breaker game on
E(G), Maker has a strategy to build in m− 1 moves a Hamilton path of G such that
x is one of its endpoints.

Proof. The following notation and terminology will be used throughout this proof.
Given paths P1 = (v1 . . . vt) and P2 = (u1 . . . ur) in a graph G for which vtu1 ∈ E(G),
let P1 ◦ vtu1 ◦ P2 denote the path (v1 . . . vtu1 . . . ur). Let G be a graph on m vertices
and let P0, P1, . . . , P� be paths in G where P0 = {p0} is a special path of length zero
and e(Pi) ≥ 1 for every 1 ≤ i ≤ �. For every 1 ≤ i ≤ � let End(Pi) denote the set of

two endpoints of the path Pi and let End =
⋃�

i=1 End(Pi) ∪ {p0}. Let

X =

{
uv ∈ E(Km) : {u, v} ∈

(
End

2

)
and {u, v} �= End(Pi) for every 1 ≤ i ≤ �

}
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At any point during the game, let Br denote the graph with vertex set End and edge
set X ∩ (E(Km \G)∪E(B)). The edges of X \E(Br) are called available. For every
available edge e, let D(e) = | {f ∈ E(Br) : e ∩ f �= ∅} | denote the danger of e.

Without loss of generality we can assume that m is odd. (Otherwise, in her first
move, Maker claims an arbitrary free edge xx′ and then plays on (G \B)[V (G) \ {x}]
with x′ as the designated endpoint; note that k ≤ (m − 28)/2 implies that k + 1 ≤
((m− 1)− 25)/2.)

We present a strategy for Maker and then prove that it allows her to build the
required path in m− 1 moves. At any point during the game, if Maker is unable to
follow the proposed strategy, then she forfeits the game. The strategy is divided into
the following five stages.

Stage I. Maker builds paths P1, . . . , P(m−3)/2 in G\{x} which satisfy the following
three properties:

(a) e(P1) = 3.
(b) e(Pi) = 1 for every 2 ≤ i ≤ (m− 3)/2.
(c) V (Pi) ∩ V (Pj) = ∅ for every 1 ≤ i < j ≤ (m− 3)/2.

This stage lasts exactly (m − 1)/2 + 1 moves. As soon as it is over, Maker proceeds
to Stage II.

Stage II. Let p0 = x, let P0 = {p0}, let � = (m−3)/2, and let P = {P0, P1, . . . , P�}.
For every i ≥ (m− 1)/2+ 2, immediately before her ith move, Maker checks whether
there exists an available edge e ∈ X \ E(Br) such that D(e) ≥ 3. If there is no such
edge, then this stage is over and Maker proceeds to Stage III. Otherwise, in her ith
move, Maker claims an arbitrary such edge uv. She then updates P as follows. Let
0 ≤ i < j ≤ � denote the unique indices for which u ∈ V (Pi) and v ∈ V (Pj). Maker
deletes Pj from P . Moreover, if i ≥ 1, then she replaces Pi with Pi ◦ uv ◦Pj (which is
now referred to as Pi), and if i = 0, then she sets p0 = z, where z is the unique vertex
in End(Pj) \ {v}. In both cases the set X is updated accordingly.

Stage III. If Δ(Br) ≤ 1, then this stage is over and Maker proceeds to Stage IV.
Otherwise, she claims an available edge uu′, where u ∈ End is an arbitrary vertex
of degree at least 2 in Br. Maker then updates P and X as in Stage II and repeats
Stage III.

Stage IV. In her first move in this stage, Maker plays as follows. If there exists
a vertex w ∈ End such that p0w ∈ E(Br), then Maker claims an available edge wz.
Otherwise, she claims an arbitrary available edge. In either case she updates P and
X as in Stage II.

For every i ≥ 2, before her ith move in this stage, Maker checks how many paths
are in P . If there are exactly three paths, then this stage is over and she proceeds to
Stage V; otherwise, she plays as follows. Let uv denote the edge claimed by Breaker
in his last move; assume without loss of generality that u �= p0. If uv /∈ X , then
Maker claims an arbitrary available edge. Otherwise she claims an available edge uw
for some w ∈ End \{p0}. In either case Maker updates P and X as in Stage II and
repeats Stage IV.

Stage V. Claiming two more edges, Maker connects her three paths to a Hamilton
path of G such that x is one of its endpoints.

It is evident that if Maker can follow the proposed strategy without forfeiting the
game, then she builds a Hamilton path of G such that x is one of its endpoints in
m − 1 moves. It thus suffices to prove that she can indeed do so. We consider each
stage separately.
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Stage I. Since m is sufficiently large, k ≤ (m − 25)/2 and |V (G) \ {x}| = m − 1
is even, it follows by Lemma 4.1 that Maker can follow the proposed strategy for this
stage.

Stage II. It follows by its description that Maker can follow the proposed strategy
for this stage.

Stage III. In order to prove that Maker can follow the proposed strategy for this
stage without forfeiting the game, we will first prove the following three claims.

Claim 4.6. Maker plays at most (m+ 2k + 3)/4 moves in Stage II.

Proof. Since Breaker claims exactly (m− 1)/2+2 edges of G before Maker’s first
move in Stage II, it follows that e(Br) ≤ (m − 1)/2 + 2 + k holds at that point. In
each round (that is, a move of Maker and a counter move of Breaker) of Stage II,
e(Br) is decreased by at least 2 (it is decreased by D(e) ≥ 3 in Maker’s move and then
increased by at most 1 in Breaker’s move). The claim now follows since e(Br) ≥ 0
holds at any point during the game.

Claim 4.7. e(Br) ≤ |End | − 3 holds at any point during Stage II.

Proof. At the end of Stage I, Maker’s graph consists of (m−5)/2 paths of length 1
each, 1 path of length 3, and 1 special path P0 = {x} of length 0. Hence, |End | = m−2
holds at the beginning of Stage II. Since Breaker claims exactly (m− 1)/2 + 2 edges
of G before Maker’s first move of Stage II, it follows that e(Br) ≤ (m−1)/2+2+k ≤
m−5 = |End |−3 holds at that point, where the last inequality holds by the assumed
upper bound on k. Assume that e(Br) ≤ |End |−3 holds immediately after Breaker’s
jth move for some integer j ≥ (m − 1)/2 + 2. If Maker plays her jth move in Stage
II, then she claims an available edge e such that D(e) ≥ 3. This decreases |End |
by 2 and e(Br) by at least 3. It follows that e(Br) ≤ |End | − 4 holds immediately
after Maker’s jth move. In his (j + 1)st move, Breaker increases e(Br) by at most 1
and does not decrease |End |. Hence e(Br) ≤ |End | − 3 holds immediately after his
(j + 1)st move.

Claim 4.8. The following three properties hold immediately before Maker’s first
move of Stage III:

(i) |End | ≥ (m− 2k − 7)/2.
(ii) Δ(Br) ≤ 2.
(iii) Br is a matching or a subgraph of K3 or a subgraph of C4 whose vertices are

End(Pi) ∪ End(Pj) for some 1 ≤ i < j ≤ �.

Proof. As shown in the proof of Claim 4.7, |End | = m− 2 holds at the beginning
of Stage II. In each of her moves in Stage II, Maker decreases |End | by exactly 2.
Since, by Claim 4.6 Maker plays at most (m+ 2k+ 3)/4 moves in Stage II, it follows
that |End | ≥ (m − 2) − (m + 2k + 3)/2 = (m − 2k − 7)/2 holds at the end of Stage
II; this proves (i).

Next, we prove (ii). Suppose for a contradiction that there are vertices u, v1, v2, v3 ∈
End such that uv1, uv2, uv3 ∈ E(Br) at the end of Stage II. It follows by Claim 4.7
that there exists a vertex v4 ∈ End such that the edge uv4 is available. Clearly
uv1, uv2, uv3 ∈ {f ∈ E(Br) : uv4 ∩ f �= ∅}. Therefore, D(uv4) ≥ 3 contrary to our
assumption that Stage II is over.

Finally, we prove (iii). It follows by (ii) that Δ(Br) ≤ 2. If Δ(Br) ≤ 1, then
Br is a matching. Assume then that there are vertices u, v, w ∈ End such that
uv, uw ∈ E(Br). Let 1 ≤ i ≤ � be the unique index such that u ∈ V (Pi) and let
u′ = End(Pi)\{u}. We claim that dBr(z) = 0 for every z ∈ End \{u, v, w, u′}. Indeed,
suppose for a contradiction that there exist vertices z ∈ End \{u, v, w, u′} and z′ ∈
End such that zz′ ∈ E(Br). Since Δ(Br) ≤ 2, z /∈ {u, v, w, u′} and uv, uw ∈ E(Br),
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it follows that uz is available. However, we then have uv, uw, zz′ ∈ {f ∈ E(Br) :
uz ∩ f �= ∅}. Therefore, D(uz) ≥ 3, contrary to our assumption that Stage II is
over. If dBr(u

′) = 0 as well, then E(Br) ⊆ {uv, uw, vw}, that is, Br is a subgraph
of K3. Assume then without loss of generality that u′w ∈ E(Br). Since Δ(Br) ≤ 2
holds by (ii), it follows that vw /∈ E(Br). If on the other hand vw is available, then
uv, uw, u′w ∈ {f ∈ E(Br) : vw ∩ f �= ∅}, contrary to our assumption that Stage II
is over. It follows that {v, w} = End(Pj) for some 1 ≤ j ≤ � and that E(Br) ⊆
{uv, uw, u′v, u′w}.

We can now prove that Maker can follow the proposed strategy for this stage
without forfeiting the game. While doing so we will also show that she plays at most
two moves in Stage III. It follows by Part (iii) of Claim 4.8 that, immediately before
Maker’s first move in Stage III, the graph Br is a matching or a subgraph of K3 or
a subgraph of C4 whose vertices are End(Pi) ∪ End(Pj) for some 1 ≤ i < j ≤ �.
In the first case, Δ(Br) ≤ 1 and thus Maker plays no moves in Stage III. Next,
assume that {uv, uw} ⊆ E(Br) ⊆ {uv, uw, vw} for some u, v, w ∈ End. Assume
without loss of generality that Maker claims uy in her first move of Stage III. Since
e(Br) ≤ 3 holds immediately before this move, it follows by part (i) of Claim 4.8
and by the assumed upper bound on k from Lemma 4.5 that such an available edge
exists. Let zz′ denote the edge claimed by Breaker in his subsequent move. Note that
E(Br) ⊆ {vw, zz′} holds at this point. If {v, w} ∩ {z, z′} = ∅, then Br is a matching
and Stage III is over. Assume then without loss of generality that v = z. In her
second move of Stage III, Maker claims an available edge vz′′. Since e(Br) ≤ 2 holds
immediately before this move, it follows that such an available edge exists. Clearly,
e(Br) ≤ 1 must hold after Breaker’s next move. It follows that Maker will not play
any additional moves in Stage III. Finally, assume that there are indices 1 ≤ i < j ≤ �
such that End(Pi) = {u, u′}, End(Pj) = {v, v′} and E(Br) ⊆ {uv, uv′, u′v, u′v′}.
Assume without loss of generality that Maker claims uy in her first move of Stage III.
Since e(Br) ≤ 3 holds immediately before this move, it follows that such an available
edge exists. Let zz′ denote the edge claimed by Breaker in his subsequent move.
Note that E(Br) ⊆ {u′v, u′v′, zz′} holds at this point. Since vv′ /∈ X , it follows that
zz′ �= vv′; assume without loss of generality that z /∈ {v, v′}. In her second move of
Stage III, Maker claims u′z if z′ �= u′ and an available edge u′z′′ otherwise. Since
e(Br) ≤ 3 holds immediately before this move, it follows that such an available edge
exists. Clearly, e(Br) ≤ 1 must hold after Breaker’s next move. It follows that Maker
will not play any additional moves in Stage III.

Stage IV. In order to prove that Maker can follow the proposed strategy for this
stage without forfeiting the game, we will first prove the following two claims.

Claim 4.9. At the end of Stage III, Maker’s graph consists of at least four paths.

Proof. It follows by part (i) of Claim 4.8 that |End | ≥ (m − 2k − 7)/2 holds at
the end of Stage II. Since, as noted above, Maker plays at most two moves in Stage
III, it follows that |End | ≥ (m − 2k − 11)/2 ≥ 7 holds at the end of that stage,
where the last inequality holds by the assumed upper bound on k. The claim readily
follows.

Claim 4.10. The following two properties hold immediately after each of Maker’s
moves in this stage:

(i) dBr(p0) = 0.
(ii) Δ(Br) ≤ 1.

Proof. It follows by the description of Stage III of the proposed strategy that
property (ii) holds immediately before Maker’s first move in Stage IV. It thus follows

D
ow

nl
oa

de
d 

12
/2

2/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST SPANNING TREES IN MAKER-BREAKER GAMES 1701

by the description of Maker’s first move in this stage that both properties hold after
this move. Assume then that both properties hold immediately after Maker’s ith
move of this stage for some i ≥ 1. Let uv denote the edge claimed by Breaker in
his ith move of this stage (recall that Maker is the first to play in Stage IV), where
u �= p0. Assume that uv ∈ X as otherwise there is nothing to prove. Note that
dBr(w) ≤ 1 holds for every w ∈ End \{u, v} at this point. Unless she forfeits the
game, in her (i+1)st move of this stage, Maker claims an available edge uw such that
w ∈ End \{p0}. This does not change p0, removes u from End, and decreases dBr(v)
by 1. It follows that dBr(v) ≤ 1 and that dBr(v) = 0 if v = p0.

It follows by Claim 4.9 and by the description of the proposed strategy for Stage
IV that |End | ≥ 7 holds immediately before each of Maker’s moves in Stage IV. It
thus follows by property (ii) from Claim 4.10 that Maker can follow the proposed
strategy for this stage without forfeiting the game.

Stage V. It follows by Claim 4.9 and by the description of the proposed strategy for
Stage IV that Maker’s graph consists of exactly three paths (one of which is p0) in the
beginning of Stage V. Using properties (i) and (ii) from Claim 4.10, one can show via
a simple case analysis (whose details we omit) that, regardless of Breaker’s strategy,
Maker can claim two available edges such that the resulting graph is a Hamilton path
with x as an endpoint.

We now turn to the proof of Theorem 1.4, whose main idea is the following.
Similarly to the proof of Theorem 1.3 given in section 3, Maker starts by embedding
a tree T ′′ ⊆ T while limiting Breaker’s degrees in certain vertices. In contrast to the
proof of Theorem 1.3, where T \ T ′′ is a matching of linear size, in the current proof
T \ T ′′ consists of linearly many pairwise vertex-disjoint bare paths of length k each,
where k is a fixed large constant. We then embed the paths of T \ T ′′, recalling that
for each of them, one endpoint was previously embedded. The main tool used for this
latter part is Lemma 4.5.

In order to prove Theorem 1.4 we will require the following results.
Theorem 4.11 (Theorem 3 in [20]). Let T be a tree, chosen uniformly at random

from the class of all labeled trees on n vertices. Then asymptotically almost surely,
Δ(T ) = (1 + o(1)) logn/ log logn.

Lemma 4.12. For every positive integer k there exists a real number ε > 0
such that the following holds for every sufficiently large integer n. Let T be a tree,
chosen uniformly at random from the class of all labeled trees on n vertices. Then
asymptotically almost surely T is such that there exists a family P which satisfies all
of the following properties:

(1) Every P ∈ P is a bare path of length k in T .
(2) |P| ≥ εn.
(3) For every P ∈ P, one of the vertices in End(P ) is a leaf of T .
(4) If P1 ∈ P and P2 ∈ P are two distinct paths, then V (P1) ∩ V (P2) = ∅.
Lemma 4.12 is an immediate corollary of Lemma 3 from [1]; we omit the straight-

forward details.
Lemma 4.13. Let k and q be integers and let X and Y be sets such that |X | = q

and |Y | = kq. Let H be a graph, where V (H) = X ∪ Y , which satisfies the following
properties:

(a) Δ(H [Y ]) ≤ q − 1.
(b) dH(u, Y ) ≤ q/2 for every u ∈ X.
(c) dH(u,X) ≤ q/(2k) for every u ∈ Y .

D
ow

nl
oa

de
d 

12
/2

2/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1702 CLEMENS, FERBER, GLEBOV, HEFETZ, AND LIEBENAU

Then there exists a partition V (H) = V1 ∪ · · · ∪ Vq such that the following properties
hold for every 1 ≤ i ≤ q:

(i) |X ∩ Vi| = 1.
(ii) |Y ∩ Vi| = k.
(iii) E(H [Vi]) = ∅.
In the proof of Lemma 4.13 we will make use of the following well-known result

due to Hajnal and Szemerédi [12].
Theorem 4.14 (Theorem 1 in [12]). Let G be a graph on n vertices and let r

be a positive integer. If Δ(G) ≤ r − 1, then there exists a proper r-coloring of the
vertices of G such that every color class has size �n/r or �n/r�.

Proof of Lemma 4.13. Since Δ(H [Y ]) ≤ q − 1 holds by property (a), it follows
by Theorem 4.14 that there exists a partition Y = U1 ∪ · · · ∪ Uq such that |Ui| = k
and E(H [Ui]) = ∅ hold for every 1 ≤ i ≤ q. Let U = {U1, . . . , Uq} and let G be the
bipartite graph with parts X := {x1, . . . , xq} and U where, for every 1 ≤ i, j ≤ q there
is an edge of G between xi and Uj if and only if dG(xi, Uj) = 0. Since δ(G) ≥ q/2
holds by properties (b) and (c), it follows by Hall’s theorem (see, e.g., [22]) that G
admits a perfect matching. Assume without loss of generality that {xiUi : 1 ≤ i ≤ q}
is such a matching. For every 1 ≤ i ≤ q let Vi = Ui ∪ {xi}. It is easy to see that the
partition V (H) = V1 ∪ · · · ∪ Vq satisfies properties (i), (ii), and (iii).

Proof of Theorem 1.4. Let k be a sufficiently large integer (e.g.,m0 from Lemma 4.5
is large enough) and let n be sufficiently large with respect to k. Let T be a tree,
chosen uniformly at random from the class of all labeled trees on n vertices. It follows
by Theorem 4.11 that, asymptotically almost surely, Δ(T ) = (1+o(1)) logn/ log logn
and by Lemma 4.12 that there exists a family P of εn pairwise vertex-disjoint bare
paths of T , such that for every P ∈ P , P = (vP0 . . . v

P
k ) and v

P
k is a leaf of T . From

now on we will thus assume that the tree T satisfies these properties.
Let

T ′ = T \
( ⋃

P∈P

(
V (P ) \ {vP0 }

))
.

Throughout the game, Maker maintains a set S ⊆ V (T ) of embedded vertices, an
S-partial embedding f of T in Kn \ B, and a set A = V (Kn) \ f(S) of available
vertices. Initially, S = {v′} and f(v′) = v, where v′ ∈ V (T ′) and v ∈ V (Kn) are
arbitrary vertices.

First we describe a strategy for Maker in (E(Kn), Tn) and then prove that it
allows her to build a copy of T within n− 1 moves. At any point during the game, if
Maker is unable to follow the proposed strategy, then she forfeits the game. Certain
parts of the proposed strategy are very similar to the strategy described in the proof
of Theorem 1.3. Therefore, we describe these parts rather briefly while elaborating
considerably where the two strategies differ. The proposed strategy is divided into
the following three stages.

Stage I: Maker builds a tree T ′′ such that the following properties hold at the end
of this stage:

(1) T ′ ⊆ T ′′ ⊆ T .
(2) dB(v) ≤ 2

√
n logn for every vertex v ∈ A ∪ f(OT ).

(3) |{P ∈ P : vP1 ∈ S}| ≤
√
n (in particular, |V (T ′′)| ≤ n− εn).

Moreover, Maker does so in exactly |V (T ′′)| − 1 moves.
Stage II: In this stage Maker completes the embedding of every path P ∈ P

which was partially embedded in Stage I. For every P ∈ P , let 0 ≤ iP ≤ k denote the
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largest integer such that vPiP ∈ S. For as long as there exists a path P ∈ P for which
0 < iP < k, Maker plays as follows. She picks an arbitrary path P ∈ P for which
0 < iP < k and claims an arbitrary free edge f(vPiP )u, where u ∈ A. Subsequently,

Maker updates S and f by adding vPiP+1 to S and setting f(vPiP+1) = u.

As soon as iP ∈ {0, k} holds for every P ∈ P , Stage II is over and Maker proceeds
to Stage III.

Stage III: Let f(OT ) = {x1, . . . , xq} and let A ∪ {x1, . . . , xq} = V1 ∪ · · · ∪ Vq
be a partition of A ∪ {x1, . . . , xq} such that the following properties hold for every
1 ≤ i ≤ q:

(a) |Vi| = k + 1.
(b) xi ∈ Vi.
(c) E(B[Vi]) = ∅.

For every 1 ≤ i ≤ q let Si be a strategy for building a Hamilton path of (Kn \B)[Vi]
such that xi is one of its endpoints in |Vi| − 1 moves. Maker plays q such games in
parallel, that is, whenever Breaker claims an edge of Kn[Vi] for some 1 ≤ i ≤ q for
which M [Vi] is not yet a Hamilton path, Maker plays in (Kn \B)[Vi] according to Si.
In all other cases, she plays in (Kn \ B)[Vj ] according to Sj , where 1 ≤ j ≤ q is an
arbitrary index for which M [Vj ] is not yet a Hamilton path.

It is evident that if Maker can follow the proposed strategy without forfeiting the
game, then she builds a copy of T in n−1 moves. It thus suffices to prove that Maker
can indeed do so. We consider each of the three stages separately.

Stage I: The exact details of Maker’s strategy for this stage and the proof that she
can follow it without forfeiting the game are essentially the same as those for Stage
I in the proof of Theorem 1.3. There are a few differences which arise since Δ(T ) is
not bounded (but not too large either—see Theorem 4.11) and since T \ T ′ consists
of pairwise vertex-disjoint long bare paths, rather than a matching. Defining a vertex
v ∈ A ∪ f(OT ) to be dangerous if dB(v) ≥

√
n logn ensures that at most 2

√
n/ logn

vertices become dangerous throughout Stage I similarly to Claim 3.8. Since the paths
in P are pairwise vertex-disjoint, Δ(T ) = o(logn) and 2

√
n logn ≤ εn/(10Δ(T )), it

follows that Claims 3.9 and 3.10 hold as well. The remaining details are omitted.

Stage II: Since e(P ) = k holds for every P ∈ P , it follows by property (3) that
Stage II lasts O(k

√
n) moves and that |A| = Θ(n) holds at any point during this

stage. Since n is sufficiently large with respect to k, it follows by property (2) that
dB(v) = O(

√
n logn) holds for every vertex v ∈ A ∪ f(OT ) at any point during this

stage. We conclude that Maker can indeed follow the proposed strategy for this stage.

Stage III: Since, as noted above, dB(v) = O(
√
n logn) holds for every vertex

v ∈ A ∪ f(OT ) at the end of Stage II and since n is sufficiently large with respect to
k, it follows by Lemma 4.13 that the required partition exists. Moreover, it follows
by property (c), by the choice of k, and by Lemma 4.5 that Maker can follow the
proposed strategy for this stage.

We end this section with a proof of Theorem 1.5. The main idea is similar to the
proof of Theorem 1.2 given in section 2. That is, we first embed the tree T except
for a sufficiently long bare path P between a leaf and another vertex and then embed
P , recalling that one of its endpoints was already embedded. We will do so without
wasting any moves. We can thus use Theorem 2.1 for the former and Lemma 4.5 for
the latter.

Proof of Theorem 1.5. Let k =
(
Δ
2

)
+ 1, let m0 = m0(k) be the constant whose

existence follows from Lemma 4.5, and let m3 = max{m0, (Δ+1)2}. Let P be a bare
path in T of length m3 with endpoints x′1 and x′2, where x

′
2 is a leaf. Let T ′ be the

tree which is obtained from T by deleting all the vertices in V (P ) \ {x′1}.
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Maker’s strategy consists of two stages. In the first stage she embeds T ′ using
the strategy whose existence follows from Theorem 2.1 (with r = 1) while ensuring
that properties (i) and (ii) are satisfied. Let f : T ′ → M be an isomorphism, let
x1 = f(x′1), let A = V (Kn) \ f(V (T ′)), let U = A ∪ {x1}, and let G = (Kn \B)[U ].

In the second stage she embeds P into G such that x1 is the nonleaf endpoint. She
does so using the strategy whose existence follows from Lemma 4.5 which is applicable
by the choice ofm3 and by property (ii). Hence, T ⊆M holds at the end of the second
stage, that is, Maker wins the game.

It follows by Theorem 2.1 that the first stage lasts exactly v(T ′)−1 = n−|V (P )| =
n − |U | moves. It follows by Lemma 4.5 that the second stage lasts exactly |U | − 1
moves. Therefore, the entire game lasts exactly n− 1 moves as claimed.

5. Concluding remarks and open problems. Building trees in the
shortest possible time. As noted in the introduction, there are trees T on n
vertices with bounded maximum degree which Maker cannot build in n − 1 moves.
In this paper we proved that Maker can build such a tree T in at most n moves if it
admits a long bare path and in at most n+1 moves if it does not. We do not believe
that there are bounded degree trees that require Maker to waste more than one move.
This leads us to make the following conjecture.

Conjecture 5.1. Let Δ be a positive integer. Then there exists an integer
n0 = n0(Δ) such that for every n ≥ n0 and for every tree T = (V,E) with |V | = n
and Δ(T ) ≤ Δ, Maker has a strategy to win the game (E(Kn), Tn) within n moves.

It follows by Theorem 1.2 that the assertion of Conjecture 5.1 is true for bounded
degree trees which admit a long bare path; the problem is with trees that do not
admit such a path. Nevertheless, we can prove Conjecture 5.1 for many (but not all)
such trees as well. For example, we can prove (but omit the details) that Maker has
a strategy to build a complete binary tree in n moves (recall from the introduction
that this is tight).

Building trees without wasting moves. As previously noted, there are trees
which Maker can build in n − 1 moves (such as the path on n vertices) and there
are trees which require at least n moves (such as the complete binary tree). It would
be interesting to characterize the family of all (bounded degree) trees on n vertices
which, playing on Kn, Maker can build in exactly n− 1 moves.

Strong tree embedding games. As noted in [8], an explicit very fast winning
strategy for Maker in a weak game can sometimes be adapted to an explicit winning
strategy for Red in the corresponding strong game. Since it was proved in [10] that
Maker has a strategy to win the weak tree embedding game (E(Kn), Tn) within n+
o(n) moves, it was noted in [9] that one could be hopeful about the possibility of
devising an explicit winning strategy for Red in the corresponding strong game. The
first step toward this goal is to find a much faster strategy for Maker in the weak
game (E(Kn), Tn). This was accomplished in the current paper.

Building trees quickly on random graphs. The study of fast winning strate-
gies for Maker on random graphs was initiated in [7]. The problem of determin-
ing the values of p = p(n) for which asymptotically almost surely Maker can win
(E(G(n, p)), Tn) quickly (say, within n+o(n) moves), where T is any tree with bounded
maximum degree was raised in that paper. Note that the game (E(Kn), Tn) studied
in this paper is the special case with p = 1. It seems plausible that the methods devel-
oped in the current paper combined with those of [7] could be helpful when addressing
this problem.
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[6] V. Chvátal and P. Erdős, Biased positional games, Ann. Discrete Math., 2 (1978),

pp. 221–228.
[7] D. Clemens, A. Ferber, M. Krivelevich, and A. Liebenau, Fast strategies in Maker-Breaker

games played on random boards, Combin. Probab. Comput., 21 (2012), pp. 897–915.
[8] A. Ferber and D. Hefetz, Winning strong games through fast strategies for weak games,

Electron. J. Combin., 18 (2011).
[9] A. Ferber and D. Hefetz, Weak and strong k-connectivity games, European J. Combin.,

35 (2014), pp. 169–183.
[10] A. Ferber, D. Hefetz, and M. Krivelevich, Fast embedding of spanning trees in biased

Maker-Breaker games, European J. Combin., 33 (2012), pp. 1086–1099.
[11] H. Gebauer, On the Clique-Game, European J. Combin., 33 (2012), pp. 8–19.
[12] A. Hajnal and E. Szemerédi, Proof of a Conjecture of P. Erdős, in Combinatorial Theory
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[17] J. Komlós, G. Sárközy, and E. Szemerédi, Proof of a packing conjecture of Bollobás, Com-
bin. Probab. Comput., 4 (1995), pp. 241–255.

[18] M. Krivelevich, Embedding spanning trees in random graphs, SIAM J. Discrete Math., 24
(2010), pp. 1495–1500.

[19] R. Montgomery, Embedding bounded degree spanning trees in random graphs, preprint,
arXiv:1405.6559 [math.CO], 2014.

[20] J. W. Moon, On the maximum degree in a random tree, Michigan Math. J., 15 (1968), pp. 429–
432.
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