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Phase and amplitude tracking for seismic event separation

Yunyue Elita Li' and Laurent Demanet!

ABSTRACT

We have developed a method to decompose seismic records
into atomic events, each defined by a smooth phase function and
a smooth amplitude function. This decomposition is intrinsi-
cally nonlinear and calls for a nonconvex least-squares optimi-
zation formulation, along the lines of full-waveform inversion.
To overcome the lack of convexity, we have developed an iter-
ative refinement-expansion scheme to initialize and track the
phase and amplitude for each atomic event. For short, we called
the method phase tracking. The initialization is carried out by
applying multiple signal classification to a few seed traces in
which events can be separated and identified by their arrival
times and amplitudes. We then construct the initial solution
at the seed traces using linear phase functions from the

arrival times and constant amplitude functions, assuming the
medium is mostly dispersion free. We refine this initial solution
to account for dispersion and imperfect knowledge of the wave-
let at the seed traces by fitting the observed data using a gradient
descent method. The resulting phase and amplitude func-
tions are then carefully expanded across the traces in an
adequately smooth way to match the whole data record. We
have evaluated the proposed method on two synthetic records
and a field record. Because the parametrization of the seismic
events is physically meaningful, it also enables a simple form of
bandwidth extension of the observed shot record to unobserved
low and high frequencies. We tested this procedure on the same
shot records. Bandwidth extension is in principle helpful to ini-
tialize full-waveform inversion with frequency sweeps and en-
hanced its resolution.

INTRODUCTION

In this paper, we address the problem of decomposing a seismic
record into elementary, or atomic, components corresponding to
individual wave arrivals. Letting ¢ stand for time and x represent the
receiver location, we seek to decompose a shot profile d into a small
number r of atomic events v; as

r

d(t, x) zZvj(t,x). (1)

J=1

Each v; should consist of a single wavefront — narrow yet band
limited in ¢, but coherent across different x — corresponding to an
event of direct arrival, reflection, refraction, or corner diffraction.

In the simplest convolutional model, we would write v;(t, x) =
a;(x)w(t —7;(x)) for some wavelet w, amplitude a;(x), and time
shift ;(x). In the Fourier domain, this model would read

(@, x) = W(w)a;(x)e@s. )

This model fails to capture frequency-dependent dispersion and
attenuation effects, phase rotations, inaccurate knowledge of the
source wavelet, and other distortion effects resulting from near res-
onances. To restore the flexibility to encode such effects without
explicitly modeling them, we consider instead throughout this paper
the following expression:

bi(@.x) = W(w)a;(w,x)eb@), 3)

where the amplitudes a; and the phases b; are smooth in x and w,
and b; deviates little from an affine (linear + constant) function of
w. If the guess Ww(w) for the wavelet is not entirely inaccurate, the
amplitude a;(w, x) is meant to compensate for it.

Finding physically meaningful, smooth functions a; and b; to fit
a model such as equations 1 and 3 is a hard optimization problem.
Its nonconvexity is severe: It can be seen as a remnant, or cartoon, of
the difficulty of full-waveform inversion from high-frequency data.
We are unaware that an authoritative solution to either problem has
been proposed in the geophysical imaging community.
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Many methods have been proposed to pick individual seismic
events, such as autoregression (AR) filters (Leonard and Kennett,
1999) (close in spirit to the matrix pencil method [Hua and Sarkar,
1990]), crosscorrelations (Cansi, 1995), wavelets (Zhang et al.,
2003), neural networks (Gentili and Michelini, 2006), etc. These
papers mostly address the problem of picking isolated arrivals time,
not parameterizing interfering events across traces. Some data
processing methods operate by finding local slope events, such
as plane-wave annihilation (Fomel, 2002). This idea have been used
to construct prediction filters for localized wavelet-like expansion
methods (Fomel and Liu, 2010), which in turn allow us to solve
problems such as trace interpolation in a convincing manner. It
is plausible that concentration or clustering in an appropriate wave-
letlike domain could be the basis for an algorithm of event separa-
tion. Separation of variables in moveout-corrected coordinates has
also been proposed to identify dipping events, such as in Raoult
(1983) and Blias (2007). Smoothness criteria along reflection events
have been proposed for separating them from diffraction events,
such as in Fomel et al. (2007). These traditional methods fail for
the event decomposition problem as previously stated:

«  Because of cycle-skipping, the gradient descent quickly con-
verges to uninformative local minimums.

e Because data sets do not often have useful low frequencies,
multiscale sweeps cannot be seeded to guide gradient descent
iterations toward the global minimum.

e Because the events are intertwined by possibly destructive in-
terference, simple counterexamples show that greedy “event
removal” methods such as matching pursuit cannot be ex-
pected to succeed in general.

e Because wavefront shapes are not known in advance, linear
transforms such as the slant stack (Radon), velocity scan,
wavelets/curvelets, or any other kind of nonadaptive filters,
do not suffice by themselves. The problem is intrinsically non-
linear.

The contribution of this paper is the observation that tracking in x
and w, in the form of careful growth of a trust region, can satisfac-
torily mitigate the nonconvexity of a simple nonlinear least-squares
cost function, yielding favorable decomposition results on some syn-
thetic shot profiles and some field data. We have not been able to deal
with the nonconvexity of this cost function in any other way than by
tracking.

Seismic records from field experiments contain many types of
events resulting from the interaction between the source and the
complex subsurface. Separating these events has been a long-stand-
ing challenge in seismic data processing. The successful resolution
of this question would have many implications:

e It would improve our ability to discriminate events based on
the different physical processes that generated them: P-S
wave separation, primary-multiple separation, reflection-dif-
fraction separation, simultaneous recording separation, etc.

e It automates the “traveltime picking” operation; hence, this
may help prepare a data set for traveltime tomography.

e A description of the data set in terms of phases and ampli-
tudes is adequate for interpolation of missing samples. It is
also the proper domain in which model reduction should be
performed in the high-frequency regime.

e Perhaps most importantly, it enables a not entirely inaccurate
extrapolation to high and low frequencies not present in the

data set, with a possible application to seeding frequency
sweeps in full-waveform inversion.

This article is organized as follows: We first define the objective
function and derive its gradient. We point out that the objective func-
tion is severely nonconvex, and we explain an explicit initialization
scheme with multiple signal classification (MUSIC) and the expan-
sion and refinement scheme for phase and amplitude tracking. Finally,
we demonstrate our separation algorithm on two synthetic records and
a field record. We illustrate the potential of event separation for
extrapolation to unobserved frequencies in the last two examples.

METHOD
Cost function and its gradient

We consider the nonlinear least-squares optimization formulation
with a Tikhonov-like cost function:

I({a b)) = 5 (. x) ~ d(w. V)

+ 2y _[IVabi(@. )13 +uY_[IV.ibj(@.)]3
j j

+ 1) _IVoua(@.2)]3. “

J

where d is the measured data in the frequency domain, V, and V%,
with k = w, x, respectively, denote first-order and second-order par-
tial derivatives, and V, . denotes the full gradient. The prediction # is

i(w.x) = > W(w)a;(o. x)e ), 5)

=1

with the wavelet w(w) assumed known to a certain level of accuracy.
(Mild phase and amplitude inaccuracies in w(w) are, respectively,
compensated by b;(w,x) and a;(w, x).) The constants A, u, and y
are chosen empirically.

It is important to regularize with V2b;(w,x) rather than
V,b;(@,x), so as to penalize departure from dispersion-free linear
phases rather than to penalize large traveltimes.

The cost function is minimized using a gradient descent method
within a growing trust region. The gradients of equation 4 with re-
spect to a; and b; are computed as follows:

aJ 1/ 0u ou*
— = | —éu* +6u— 29V2 a.,
Oaj 2 <6aj Wt u@aj> + 4 w.xa]
aJ 1/ 0u ou*
— = | —éu* +ou— 2AVZ - VZb. +2uV3b., (6
abj 2<abju+u0bj>+ o wJ—"_:uxJ()
where
ol . i .
—u:ﬁ)e"bi, aizw*elb/,
da] aa_,.
ot _ —iwa;e™ o _ iw*ae's
ob; 0 oby ’
Sii=i—d. )
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The notation V,ZM refers to the Laplacian in (@, x) and * denotes
complex conjugation. All the derivatives in the regularization terms
are discretized by centered second-order accurate finite differences.

The inverse problem defined by the objective function in equa-
tion 4 is clearly nonconvex, in large part due to the oscillatory nature
of seismic data. Matching oscillations pointwise generically runs
into the cycle-skipping problem. Lack of convexity is also found
in phase-retrieval problems (Demanet and Hand, 2014; Gholami,

2014), although in a less severe form.

Initialization

We initialize the iterations by making use of an explicit solution
of the minimization problem in a very confined setting where

» we pick a single seed trace x in which the events of interests
are well-separated;

* we pick a subset of seed frequencies @ around the dominant
frequency of the source wavelet;

»  after deconvolving the source wavelet, we assume a simpli-
fied model in which the amplitudes are constant, and the
phases are linear in w. As a result, we momentarily return
to the convolutional model,

d(w) ~ Zajei“”f, 8)
=1

of equation 2 to locally approximate equation 3.

In this situation, the problem reduces to a classical signal processing
question of identification of sinusoids, i.e., identification of the trav-
eltimes 7; and amplitudes a;. There exist at least two high-quality
methods for this task: the matrix pencil method of Hua and Sarkar
(1990) and the MUSIC algorithm (Schmidt, 1986; Biondi and Kos-
tov, 1989; Kirlin and Done, 1999). We choose the latter for its sim-
plicity and robustness. (It would be a mistake to use either ¢,
minimization, or iterative removal pursuit algorithms, for this sinus-
oid identification subproblem.)

Assume for the moment that the number r of events is known,
although we address its determination later in the paper. The MUSIC
algorithm only needs data {d(w;)} at m = 2r + 1 frequencies to de-
termine the arrival times and amplitudes for r different events. In prac-
tice, the number m of frequencies may be taken to be larger than
2r + 1 if robustness to noise is a more important concern than the
lack of linearity of the phase in . In either case, we sample the data
a(w,-) on a grid of spacing Aw around the dominant frequency @ of
the source wavelet, where the signal-to-noise ratio (S/N) is rela-
tively high.

The variant of the MUSIC algorithm that we use in this article
requires building a Toeplitz matrix, whose columns are constructed
by translations of the data samples as

where k = (m — 1) /2. After a singular value decomposition (SVD)
of T, we separate the components relative to the r largest singular
values, from the others, to get

T=U,%,V! +U,5,V. (10)

We interpret the range space of Uj as the signal space and the range
space of U, as the noise space, hence the choice of indices. The
orthogonal projector onto the noise subspace can be constructed
from U,, as

P, =U,U’. (11

We then consider a quantitative measure of the importance of any

given arrival time ¢ € |0, Z—:}}, via the estimator function
(1) = 12)
a(t) = ———.
[P, e

In the exponent, ® is a vector with k consecutive frequencies on a
grid of spacing Aw.

In practice, the number of individual events is a priori unknown.
The determination of this number is typically linked to the extra-
neous knowledge of the noise level, by putting to zero the eigen-
values of T below some threshold e, chosen so that the resulting
error vector has a magnitude that matches the predetermined level.

In the noiseless case, the estimator function in equation 12 has r
sharp peaks that indicate the r arrival times z; for the r events. In the
noisy case, or in the case when the phases b; are nonlinear in w, the
number of identifiable peaks is a reasonable estimator for r, and the
locations of those peaks are reasonable estimators of z;, such that
the signal contains r phases locally of the form wz;+ a constant. In
field applications, this procedure should be applied in a trust region
£, which contains a handful of nearby traces. The consistent arrival
times 7;(x) across traces provide a more robust estimation for the
coherent events. Once the traveltimes ; are found, the amplitudes
a; follow from solving the small, overdetermined system in equa-
tion 8. Each complex amplitude is further factored into a positive
amplitude and a phase rotation factor, and the latter is absorbed into
the phase function. We summarize the initialization procedure in
Algorithm 1.

Algorithm 1. Initialization with MUSIC.

Select a trust region Q and a threshold level ¢
for x € Q do
Build the Toeplitz matrix T and SVD
Build the projection matrix P, with threshold e
Compute the estimator a(z)
Pick the peaks of a(f) to determine r(x) arrival times 7;(x)
Solve for the amplitude a;(x)
end for

Find the consistent 7;(x), a;(x) and determine »
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Tracking by expansion and refinement

The phases and amplitudes generated by the initialization give
local seeds that need to be refined and expanded to the whole
record:

e The refinement step is the minimization of equation 4 with
the data misfit restricted to the current trust region £2. In other
words, we use the result of initialization in the form of equa-
tion 2 as an initial guess and upgrade it to take the more ac-
curate form (equation 3).

e The expansion step consists in growing the region 2 to in-
clude the neighboring frequency samples and extending the
solution smoothly to the neighboring traces.

These steps are nested rather than alternated: The inner refinement
loop is run until the value of J levels off, before the algorithm re-
turns to the outer expansion loop. The expansion loop is itself split
into an outer loop for (slow) expansion in x and an inner loop for
(rapid) expansion in w. The nested ordering of these steps is crucial
for convergence to a meaningful minimizer.

A simple trick is used to speed up the minimization of J in the
complement of 2, where only the regularization terms are active:
a;(w, x) is extended constantly in x and , whereas b;(w, x) is ex-
tended constantly in x and linearly in @. These choices correspond
to the exact minimizers of the Euclidean norms of the first and sec-
ond derivatives of a; and b, respectively, with zero-boundary con-
ditions on the relevant derivatives at the endpoints. This trick may
be called preconditioning the regularization terms.

Algorithm 2. Phase and amplitude tracking algorithm.

Input: observed data d(w, x), estimated wavelet w(w), trust region
Q= [Xpeg Xend|
MUSIC: run Algorithm 1 to obtain 7, a;(x), and 7;(x)
initialize a9(w, x)<R(a;(x)), and
b?(a),x)<—w1_i (x) + S(a;(x))
fori=0,1,...N—1do
Forward modeling: obtain ii(w, x)
Objective function evaluation: compute J within the range of Q
if J < ¢ then
if Q covers the whole record
Converge: Output a;(w, x) and b;(w, x)
else
Expand: Q< [x,., — Axx,,, + Ax]
(0. Xpeg—Bx)<—a;(0.Xpe), bj(0,Xppg—AX) <D (0, Xp,,)
aj(0,Xena+AX)<—a;(@.X0nq)> Dj(0Xopa+A%) <D (0. X0nq)

end if

else oJ oJ
Compute gradient: aj and 077,
. . oJ . . oJ
. i+l i i+1 i
U[.)date model: ¢} «aj —ﬂaj, b <bl — /}@
end if

end for

At the conclusion of this main algorithm, the method returns r
phases b;(w, x) that are approximately linear in @ and approxi-
mately constant in x; and r amplitudes a;(w, x) that are approxi-
mately constant in x and  such that

r

d(w. x) ~ ZW(a))aj(a),x)eibf(“’*x). (13)

J=1

We summarize the procedure of the refinement and expansion in
Algorithm 2.

Further in the paper, we refer to the respective plots of b; and a;
as functions of @ and x as “phase spectra” and “amplitude spectra.”

Application: Frequency extrapolation

Frequency extrapolation, also known as bandwidth extension,
is a tantalizing test of the quality of a representation such as equa-
tion 8. A least-squares fit is first performed to find the best constant
approximations a;(w, x) ~ a;(x) and the best affine approxima-
tions b;(w, x) =~ wp;(x) + ¢;(x) from values of w within a useful
frequency band. These phase and amplitude approximations can be
evaluated at values of w outside this band, to yield synthetic flat-
spectrum atomic events of the following form:

aj(x)ei(wﬂ/(X)thﬁ/(X))' (14)
These synthetic events can be further multiplied by a high- or low-
pass wavelet, and summed up, to create a synthetic data set. This
operation is the seismic equivalent of changing the pitch of a speech
signal without speeding it up or slowing it down.

Extrapolation to high frequencies should benefit high-resolution
imaging, whereas extrapolation to low frequencies should help
avoid the cycle-skipping problem that full-waveform inversion en-
counters when the low frequencies are missing from the data.

Notice that extrapolation to zero frequency is almost never accu-
rate using such a simple procedure: More physical information is
required to accurately predict zero-frequency wave propagation.
The exception is free-space wave propagation in 3D, where the
Green’s function has a linear phase and constant amplitude in o,
hence completely predictable from two samples in .

NUMERICAL EXAMPLES

In this section, we demonstrate the tracking method on two syn-
thetic data records and one field data record. The first synthetic ex-
ample illustrates the workflow behind the iterations. In the second
synthetic example, we test our algorithm on a noisy seismic record
obtained by finite-difference modeling, with application to fre-
quency extrapolation.

Synthetic example: Three-event separation

In this example, we create an artificial three-event seismic record
by convolving a Ricker wavelet along the traveltime curves of one
direct arrival event, one water-bottom reflection event, and one re-
flection event from a deeper layer. The dominant frequency of the
Ricker wavelet is 20 Hz. The amplitude of the Ricker wavelet de-
creases with increasing offset. After generating the data in the time
domain, we bring the data to the frequency domain and use the band
between 5 and 35 Hz for inversion.
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The reference seismic profile is shown in Figure 1a. The events
are well-separated when the offset is small. As the offset grows, the
three events cross each other. Moreover, the water-bottom reflection
event approaches the water-column direct arrival as its asymptote.

Therefore, both events become almost perfectly
aligned at large offsets over 2.5 km. Separating
these crossing and overlapping events is a some-
what challenging task to any automatic event
tracker.

To initialize the method, we choose three seed
traces where the events are well-separated. We
train the MUSIC algorithm with only seven
frequencies around the dominant frequency of
the Ricker wavelet for each trace. Figure 2a shows
one seismic trace at x =200 m. The MUSIC
estimator with many trial arrival times is shown
in Figure 2b. The peaks of the MUSIC estimator
accurately pinpoint the reference arrival times of
the events.

With these three seed traces, we run the expan-
sion-refinement tracking algorithm explained
earlier. The inverted seismic profile is shown in
Figure 1b. The kinematics (phases) and the am-
plitudes are almost perfectly resolved.

Figure 3 shows the comparison between the
inverted atomic events in Figure 3a-3c with the
reference atomic events in Figure 3d-3f. The
atomic events were separated with high accuracy.
Figure 4 shows the phase spectra (Figure 4a—4c)
and the amplitude spectra (Figure 4d—4f) for the
reference atomic events. In comparison, we show
the phase spectra (Figure Sa—5c) and the ampli-
tude spectra (Figure 5d-5f) for the inverted atomic
events in Figure 5. The phase spectra for all the
events are accurately recovered. However, the am-
plitude spectra for the first two events are not per-
fectly recovered due to the ambiguities at large
offsets.

Synthetic example: Shallow Marmousi
model

In this example, we test our algorithm on
a more realistic shot gather. The shot gather is
generated from a shallow part of the Marmousi
model using finite-difference modeling. The fi-
nite-difference scheme is second-order accurate
in time and fourth-order accurate in space. We
use a 20-Hz Ricker wavelet as the source wave-
let. The receiver spacing is 40 m.

As a preprocessing stop, we remove the direct
arrival from the shot record because it has the
strongest amplitude that would overwhelm the
record. We apply an automatic gain control to
the remaining events so that the amplitudes on
the record is more balanced. We mute the later
arrivals in the data so that we resolve a limited
number of events at a time. Finally, we add
30% independent and identically distributed

Phase and amplitude tracking WD63

Gaussian noise to the data within the bandwidth between 7
and 40 Hz.

Figure 6a shows the shot record with six clear events after pre-
processing. For inversion of the atomic events, we consider the data

a) b) ,
0.5 0.5 E
1 1 h
1.5 1.5 h
2 @
[0} (0]
£ E
= = ]
2 2F 5%& h
1:
2.5 251
3 3r
3.5 35k
0 1 2 3 0 1 2 3

Location (km) Location (km)

Figure 1. Comparison of the reference seismic profile is shown in panel (a) and the
inverted seismic profile is shown in panel (b). Figures are clipped to the same value.
The inversion perfectly reconstructs the seismic data.

a) 1

Amplitude

-0.4 L ] L L L ! I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)
b)
8000
6000 |- i
S
T
£ 4000 i
n
w
2000 - L 1
0 L J 1 | 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Arrival time (s)

Figure 2. (a) Comparison of the seismic trace at x = 200 m and (b) its MUSIC esti-
mator (blue curve) and the picked traveltimes (red diamonds). The MUSIC estimator
accurately identifies the arrival time of each event.
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only between 7 and 40 Hz. We choose three seed traces at
approximately x = 1.5 km where the events are well-separated.
We apply the MUSIC algorithm using 13 frequencies around the
dominant frequency. Figure 7a shows one example of the seed trace
at x = 1.5 km. The MUSIC estimator accurately determines the
arrival times of the six different events, as shown in Figure 7b.

Figure 6b shows the inverted shot profile using the proposed
tracking algorithm. The inversion has clearly separated the six strong
reflection events from the record, removed the severe random noise,
and improved the coherence of the amplitude along the events. This
demonstrates the robustness of the method. Figure 8 shows the cor-
responding well-separated atomic reflection events.

Figures 9 and 10 show the phase and amplitude spectra for each
atomic event. As expected, the phase and amplitude spectra are

Figure 3. Comparison of (a-c) the inverted atomic
events with (d-f) the true atomic events. Figures
are clipped to the same value. The inversion accu-
rately reconstructs the atomic events.

Location (km)

Figure 4. (a-c) Phase spectra and (d-f) amplitude ~ a)
spectra of the true atomic events.

- o
o o

Frequency (Hz)
n
=]

Frequency (Hz)
n
=)

Li and Demanet

smooth in @ and x. We allow the amplitudes of an event to drop
to zero when the average estimated energy of this event at that
trace is less than 1% of that at the seed traces. Hence, we allow
the events to be terminated in the middle of the section. At each
trace x, we estimate the parameters a;(x), $;(x), and ¢;(x) and de-
termine the approximated phase spectrum for each event. With this
parametrization, we now extrapolate the data to frequencies within
[1, 90] Hz.

The atomic events after frequency extrapolation are shown in
Figure 11. Compared with the atomic events in Figure 8, the wave-
form is much more compact thanks to the increased bandwidth,
whereas the traveltime information is kept intact. Figure 7 compares
the seed trace after frequency extrapolation (Figure 7c) with the
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The high-resolution data could be used for broadband high-resolu-
tion seismic imaging (Fu et al., 2014).

To evaluate the accuracy of low-frequency extrapolation, we
model the seismic record using a broadband source wavelet, whose
amplitude spectrum is mostly flat between 1 and 7 Hz. We then
compare the modeled data with the data obtained by frequency
extrapolation within the same bandwidth in Figure 12. Although
the amplitudes differ between the two records, the phase function
from the frequency extrapolation represents a reasonable estimation
of the modeled phase function.

There are a few reasons to explain the mismatch between the
extrapolated low-frequency data and the modeled low-frequency
data. First, the unmodeled scattering events contribute to the low

b
5 )
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-200 -200
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~400 -400
25

-600 -600
30
35 -800

=
~

Frequency (Hz)
n
o

Frequency (Hz)
n
o

2 3 4 2 3 4

Trace location (km) Trace location (km)

b
25 )o
2 0.2
1.5 0.4
;

0.6
0.5

0.8
0
-0.5

1.2
-1

1.4F
-1.5 3
o 16
25 18

Location (km)

Location (km)

frequencies and overlap with the low-frequency signal from the
modeled reflection events. Second, there are numerical dispersion
effects on the modeled low-frequency data, whereas the extrapolated
record is constructed using a nondispersive assumption. Finally, the
noise in the original record may introduce extra amplitude and phase
perturbations, which do not appear on the noiseless modeled low-fre-
quency record. All of these effects will manifest themselves in the
field applications.

Field data example

In this example, we test our algorithm on a shallow field record
acquired onshore in China (Wang et al., 2013). Figure 13a shows

Figure 5. (a-c) Phase spectra and (d-f) amplitude
spectra of the inverted atomic events. Plots in this
figure are clipped at the same value as the plots in

0 ! 3 -
-200  Figure 4, respectively. Notice the amplitudes are
well-reconstructed before the three events cross
_ao  (offset less than 2 km). After the crossing point,
the direct arrival and the water-bottom reflection
are perfectly overlapped, causing the amplitude
-600  spectra (panels d and e) to be not perfectly resolved
due to the ambiguity. Nonetheless, the correspond-
_goo  ing phase spectra (panels a and b) are well-recon-

structed.
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25
30
35

2 3 4
Trace location (km)

Figure 6. (a) Comparison of the noisy shot record
and (b) the inverted shot record. The inverted data
have clearly reconstructed the strong reflection
events and removed the severe random noise in
the data. Amplitude and phase are more coherent
along each reflection event.
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early events of the record. Strong receiver statics can be observed
from the shifting phases across nearby traces. Strong amplitude
variations are also observed from this record. Figure 13b shows
the average power spectrum of the record. The data have a large
S/N between [16, 85] Hz. However, the low-frequency components
(less than 10 Hz) are completely missing from the data.

For the inversion of event separation, we further applied an inner
mute to the data and band-pass the data between [16, 70] Hz. Fig-
ure 14a shows the resulting shot record and we only use this band-

1=
N
IS

Li and Demanet

limited record to invert for the atomic events. We choose three seed
traces at x = —0.01, 0, 0.01, and we identify seven events from the
coherent phase picks after applying MUSIC on each trace. Clearly,
the algorithm does not identify all the events in the record (as
pointed out by the arrows in Figure 15a). Instead, only the strong
coherent events have been selected.

The phase and amplitude tracking algorithm resolves seven
atomic events (Figure 16), and the reconstructed shot record is
shown in Figure 14b. The inverted record has been cleaned up

Figure 7. (a) Comparison of a narrow-band ([7,
40] Hz) seismic trace at x = 1.5 km, (b) its MUSIC
estimator (blue curve) and the picked traveltimes
(red diamonds), and (c) the trace after frequency
extrapolation to [1, 90] Hz.
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Figure 8. The six well-separated atomic events.
Severe noise has been removed from each event.
The amplitude and phase are more coherent for
each event.
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significantly with fewer weak events and overlapping events. With
the smoothness constraints, the amplitude and phase of each event
across traces are more coherent.

Figure 17 compares the shot record in its full bandwidth with the
inverted shot record after frequency extrapolation to [0.5, 120] Hz.
Compared with the field record, the arrival times of the resolved
events are preserved in the extrapolated record. However, the re-
corded data appear to contain more events than the extrapolated rec-
ord. We can explain this observation from two aspects. First, our
algorithm indeed does not model all events in the recorded data.
Moreover, due to the missing low frequencies, each event has side-
lobes in the recorded data, whereas in the extrapolated data, each
selected event has a more compact support in time.

WD67

Figure 18a shows the shot record after a low-pass filter at 16 Hz.
To make a fair comparison, we band-pass the extrapolated shot rec-
ord (Figure 17b) between 10 and 16 Hz and plot the resulting record
in Figure 18b. The field record appears very noisy due to the low S/N,
the receiver statics, and the strong amplitude variations across
traces. In contrast, the inverted record after extrapolation reserves
the phase information with improved amplitude coherence across
traces. Figure 15b compares one extrapolated trace with the corre-
sponding recorded trace within the low-frequency bandwidth. After
amplitude normalization, the amplitude and phase are matched
quite well when most events are successfully identified in the later
arrival time. However, the box highlights the discrepancy between
the extrapolated and the recorded trace in earlier time due to the

a) b) Figure 9. Phase spectrum of each atomic event is
10 _50 -50 smooth along frequency and space axes, as re-
_100  quired by the optimization.
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a) b) ) 0 Figure 10. Amplitude spectrum of each atomic
15 event is smooth along frequency and space axes, as
required by the optimization.
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unmodeled events. The extrapolated data can be further improved
with a second pass of phase-and-amplitude tracking on the data
residual to pick up the remaining coherent events. Figure 18c shows
the inverted shot record after extrapolation to [0.5, 10] Hz. The re-
corded data within this bandwidth have little meaningful signal,
whereas the extrapolated record may provide reliable phase infor-
mation at these low frequencies.

ASSUMPTIONS AND LIMITATIONS

The fundamental assumption for our tracking algorithm to define
seismic events is that the acoustic or elastic wave equations are

Figure 11. The same six atomic events as in Fig- ) 0
ure 8 after frequency extrapolation. The waveform
is much more compact thanks to the increased

Time (s)

bandwidth, whereas the traveltime information is 0.5
kept intact.
1
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Figure 12. (a) Comparison of the shot record mod- @) ¢
eled with a low-frequency broadband ([1, 7] Hz)
wavelet and (b) the shot record after frequency

extrapolation to [1, 7] Hz. Although the amplitudes 0.2
differ between the two records, the phase function
from the frequency extrapolation represents a rea- 0.4
sonable estimation of the modeled phase function.
0.6
% 0.8
(0]
£
-

Location (km)

mostly dispersion free, i.e., that they give rise to solutions with
mostly linear phases in the frequency domain. Therefore, in the
cases of surface waves and body waves in a severely dispersive
medium, our algorithm will have difficulty identifying and tracking
the events.

Obviously, frequency extrapolation to the unobserved bandwidth
is purely based on the dispersion-free assumption. We have ob-
served phase errors at the extrapolated frequencies due to numerical
dispersion in the synthetic test, which naturally indicates potential
phase errors due to real dispersion effects in the earth. However, as
long as the dispersion is mild, the extrapolated low-frequency data
could be a close approximation to the true low-frequency response.

b) , © ,

0.5 0.5
= O

(0] Q 1
£ £
= [

1.5 1.5

2

0 1 2 3 0 1 2 3
Location (km) Location (km)
€, Do

Time (s)
Time (s)

0 1 2 3
Location (km)

o

1 2 3
Location (km)

b)

0.2

0.4

2 3 1 2 3
Location (km)



Downloaded 12/22/15 to 18.51.1.3. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Phase and amplitude tracking

Hence, fitting the extrapolated low-frequency waveforms could

bring full-waveform inversion closer to the global minimum.
Extrapolation to low frequencies is also limited by the inability of

the phase-amplitude model to capture the physics of zero-frequency
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Figure 13. A field data record is shown in panel (a), and its average
power spectrum is shown in panel (b). The data show strong receiver
statics (shifty phases across traces) and amplitude variations. The data
have a large S/N between [16, 85] Hz. The low-frequency compo-
nents (less than 10 Hz) are missing from the data.
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radiation due to the generic presence of a scattering pole in Green’s
function at w = 0.

The success of the proposed iterative method for the nonconvex
optimization formulation hinges on a delicate interplay between the
refinement of phases and amplitudes within a trust region, versus
slowly growing this trust region. If the region is grown too fast, the
iterations will converge to an undesirable local minimum.

The refinement and expansion depend nonlinearly on the regu-
larization parameters, the determination of which is empirical and
can be tedious. We replace the slow converging regularization term,
2Y2lIVab;(w, x) |3, by implicitly solving the regularization prob-
lem. The rest of the regularization terms are solved explicitly. We let
the partial gradient of b; at the kth iteration be

1 ( ou ou*
bk == (=L it + o ) +2uV2h,. (15
j 2<abj”+”abj>+”“ (15

We solve the following implicit system to obtain the phase functions
for the (k + 1)th iteration:

A
phH! = pk _EVTvb;FH — psbk. (16)

Hence, the updated phase functions are
k1 Aoty ) (pk k
bj = (1+BV V> (bj—ﬂébj). a7

This trick allows us to use large A values during the inversion.
Numerical tests suggest that the inversion results remain stable with
respect to the regularization parameters when/where the S/N is high.
In generally noisy cases, the solutions can be significantly different
with different regularization parameters. The values for each param-
eter in different numerical tests are shown in Table 1.

Figure 14. (a) Comparison of the band-limited
([16, 70] Hz) shot record and (b) the inverted shot
record. The inverted data have clearly recon-
structed the strong reflection events.
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Figure 15. High-frequency ([16, 70] Hz) band-limited seismic trace in (a) and low-frequency (10, 16 Hz) band-limited seismic trace in (b). In
the top plot, the inverted trace (red) matches the recorded trace (blue) quite well for the selected events. The arrows point out two events that
have not been selected by the inversion at the early arrival times. In the bottom plot, we compare the extrapolated trace (red) with the recorded
trace (blue). The (normalized) amplitude and phase are matched quite well when most events are successfully identified in the later arrival time.
However, the box highlights the discrepancy between the extrapolated and the recorded traces in earlier time due to the unmodeled events.
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The most important limitation of the tracking method is the Table 1. Regularization parameters used in each test.

deterioration of the accuracy in phase (hence the traveltime) estima-
tion in the presence of unmodeled or splitting events. Our solution
for the determination of the number of events further depends on the Case 4 H r
availability of a few seed traces where the MUSIC estimator cor- Th .

. . T ree-event separation 1.0 1.0 2e -3
rectly categorizes them. We could potentially analyze the variability .
of the solutions with different regularization parameters to deter- Shallow Marmousi 1.0 le+1 2e—3
mine the presence of unmodeled or splitting events, which requires Field data 1.0 de +2 3e-3

further investigation.
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Figure 17. Comparison of the full bandwidth shot
record in panel (a) and the inverted shot record after
frequency extrapolation to [0.5, 120] Hz in panel
(b). Kinematic information of the selected events
is well-preserved by extrapolation. The recorded
data appear to contain more events than the extrapo-
lated data. The reason can be twofold: First, our
tracking algorithm indeed does not model all the
events in the recorded data. Moreover, due to the
missing low frequencies, each event has sidelobes
in the recorded data, whereas in the extrapolated
data, each selected event has a more compact sup-
port.
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Figure 18. (a) Comparison of the shot record after a low-pass filter at 16 Hz, (b) the inverted record after frequency extrapolation to [10,
16] Hz, and (c) the inverted record after frequency extrapolation to [0.5, 10] Hz. The field record appears to be very noisy due to low S/N, the

receiver statics, and the strong amplitude variations across traces. In contrast, the extrapolated record within the same bandwidth reserves the

phase information with improved amplitude coherence across traces. The recorded data less than 10 Hz have little meaningful signal, whereas

the extrapolated record may provide reliable phase information at these low frequencies.
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CONCLUSIONS

We propose a data-driven method for decomposing seismic re-
cords into individual, atomic events that correspond to isolated arriv-
als. The only piece of physical information needed to define these
events is the fact that the acoustic or elastic wave equations are mostly
dispersion free. The explicit handle on each atomic event enables us
to approximate the high- and low-frequency seismic response beyond
the observed frequency bandwidth. The numerical examples demon-
strate the robustness of the method and the potential of using the
extrapolated low-frequency data for the initialization of full-wave-
form inversion.
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