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Abstract. The errors inherent in the fitting and integration of

the pseudo-Gaussian ion peaks in Aerodyne high-resolution

aerosol mass spectrometers (HR-AMSs) have not been previ-

ously addressed as a source of imprecision for these or simi-

lar instruments. This manuscript evaluates the significance of

this imprecision and proposes a method for their estimation

in routine data analysis.

In the first part of this work, it is shown that peak-

integration errors are expected to scale linearly with peak

height for the constrained-peak-shape fits performed in the

HR-AMS. An empirical analysis is undertaken to investigate

the most complex source of peak-integration imprecision: the

imprecision in fitted peak height, σh. It is shown that the ma-

jor contributors to σh are the imprecision and bias inherent in

them/z calibration, both of which may arise due to statistical

and physical non-idealities of the instrument. A quantitative

estimation of these m/z-calibration imprecisions and biases

show that they may vary from ion to ion, even for ions of

similar m/z.

In the second part of this work, the empirical analysis is

used to constrain a Monte Carlo approach for the estima-

tion of σh and thus the peak-integration imprecision. The

estimated σh for selected well-separated peaks (for which

m/z-calibration imprecision and bias could be quantitatively

estimated) scaled linearly with peak height as expected (i.e.

as n1). In combination with the imprecision in peak-width

quantification (which may be easily and directly estimated

during quantification), peak-fitting imprecisions therefore

dominate counting imprecisions (which scale as n0.5) at high

signals. The previous HR-AMS uncertainty model therefore

underestimates the overall fitting imprecision even for well-

resolved peaks. We illustrate the importance of this conclu-

sion by performing positive matrix factorization on a syn-

thetic HR-AMS data set both with and without its inclusion.

In the third part of this work, the Monte Carlo approach

is extended to the case of an arbitrary number of overlapping

peaks. Here, a modification to the empirically constrained ap-

proach was needed, because the ion-specific m/z-calibration

bias and imprecision can generally only be estimated for

well-resolved peaks. The modification is to simply overesti-

mate the m/z-calibration imprecision in all cases. This over-

estimation results in only a slight overestimate of σh, while

significantly reducing the sensitivity of σh to the unknown,

ion-specificm/z-calibration biases. Thus, with only the mea-
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sured data and an approximate estimate of the order of mag-

nitude of m/z-calibration biases as input, conservative and

unbiased estimates of peak-integration imprecisions may be

obtained for each peak in any ensemble of overlapping peaks.

1 Introduction

The Aerodyne high-resolution aerosol mass spectrometer

(HR-AMS; Jayne et al., 2000; DeCarlo et al., 2006) can

provide continuous, time- and size-resolved measurements

of particulate-matter (PM) composition (Canagaratna et al.,

2007; Kimmel et al., 2011). In its different configurations,

the HR-AMS has been used to investigate the composition

and evolution of organic PM (Aiken et al., 2007; Jimenez

et al., 2009; Zhang et al., 2011), the internal mixing and com-

position of black carbon (Cappa et al., 2012; Corbin et al.,

2015a), and the external mixing of atmospheric aerosols

(Freutel et al., 2013; Lee et al., 2015) among many other ap-

plications (Canagaratna et al., 2007).

HR-AMS signals are routinely quantified with the free,

open-source “PIKA” software (Sueper et al., 2011), written

in Igor Pro (WaveMetrics, OR, USA). PIKA allows the user

to perform both basic data processing and complex analy-

ses, including high-resolution peak analysis (DeCarlo et al.,

2006), mass quantification (Allan et al., 2004), and elemental

analysis (Aiken et al., 2007).

PIKA is widely used to prepare HR-AMS data for least-

squares statistical models such as positive matrix factoriza-

tion (PMF) (Paatero and Tapper, 1994; Ulbrich et al., 2009;

Zhang et al., 2011) or simple linear regression (e.g. Lee et al.,

2010). These statistical models are solved by minimizing the

residuals between uncertainty-weighted data and the model,

so both the data and their uncertainties must be quantified

in order to obtain meaningful results. In the previous sen-

tence, “uncertainty” refers only to the internal imprecision

of the HR-AMS data set (discussed further below) and not to

the overall accuracy of HR-AMS-based mass concentrations,

elemental ratios, or other data products. These higher-order

data products require additional calibration factors which

dominate their overall inaccuracy of roughly ±25% (Cana-

garatna et al., 2007; Bahreini et al., 2009; Aiken et al., 2008;

Canagaratna et al., 2015). Such inaccuracies are not normally

relevant for the statistical modelling of HR-AMS measure-

ments and do not influence the peak-integration imprecisions

discussed below.

The current version of PIKA (1.10C) estimates HR-AMS

uncertainties from the square root of the number of esti-

mated ion counts (DeCarlo et al., 2006), following tech-

niques developed for unit-mass-resolution (UMR) versions

of the AMS (Allan et al., 2003). These UMR AMSs estimate

the signals at a given integer m/z by summing all ion counts

near that signal. In contrast, PIKA estimates the signals of

a given ion by fitting a Gaussian-like (pseudo-Gaussian)

function to background-subtracted data and integrating the

fitted peak. This additional complexity introduces additional

uncertainties but is necessary and useful because HR-AMS

mass spectra are frequently comprised of incompletely re-

solved (overlapping) isobaric peaks, each represented by rel-

atively few data points.

The significance and magnitude of peak-integration un-

certainties in PIKA-analysed HR-AMS data have not been

previously addressed. Müller et al. (2011) discussed peak

fitting for the lower-resolution compact time-of-flight AMS

(C-ToF-AMS), using a different algorithm than that used by

PIKA (the PIKA algorithm is detailed in Sect. 2). Cubison

and Jimenez (2015) used a PIKA-like approach to perform

an extensive study of a two-peak system while assuming an

ideal mass spectrometer. They provided a parameterization

for imprecision estimation in such a system while consid-

ering the lowest-achievable m/z-calibration uncertainty and,

relative to this study, a large number of data points per peak.

The present manuscript approaches the problem from the op-

posite direction to Cubison and Jimenez (2015), beginning

from an empirical analysis and ending with a method for es-

timation which is not limited to just two peaks. The two ap-

proaches are compared in further detail in Sect. 6.

This manuscript addresses peak-integration uncertainties

in PIKA by using a test data set to explore and understand

the origins of peak-integration uncertainties in PIKA, using

methods that are intended to be applicable to any HR-AMS

or other mass spectrometer. The results of this empirical anal-

ysis are then used to construct a Monte Carlo model of the

PIKA peak-fitting procedure, which allows the magnitude

of peak-integration uncertainties for well-resolved (isolated)

peaks and for overlapping peaks to be estimated. This em-

pirically based approach allowed several assumptions behind

uncertainty estimation to be directly evaluated and may be

applied to any new data set.

The manuscript is structured as follows. First, Sect. 2 out-

lines the sources of uncertainty in HR-AMS analysis and de-

scribes the details of a PIKA analysis. Then, Sect. 3 presents

a theoretical discussion and empirical analysis of peak-

integration errors, which arise from peak-width and peak-

height uncertainties. The focus is on the simpler case of well-

resolved peaks. Peak-width uncertainties may be directly es-

timated, but peak-height uncertainties are much more com-

plex and thus are the focus of the remainder of this section.

It is shown that peak-height uncertainties are mostly due to

biases and imprecisions in them/z calibration; these calibra-

tion errors are then quantitatively estimated for well-resolved

peaks.

Based on the constraints established in the previous sec-

tion, Sect. 4 applies a Monte Carlo approach to evalu-

ate the imprecision in fitted peak heights due to m/z-

calibration errors for well-resolved peaks. Even for these

well-resolved peaks, it is shown that these imprecisions are

significant, scale linearly with peak height, and are signif-

icantly influenced by m/z-calibration biases. The overall

Atmos. Meas. Tech., 8, 4615–4636, 2015 www.atmos-meas-tech.net/8/4615/2015/
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Table 1. List of symbols and abbreviations. Symbols used only once

in the text are omitted from this list.

AMS Aerodyne aerosol mass spectrometer

HR-AMS high-resolution AMS

PIKA HR-AMS analysis software

PMF positive matrix factorization

RMSE root mean square error (Eq. 8)

UMR unit (integer) mass resolution

A the area of a peak

e an error (imprecision, bias, or both)

f a pseudo-Gaussian function (Eq. 3)

f0 a unit-height peak function (Eq. 3 with h= 1)

fT a linear superposition of peaks f (Eq. 5 with h= 1)

G a Gaussian function (Eq. 2)

h the height of a peak

kDC mass-spectrometer duty cycle

m/z mass-to-charge ratio

v the peak-shape function (Eq. 3)

w the width of a peak

xi the ith m/z bin of a mass spectrum

µ the mode of a peak

σX imprecision in X (for X = h,w, . . .)

peak-integration imprecision is discussed, with an illustra-

tive example for a specific peak. The impacts of this peak-

integration imprecision on PMF are then demonstrated on

a synthetic HR-AMS data set. Section 5 then extends the

Monte Carlo approach to the case of overlapping peaks. Fi-

nally, Sect. 6 places our results in the context of previous

work, discusses limitations, and addresses its practical appli-

cation.

A number of mathematical symbols and abbreviations are

used throughout; a list is provided in Table 1. Note that be-

cause of the details of the PIKA analysis (Sect. 2), m/z-

calibration errors manifest as peak-location-prediction errors

(µ-prediction errors); we therefore use the latter expression

below.

Throughout this manuscript, the terms “imprecision” and

“bias” are used when referring respectively to random and

independent errors (averaging to 0) and to errors of constant

value. The distinction between these two concepts varies nat-

urally at different stages of the analysis: if peak fitting is bi-

ased by an effect that varies from peak to peak, then an im-

precision in the overall set of fitted peaks will result. As we

discuss below, this is the case when peak positions are con-

strained by an m/z calibration during fitting.

2 Background

2.1 Conceptual basis

Four conceptual categories contributing to HR-AMS uncer-

tainties can be defined: interpretation, counting, instrumen-

tal, and analysis uncertainties. These uncertainties may be

defined and addressed as follows.

1. Interpretation uncertainties arise when a given signal

may arise from sources other than the analyte. For ex-

ample, in the AMS, H2O+ ions may form when ei-

ther gas-phase water, particle-bound water, or the ther-

mal decomposition of oxygenated functional groups in

organic PM (OM) (Aiken et al., 2008), inorganic PM

(Chen et al., 2011), or BC (Corbin et al., 2014). The

interpretation of an H2O+ ion as originating from any

one of these sources therefore requires additional in-

formation or assumptions to be made. In the AMS,

a fraction of the overall H2O+ signal is typically at-

tributed to OM according to laboratory-measured frag-

mentation patterns (Allan et al., 2004) as detailed by

Chen et al. (2011). This so-called fragmentation-table

approach may introduce biases but not imprecision to

the data set. The biases would be constant only for a

constant aerosol composition.

Interpretation uncertainties may also occur if an ion is

misidentified or omitted in the PIKA software. Such er-

rors are not considered in this work.

2. Counting uncertainties estimate the degree to which

a count of n ions would vary if that count were re-

peated for the same system and the same time period

(Taylor, 1997). They are therefore a measure of impre-

cision. Poisson uncertainties are included in the stan-

dard UMR-AMS and HR-AMS error models and are

determined by translating mass-spectral peak areas to

ion signal rates and applying the Poisson distribution to

determine σn as
√
n for a count of n ions over a specific

time period (Allan et al., 2003; DeCarlo et al., 2006).

3. Instrumental uncertainties may arise due to electronic

noise or to changes in the performance of various in-

strumental components. In the latter case, which for

example may reflect changes in detector sensitivity or

long-term performance fluctuations, the significance of

such variations can be evaluated by Allan-variance anal-

ysis (Allan, 1966; Werle et al., 1993; Ng et al., 2011;

Onasch et al., 2012). Whereas the Allan variance de-

creases with increasing averaging time for an ideal mass

spectrometer (where only ion-counting uncertainties ex-

ist), it eventually increases with longer averaging times

in real instruments. This increase reflects the introduc-

tion of additional error terms from slowly varying con-

tributors such as electronics temperature or detector sta-

bility (Allan, 1966; Werle et al., 1993). Conversely, the

minimum in a plot of Allan variance against averaging

time indicates the maximum timescale over which in-

strumental uncertainties can be considered negligible.

For an SP-AMS, Onasch et al. (2012) have shown that

σcounting dominates instrumental uncertainties for aver-

aging times below 100 s in a filtered-air sample. Since

this is longer than typical HR-AMS and SP-AMS sam-

pling times (internal backgrounds are taken automat-
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ically), instrumental uncertainties should therefore be

small relative to counting uncertainties. However, this

may not be true for instrumental uncertainties that are

dependent on signal loadings, such as those due to back-

ground measurements or detector saturation.

4. Finally, analysis uncertainties reflect the confidence

with which mass-spectral peak areas can be determined.

These uncertainties may comprise both biases and im-

precisions. The remainder of this manuscript focusses

on these uncertainties in PIKA, with an emphasis on

the peak-integration imprecision which is most relevant

to PMF (and other least-squares-minimization tech-

niques). The next section describes the PIKA fitting pro-

cedure to provide a basis for this discussion.

2.2 Constrained peak fitting in PIKA

In PIKA (up to the current version, 1.11C), the signal inten-

sity y due to a specific ion is considered to arise from a peak

φ, together with some noise σy , for each measured ion-time-

of-flight x (corresponding to different m/z):

y(x)= φ(x)+ σy . (1)

To a first approximation, the peak φ has a Gaussian shape

and may be modelled by

G= h · exp

[
−(x−µ)2

w2

]
, (2)

where h is the peak amplitude (peak height), µ the mode and

mean of the Gaussian (peak location), and w the standard

deviation (SD; peak width). These parameters may be esti-

mated by least-squares fitting to the data.

In practice, the Gaussian model is modified to account

for peak broadening, skewness, tailing, or other instrumen-

tal non-idealities (DeCarlo et al., 2006) by defining a peak-

shape function v. The v is determined empirically by averag-

ing a large number of normalized, well-resolved peaks from

a given data set and may be visualized as a one-dimensional

vector of correction factors in normalized x space (xnorm. =

[x−µ]/w). Including v in Eq. (2) defines the pseudo-

Gaussian function (DeCarlo et al., 2006),

f = v ·G= h · v · exp

[
−(x−µ)2

w2

]
,

f = h · f0. (3)

To improve the robustness of the PIKA fitting routine

against poorly resolved peaks and noisy data, some of the pa-

rameters in Eq. (3) are constrained during peak fitting. The

v is determined as described above, µ is obtained from an

m/z calibration, and w is from a peak-width parameteriza-

tion, w(m/z). These are obtained as follows.

The m/z calibration is achieved by fitting Eq. (2) to user-

selected background peaks. The fitted peak locations µ in

time-of-flight space are calibrated to their known m/z fol-

lowing the procedure described by DeCarlo et al. (2006).

Separate m/z calibrations are obtained for every mass spec-

trum. In practice, these calibrations are applied to predict

peak locations in ion time-of-flight space before fitting the

raw data. We therefore refer below to “µ-prediction errors”

rather than “m/z-calibration errors” except when specifically

discussingm/z calibrations. Although all peaks were fitted in

ion-time-of-flight space below, the discussion refers to peak

m/z for clarity.

The w(m/z) calibration is also obtained by fitting Eq. (2),

but to a separate set of peaks. This set of peaks is carefully

selected to ensure that only single, well-resolved peaks of

unambiguous composition are considered. The fitted peak

widths w are averaged before being parameterized by a (typ-

ically linear) calibration curve, as described by DeCarlo

et al. (2006). In the present analysis, the w(m/z)-calibration

procedure was slightly modified to improve its robustness

against poor-quality peak fits, as described in detail in Corbin

et al. (2015a) and briefly in the Appendix.

Thus, the three inputs to Eq. (3) are defined from three dif-

ferent calibrations on the data. These calibrations are funda-

mentally different: the w(m/z) and v calibrations are deter-

mined once for the entire data set, while the m/z calibration

is determined for each individual mass spectrum. Variability

in the accuracy of the m/z calibration may therefore lead to

variability in the analysis. Also, different peaks are used for

all three calibrations, so that their prediction errors may also

differ.

With the inputs described above, Eq. (3) is fitted to esti-

mate h. An example is shown in Fig. 1, showing the CO+2
signal at m/z 44 in the lower panel and the fit residuals

in the upper panel. The peak spans only 2–3 detector bins

(corresponding to 4–6 ns), which was typical for m/z in the

range 15–75 for this specific instrument. Other studies have

reported slightly lower m/z resolutions and correspondingly

a slighly higher number of detector bins representing each

peak (e.g. DeCarlo et al., 2006; Sun et al., 2010; Ortega et al.,

2013). The conclusions drawn at the end of this study are in-

dependent of this detail.

The fitted h is used by PIKA to estimate the areaA of each

peak via the Gaussian integral as A(G)= hw
√
π , which

leads to (Sueper et al., 2011)

A= hw
√
π ·

Af0

AG0

· kDC, (4)

where AG0
and Af0

are the respective integrals of the

standard Gaussian and pseudo-Gaussian distributions. These

standard integrals are defined by Eqs. (2) and (3) with unit h

andw, andµ= 0. The factor kDC is a correction for the mass-

spectrometer duty cycle to account for the fact that lighter

ions will be transported faster than slower ions into the mass

spectrometer prior to time-of-flight measurement and, con-

sequently, reside in the extraction region for shorter times

(Hings, 2006). The ratio Af0
/AG0

is typically close to unity.

Atmos. Meas. Tech., 8, 4615–4636, 2015 www.atmos-meas-tech.net/8/4615/2015/
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Figure 1. Example of a PIKA fit. The raw data (y; counts per second

per bin), fit (f ), and residuals (y− f ) are shown.

After estimating A, PIKA currently estimates the uncer-

tainty in A from the square root of the number of ions as-

sociated with the signal, according to an assumed Poisson

distribution of errors (Allan et al., 2003).

In the HR-AMS, more than one peak is typically observed

at each integerm/z. These peaks are modelled as a linear su-

perposition fT of pseudo-Gaussians with similar w (Sueper

et al., 2011):

fT =

j∑
i=1

hif0,i(µi,w). (5)

The uncertainty of fits to Eq. (5) with j > 1 (multiple over-

lapping peaks) is much more complex than the case where

j = 1 (≡ well-resolved peaks).

The next section therefore focusses on the case of well-

resolved peaks, before Sect. 5 discusses the overlapping-peak

case.

3 Causes of peak-fitting uncertainty: well-resolved

peaks in a real data set

3.1 Integration uncertainty for well-resolved peaks

The integration of fits to well-resolved pseudo-Gaussian

peaks via Eq. (4) will lead to an uncertainty,(σA
A

)2

=

(σh
h

)2

+

(σw
w

)2

, (6)

which, if the fractions σh/h and/or σw/w are sufficiently

large, may contribute significantly to the overall uncertainty

of integrated mass-spectral signals.

In Eq. (6), the uncertainties in Af0
and kDC are consid-

ered negligible, since the integral AG0
is known exactly; the

integral Af0
is also known exactly for a given v; and the un-

certainty in kDC depends only on the stability of the mass-

spectrometer voltages, which fluctuate negligibly for the time

periods over which data are collected (Sect. 2.1). In addi-

tion, h and w have negligible covariance as they are deter-

mined via separate and independent calibrations (Sect. 2.2);

the w(m/z) calibration requires, and can be used to validate,

the assumption that w is independent of h.

The value of σw may be directly estimated from the

peak-width calibration procedure via the uncertainties in the

calibration-fit coefficients. For the test data set discussed be-

low, this approach indicated σw/w ≈ 2.5%. Such a percent-

age uncertainty is important as it scales with signal differ-

ently to the typically used Poisson uncertainty, increasing lin-

early with the number of ion counts rather than as the square

root.

The estimation of σh is much more complex than σw.

Whereas σw may be estimated directly from the calibration

fit, σh reflects the imprecision of the constrained PIKA fit-

ting procedure (Sect. 2.2), the constraints of which are pre-

dicted by two separate calibrations (peak width and location)

as well as an empirically defined peak shape v.

3.2 Theoretical consideration of single-peak fitting

errors

In this subsection we describe the theoretical basis on which

the RMSE, defined below, has been interpreted in Sects. 3.3

and 3.4. The focus is on well-resolved peaks; overlapping

peaks are addressed in Section 5.

Since the width, location, and shape of the PIKA pseudo-

Gaussian fit function (Eq. 3) are predefined by different cal-

ibrations, the exponential term of Eq. (3) reduces to a trans-

formation of the x variable:

f = hf0(x,w,v,µ), (7)

where f0 is defined by Eq. (3) with h= 1 and with µ, w, and

v given by the calibrations described in Sect. 2.2.

A fit to Eq. (7) is equivalent to a simple linear regression.

(Indeed, the newest version of PIKA directly performs such a

regression.) An uncertainty estimate for h could thus be ob-

tained directly from the regression, but this estimate would

not account for bias in the fit. Such bias must be accounted

for, because when such bias varies from fit to fit (i.e. from

mass spectrum to mass spectrum for the same peak), it pro-

duces an imprecision in h. Such a varying bias is to be ex-

pected, because a new f0 is defined for each fitted ion. The

accuracy of f0 may vary in this context due, for example,

to variations in the accuracy of the m/z-calibration equation

which is obtained for each mass spectrum.

The influence of such variations on the imprecision of the

fitted h values cannot be estimated directly from a single fit

but must be considered in the context of the whole data set.

It can be expected, however, that (in the absence of noise)

errors in h due to f0 will be proportional (scale linearly with

h) since f0 is scaled by h during fitting.

www.atmos-meas-tech.net/8/4615/2015/ Atmos. Meas. Tech., 8, 4615–4636, 2015
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To quantify the error in a given fit of f , we use the SD of

the fit residuals, the fit root-mean-square error (RMSE):

RMSE=

√√√√ 1

j − 1

j∑
i=1

[
y(xi)− f (xi)

]2

=

√√√√ 1

j − 1

j∑
i=1

[
ri

]2

=

√
SSR

j − 1
. (8)

As the RMSE of a single peak is the main quantity of inter-

est below, the range 1≤ i ≤ j was limited to 2 SDs on either

side of the peak centre (µ± 2w), representing the trimmed

variance of the residuals (e.g. Wilks, 2011).

The RMSE is not used to directly infer the error in the

fitted h but rather as a diagnostic with which the causes of

errors in f0 may be elucidated and understood. Based on this

understanding, the imprecision in h is then estimated.

For a sufficiently large sample, the expected value of the

squared RMSE is the sum of the model variance and the

squared model bias (Wilks, 2011). In the context of this dis-

cussion, this statement may be illustrated as follows. The

RMSE represents the expected value of a fit residual, 〈ri〉,

which is related to the fitted and true peak functions hfitted,if0

and htrue,iφ0 as

〈ri〉 =
〈
hfitted,if0−htrue,iφ0+ σy,i

〉
, (9)

where hfitted,i and htrue,i are scalars to the estimated and true

unit-height peak functions f0 and φ0 respectively, and σy,i
represents noise in the data due to ion counting or back-

ground subtraction errors.

Letting f0,i = φ0,i + εi , where εi is the error in f0 at each

data point resulting from imperfect knowledge of the true

peak shape,

〈ri〉 =
〈
hfitted,iφ0+hfitted,iεi −htrue,iφ0+ σy,i

〉
= hfitted,iφ0+hfitted,i〈εi〉−htrue,iφ0+〈σy,i〉. (10)

For small peaks, counting uncertainties dominate the fit

residual: (htrue,iφ0)/σy,i −→ 0, thus 〈ri〉 −→ σy,i in Eq. 10

(cf. Fig. 11).

For large peaks, the counting uncertainties σy,i become

negligible relative to hfitted,i〈ε〉. In this situation, the slope

of a plot of 〈ri〉 against hfitted,i will be

d〈ri〉

dhfitted,i

= 〈εi〉−φ0,i

[
dhtrue,i

dhfitted,i

− 1

]
= 〈εi〉, (11)

where dhtrue,i/dhfitted,i = 0 if the peak shape is independent

of the peak intensity, as was already assumed (Sect. 2). This

assumption is discussed further in Sect. 3.4.

Thus, for signals large enough for noise to be negligible,

a plot of 〈ri〉 (or an estimator of 〈ri〉, such as the RMSE)
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Figure 2. The RMSE of standard PIKA fits to well-resolved peaks

in the test HR-AMS data set. Numbers in the legend show the inte-

ger m/z of these peaks. The dotted line indicates the lower limit of

approximately constant RMSE for each ion, the dashed line the up-

per limit of constant relative RMSE, and the solid line the quadratic

sum of the two.

against the fitted peak height hfitted may show a linear slope

where errors in the scaled peak-shape function f0 dominate

counting errors. The linearity arises because of the linear

scaling of f0 by hf . If a unique f0 is prescribed for each

fit, as is the case in PIKA, then variability within the set of

prescribed f0 may lead to an overall imprecision σh in the set

of fitted hfitted. Below, we refer to hfitted simply as h. For fits

to well-resolved ions, we plot the RMSE against h to evalu-

ate the factors that lead to the constant relative error defined

in Eq. (11) in order to build an understanding on which the

corresponding σh may be estimated in Sect. 4.

3.3 Identification of single-peak fitting errors using fit

RMSE

The RMSE of a number of well-resolved peaks in the test

data set are plotted in Fig. 2. Each point in the figure rep-

resents the RMSE of a fit of Eq. (7) to the data. The fig-

ure includes seven well-resolved peaks based on their be-

ing both well-resolved from any neighbours and present at

a wide range of signal intensities. The mass spectra have been

background subtracted before fitting as described in the Ap-

pendix. Background subtraction was performed to remove

inconsequential differences between the ions, for example

due to signals from background CO2 gas. Other ions had very

small background signals regardless.

The peaks in Fig. 2 span a range of different m/z, as

indicated by the integer m/z values shown in the legend,

and represent a range of different species. For example, C+3
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ions were formed after BC vaporized at ∼ 4000 K, whereas

C2H3O+ and C3H+7 ions were formed after organic PM va-

porized below 873 K (600 ◦C) (Corbin et al., 2015a). In con-

trast to all other ions, these latter two organic ions are found

at the same integer m/z and were therefore fitted simultane-

ously as a linear sum in PIKA (Eq. 5 with j = 2). This point

is returned to in Sect. 5.

Two distinct trends are evident in Fig. 2. First, the RMSE

approaches an asymptotic value for low peak heights (∼

1 counts s−1 bin−1; cps bin−1). This approximately constant

RMSE (σy ≈ 0.2 cps bin−1) is representative of noise in the

data y. Second, the RMSE shows a constant slope for high-

signal peaks, indicating an approximately constant relative

RMSE for each peak (RMSE/h≈ 3%). This illustrates the

importance of fitting-function errors during the fit (Sect. 3.2).

The constant RMSE and constant relative RMSE are respec-

tively depicted by the dotted and dashed lines in Fig. 2, as

well as their quadratic sum.

The constant RMSE/h for high signals suggests that σh/h

may also be constant. Thus σh may also scale linearly with

signal, as was the case for σw/w (Sect. 3.1), and may sig-

nificantly influence the overall peak-integration uncertainty

for high signals. The next sections therefore aim to obtain an

understanding and quantification of σh/h for incorporation

into the overall HR-AMS uncertainty.

3.4 Impacts of fit-parameter errors on the RMSE of

single peaks

The source of the constant relative RMSE in Fig. 2 was ar-

gued via Eq. (7) to be most likely due to errors in the pre-

defined pseudo-Gaussian function f0. To elucidate which of

the parameters defining f0 have the greatest impact on the

errors of the resulting fit, imprecisions or biases were man-

ually added to each of several input parameters in the PIKA

analysis procedure as follows.

The original magnitude of each error was estimated di-

rectly from the data. Based on these estimates, significantly

larger uncertainties were added to the data, as specified in

Table 2. In most cases, the errors specified in the table were

used to define the SD of a Gaussian probability distribution

from which a new error was sampled for each analysed peak.

Figure 3 plots the effects of these errors on the resulting

RMSE for one exemplary ion, C3H+7 . This ion was chosen

simply because it represented a large range of peak intensi-

ties (abscissas in Fig. 3); the trends seen in Fig. 3 were ob-

served for all of the ions in Fig. 2 (not shown). The magni-

tudes of the errors used to generate the figure are highlighted

in boldface in Table 2 and were chosen so as to give a visible

change in the RMSE graphs (where possible), not to repre-

sent realistic errors.

With this approach, multiple potential sources of the con-

stant relative RMSE term can be eliminated: noise in the pre-

dicted peak width w (Fig. 3b), errors in the slope of the sub-

tracted linear baseline (Fig. 3d), and the use of a different

AMS vaporizer (Fig. 3e) did not alter the magnitude of the

relative RMSE.

Conversely, two potential sources of the constant relative

RMSE can be identified: noise in the predicted peak location

µ (Fig. 3f) and errors in the peak-shape v (Fig. 3g and h). In

these three cases (Fig. 3f–h), a relative RMSE of∼ 15 % was

observed.

The relative µ-prediction errors necessary to achieve this

∼ 15% relative RMSE were 5–10-fold larger than typical

µ-prediction errors; the errors in v necessary to achieve this

∼ 15% relative RMSE were 2 orders of magnitude larger

than the maximum distance between the best estimate of v

and the data used to derive it, which was 0.4%. This sug-

gests that m/z-calibration uncertainties play a larger role

than peak-shape uncertainties in a real data set. This differ-

ence in sensitivity is not surprising given that µ is part of

the exponential term in Eq. (3) while v is a linear term. In

the next section, the fitting procedure was altered to prove

that the majority of the fitting error was due to µ-prediction

errors.

One additional implication of Fig. 3g and h is that

RMSE/h is a function of v. Given that Fig. 2 showed that this

fraction was nearly constant for high signals, we infer that the

peak shape was nearly constant across this range of signals.

If v was independent of signal intensity, then the individual

ions comprising each peak interacted negligibly within the

instrument, which provides justification for the assumed be-

haviour of overlapping peaks as a linear sum in Eq. (5).

3.5 Impacts of fit constraints on single-peak fitting

errors

To explore the impact of errors in µ prediction on the fit

RMSE, the fitting procedure was altered to allow µ and/or

w to be varied during fitting. The peak shape v could not be

meaningfully varied.

Allowing µ to vary by ±20 ppm during fitting reduced the

fit RMSE by almost 1 order of magnitude at high signals

(Fig. 4, red triangles), indicating that the majority of the fit-

ting error was due to errors in the predicted µ (which result

from both imprecisions and biases in m/z calibration). The

RMSE at low signals was virtually unchanged, since it was

dominated by noise in the data (Sect. 3.3). While Fig. 4 illus-

trates this result using C3H+7 , these conclusions were verified

for all of the well-resolved ions discussed above.

Further relaxing the µ constraint to ±50 ppm did not fur-

ther reduce the RMSE. Conversely, reducing the constraint

to ±10 ppm resulted in a change intermediate between the

0 ppm (fully constrained) and ±20 ppm constraints, suggest-

ing that the true accuracy of the m/z calibration was on the

order of ±15 ppm. This value does not correspond to the im-

precision of them/z calibration, as discussed in the next sec-

tion.

Allowing w to vary during the fit by ±5 % (2σw) had no

observable effect on the RMSE (Fig. 4). Although this re-
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Table 2. Effects of manually introducing errors to the PIKA analysis procedure. Cases highlighted in bold are plotted in Fig. 3. Bracketed

values are the estimated errors for the reference case.

Quantity Error Effect on constant RMSE Effect on constant RMSE/h

Dataa (x) [∼ 0.2], 1, 5, 50 cps/bin Increased Negligible

Widtha (w) [< 2.5], 5, 25, 50, 250 % Negligible Increased spread

Baseline heightb [< 0.1], 1, 5, 50 cps/bin Increased Negligible

Baseline slopea
[10−5

], 10−3, 10−1 cps/bin (m/z)−1 Negligible Negligible

Locationa (µ) [∼ 20], 50, 100, 200 ppm Negligible Increased and increased spread

Peak shapec (v) [Empirical,] positive or negative skewness Negligible Increased

a Added as Gaussian noise. b Added as the absolute value of Gaussian noise. c Skewed by multiplying the empirical peak-shape function with a normal cumulative

distribution function, resulting in a 25 % smaller peak area (see Fig. 3g and h).

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(a) Data

   noise

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(b) Width 

   noise

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(c) B.L.

    height

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(d) B.L.

    slope

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(e) No laser

 Reference case

 Additional errors

 3% line from Fig. 2

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(f) Location

   noise

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(g) +Skew

10
-2

 

10
0

 

10
2

 

10
4

10
0  10

2  10
4  

(h) �Skew

Fitted peak height  [cps / bin]

R
M

S
E

  
[c

p
s
 /

 b
in

]

Figure 3. Response of the RMSE of a representative ion (C3H+7 ) to the addition of very large errors at various stages of analysis (a–d, f–h).

The added errors are defined by the highlighted values in Table 2. The laser vaporizer of a dual-vaporizer SP-AMS (see Corbin et al., 2015a)

was on for all data except those of panel (e). B.L. is baseline.

sult may appear to contradict the fact that a significant uncer-

tainty in the w calibration was estimated during calibration

(Sect. 4.3), it is fully consistent with the only minor changes

in RMSE observed when large errors were added to w in

Sect. 3.4 (Fig. 3b). Thus, although uncertainties in w do not

strongly influence the fitted h, they lead to uncertainties dur-

ing the peak integration by Eq. (4) (cf. Eq. 6).

When both w and µ were allowed to vary during fitting,

the RMSE behaved similarly to the case where only µ was

allowed to vary (i.e. the red triangles in Fig. 4). In this case,

some linear dependence of the RMSE on the fitted peak

height remained, suggesting that f0 still had some influence

on the RMSE. This remaining dependence is attributed to er-

rors in the peak-shape factor v. Since the empirically defined
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Table 3. Summary of h-fitting biases and imprecisions from data and simulation. The second column, µ-prediction error, reflects errors in

m/z calibration as estimated from the test data set for each ion (Fig. 5). The third to fifth columns show different Monte Carlo estimates of

the error in fitted h as bias, and imprecision pairs (bh, σh). Respectively these different estimates are the best estimate, an estimate where bh
is not taken into account, and the best estimate when broader peaks were simulated (resulting in twice the number of measurements per peak

and representing potential differences between instruments).

Percentage error in fitted h: bias, imprecision

Ion µ-prediction error from best-estimate µ errors with µ imprecision only with broader peaks

C2H+
3

4.6± 9.5 −0.35, 1.06 −0.20, 0.93 −0.08, 0.13

C3H+7 −10± 7.5 −0.65, 1.64 −0.17, 0.98 −0.19, 0.21

C4H+
2

−14± 5.7 −1.06, 2.10 −0.11, 0.78 −0.31, 0.23

C5H+
11

−15± 5.0 −1.03, 2.46 −0.12, 0.79 −0.49, 0.31

C+
3

4.8± 12 −0.51, 1.52 −0.41, 1.43 −0.16, 0.24

C2H3O+ −5.9± 8.3 −0.39, 1.36 −0.22, 1.06 −0.13, 0.17

CO+
2

6.9± 9.0 −0.12, 1.41 −0.20, 1.13 −0.15, 0.21
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Figure 4. Changes in the RMSE of C3H+7 in response to changes

in the fitting procedure. The normal PIKA fitting procedure (ab-

scissa) is compared to procedures where µ was allowed to vary by

±20 ppm (red 4) and where w was allowed to vary by ±5 % (grey

+), or both were allowed to vary (blue ◦). Lines highlight the trends

expected for no decrease in the RMSE (1 : 1) and a factor-of-10 de-

crease (1 : 10).

v (a vector of more than 100 values) could not be allowed to

vary during fitting as µ and w were in Fig. 4, its influence on

the RMSE trends could not be explored in this context. If the

remaining RMSE trend was due to errors in v, these errors

had a much-smaller impact on the RMSE (and therefore the

goodness of fit of Eq. 3) than the errors in µ prediction, so

they are not discussed further.

3.6 Estimation of µ-prediction (m/z) errors from

single-peak fits: consequences for h-imprecision

estimation

When the predicted peak location µpredicted was allowed to

vary during fitting (Sect. 3.5) the relative RMSE was sig-

nificantly reduced in the high-signal regime. The final fit

therefore represented a significantly better model of the data,

which is interpreted as an improvement due to a reduced

error in the µ. The fitted peak location, µfitted, is therefore

interpreted as a good approximation to the true peak loca-

tion, µtrue, and used to estimate errors in µ prediction as

eµ ≈ (µfitted−µpredicted) in the current section. Limitations

of this estimation approach are discussed in Sect. 6.

The dark-shaded data in Fig. 5 show the distribution of the

estimated µ-prediction errors for peaks outside of the noise

regime, defined as hfitted > 20 cps/bin from Fig. 2. For this

analysis, µ was allowed to vary by ±40 ppm. If the aggre-

gated eµ data are fitted by a Gaussian function, the mean

appears to be virtually 0 (fitted value: −0.5± 0.8 ppm), sug-

gesting zero bias in µpredicted. However, the bias for each in-

dividual ion was not 0, as shown by the light-shaded data in

the same figure. The µfitted for each ion showed significant

biases (mean different from 0) as well as imprecisions (sig-

nificant spread relative to the mean). The magnitude of these

biases and imprecisions were estimated by a Gaussian fit in

each case, with the fitted values shown in Table 3. The impre-

cisions in µpredicted are generally of similar magnitude to the

biases, and the biases show both positive and negative val-

ues. These biases must therefore be taken into account when

estimating h-fitting imprecision for individual ions.

Figure 6 plots the data for m/z 43, C2H3O+

(m/z 43.0184), and C3H+7 (m/z 43.0548) that were shown

in Fig. 5 as a scatter plot. As these two ions are of similar

m/z, but are nonetheless well resolved with a separation of

∼ 7 standard deviations (cf. Cubison and Jimenez, 2015),

it was hypothesized that their µ-prediction biases may have
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Figure 5. Distribution of prediction errors in µ estimated from the

test data set for each of the ions shown in Fig. 2, including only

peaks outside of the noise regime (hfitted > 20 cps bin−1). Light-

shaded data represent specific ions and dark-shaded data the ag-

gregate of all ions. The light-shaded data are scaled similarly, so

that their relative areas represent the relative number of data used to

construct them. The mode and widths of the Gaussian fits to each

histogram are given in Table 3.

been approximately equal. Such approximate equality would

have allowed µ-prediction biases to be fitted as a single free

parameter during fitting of Eq. (5). Alternatively, a single

value for the µ-prediction bias could have been assumed

during Monte Carlo analysis (Sect. 4).

The lack of a 1 : 1 trend in Fig. 6 (indeed, a slight neg-

ative trend is evident) suggests that the µ-prediction biases

for nearby peaks cannot be assumed to be equal. This unex-

pected result may be related to the sensitivity of the fits to the

location of the mode of a peak relative to the nearest detector

bin, which is discussed in Sect. 4.1. The method by which eµ
was estimated may also play a role, but to some degree this

method must also represent the sensitivity of the fitting al-

gorithm to the data. Since this sensitivity also influences the

ultimate quantity of interest, σh, this conclusion would re-

main true regardless of the accuracy and precision of the eµ
estimate. Moreover, we emphasize that ion-dependent biases

in m/z calibration are not unique to this study, as discussed

in Sect. 6.

Although it is readily apparent that a µ-prediction bias

may lead to a bias in the fitted h for a given ion, it is less

apparent that such a bias also significantly increases σh for

any given µ-prediction imprecision. This occurs because the
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Figure 6. Scatter plot of the estimated errors in peak-location pre-

diction (same data as in Fig. 5), eµ, for the ions C2H3O+ and

C3H+7 , both found at m/z 43.

slope of a peak increases with increasing distance from its

mode (for small distances), such that the variation in fit-

ted height is larger for peaks fitted further away from their

mode. The magnitude of this effect is illustrated in Fig. 10,

which is discussed below. It is therefore essential consider

µ-prediction biases when estimating the magnitude of σh.

4 Monte Carlo estimation of σh for well-resolved peaks

A Monte Carlo approach for the estimation of peak-fitting

uncertainties was developed based on the above discussion.

With this approach, σh is directly evaluated by sampling µ-

prediction errors (both m/z-calibration biases and impreci-

sions), repeatedly fitting a selected peak, and calculating the

standard deviation of the resulting set of fitted h. Below, this

approach is described in more detail and used to investigate

the µ-prediction errors observed in the test data set. Then,

the conditions under which the approach may be generalized

to the case of overlapping peaks are explored.

The Monte Carlo approach used to evaluate σh in the test

data set was evaluated by simulating peaks via Eq. (3) using

the m/z axis of a mass spectrum from the test data set. For

each simulated peak, a different m/z axis was randomly se-

lected. The simulated peaks were generated using the peak

shape v and width w expected for this data set, and the Gaus-

sian noise described in Sect. 3.3 was added to the data. The

simulated peaks were then fitted to Eq. (3) with µ inten-

tionally constrained to erroneous values. These erroneous µ

constraints were obtained by sampling from a Gaussian dis-

tribution with mean and SD given by the fits in Fig. 5. For

the Monte Carlo estimation of σh for standard analyses, this

approach must be modified slightly because m/z-calibration

biases are unknown, as discussed further below.
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Figure 7. The RMSE of C3H+7 fits in the test data set (symbols)

and to simulated data (line, mean; shading, SD). Peaks of the em-

pirically determined peak shape were simulated on the same m/z-

axes as the measurements and were fitted using Eq. (3) after adding

noise (0.35 cps bin−1) and emulating bias and imprecision errors in

the location constraints (Table 3). For each point, multiple simula-

tions on randomly selected m/z axes were performed to estimate

the standard deviation of the RMSE (blue shading).

The RMSE of these fits to the simulated data are plotted

in Fig. 7 for C3H+7 . Each simulated peak height was fitted

100 times, each time with a different sample of µ-prediction

and data-noise errors and on a different m/z axis. Increasing

this number of samples did not affect the results. The fig-

ure shows the resulting mean (white line) and SD (light-blue

shading) of the RMSE, which are in excellent agreement with

the data.

It was noted in Sect. 3.5 that some small errors in v were

likely present. Although no physical basis for the functional

form of such errors was available, the impact of errors in

v was investigated by adding arbitrary functions to the true

peak shape. This allowed the trends in Fig. 4 for the relaxed-

µ constraint case to be reproduced but made no visible dif-

ference to Fig. 7. Errors in v were therefore omitted from the

model.

4.1 Imprecision for well-resolved peaks with known

µ-prediction errors

The blue points in Fig. 8 (case A) show the σh corresponding

to the RMSEs shown in Fig. 7. The imprecision increases as

h becomes smaller due to the noise in the data but reaches an

asymptotic value as h becomes larger. As noted above, these

points represent random samples from the entire test data set.

In practice, it is desirable to estimate σh on a case-by-case

basis for each peak in each mass spectrum. Such an estimate
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Figure 8. The imprecision in C3H+7 fitted peak heights, σh, esti-

mated via the Monte Carlo approach described in the text. Although

counting imprecisions have been omitted so as to illustrate the influ-

ence of the different approaches (a–e), Gaussian noise with standard

deviation 0.35 cps bin−1 was added to each mass spectrum to allow

comparison with Fig. 7. The different approaches (a–c), detailed in

the figure legend, illustrate the need to consider the position of the

peak relative to the sampling grid (“bin-to-mode distance”) when

simulating peaks comprised of relatively few data points (this peak

is illustrated in the upper-left panel of Fig. 10). The approaches (d)

and (e) illustrate the σh that would be estimated in the absence of

exact knowledge of the m/z-calibration bias.

is shown by case B in Fig. 8, which was obtained by perform-

ing the Monte Carlo approach described above except the

random selection of different m/z axes was not performed.

Different m/z axes showed different asymptotic values; the

selected axis was chosen for its visual distinction. This dif-

ference does not represent real variability in the data: again,

only them/z axis was taken from the data set and the peak it-

self was simulated. Rather, the difference was due to a shift in

the relative distance between the data points representing the

peak and them/z axis (the “bin-to-mode distance”), which is

arbitrary and can vary between mass spectra. Case C demon-

strates this fact by repeating case B while shifting the mode

location of the peak by a randomly selected fraction of the

bin spacing between 0 and 1 for each Monte Carlo fit. The

result is an estimate of σh that is comparable to the entire-

data-set case and represents fit-function errors rather than the

bin-to-mode distance.

For overlapping peaks, the µ-prediction imprecision and

bias is generally not known. Case D repeats case C but with-

out the µ-prediction bias. The result is an imprecision esti-

mate that is much lower. For case E, a much higher impre-

cision of 20ppm has been used, based on the recommenda-

tion from Sect. 4.2 that the estimated µ-prediction impreci-

sion be increased to allow unbiased estimation of σh when

µ-prediction biases are unknown.
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Figure 9. Normalized and centred probability distributions of the

simulated imprecision in fits to well-resolved peaks from the test

data set, using the µ-prediction biases and imprecisions given in

Table 3. Distributions were centred by subtracting the mean sim-

ulated error, so that only fitting imprecisions (relevant to PMF) are

shown. Simulations were performed on randomly selectedm/z axes

from the data set.

In Fig. 8, the standard deviation of multiple fits was used to

represent σh. However, the distribution of errors comprising

σh was not normally distributed, as shown in Fig. 9. Figure 9

includes all seven of the well-resolved peaks discussed above

and only represents signals much larger than the noise level,

since each followed the same asymptotic behaviour shown

in Fig. 8 and since counting errors must ultimately be com-

bined with peak-integration errors at low signal-to-noise ra-

tios (Fig. 11). A large number of iterations (5000) were per-

formed for each peak so that histograms could be plotted in

detail. The mean fitting error (bias) has been subtracted from

each distribution so that the plot represents σh. The errors are

normalized to the absolute peak height, as they were a con-

stant fraction of the height (as expected from Sect. 3). For

all ions, the limiting case of very high ion signals was simu-

lated. The reader is referred to Cubison and Jimenez (2015)

for a discussion of the effects of ion-counting uncertainties

on fitting imprecision.

Each probability distribution in Fig. 9 shows a very dif-

ferent skewness. These differences are largely controlled by

the µ-prediction bias and imprecision, which may cause the

predicted peak location to be consistently away from the

peak mode. Away from the mode, the peak itself slopes more

steeply and a small µ-prediction imprecision leads to a large

variability in the fitted height. This fact means that a greater

imprecision results from a greater bias in them/z calibration.

Theµ-prediction bias is therefore an important component of

the imprecision of the fitted h. Without including this bias in

estimating σh, the resulting imprecision estimates would be

considerably different (Table 3).

The impact of the µ-prediction biases discussed above on

σh will be reduced for broader (lowerm/z-resolution) peaks,

since such peaks are less steeply sloped. Broader peaks are

also represented by more points in the mass spectrum, which

has a major impact on the imprecision: for the case of C3H+7 ,

increasing the peak width by a factor of 1.5 (which doubled

the number of data points representing > 1 % of the peak

height from 4 to 8) decreased the imprecision from 1.6 to

0.2 % (Table 3). This effect would not necessarily be reduced

by increasing the number of points per peak without chang-

ing the mass-spectral resolution (Hilmer and Bothner, 2011)

but instead only by reducing the µ-prediction errors.

4.2 Imprecision for well-resolved peaks with unknown

µ-prediction errors

A non-negligible m/z-calibration bias is anticipated for any

given mass-spectral peak, since ion trajectories are typi-

cally imperfectly described by the calibration function as dis-

cussed in Sects. 3.6 and 6. We explored the sensitivity of σh
to this bias by calculating σh for the three exemplary peaks

shown in the top row of Fig. 10, for a wide range of µ-

prediction bias and imprecisions. Figure 10 thus illustrates

the range of imprecision for which a given m/z-calibration

bias becomes negligible: for the range of m/z-calibration bi-

ases where σh remains similar along a vertical cross-section

of the middle panels of the figure, the actual value of the bias

term need not be known.

To place Fig. 10 in context, theµ-prediction biases and im-

precisions for ions in the test data set (Table 3) are shown in

the central column. In the left- and right-hand side columns,

only the µ-prediction errors representing the specified ions

are shown. The central column was generated using a much-

higher data-point density than was observed in the test data

set and represents a higher data-sampling rate, as may be ob-

served in other instruments. It also equivalently represents

a higher m/z ion or a lower mass-spectral resolution instru-

ment. The upper row of plots in Fig. 10 includes a horizontal

dashed line to illustrate the peak width (w in Eq. 3). Also

shown in this row are red vertical bars spanning ± 17ppm,

which is the standard deviation of the aggregated error es-

timates for well-resolved peaks in the test data set (shown

in the lower-right plot of Fig. 5). The grey vertical bars span

± 10ppm to illustrate the range of biases observed in Table 3.

(The position of a peak relative to the grey bars will, by def-

inition, change only between ions and between data sets, not

between samples.)

The second row of plots in Fig. 10 plots σh for each of

the three cases. Because the peak is nearly Gaussian, the plot

is virtually symmetrical about the zero-bias line. Neverthe-
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Figure 10. Response of the peak-fitting imprecision σh to variations in m/z calibration imprecision and mass accuracy, i.e. to variations in

µ-prediction imprecision and bias. Each column corresponds to the simulated ion named and depicted in the first row respectively: C3H+7
simulated on a normal m/z axis, C3H+7 simulated with much a greater data point density (reflecting a broader peak and/or faster sampling

rate), and C5H+
11

simulated on a normal m/z axis. The second row of plots depicts the Monte-Carlo-estimated σh (standard deviation of 300

fits with varying bin-to-mode distance and negligible counting noise) for each imprecision and bias (represented via the standard deviation

and mean of a Gaussian distribution) specified on the horizontal and vertical axes respectively. The third row of plots depicts the effect of

bias on σh: each point on the third-row images are normalized to σh,b= 0, i.e. the horizontal line of zero bias from the respective second-

row plot. The pink + represent the µ-prediction bias and imprecision estimated from the data, shown in the left and right columns for the

respective ions, and in the central column for all seven ions in Fig. 9. The apparent noise is due to the variation of the bin-to-mode distance

(see text). Vertical cross-sections on the second and third rows of plots correspond to the range of σh which may exist when µ-prediction

bias is unconstrained.

less, we have plotted both negative and positive biases be-

cause this is the space in which the true, unknown biases of

all peaks will lie.

The third row of plots in Fig. 10 shows the effect of µ-

prediction biases on σh, relative to the no-bias case. That

is, this row shows σh,with bias divided by σh,bias=0, where

the former quantity is the σh obtained when considering µ-

prediction biases and the latter quantity is the σh obtained

when neglecting those biases. It is clear that the larger the

m/z-calibration imprecision, the smaller the importance of

the m/z-calibration bias.

Thus, the bias need not be known or estimated for the ac-

curate Monte Carlo estimation of σh; it is only necessary

that them/z-calibration imprecision employed for the Monte

Carlo estimate is large enough that σh lies within the regime

where the influences of m/z-calibration biases are negligi-

ble. This will result in σh values that are overestimated by a

few percent but that are consistent between peaks with differ-

ent m/z-calibration bias. For the biases observed in Fig. 10,

a reasonable estimate for an m/z-calibration imprecision in

this regime may be 20ppm; an example of the resulting σh is

shown in shown in Fig. 8, case E.

Consistent estimates of σh between peaks with different

calibration biases is important during least-squares fitting.

This statement may be justified by the conclusions of Paatero

and Hopke (2003), in particular the conclusion that underes-

timating the imprecision of certain variables during PMF can

have significantly harmful effects. Those authors also con-

cluded that overestimating uncertainties may have potentially

positive effects. Both conclusions provide clear support for

the present method.

An approach to estimating σh which does not require ion-

specific estimates of m/z-calibration biases or imprecisions

is also important during fits to multiple overlapping peaks,

since the estimation of m/z-calibration biases in such a con-

text (Sect. 3.6) may be difficult or impossible. This is further

discussed in Sect. 5.
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Figure 11. Example of the relationship between the uncertainty in

the integrated area of for a single, well-resolved peak and its abso-

lute area. The example uses real data for CO+
2

and shows two cases;

first considering only counting uncertainties (red) and second con-

sidering both counting and peak-integration uncertainties (black),

following Eq. (13). The upper panel shows the absolute impreci-

sion; the lower panel the relative imprecision. The horizontal dotted

line illustrates the more-realistic asymptotic behaviour of the new

approach.

4.3 Overall peak-integration imprecision: example for

a well-resolved peak

With σw/w determined as∼ 2.5 % (Sect. 3.1) and σh/h esti-

mated by the Monte Carlo method described above (Sect. 4),

for both well-resolved and overlapping peaks, the overall im-

precision in the peak integration discussed in Sect. 3.1 can be

estimated from Eq. (6) as

(σA
A

)2

=

(σh
h

)2

+

(σw
w

)2

, (12)

where σh/h is approximately constant (on the order of a few

percent) for a well-resolved peak within a given data set and

may become much larger as peak overlap becomes important

(Cubison and Jimenez, 2015).

σA is considered independent of the Poisson counting un-

certainties σp discussed in Sects. 2.1 and 5, so that the overall

HR-AMS uncertainty may be expressed in units of ion counts

per detector bin as

σAMS =

√
σ 2
A+ σ

2
p . (13)

For well-resolved peaks, the first term in Eq. (13) scales

linearly with signal, whereas the second term scales with the

square root of the signal. Therefore, even for well-resolved

peaks, the first term dominates at high signals. That is, in this

case peak-integration imprecision dominates ion-counting

imprecision. For overlapping peaks, peak-integration impre-

cision may become very large for much smaller signals.

While σh/h is most accurately estimated on a case-by-

case basis using the Monte Carlo approach outlined above,

we illustrate the importance of peak-integration errors by tak-

ing σh/h≈ 4% as a representative value for well-resolved

peaks in the current data set (estimated based on Sect. 4.1),

which together with σw/w ≈ 2.5% gives

σA ≈ (4.7%)A (14)

for well-resolved peaks in this data set. This is shown in

Fig. 11, which has been obtained by programming Eq. (13)

into PIKA using the value for σA given above. (As is stan-

dard in PIKA, the calculations have accounted for additional

details related to sampling time, baseline noise, and mass-

spectral duty cycle (Allan et al., 2003; Sueper et al., 2011).

Due largely to sampling-time correction (Allan et al., 2003),

the asymptote of Fig. 11b is less than 4.7 %.)

Fig. 11b illustrates the essential difference between fitting

and counting errors. Whereas the relative uncertainty of Pois-

son errors (∼
√
n) falls to 0 as the signal increases, the rela-

tive uncertainty of fitting errors (∼ n) tends to an asymptotic

value as signal increases. This feature strongly affects the

relative importance of high-signal data during uncertainty-

weighted fitting. This importance will be even greater for

peaks affected by overlap, for which fitting errors may in-

crease rapidly and nonlinearly.

4.4 Influence on positive matrix factorization results

The arguments presented above clearly show that m/z-

calibration limitations lead to a linear (fractional) impreci-

sion term during the constrained peak-integration procedures

of PIKA. This imprecision significantly increases the overall

imprecision in a resulting data matrix; in particular, fractional

imprecisions become more significant than ion-counting un-

certainties for high signals, and overlap errors may be larger

still. Thus, omitting this imprecision term from the uncer-

tainty provided to PMF leads to an overweighting of higher-

signal data, which may bias the PMF solution (Paatero and

Tapper, 1994; Paatero and Hopke, 2003).

The importance of high signals means that fitting errors

may be especially important for the high aerosol concentra-

tions that may be measured at the roadside (e.g. Dallmann

et al., 2014), within combustion plumes (e.g. Cubison et al.,

2011), in highly polluted cities like Beijing or Mexico City

(e.g. Zhang et al., 2007), or during source studies (e.g. El-

sasser et al., 2013; Timko et al., 2014; Corbin et al., 2015a).

Given the variable importance of high signals within dif-

ferent data sets, and the importance of instrument-specific
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parameters to the peak-integration imprecision as discussed

above, an absolute statement of the relevance of these uncer-

tainties in PMF is impossible. Nevertheless, as an example

we performed PMF on a synthetic data matrix to demonstrate

the significance of addressing peak-fitting errors.

The synthetic data matrix was constructed using the PMF

solution presented by Corbin et al. (2015a), which corre-

sponds to the test data set discussed herein. In detail: the fac-

tors (mass spectra) and loadings (time series) of the Corbin

et al. (2015a) PMF solution were recombined into an error-

free synthetic data matrix. Simulated noise was added to

this matrix to represent Poisson and peak-fitting impreci-

sions (given by Eq. 13) by sampling from Poisson- and

Gaussian-noise generators (Igor Pro, version 6.3) with an SD

of 5 % of the peak height. For simplicity, peak-overlap er-

rors were not included. PMF was performed as described in

Corbin et al. (2015a). In particular, low signal-to-noise vari-

ables were downweighted (Paatero and Hopke, 2003) and the

robust mode of PMF was used (Paatero, 1997), consistent

with standard practice in the AMS community (Zhang et al.,

2011).

When this synthetic matrix was factorized using only

a Poisson imprecision term to weight the data (i.e. with the

largest signals overweighted), the residual matrix showed

significant outliers for the highest signals. For example, the

largest residual outliers for CO+, which was the highest-

signal ion in the synthetic matrix, corresponded to spikes in

the signal of that ion. These residual outliers were not present

when the synthetic matrix was factorized using the correct

imprecision model, Eq. (13).

The appearance of the highest CO+ signals as spikes in the

residual matrix when using the incorrect imprecision model

is highly significant. Under normal circumstances, the an-

alyst may have regarded such spikes as “outliers” reflect-

ing transient signals or data-analysis problems, even though

(in this case) they were purely the result of underestimated

uncertainties. Properly weighting these spikes caused the

r2 between the output and input time series of the lowest-

signal factor to increase from 0.54 to 0.74, with similar but

smaller increases for the higher-signal factors, which were

retrieved with r2 > 0.91 in the wrongly weighted case and

with r2 > 0.999 in the correctly weighted case. Thus, the in-

fluence of high signals on the retrieval of low-signal PMF

factors may thus directly influence the mass concentrations

estimated by HR-AMS–PMF. This may significantly bias the

mass concentrations of specific HR-AMS factors, particu-

larly when they are retrieved in the presence of higher-signal

factors. No exact number can be provided for this effect, as it

will depend on the relative magnitude of the signals as well

as the mass-spectral profiles of each of the retrieved compo-

nents.
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Figure 12. Overlapping-peak uncertainties estimated by the method

outlined in this manuscript. Four model peaks are shown, defined

with the same shape as observed in the test data set. Prior to fitting,

counting noise was added to each data point and representative mass

calibration errors (µ-prediction errors, see text) were added to each

constrained peak location. The resulting imprecision in fitted peak

height σh was estimated by Monte Carlo with effective imprecision

20ppm, as labelled for each peak. The respective peak-integration

imprecisions due to ion counting are labelled as σn. The ordinate

units are counts bin−1.

5 Monte Carlo estimation of σh for overlapping peaks

with unknown µ-prediction errors

It was concluded in Sect. 4.2 that intentionally overestimat-

ing m/z-calibration imprecision by a modest amount allows

the importance of m/z-calibration biases to be neglected in

estimating σh for well-resolved peaks and that σh is then

overestimated by only a few %.

This approach is also applicable, without modification, to

the case of multiple overlapping peaks. Fig. 12 shows an ex-

ample of this method, illustrating the peak-fitting and count-

ing imprecisions (σh and σn) for four overlapping peaks. The

four overlapping peaks were synthetically generated in a sim-

ilar manner to the peaks described above (Sect. 4), except

that counting imprecision was added to the counts in each

bin by sampling from a Poisson-noise generator. Errors in

µ-prediction (in this context, the sum of µ-prediction bias

and a specific value of µ-prediction imprecision) were gener-

ated as +5, −7, +10, and −2ppm for each of the four peaks

(in order of increasingm/z); these are considered reasonable

given the biases and imprecisions in Table 3. Errors in peak-

width prediction (Sect. 3.1) were not included for the sake of

generality.

The figure shows that, for the two larger signals, peak-

fitting imprecisions were on the order of counting impreci-

sion. For the two smaller peaks, peak-fitting imprecisions

dominate, with the leftmost peak having a large enough
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uncertainty to be considered unquantifiable. The influence

of counting imprecision on σh has not been rigorously ad-

dressed here. Counting imprecision will only influence σh
when the actual number of counted ions is small enough to

deform the peak shape, in which case σn will dominate σh
regardless of such deformation.

6 Discussion

6.1 Context and previous work

The largest uncertainty in this analysis was due to the es-

timation of the biases and imprecisions in µ prediction

(which reflect errors in m/z calibration) directly from the

data (Sect. 3.6). We therefore emphasize that the ion-to-ion

variability inµ-prediction biases which strongly influence σh
are not unique to our study.

Biases in m/z calibration, also referred to as mass accu-

racy, are a general feature of time-of-flight mass spectrom-

eters in atmospheric science (DeCarlo et al., 2006; Cap-

pellin et al., 2010; Junninen et al., 2010; Müller et al., 2011;

Yatavelli et al., 2012) and otherwise (e.g. Vorm and Mann,

1994). This means that AMS-specific details such as parti-

cle vaporization prior to electron-impact ionization are not

their sole cause. These biases may reflect a departure of the

ion trajectories from their predicted paths (Guilhaus et al.,

2000) but may also result whenm/z calibration is performed

on low-signal peaks (Cubison and Jimenez, 2015). When the

former mechanism is the cause, numerical studies (Cubison

and Jimenez, 2015) may underestimate m/z-calibration un-

certainties and thus underestimate σh.

Cappellin et al. (2010) introduced additional fit coeffi-

cients to the standard m/z-calibration equation and success-

fully reduced the magnitude of calibration biases. However,

this approach is not feasible for all data sets, as it requires

multiple peaks to be reliably available for calibration. More-

over, the biases remaining after applying such a modified cal-

ibration function would still need to be known for accurate

Monte Carlo estimation of σh; reducing m/z-calibration bias

does not remove the need to account for it. Nevertheless, an

improved calibration would reduce the overall σh.

6.2 Reducing σh

The above conclusions that the major causes of fitting er-

rors in PIKA are errors in peak-location prediction raises

the question of whether the fit procedure itself might be im-

proved.

It would be preferable to allow a priori knowledge of cal-

ibration uncertainties to be incorporated into the fitting pro-

cedure, following Bayesian theory (Gelman et al., 2013). In

such an approach, realistic uncertainty distributions could be

directly applied to the constraint of µ and translated directly

into uncertainty distributions of the resulting h. However, this

does not solve the problem of m/z-calibration biases being

unknown for the case of overlapping peaks. The development

of such an approach is beyond the scope of the present work,

in part because the Igor Pro software in which PIKA has been

developed over the past decade does not provide the neces-

sary framework. We note that although the relaxation of the

µ constraint in Sects. 3.5 and 3.6 allowed for uncertainties

in µ to be accounted for, the implicit probability distribu-

tion assigned to these uncertainties was an unphysical, uni-

form distribution with unrealistic, discontinuous edges. For

the typical case where multiple overlapping peaks are fitted,

this approach is not considered robust.

In addition to an improved fitting procedure, an improved

calibration procedure would be an obvious recommendation

for reducing µ-prediction errors. An accurate calibration re-

quires both a consistent calibrant signal and a consistent

peak shape. These requirements were not met by any of the

mass-spectral peaks: the only consistent signals were those

of background ions from the gas phase, which were rela-

tively few and displayed significantly different peak shapes

than particulate signals, likely owing to their originating from

generally different regions of the AMS ionization chamber.

An improved calibration might make use of an internal stan-

dard, for example a polyfluorinated organic (DeCarlo et al.,

2006), to be fitted by the same pseudo-Gaussian function

used for data analysis (Eq. 3). However, at some point the

limited temporal resolution of the ion detector (Hilmer and

Bothner, 2011) and the variability of ion flight paths also

limit the accuracy of the m/z calibration.

6.3 Computation time required for Monte Carlo

estimation of σh

By definition, the Monte Carlo approach invariably requires

more time than a direct approach. In large HR-AMS data

sets, thousands of mass spectra may be recorded, each con-

taining hundreds of peaks to be fitted. On modern personal

computers, fitting may consequently take hours, so perform-

ing 100 Monte Carlo simulations during exploratory data

analysis can be impractical. A compromise between rapid

and reliable results is therefore desirable.

In their work, Cubison and Jimenez (2015) developed a

parameterization designed to estimate σh based on the sepa-

ration of two peaks, for the reasons noted above. This param-

eterization does not account for the constant relative impreci-

sion expected for well-resolved peaks (Sect. 4.1). Addition-

ally, the parameterization has been designed for the two-peak

system.

To minimize the computation time required for the Monte

Carlo approach, the following algorithmic approach could be

used. First, the approximation σh/h≈ constant could be ap-

plied for all well-resolved peaks. A percentage value of σh/h

could be estimated using a subset of the data set; weighted

least-squares fits will typically be insensitive to the exact

value. For cases where two peaks are close enough to pos-

sibly overlap, the parameterization of Cubison and Jimenez
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(2015) may be used to quantitatively define when their over-

lap is likely to influence σh (for example, when the param-

eterization indicates σh/h > 5% for any two peaks). When

overlap is significant, a Monte Carlo estimation of σh can be

initiated. Further, once a Monte Carlo estimate is obtained

for a given set of peak heights, the result may be stored and

applied to subsequent peaks of similar height ratios; where

more restrictive definitions of similarity will be more accu-

rate but slower. The validity of these approximations should

be directly evaluated after initial data exploration by per-

forming full Monte Carlo calculations for each group of

peaks in the data set.

6.4 Other sources of uncertainty

While only peak-integration and ion-counting uncertainties

were addressed in the discussion above, a number of other

AMS-specific uncertainties can be identified.

Craven et al. (2012) discussed and addressed a number

of HR-AMS uncertainties with regard to background signals

and overlapping ions. Craven et al. (2012) also developed

a data-smoothing approach to evaluate data quality for PMF,

rejecting noisy variables. Such an approach may remain use-

ful for the very-slowly changing systems studied by Craven

et al. (2012), as it may account for imprecisions other than

those caused by peak integration; however, it did not result

in improved PMF uncertainty estimates but rather the selec-

tive rejection of low signal-to-noise variables. More gener-

ally, smoothing approaches cannot be applied to the rapidly

changing signals observed during roadside studies, aircraft

studies, or laboratory studies on rapidly changing sources,

all of which may entail the measurement of the high PM

loadings for which peak-integration uncertainties are most

important.

Other AMS-specific uncertainties include the fundamen-

tal uncertainty involved in converting electronic signals at

the detector to ion counts. This conversion is performed af-

ter estimating the signal intensity of a single ion, a pro-

cess complicated by the signal-thresholding applied by the

data acquisition software (version 4.0.9). We performed this

single-ion measurement procedure on each of the measure-

ment days described herein and obtained results varying by

∼ 20 %. We emphasize that this 20 % would correspond to a

potential bias in the integrated areas of all ions, and is fun-

damentally different to the peak-integration imprecisions dis-

cussed extensively above. Moreover, as it is not clear whether

this number represents instrumental or procedural variability

(the standard procedure resulted in different ions being used

for single-ion measurement on each day), it has not been in-

cluded in Eq. (13). In addition, it is worth noting that the

newest version of the HR-AMS includes significant hardware

improvements which address this issue.

A second HR-AMS-specific scenario arises when the in-

tensity of less-abundant isotope peaks are predicted based on

the intensity of more-abundant isotope peaks. This procedure

propagates fitting errors across integer m/z, and the corre-

sponding uncertainty should also be propagated to these and

neighbouring peaks, as discussed in Corbin et al. (2015a).

Finally, not all ions follow the peak shape established by

the PIKA calibration procedure. In particular, thermally gen-

erated ions such as K+ (Drewnick et al., 2006; Corbin et al.,

2015a) or other slowly evaporating species (Salcedo et al.,

2010; Craven et al., 2012) may lead to additional uncertain-

ties for this reason.

7 Conclusions

Peak-integration uncertainties in the analysis of HR-AMS

data by PIKA originate from uncertainties in peak-width pre-

diction and in peak-height fitting. The former uncertainty

may be easily estimated from the peak-width calibration pro-

cedure; the latter by an empirically constrained Monte Carlo

approach.

Peak-fitting uncertainties depend most strongly on errors

in the m/z calibration used to predict the peak location µ

in ion-time-of-flight space. For well-resolved peaks, fitting

uncertainties are sensitive to imprecisions in µ, to biases in

µ, to the number of data points representing a given peak, and

to the position of the peak centre relative to the nearest data

point inm/z space. The first two of these factors appear to be

most important, but all may be accounted for by empirically

based Monte Carlo estimation.

Since peaks are fitted in PIKA by linearly scaling a pre-

defined function, peak-fitting errors for well-resolved peaks

also scale linearly with peak height. This leads to a constant-

relative-imprecision term in the overall peak-integration un-

certainty. Since a constant relative imprecision scales linearly

with the ion count n as n1, but counting uncertainties scale

as n0.5, this constant-relative imprecision term dominates

counting uncertainties at high signal intensities. For example,

in an exemplary data set with an estimated∼ 4 % imprecision

in fitted peak height, 2.5% imprecision in peak width, and

5% imprecision in integrated peak area, the relative impreci-

sion term dominated counting uncertainties for well-resolved

ions with areas of∼ 1000 cps. (Sample averaging times may

influence this value.) Peak-integration uncertainties for well-

resolved peaks will therefore be especially important for the

high aerosol concentrations that may be measured near pol-

lution sources or within highly polluted cities.

In a synthetic data set, including the constant-relative-

imprecision term during PMF led to a significant improve-

ment in the accuracy of the solution. Thus, although peak-

integration uncertainties are much smaller than the uncertain-

ties inherent in AMS-measured mass concentrations or ele-

mental ratios, neglecting peak-integration uncertainties dur-

ing PMF of data sets containing high-signal ions may sig-

nificantly bias mass concentrations or elemental ratios of the

retrieved factors. The dependence of the relative imprecision

on the m/z calibration and mass-spectral resolution indicate
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that it should be estimated for each data set or at least each

new voltage configuration of a given mass spectrometer. The

software used to perform this estimation in the present study,

written in Igor Pro, is available upon request and will be in-

corporated into PIKA.

Finally, peak-fitting errors may also increase rapidly

when peaks overlap significantly, potentially becoming much

larger than the uncertainties of well-resolved peaks. It was

shown that the fitting imprecision for overlapping peaks may

be estimated directly by a minor modification to the Monte

Carlo approach described above, that is, by intentionally

overestimating the input imprecision such that biases may be

neglected. This overestimate results in a moderate overesti-

mate of the peak-fitting imprecision but avoids the ion-to-ion

biases that would otherwise result from unquantifiable m/z-

calibration biases.
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Appendix A: Description of test data set

The data set used for evaluating and testing fitting uncertain-

ties represents the mass spectra of fresh, aged, and filtered-

and-aged aerosols emitted from a beech-wood combustion

stove. Up to six batches of wood were burnt consecutively on

3 consecutive days in these experiments. A complete descrip-

tion of the experimental setup and instrument configuration

is given in Corbin et al. (2015a).

The wood-combustion aerosols were vaporized and ion-

ized in an Aerodyne HR-AMS equipped with a soot-particle

(SP) vaporization module (Onasch et al., 2012). The data-

acquisition card sampled once per ns. The majority of signals

presented in the paper reflect SP-AMS-mode measurements,

which were used because signals were consistently higher

with the SP laser on and the analysis in this work applies

mainly to higher signals. The peak-width calibration reported

above (2.5 %) applies to both laser on and laser off data. SP

signals were higher because (i) the majority of PM emitted

by the stove was refractory BC (Corbin et al., 2015b) and (ii)

the AMS is more sensitive to organic coatings when they are

vaporized by the SP laser due to its physical position (Willis

et al., 2014). As shown in Fig. 3e, the laser state had no effect

on the peak-fitting results discussed herein.

Appendix B: Analysis of test data set

All data were analysed in Igor Pro (Version 6.2, Wavemet-

rics, OR, USA) using a modified version of PIKA, derived

from PIKA 1.10H, and custom code. The modifications to

PIKA consisted of improvements to the peak-width calibra-

tion procedure, the selective introduction of errors to the

analysis, algorithmic improvements to the peak-fitting proce-

dure, and the implementation of peak-integration uncertain-

ties as part of the overall PIKA error calculation. The first

modification improved the robustness of the peak-width cal-

ibration procedure by replacing the mean peak width with

a trimmed mean, followed by a weighted fit to the data, as

detailed in Corbin et al. (2015a).

In this paper, “diff” HR-AMS data have been presented.

Diff data represent the difference of “open” measurements

(comprising signals from particulate, gaseous, and back-

ground species) and “closed” measurements (comprising

background species from gases and slowly evaporating mate-

rial). The same trends seen in the diff data were seen in anal-

ogous plots for the open and closed data; however, the noise

regime of the RMSE was much less noticeable in these data.

Diff data were used to allow the two regimes of the RMSE

to be clearly highlighted and to remove inconsequential dif-

ferences due to different background levels, for example of

CO+2 due to gaseous carbon dioxide.

The following peaks were used for m/z calibration: CH+,

Ar+, CO+2 , 182W+, 184W+, and 186W+. While this list is not

ideal, no other peaks were consistently present with suffi-

cient signal for use as calibrant ions. Some peaks in the test

data were well resolved but excluded for having anomalous

peak shapes. These peaks included gas-phase ions present at

high signals (e.g. N+2 or O+2 ), ions which were present at very

low m/z and were therefore represented by only two detec-

tor bins (C+ and CH+) such that reliable fits could not be

performed, and ions which were known to follow anomalous

vaporization–ionization physics (e.g. K+, discussed further

in Corbin et al., 2015a).
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