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ABSTRACT

The protein–DNA interactions between transcription
factors and transcription factor binding sites are es-
sential activities in gene regulation. To decipher the
binding codes, it is a long-standing challenge to
understand the binding mechanism across different
transcription factor DNA binding families. Past com-
putational learning studies usually focus on learn-
ing and predicting the DNA binding residues on
protein side. Taking into account both sides (pro-
tein and DNA), we propose and describe a computa-
tional study for learning the specificity-determining
residue-nucleotide interactions of different known
DNA-binding domain families. The proposed learning
models are compared to state-of-the-art models com-
prehensively, demonstrating its competitive learning
performance. In addition, we describe and propose
two applications which demonstrate how the learnt
models can provide meaningful insights into protein–
DNA interactions across different DNA binding fami-
lies.

INTRODUCTION

Given a protein sequence, we are interested in which
residues on the given protein sequence are important for
protein functions. Identifying these residues would be very
helpful in understanding the protein. Assuming functional
residues are evolutionarily conserved, Casari et al. have pro-
posed a high-dimensional projection method to identify
different groups of residue conservation patterns from re-
lated species sequences to identify functional residues (1).
Lichtarge et al. have proposed an evolutionary trace method
(calculating conservations at different levels of a gene tree)

to identify DNA-binding surfaces of the nuclear hormone
receptors from homologous sequences (2).

In the context of DNA-binding proteins (3), each residue
can be predicted and labeled as two class outputs (either
DNA binding or neutral). Several approaches have been
proposed to solve this classification problem: Ahmad et al.
have implemented neural network approaches to predict
DNA binding residues on amino acid sequences. Position
specific scoring matrices generated by PSI-BLAST have
been adopted in the first approach (4), whereas sequence
composition and solvent accessibility information have also
been adopted in another approach (5). Using three sequence
features, a SVM model has been trained and tested by Wang
et al. (6). Secondary structure element alignments have been
incorporated into SVM models to perform predictions by
Chu et al. (7). The electrostatic potential and curvature
information of protein structures have been used and re-
ported (8). Gaussian network models have been applied to
model protein structures to perform predictions by Ozbek
et al. (9). A random forest method using hybrid features has
been adopted and reported by Wu et al. (10). An ensemble
method has been proposed by Hwang et al. (11). A neigh-
boring residue network based score has been proposed to
improve the prediction by Miao and Westhof (12).

Exploiting the assumption that different DNA-binding
specificities exist among paralogous sequences, Mirny and
Gelfand have proposed a mutual information method
to compute statistical significance for distinguishing
specificity-determining residues from the other residues
of bacterial transcription factors (13). For eukaryotes,
Donald and Shakhnovich argued that sequence data were
scarce. They proposed a single-linkage hierarchical clus-
tering method on all the available homologous sequences
based on sequence similarity (assuming the correlation
between sequence similarities and functional similarities).
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They found that their method performed better than the
previous method and the evolutionary trace method on the
basic leucine zippers and nuclear receptors families (14).

Nonetheless, the past studies are usually devoted to learn
and predict the DNA binding residues based on amino acid
sequences only, ignoring their DNA counterpart sequences
(15). This may be partly due to the high resolution protein–
DNA binding data scarcity and the difficulty in handling
the expanded search space. However, such bottlenecks have
been alleviated in recent years. Specifically, the modern high
throughput biotechnology can enable us to have sufficient
data to look at both sides (protein and DNA sides) simul-
taneously. For example, Wong et al. have proposed a data
mining framework to discover the protein motifs and DNA
motifs in a coupled manner (16) as well as extension works
to handle sequence degeneracy (17) and binding combina-
torics (18). Mahony et al. have proposed incorporating mu-
tual information into analyzing residue–nucleotide bind-
ing on aligned parts of DNA-binding domain (DBD) se-
quences of zinc finger, Homeodomain and bHLH DBD
families (19). A recognition model to predict DNA motifs
from Homeodomain protein sequences has also been pro-
posed (20).

In this work, we aim at analyzing and building learning
models to learn pair-wise specificity-determining residue–
nucleotide interactions for different DNA-binding families.

MATERIALS AND METHODS

Collecting DBD family data

It has been found that protein–DNA binding interactions
are diverse in binding modes (21,22). Different DNA motifs
could be bound by the same DNA-binding protein. There-
fore, we have tried to collect as much interaction data as
possible to capture those diverse binding mechanisms. We
have selected the latest protein–DNA binding interaction
database, CISBP (23), which is the most comprehensive
database to the best of our knowledge. We have collected
the entire experimentally verified pairs of human DBD se-
quences and the corresponding DNA motif matrices from
CISBP (v0.71) (23). For each DBD sequence, it is possible to
have multiple motif matrices measured by different biotech-
nologies (e.g. ChIP-Exo, ChIP-Seq, ChIP-Chip, PBM and
SELEX). To be unbiased for each DBD sequence, STAMP
is used to combine them into a consensus motif matrix with
the default setting (24). After that, we have searched and
limited our study to the human DNA-binding domain fam-
ilies which have at least 10 pairs in CISBP (v0.71) as shown
in Supplementary Table S1.

For each of those DNA-binding domain families, we used
MUSCLE (25) and STAMP (19) to align the DBD se-
quences and DNA motif matrices, respectively (with the de-
fault setting). The resultant alignment sequence logos can
be found in Supplementary Figures S2 and S3. We con-
struct a Spearman rank correlation heat map for the pair-
wise residue–nucleotide co-variations between the aligned
DBD amino acid sequences and the corresponding DNA
motif matrices for each DBD family as shown in Step 5 of
Supplementary Figure S1. Its implementation details can be
found in Supplementary Materials.

Nonetheless, such a co-variation analysis has several lim-
itations; for instance, if a position is well conserved, that
position should be somewhat functionally important in
protein–DNA binding. Nonetheless, it cannot be captured
by this kind of co-variation analysis since the position is not
varied at all. Furthermore, the physicochemical properties
(e.g. residue polarity) have not been taken into account. To
address the issues, we proceed to collect the entire available
protein–DNA binding complex structures and build infer-
ence models to take all those factors into account for learn-
ing pair-wise residue–nucleotide interactions across differ-
ent DBD families.

Collecting protein–DNA complex structures

To train (or build) learning models for different DBD fam-
ilies, we collected the entire protein–DNA complex struc-
tures from RCSB PDB in May 2013. CD-HIT (with the de-
fault setting) is used to remove sequence redundancy among
the entire protein chains in the structures (26), resulting in
a set of 833 protein chains as well as a set of 1469 protein–
DNA binding pairs.

Among them, we identify and extract the annotated DBD
sequences of the DBD families listed in Supplementary Ta-
ble S1. The total numbers of DBD sequences extracted from
PDB are summarized in Supplementary Table S2. In ad-
dition, we also extract the DNA-binding site sequences in
the same protein–DNA complex structures. After reverse
complements are identified and incorporated, we have ob-
tained the binding pairs of DBD sequences and DNA se-
quences for different DBD families. The statistics are tab-
ulated in Supplementary Table S2. We followed the com-
mon definition of previous studies that a residue is called a
DNA-binding residue if any of its atoms fall within a cut-
off distance of 3.5 Å from any of DNA molecules’ atoms in
at least one known protein–DNA binding complex (27,28).
A residue–nucleotide pair is called a specificity-determining
residue–nucleotide interaction pair if any of its residue’s
side-chain atoms fall within a cutoff distance of 3.5 Å from
any of its nucleotide’s base atoms in at least one known
protein–DNA binding complex (16).

Training and testing procedures

Based on the CISBP data and PDB data, we can train
and test models for learning and predicting the specificity-
determining residue–nucleotide interactions for each DBD
family. The overall approach is summarized in Figure 1,
which can be divided into two phases: training and testing.

Training procedure. For the training procedure as shown
in Figure 1, we adopt the protein–DNA binding se-
quence pairs from PDB and the corresponding DBD fam-
ily sequence alignments in CISBP to build feature vec-
tors as the inputs to train models. On the other hand,
we adopt the structural information from PDB (i.e. three-
dimensional residue–nucleotide binding information) as the
gold-standard outputs to train models. (Steps A and B)
For each DBD family (Domain X in this figure), we search
through the PDB and obtain the known protein–DNA
binding pairs from PDB for training models. (Step C) CD-
HIT is run to remove protein sequence redundancy. (Step
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Figure 1. Training and Testing Classification Models for Predicting Residue-Nucleotide Interactions on protein–DNA binding sequence pairs. Description
can be found on the main text.

D) The structure of each training protein–DNA binding
pair is measured to reveal the residue-nucleotide inter-
actions. (Step E) The interaction information is isolated
from the feature building steps later for sequence-only-input
training. (Steps F, G and H) On the other hand, we also
query the CISBP to retrieve the domain X family sequence
alignments. (Step I) Each training protein–DNA binding
sequence pair is aligned to the family sequence alignment.
(Step J) Given the resultant alignment, feature vectors are
calculated at each possible interaction position pair. (Steps
K and L) Given the feature vectors as well as the measured
structural binding labels at each possible interaction posi-
tion, standard classification techniques are used to train an
inference model for domain X (i.e. a random forest classifi-
cation model with 100 decision trees using 30 random fea-
tures (from the WEKA software) is used in this study).

Testing procedure. For the testing procedure as shown in
Figure 1, we are not given any training protein–DNA bind-
ing sequence pair with known structural interactions. In-
stead, we are just given an input pair of protein sequence
and DNA sequence with known DBD (domain X in Fig-
ure 1) as well as CISBP (However, in practice, we also get

that input sequence pair from PDB and discard its struc-
tural information which is reserved for validation in later
steps). The model testing part is to use the corresponding
trained model to predict the possible residue–nucleotide in-
teractions on the input pair. (Steps 1 and 2) The protein se-
quence of the input protein–DNA binding sequence pair is
scanned by Pfam to predict which DBD domain that the
protein sequence belongs to (Domain X in this example).
(Steps 3, 4 and 5) CISBP is then queried to retrieve the do-
main X family alignment. (Step 6) The input protein–DNA
binding sequence pair is aligned to its family (domain X in
Figure 1) alignment. (Step 7) Feature vectors are built from
the resultant alignment at each possible interaction position
of the input protein–DNA binding sequence pair. (Step 8)
The feature vectors are inputted into the trained model of
domain X. (Step 9) The trained model predicts which possi-
ble interaction is truly a protein–DNA binding interaction.

Building feature vectors. Given an input pair of protein se-
quence and DNA sequence, we build a feature vector at each
possible residue–nucleotide interaction. Mathematically, if
the input protein sequence is of length laa and the input
DNA sequence is of length ldna, the total number of pos-
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sible residue–nucleotide interaction is laa × ldna, resulting
in laa × ldna feature vectors. Based on the feature vectors,
we use the trained model to predict which possible residue–
nucleotide interaction (feature vector) is actually binding
(positive class).

For each possible residue–nucleotide interaction feature
vector, we compute several features which are essential for
the binding prediction. The features are listed in Supple-
mentary Table S3. In summary, we calculate the physico-
chemical properties (e.g. residue polarity), sequence context
(e.g. the 2nd preceding residue), sequence co-variation (e.g.
the correlation between the current residue and the current
nucleotide in the family alignment from CISBP), conserva-
tion (e.g. entropy of the current residue’s aligned position
in the family alignment from CISBP), positional informa-
tion (e.g. the aligned position of the current nucleotide in
the family alignment from CISBP) and mixed features (e.g.
the average residue mass at the aligned position of the cur-
rent residue in the family alignment from CISBP).

Running time

Both of the training and testing procedures are of poly-
nomial time complexity; details of which can be found in
Supplementary Materials. In practice, the whole training
and testing procedure are implemented in Java program-
ming language. The computing equipment is a dedicated
Intel Xeon W3550 server with 12 GB memory. For the pro-
tein side prediction benchmarking, the feature building and
evaluation procedure took 1.5 h and 2 h, respectively. For
the prediction benchmarking on both sides (protein and
DNA), the feature building and evaluation procedure took
4 h and 9 h, respectively. If we take into account the other
methods’ benchmarking, the overall computing time took
about 1 week.

RESULTS

To validate the learning approach outlined in Figure 1 we
tested it using leave-one-out cross-validation: for each DBD
family, we leave out one pair of DBD sequence-DNA se-
quence from PDB for model testing and apply the rest for
model training. It is repeated until all pairs have been left
out once; for instance, we have 22 pairs of DBD Sequence-
DNA Sequence Pairs from the Homeodomain DBD family
in PDB. In the first round, the 1st pair is held out and the
2nd–22nd pairs are used for training. In the second round,
the 2nd pair is held out and the 1st, 3rd–22nd pairs are used
for training. The procedure is repeated until all pairs have
been held out once.

Predicting on protein side only

To compare our prediction approach to the other proposed
methods, we need to first reduce our prediction problem
back to the classic problem, i.e. predicting DNA-binding
residues on input protein sequences. We first train and test
our method only on protein sequences first, ignoring the
DNA sequences. The entire features which are linked to
DNA in Supplementary Table S3 are discarded. Only the
protein features are used for training and testing the learn-
ing models (denoted as ‘ours’ on figures). On the other

hand, we have also re-run our approach using both the
protein features and the discarded DNA features. For each
residue position, the maximal prediction score is taken for
all observed nucleotides on the corresponding DNA side
(denoted as ‘ours-both’ on figures).

Feature ranking on protein features. We have ranked the
protein features on the protein sequences of the PDB data
collected using information gain as tabulated in Supplemen-
tary Table S4. The top feature is the entropy of the cur-
rent residue’s aligned position in the family alignment us-
ing polarity symbols (polarity entropy). Comparing to the
polarity of the current residue (polarity, ranked 25th), this
top feature is significantly ranked higher than the polar-
ity feature. It may indicate that the conservation of polar-
ity is a key determining factor for predicting DNA binding
residues on protein sequences. The second top feature is the
average pH of the current residue’s aligned position in the
family alignment (avg Ph). Similar to the previous case, its
pH feature (pH) is ranked (11th) lower than itself because
the pH evolutionary conservation in its DBD family align-
ment is more informative than the pH observed at the cur-
rent residue. The third top feature is the occurring fraction
of non-gap residues at the current residue’s aligned position
in the family alignment (aa obsCount), it indicates that the
evolutionary presence of the current residue’s aligned po-
sition in the family alignment can be used to predict the
DNA-binding residues on DBD protein sequences. Last but
not least, the fourth top feature is the aligned position of the
current residue (aaMSAind). It can be observed that our
proposed method can adopt that feature to take advantage
of the sequence position information of each family-wise-
aligned DNA-binding sequence.

Comparing to sequence-based methods. For each DBD
family, we have written network scripts to send the test-
ing DBD sequences to the BindN web-server, BindN+ web-
server and DISIS web-server for obtaining their predic-
tions with the default settings suggested. Briefly, BindN is a
support vector machine classifier using physicochemical se-
quence features (6). BindN+ is an extension of BindN which
also takes in account the evolutionary information (29). DI-
SIS is also a support vector machine classifier which con-
siders evolutionary information, predicted secondary struc-
tural information and the neighboring residue informa-
tion (28). The Receiver Operating Characteristic (ROC) and
precision-recall (PRC) curves for the entire DBD families
are plotted and shown in Figure 2 and Supplementary Fig-
ure S4. It can be observed that our proposed method using
protein-only features (ours) and that using both-protein–
DNA features (ours-both) have a competitive edge over the
other sequence-based methods at low false positive rates.

Comparing to structural methods. Although it is unfair
for our proposed methods to be compared to the struc-
tural method since our methods are not given any structural
information (e.g. three-dimensional coordinates of atoms)
during model testing (p.s. three-dimensional information
has been adopted as class labels during model training),
it may still be interesting to check how well our proposed
methods can be compared to the structural methods for
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Figure 2. Receiver Operating Characteristic (ROC) curves for our pro-
posed methods (in Blue and Black), BindN (in Green), BindN+(in Red)
and DISIS (in Violet) on the entire DBD families.

model testing. Thus we have also written network scripts
to send the structural information of each testing DBD se-
quence to the DBD-Hunter web-server and DISPLAR web-
server with the default settings suggested. Briefly, DBD-
Hunter is a structural template matching method using
statistical potential (30) while DISPLAR is a neural net-
work method taking into account the evolutionary infor-
mation, the solvent accessibilities of each residue, as well
as the spatial neighbors (31). Since DBD-Hunter is a tem-
plate matching method, we seek to calculate how often a
residue is predicted as DNA-binding among the templates
suggested by DBD-Hunter. We denote DBDhunter(k) as
the DBD-Hunter program only using the top k templates
ranked by TM scores while DBDhunter is denoted as the
DBD-Hunter program using the entire templates suggested.
On the other hand, DISPLAR just outputs discrete results
without any confidence number. Thus we assigned 1 and 0
to the residue predicted as DNA-binding and Not-DNA-
binding by DISPLAR. 0.5 is assigned to the residue which
cannot be predicted by DISPLAR. The ROC and PRC
curves for the entire DBD families are also plotted and
shown in Figure 3 and Supplementary Figure S5.

It can be observed that our proposed methods have a
competitive edge over the structural methods even though
our proposed methods are not given any structural in-
formation (i.e. spatial information) during model testing.
Nonetheless, we note that such a performance degradation
of DBD-Hunter may be due to the fact that its scoring sys-
tem is not consistent across different DBD families. In other
words, if a residue is predicted as DNA-binding in half of
the templates in the Homeodomain DBD family, its pre-
diction confidence is not necessarily equivalent to that of a
residue predicted as DNA-binding in half of the templates
in the bHLH DBD family. Thus, it may be beneficial for
DBD-Hunter to compare its results with the others on indi-
vidual DBD family data sets, although the sequence-based
methods do not suffer from this issue. As illustrative exam-
ples, we depict the ROC and PRC curves for the top DBD

Figure 3. ROC curves for our proposed method (in Blue and Black), DBD-
Hunter (in Violet), DISPLAR (in Green) on the entire DBD families.

families (i.e. bHLH and Homeodomain) in Supplementary
Figures S6, S7, S8 and S9.

Interestingly, it can be observed that the performance of
DBD-Hunter is improved if we limit the input data to a spe-
cific DBD family. Furthermore, even after we have allowed
DBD-Hunter to use various number of templates, it can be
observed that our proposed methods are still comparable
to the DBD-Hunter which is the best available structural
method for predicting DNA-binding interactions to our
knowledge, although our proposed methods are not given
any structural information during model testing (p.s. three-
dimensional information has been adopted as class labels
during model training). We attribute the good performance
to three major reasons (i) comprehensive training data from
CISBP and PDB (ii) elaborated input feature building, and
(iii) state-of-the-art ensemble classification model (i.e. Ran-
dom Forest which is scale-free and efficient to train).

Predicting on both protein and DNA sides

Having demonstrated our proposed methods are competi-
tive among the state-of-the-art methods on the classic prob-
lem, we proceed to verify our approach on the new prob-
lem: Given a pair of known DBD protein sequence and
DNA sequence, we seek to learn and predict the specificity-
determining residue–nucleotide interactions between the
known DBD protein sequence and DNA sequence.

Feature ranking on all features. We have ranked all features
on the PDB data collected using information gain as tabu-
lated in Supplementary Table S5. It is not surprising that the
top feature is the entropy of the current residue’s aligned po-
sition in the family alignment (aa entropy) because DNA-
binding residues are supposed to undergo negative selection
during its evolutionary history, resulting in a strong con-
servation signal (e.g. low entropy). The 2nd–6th features
are similar to what we have discussed in the previous fea-
ture ranking section. The most interesting observation is
that, among the top 10 features, only 2 features account
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Figure 4. (A) Total information gain distribution of different feature types. (B) Average information gains of different feature types. It can be observed that
protein features constitutes most of the information gains.

Figure 5. Receiver Operating Characteristic (ROC) curves for our pro-
posed method on the DBD family data. Each line corresponds to a DBD
family.

for both sides (i.e. aa nt (the current residue and nucleotide
pair) and aa presence total (the sum of the correlations be-
tween the current residue’s aligned position column profile
and the entire nucleotide column profiles in family align-
ment)), indicating that the residue–nucleotide binding pairs
are largely determined by the protein information. Surpris-
ingly, the mutual information feature (MI) is only ranked at
the middle of the list (44th), reflecting that MI-based stud-
ies may not have enough distinguishing power for learning.
To have a broad view on such observation, we have calcu-
lated the total and average information gains of different
types of features as shown in Figure 4. Again, we can ob-
serve that most of the information gains are given by the
protein features which average information gain is higher
than the other feature types.

Performance on different DBD families. We have used the
leave-one-out cross-validation approach aforementioned to
test our approach. The results are depicted in Figure 5 and
Supplementary Figure S10.

It can be observed that the performance of our proposed
method varies on different families. It performed very well

for the ETS family. On the other hand, it performed the
worst for the Forkhead family.

The ETS family is a cancer-related domain which is
highly conserved (32). To illustrate our predictions on ETS
family, we have selected the crystal structure of the protein–
DNA complex of human PDEF ETS domain bound to the
prostate specific antigen regulatory site (PDB code: 1YO5)
as an example. Our top five predictions are highlighted in
colors in Figure 6. We can observe that our method is ca-
pable of predicting the binding cores of PDEF. The only
false positive is the residue–nucleotide pair which are very
proximal to each other (4.06 Å) but cannot exceed the 3.5
Å threshold.

In contrast, the Forkhead family is a transcription fac-
tor family known to be involved in early developmental de-
cisions of cell fates during embryogenesis (33). Especially,
it has just been recently characterized that the Forkhead
family has diverged into different subfamilies with different
DNA-binding specificities (34). As such, it is not surprising
that our proposed method cannot work well for the Fork-
head family data which has not been divided into different
sub-families very well under the existing annotation system.

Predictions at low false positive rates

In practice, we are especially interested in the prediction ac-
curacies at low false positive rates. Thus, we have also ex-
amined and plotted the previous benchmark ROC curves at
low false positive rates as shown in Figure 7. It can be ob-
served that our method can still show its own competitive
edges over the other methods. In particular, different perfor-
mance is observed on different DNA-binding families be-
cause of different training data set availabilities and binding
mechanism complexities; for instance, our approach per-
forms very well on the cancer-related DNA-binding family
(ETS) because its sequences are highly conserved, result-
ing in high-quality training and thus testing performance
(AUC=0.97).

Using different classification models

On the other hand, we are also interested in the learning
performance of Random Forest (discriminative classifier),
comparing to the other classification methods. We have re-
run the previous computational experiments using Naive
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Figure 6. Crystal structure of the protein–DNA complex of human PDEF ETS domain bound to the prostate specific antigen regulatory site (PDB code:
1YO5). Our top five predictions are highlighted in colors. The red and blue molecules denote the DNA binding residues and nucleotides predicted by
our method, respectively. In particular, the binding atoms within our predicted DNA binding residue–nucleotide pairs are highlighted in green and violet,
indicating true positives and false positives, respectively.

Figure 7. (A and B) Performance comparison of our method with the other methods at low false positive rates. (C) Performance comparison of our method
on different families for the proposed problem at low false positive rates.

Bayes (generative classifier) and Adaboost (ensemble clas-
sifier) as depicted in Supplementary Figures S11 and S12,
respectively. Comparing their curves (Supplementary Fig-
ures S11 and S12) with the original curves of Random For-
est (Figures 2, Supplementary Figure S4, 3, Supplementary
Figure S5, 5 and Supplementary Figure S10), it can be ob-
served that Random Forest is the best option among the
three classification models for this study.

APPLICATIONS

Connecting to recognition model

Combined with the existing recognition models to predict
DNA motifs (e.g. PreMoTF (20)), our proposed method
can pave a new direction in protein–DNA binding predic-
tion: Given a protein sequence of known DBD domain, we
could predict its DNA motif using its corresponding do-

main recognition model. After that, the proposed method
here can be used to predict the interacting pairs of residues
and nucleotides between the protein and the predicted DNA
motif.

To demonstrate the concept, we have selected the NMR
solution structure of the Homeodomain of Pitx2 in complex
with a TAATCC DNA binding site (PDB code: 2LKX) as
an example. First, we ignore the bound DNA sequence as
well as the three-dimensional structural information. Only
the protein sequence is submitted to PreMoTF. PreMoTF
then predicts and outputs a DNA motif matrix which is
believed to be bound by the protein sequence. The pre-
dicted DNA motif matrix can be found in Figure 8. We
scan the bound DNA sequence using the predicted DNA
motif matrix and locate the DNA motif position. Our pro-
posed method is then applied to predict the specificity-
determining residue–nucleotide binding pairs between the
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Figure 8. NMR solution structure of the Homeodomain of Pitx2 in complex with a TAATCC DNA binding site (PDB code: 2LKX). Our top five pre-
dictions are highlighted in colors. The red and blue molecules denote the DNA binding residues and nucleotides predicted by our method, respectively. In
particular, the binding atoms within our predicted DNA binding residue–nucleotide pairs are highlighted in green and violet, indicating true positives and
false positives, respectively. The DNA motif position predicted by PreMoTF is indicated by the sequence logo.

protein sequence and the DNA motif. After that, we map
our sequence-based predictions back to its actual three-
dimensional structure as shown in Figure 8. It can be ob-
served that our proposed method combined with PreMoTF
can predict the residue–nucleotide binding pairs accurately.

DNA motif recognition

Since our method takes a binding pair of known DBD
protein sequence and DNA sequence as an input, we can
enumerate the entire possible DNA sequences given a pro-
tein sequence to observe which DNA sequence has its nu-
cleotides predicted to be bound by the protein more fre-
quently than the others. As a result, we can obtain a pre-
dicted score for each possible DNA sequence given a pro-
tein. Such a predicted score can be used as a delegate of
protein–DNA binding affinity for ranking the entire pos-
sible DNA sequences. It is similar to the Protein Binding
Microarray (PBM) technology but in silico. If we further
post-process the predicted scores to build a DNA motif ma-
trix, it is also similar to the DNA motif recognition model
described in the previous section. Nonetheless, this applica-
tion, similar to PBM, can have a higher resolution map of
DNA motifs (score for each possible k-mer) than DNA mo-
tif matrix models which assume positional independence.

As an illustrative example, we have selected the bHLH
DBD domain protein sequence of the transcription fac-
tor E2-alpha (UniProt code: P21677; UniPROBE code:
Tcfe2a). With its bHLH domain protein sequence fixed, we
generate the entire possible DNA 8-mers, resulting in 65536
(48) binding pairs of the bHLH domain protein sequence
and DNA 8-mer. For each binding pair, we feed it into the
prediction model trained on bHLH DBD binding pairs as
described in the previous section. The maximum of the pre-
diction model score is taken as the predicted score for each
binding pair. Thus, we obtain a predicted score for each
possible DNA 8-mer from its corresponding binding pair.
Consistent with the previous study by Zhao and Stormo
(35), we pick the top 25 scoring 8-mers and compare them
with the previous study’s top 25 8-mers with the highest me-

Figure 9. Sequence logo obtained by our prediction enumeration on the
bHLH DBD domain of the transcription factor E2-alpha (UniProt code:
P21677, UniPROBE code: Tcfe2a).

dian binding intensities measured by PBM (36). It can be
observed that our top 25 scoring 8-mers share similar pat-
terns CANNTG with those measured by PBM as shown in
Supplementary Table S6. As a summary, we also build a se-
quence logo from our top 25 scoring 8-mers as shown in
Figure 9. It can be observed that our sequence logo is quite
similar to the logos measured and reported by the previous
PBM study as shown in Supplementary Figure S13 (36).

DISCUSSION

In this study, we have proposed and described a compu-
tational study on learning specificity-determining residue–
nucleotide interactions. Our proposed solution is to take
advantage of the vast amount of protein–DNA binding se-
quence pairs from CISBP to learn inference models on PDB
data for different DNA-binding families.

To study its learning performance, we have conducted
comprehensive analysis and case studies. (i) We adapted our
proposed methods to the classic problem (predicting DNA
binding residues on protein side only), on which we have
compared our methods with the state-of-the-art methods.
The results reveal that our methods are competitive among
the sequence-based methods at low false positive rates. Fur-
thermore, our method shows comparable results with DB-
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Dhunter which is still the best available structural method
for the classic problem. In addition, the proposed approach
using both DNA and protein features performs better than
that using protein features alone. (ii) Having demonstrated
our method competitiveness, we proceed to estimate the
proposed method’s performance on the new problem (pre-
dicting specificity-determining residue–nucleotide pairs). It
can be observed that the proposed method performs differ-
ently across different DBD families. In particular, it works
well for POU and ETS DBD families (AUC = 0.99 and
AUC = 0.97, respectively). (iii) To shed light on that, we
have studied our predictions on the PDEF protein. From
the crystal structure of the protein–DNA complex of hu-
man PDEF ETS domain bound to the prostate specific
antigen regulatory site (PDB code: 1YO5), we observe that
our top predictions can reflect the experimentally verified
residue–nucleotide binding pairs. (iv) To apply the proposed
method, we have also discussed and implemented two addi-
tional potential applications. For the first application, we
have run PreMoTF to predict a DNA motif from a Home-
odomain protein sequence and used our proposed method
to predict residue–nucleotide binding pairs between the
Homeodomain DBD protein sequence and the predicted
DNA motif instance. For the second application, we have
used our proposed method to predict and rank which DNA
8-mer is bound by a bHLH DBD protein sequence in silico.

In light of the above, we believe our proposed compu-
tational study is capable of learning specificity-determining
residue–nucleotide binding pairs at competitive levels (AUC
= 0.70–0.99). In the future, we can foresee that our pro-
posed approach will become very useful as massive protein–
DNA interaction data are being generated using next gen-
eration sequencing technology.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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