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Abstract

Supportive communication is an effective collaboration behavior identified in human
teams in which team members share information proactively to improve overall team
performance. Prior work formulated this objective as the Single-Agent in a Team
Decision Problem (SAT-DP) where agents decide whether or not to communicate an
unexpected observation during execution time. We extend the SAT-DP definition to
include sequential observations, highlighting the need for belief updates of attributed
mental models of agents. These updates must be performed effectively and efficiently
to minimize model divergence and maximize the utility of future communications. In
this paper, we present a decision-theoretic solution to the sequential SAT-DP. In our
solution, we propose the use of Bayesian plan recognition as one of the methods for
reducing divergence in mental models. To achieve computational tractability, we use
probabilistic ordered AND/OR trees to compactly represent distributions over possi-
ble solutions of hierarchical planning problems. Finally, we evaluate and demonstrate
the effectiveness of our proposed approach on decentralized agents collaborating in
partially observable environments.
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Chapter 1

Introduction

Autonomous agents collaborating in nondeterministic worlds need to react to un-

expected changes in the environment and communicate new information effectively.

Decision theoretic approaches to multi-agent communication, such as incorporating

communication as actions, produce effective results but often do not scale to large

problem instances [12, 22]. On the other hand, scalable communication models that

use explicit rule-based communication mechanisms are often not flexible to changing

environments, becoming less effective [17, 21].

Human-inspired approaches toward multi-agent communication and coordination

aim to computationally model effective behaviors found in human teams, such as an-

ticipatory behaviors [16], proactive information sharing [9, 8, 26, 2], and maintaining

shared mental models [24, 27, 6].

This paper presents a decision-theoretic approach towards communication. Specif-

ically, this paper defines and addresses the Sequential Single Agent in a Team Decision

Problem (sequential SAT-DP). Sequential SAT-DP is an extension of the SAT-DP

problem proposed in [2], which asks whether an agent, with incomplete world knowl-

edge, should communicate a new piece of unanticipated information during execution

time in a collaborative setting. The sequential extension of the problem addresses,

in addition to whether or not to communicate an observation, how agents should

update their beliefs of each other as a result of communication in order to maximize

the effectiveness of future communications. By addressing the sequential SAT-DP
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problem, we enable effective information sharing.

As demonstrated in [2], uncertainties in understanding of a teammate’s possible

plans are detrimental to the effectiveness of communication. Therefore, in the problem

we wish to address, it is critical to maintain an accurate representation of teammates’

possible plans. Our solution performs belief updates to maintain accurate mental

models of other agents via Bayesian plan recognition similar to that of [24].

Our solution addresses scalability and computational tractability by assuming

hierarchical structure in the planning domain. Hierarchical structure have been uti-

lized to exponentially reduce search space in symbolic planning [23] and in solving

dec-POMDP with macro-actions [1]. We present a structure to compactly represent

a distribution of possible plans that one agent attributes to another.

Previous solutions to the SAT-D problem proposed by [2] and [16] were evaluated

on, or assumed, situations where agents have full observations of their teammates.

This assumption is often unrealistic in the real world. Applications of multi-agent

tasks such as search and rescue operations in disaster zones or surveying of unfamil-

iar terrains often involve long-range physical separations where communications are

expensive, due to either energy constraints of embedded platforms, limited range of

wireless transmitters, or security risks of potential interception of messages in hos-

tile territory. We evaluated our proposed solution using a more realistic simulation

environment where agents are fully decentralized.

This paper makes the following contributions. First, it formally defines sequen-

tial SAT-D problem. Second, it proposes a solution to the sequential SAT-DP by

presenting 1) a structure for representing a distribution over possible solutions to an

HTN planning problem via a probabilistic ordered AND/OR tree, and 2) methods of

belief updates during communication in order to maximize the effectiveness of future

communication. Finally, it demonstrates the effectiveness of the proposed approach.
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Chapter 2

Problem Definition

This paper addresses a sequential extension to the Single Agent in a Team Decision

Problem (SAT-DP) proposed in [2] for fully decentralized partially observable teams,

assuming the SharedPlans specification for collaboration [14].

Consider a multi-agent team collaborating in a nondeterministic partially observ-

able environment with discrete time steps where team planning is centralized at t = 0

but fully distributed during execution and communication is expensive. Individual

agents must reason about whether to communicate newly observed information about

the world to other team members in order to optimize overall team utility.

In our problem formulation below, we make basic assumptions that agents share

common domain knowledge and identical initial world beliefs. We also assume that

agents know their own plans and have partial knowledge of teammates’ plans at t > 0.

Formally, let A = {ai} be a finite set of agents and Ω be the set of possible

observations, which need not be finite. We define the sequential SAT-DP problem

with respect to an arbitrary agent ai with the tuple (ai, A−i, b
t
i, V

t
i , ω

t
i , φ, c) where

• A−i = A\{ai} is the set of other agents in the team,

• bti is ai’s belief of the SharedPlan of the team at time t,

• Ci is the cost function that ai attributes the world,
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• ωt
i ∈ Ω is a new observation obtained by ai at time t, ωt

i = ∅ if no new observa-

tion at time t is made,

• φ is a function that, given a belief bti and an observation ω ∈ Ω, produces an

updated belief bt+1
i .

• and c ∈ R is the cost of communication,

The sequential SAT-D is the problem of determining whether ai should commu-

nicate ωt
i to agents in A−i at each time step. The sequential extension to the decision

problem is necessary because how agents update their beliefs in response to send-

ing and receiving a communication affects future decision making. In addition, this

extension allows for time-dependent reasonings.
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Chapter 3

Related Work

This chapter discusses a range of prior approaches to reasoning about communica-

tions, beginning with classical axiomatic and decision theoretic approaches for multi-

agent planning to human-team-inspired approaches for effective communication, such

as proactive information sharing and maintenance of shared mental models.

3.1 Multi-Agent Communication

In multi-agent planning, there have been two main approaches towards stipulating

communications for collaboration, axiomatic and decision theoretic.

To axiomatically enable communication in team collaborations, formal semantics

have been introduced to represent joint intentions over possible-worlds [4] and inten-

tions involving cooperations [14]. Early works stipulated communications whenever

certain states are reached, such as discovering infeasibility of a goal [5]. In the STEAM

(a Shell for TEAMwork) multi-agent framework, a domain specific decision tree was

used to reason about communicating facts that lead to the termination of joint in-

tentions in the team [25]. Extensions of the formal semantics provided a theoretical

framework for group communications [17] and for enabling proactive communication

[9].

In decision theoretic planning, a common approach to enable communication is

to incorporate communication into the agents’ action space, as done in the COMmu-
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nicative Multiagent Team Decision Problem (COM-MTDP) model [22], and in [12] by

augmenting decentralized partially observable Markov decision processes with explicit

language of communication, producing the DEC-POMDP-COM model. Recent work

introduced macro-actions that encapsulates domain specific hierarchical structures to

address intractability issues in solving Dec-POMDP for larger problems [1].

Our proposed work is distinguished from previous work in that, unlike aforemen-

tioned axiomatic approaches, our framework is flexible to uncertainties in the world

and takes into account the cost and benefit of communication. Previous decision

theoretic approaches are computationally intensive and can only solve problems with

small state-spaces. While [1] addresses this problem with macro-actions, incorpo-

rating communication of new observations as actions is nontrivial. Specifically, the

number of actions to incorporate would be proportional to the observation space,

which exponentially increases the size of Dec-POMDP. To leverage the macro-actions

framework, one must manually partition the set of possible communication actions

into macro-actions.

3.2 Communication as Anticipatory Behavior

Anticipatory behaviors have been identified as a key characteristic in effective human

teams. A number of previous works have aimed to model communication as a form

of anticipatory behavior [8].

[16] introduced a formalized model for reasoning about the cost and benefit of

supportive actions, including communications, during the collaboration. Agents in

[16] computed the expected value of communicating versus not communicating using

a domain specific probability recipe tree (PRT) and acted to minimize expected cost.

[2] proposed a hybrid Belief-Desire-Intention (BDI) and decision-theoretic ap-

proach that integrated PRT with an MDP formulation to decide, not only whether

or not to communicate but also the best future time to communicate assuming full

observation of the teammate’s actions.

Both approaches, however, were evaluated using an omniscient agent with full
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observability of the world and its teammate actions. In our work, we evaluate our

model with fully decentralized teams operating under partial observability of the

world and teammate actions. Agents need to not only reason over uncertainties

in their teammates’ plans, but also over other teammates’ states. In addition, our

work extends the PRT representation to HTN domains and extends the SAT-DP to

the sequential decision problem in order to highlight the importance of maintaining

accurate mental models over time.

3.3 Reasoning with Mental Models

Maintaining a shared mental model (SMM) has been shown across disciplines to have

positive correlation with team performance and to provide explanations for effec-

tive human collaboration behaviors [6]. Mental models are internal representations

of a situation [26], and shared mental models are extensions of individual mental

models into a team context [26]. Applications of mental models range widely from

developing better training methods for human teams [6], to better collaborations in

mixed human-robot tasks [18, 27, 24], to formalizing and incorporating SMMs into

multi-agent teams [26].

In mixed human-robot teams, building and maintaining mental models of other

team members is a core component in modeling communication. Hand-crafted com-

munication models and linguistic devices have been introduced to induce and shape

human’s mental model of the robot [18, 3] thereby enhancing human situational aware-

ness when working with the robot. Capability modeling is introduced to learn domain

information probabilistically in order to improve robots’ mental models of humans

[27].

Recent work in human-robot interaction (HRI) formally defines mental models

that robots attribute to human teammates and applies these models to avoid re-

source conflict. These robots are able to reason over multiple possible human plans

and partial goal specifications by applying Bayesian plan recognition techniques to

observations of human actions [24]. In contrast from [24], our proposed approach
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enables reasoning about proactive communication as a means to influence another

agent’s plan in addition to reactively processing received communications.

In maintaining SMMs in multi-agent teams, the Collaborative Agents for Sim-

ulating Teamwork (CAST) framework has incorporated SMMs into team planning

representing the SMM as the set of shared knowledge across all members, which is

then used by each agent during decision making [26]. In this paper, we do not aim

to maintain a single shared mental model, but fully distributed mental models that

one agent attributes to another in order to reduce communication overhead needed

to maintain an SMM.
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Chapter 4

Approach

In this section, we present an approach for solving the subclass of the sequential

SAT-D problem where the planning domain is defined with hierarchical structure.

We address this subset of problems because, aside from being widely implemented

in industry [11], domain specific hierarchical structures reduce the search space of

possible plans, and more importantly, allow tractable representation of possible plans.

In decentralized collaboration, we induce supportive communications by first giv-

ing agents the ability to attribute mental models, which represent one agent’s belief

of another agent’s possible goals and plans, to other team members. When an obser-

vation is obtained, each agent reasons about the expected cost or utility of commu-

nicating the information to its teammates and acts to maximize utility or minimize

cost.

Communicating useful information relies on having sufficiently accurate mental

models of teammates. Previous work has demonstrated that inaccurate beliefs lead

to over- or under-communicating [2]. Partial observability and limited communica-

tion inevitably lead to diverging mental models, which is when an agent’s attributed

mental model of another agent is no longer accurate, resulting in ineffective informa-

tion sharing. To address this problem, we propose three methods to reduce possible

divergence of mental models without triggering any additional coordination, one of

which applies Bayesian Plan Recognition on the received communication.

14



4.1 Hierarchical Task Networks

In symbolic planning, a hierarchical task network (HTN) is a planning representation

that utilizes domain specific hierarchical knowledge to reduce the search space of

possible plans, thereby exponentially reducing planning complexity [7, 11]. HTN

domain definition augments classical planning by distinguishing between primitive

tasks (executable actions) and compound tasks. Compound tasks can be decomposed

into a set of simpler tasks which themselves may be primitive or compound.

Formally, let Q be a finite site of predicates, S = 2Q be the set of possible states

where each state is a set of ground predicates, and TN be the set of possible task

networks. We define a task network tn ∈ TN as a pair (T, ψ) where T is a finite set

of tasks, primitive or compound, and ψ is a set of constraints. An HTN planning

problem P is the tuple (Q,O,M, tn0, s0) where Q is a finite set of predicates, O is the

set of primitive tasks defined over preconditions and effects, M the set of methods

representing compound tasks and their decompositions, tn0 the initial task network

representing agents goals, and s0 the initial state. A method m ∈ M is a pair

(c(m), pre(m), tn(m)) where c(m) ∈ T is the compound task, pre(m) specifies the

preconditions for decomposing m, and tn(m) is the decomposed task network of m.

We consider domains where compound tasks may have different decompositions

depending on the state of the world, or multiple decompositions. Thus we define a

decomposition function that maps a method and a state to a set of possible decom-

positions:

d : M × S → 2TN

We also incorporate cost into HTN planning by assigning a cost function C :

O × S → R in order to evaluate our communication models.

An HTN solver, HOP (Q,O,M, tn0, s0), outputs a plan, or a sequence of operators,

P = (o1, · · · , on), that completes tn0 subject to the constraints, and an optimal HTN

solver outputs a plan that satisfies the constraints with minimum cost. Given that

our formulation allows multiple possible optimal solutions and decompositions of a

compound task, we define a comprehensive HTN solver to output a set of all possible
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plans with the minimum cost.

4.2 Representing Possible Plans

In this section, we propose a probabilistic ordered AND/OR tree, hereafter Π-tree,

to compactly represent a distribution of possible solutions to an HTN problem. This

representation is an extension of the Probabilistic Recipe Tree (PRT) representa-

tion from [16]. PRT uses the AND/OR tree structure to define a distribution of

possible recipes for completing the action associated with the root node by assign-

ing edge probabilities to OR nodes and their children. Similar structures motivated

by AND/OR trees have been previously used in plan recognition and task-planning

[15, 13]. The strength of this representation is that it is exponentially more compact

than exhaustively representing all possibly recipes or plans [16].

We extend this representation to describe solutions to HTN planning problems.

The main additions are enforcing ordering on the children of AND-nodes to represent

constraints in the task-networks and consideration for state dependencies. Method

decompositions in HTN vary depending on the input state. As a result, one of the

key differences is that the Π-tree produced for each HTN planning problem could be

different depending on the initial world state s0.

Analogous to PRT, the Π-tree defines a distribution of possible plans for complet-

ing the HTN problem associated with the root node. Each node has an associated

task (or task-network) and a start state. The root node, for example, is defined with

tn0 and s0. Each compound task m ∈ M is represented by an OR node where the

children are possible decompositions. Given an OR-node for method m with state s,

the children of the node is the set of decompositions given by d(m, s), where agents

may nondeterministically choose a decomposition during planning. We specify the

edge probabilities to each child as the likelihood that an agent chooses the child. We

assume that agents act rationally and assign optimal decompositions with uniform

probability. Each task network tn = (T, φ) ∈ TN is represented by an AND node

where each subtask t ∈ T is a child node. The children of AND-nodes are ordered

16



to respect the constraint φ in the task-network. Finally, the leafs of the tree are

primitive tasks.

We express the distribution over all possible plans for an HTN problem P =

(Q,O,M, tn0, s0) as Π(tn0, s0). Note that each subtree in the AND/OR tree structure

also represents a distribution. To sample a particular plan from the distribution, we

traverse the tree and eliminate every OR node by sampling one child with respect

to the edge probability. The leafs of the remaining tree after removing all OR nodes

represent one possible plan that achieves the root-task. The likelihood of a given

plan is the product over the likelihood of each chosen decomposition, which is also

the product of all selected edge probabilities.

The cost of a sampled plan is the sum over all primitive actions with respect to a

given cost function. To compute the expected cost over a distribution of plans, we first

evaluate the cost of each leaf-node, and then propagate the cost upwards towards the

root. AND-nodes propagate the sum over the expected cost of its children and OR-

nodes propagate the weighted sum of its children according to each edge probability.

The expected cost of the distribution of plans outputted by a comprehensive HOP

planner is the cost of any sampled plan from the distribution.

4.3 Teammate Mental Model

We provide each agent the ability to attribute a set of beliefs, desires and intentions

to each of its teammates. We define the mental model that ai ∈ A attributes to

aj ∈ A−i with the tuple Mi→j = (Si→j, Gi→j, Pi→j) where

• Si→j ⊂ S represents a distribution of possible beliefs of the world state that aj

attributes to ai;

• Gi→j ⊂ TN represents a distribution of possible goals that ai attributes to aj;

• Pi→j represents a distribution of possible plans as a result of Si→j, Gi→j, and

ai’s HTN planner.

17



At t = 0, each agent is given, explicitly, identical beliefs of the world, S0
i→j = s0 for

all ai and aj, and individual goals of each teammate, G0
i→j = G0

j→j. For simplicity, we

assume that agents do not change their goals during execution. With an HTN solver

that outputs a Π-tree, each agent attributes the plan distribution of its teammate as

Pi→j =
⋃

tn0∈Gi→j

⋃
s∈Si→j

Π(tn0, s) (4.1)

, where the likelihood of each plan is

PPi→j
(p) = PΠ(tn0,s)[p] · PSi→j

[s] · PGi→j
[tn0]. (4.2)

For t > 0, an agent may update its attributed mental model of its teammate with

observation ωt
i as follows:

• Gt+1
i→j = Gt

i→j as stated in our assumption,

• St+1
i→j = {sj + ωt

i} for all sj ∈ St
i→j,

• and P t+1
i→j can be obtained via (4.1) and (4.2).

Recomputing P t+1
i→j for every observation requires many queries to an HTN solver

which may be time consuming. In practice, we can improve performance with an

update operator defined over Π(tn0, s0) and an input observation ω: the operator

first evaluates and updates the cost of each leaf node with respect to a new state,

which is computed by incorporating the input observation ω with the previous state

s0. Infinite cost is assigned if the precondition of a primitive action node is violated.

Then the new costs are propagated upward to the root node and edge probabilities

are normalized according to the new cost.

We augment bti in the sequential SAT-DP with {M t
i→j : aj ∈ A} to explicitly

represent ai’s knowledge of its own plan and the uncertainty in ai’s beliefs of other

teammates’ plans. Given an observation, we augment the belief update function φ to

update Mi→j as described above.

18



4.4 Supportive Communication

In this subsection, we address SAT-DP at a given time interval t where ai reasons

about communicating a new observation ωt
i to its teammates. For each teammate,

aj ∈ A−i, ai runs two separate mental simulations and computes the respective ex-

pected cost as follows.

To compute the expected cost of communicating observation ωt
i to agent aj, we

update M t
i→j with ωt

i . The expected cost of communicating is

Costcomm(ωt
i) = c+ EP t+1

i→j
[Ci(p)],

where c is the cost of communication, Ci is the cost function ai attributes to the

world, and the expected cost of the new plan distribution can be computed efficiently

with a Π-tree.

To compute the expected cost of not communicating the observation ωt
i to agent

aj, ai evaluates

Costno−comm(ωt
i) = EP t

i→j
[Ci(p)].

In the case that the observation violates the precondition of aj’s possible future ac-

tions, resulting in infinite expected cost, we compute the induced cost up to the

point of failure and re-plan to obtain the remaining expected cost. Alternatively, a

domain-specific finite cost can be defined for nodes where pre-conditions are violated

to account for the cost of re-planning.

With these mental simulations, each agent acts to minimize the projected cost of

task execution.

4.5 Reduce Divergence in Mental Models

Our method of reasoning about communication relies solely on having an accurate

representation of other team members’ plans and states. An increase in uncertainty

of a team member’s plan results in lower performance of the above communication
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model. The decentralized nature of the problem as well as uncertainties in task

decompositions lead to agents having growing uncertainty in their beliefs of other

team members’ plans.

As agents explore different subspaces of the world, a single agent may decide not to

communicate an observation according to the above reasoning but update its own plan

accordingly, which will affect the correctness of others’ mental models of the agent.

While it is inevitable, without full share of information, that agents’ mental models

diverge from reality in a nondeterministic world, we take the following approaches to

reduce the divergence without introducing new communications.

The first two methods are simple logical assumptions we make about information

exchange: First, for each message sent to teammate aj, we assume it’s arrival and

update Mi→j as simulated. Second, for each received communication from teammate

aj, we take one step backwards in time to update M t−1
i→j with the observation in

the message because the sender must also have made the observation that triggered

communication.

Third, for each received message, we draw indirect information about the sender

to refine our mental model about them. Intuitively, a message pertaining to a region

of the world provides location information regarding the sender’s state, which may

align with some of our attributed plans but not others. Specifically, when ai receives

an incoming observation from teammate aj, ai has indirectly observed aj’s action of

observing and communicating ω. With this observation, we are able to refine our

belief distribution over Pi→j and Si→j with simple Bayesian inference as follows:

PP ′
i→j

[p] ∝ PPi→j
[p] · P[ω|p],

PS′
i→j

[s] ∝ PSi→j
[s] · P[ω|s].

When an agent’s mental model of another is completely incorrect, it is possible that

the agent evaluates P[ω|p] = 0 for all p ∈ Pi→j and is unable to normalize. In this

case, ai can be confident that Mi→j is off-sync from reality. In future works, this can

serve as a strong indicator for triggering communications for re-synchronizing mental
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models. In this paper, however, we drop all future communications to aj to avoid

sending unnecessary messages.
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Chapter 5

Empirical Analysis

We evaluate our approach for sequential SAT-DP with a hybrid of the Mars Explorer

Rover (MER) domain [19] and Colored Trails (CT) game [10]. Specifically, we use an

HTN representation of the domain as provided by the Simple Hierarchical Ordered

Planner 2 (SHOP2) [20].

In this domain, agents are Mars rovers whose goals are to collect and communi-

cate various data to Earth via the Lander. Agents have varying capabilities such as

having a colored camera to collect image data and being equipped to sample spe-

cific type of minerals. Compound tasks in the domain include SampleRockData,

GetImageData, and NavigateToWaypoint, while primitive tasks include Pickup,

Drop, and MoveToNeighbor. Compound tasks such as GetSoilData may have mul-

tiple possible decompositions that are equally optimal if the input state has multiple

soil objects equidistant from the agent. Decompositions of compound tasks are task-

networks with constraints resulting in ordered lists of subtasks.

We model the costs and uncertainties in the environment as done in the CT game

where accessing each location has an associated access-cost. Agents initially assign

identical and uniform cost of 1 to all actions and have no prior model of how the cost

would change. Agents can only observe the real cost of a location once it has accessed

the location and incurred the cost. This is analogous to traps with finite costs in the

CT game.

During execution, agents update their beliefs over the costs of accessing different

22



Figure 5-1: An example scenario highlighting the behavior of our approach.

locations. Supportive communication is when an agent discovers and communicates

a significant increase in cost to its teammate to prevent the teammate from incurring

the same cost at the same location. An example scenario highlighting the behavior

of our approach is shown in Figure 5-1.

In Figure 5-1, A1 and A2 are rovers assigned to collect soil and rock data. Both

agents must sample their target, analyze them, and communicate to Earth via the

Lander (L). The actual costs of accessing each location is shown in gray +x. In

this simulation, A1 has multiple soil options which means A2 is uncertain about the

details of A1’s plans. When A1 observes +8 at location (2, 3), it communicates the

observation because A1 is certain of A2’s plan and that communicating will allow

A2 to re-plan. When A2 receives the communication from A1 regarding on +8,

A2 updates its belief of A1’s plan via Bayesian plan recognition becoming confident

that A1 has chosen to sample S1. Furthermore, A2 will decide to not communicate

observations +5, +3, +2, and +9 given the updated belief over A1’s plan.

We test our approach over randomly generated simulation environments. In each

simulation, we randomly allocate agents, Landers, and some number of rocks, soils,
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and other objects around an n-by-n grid world. We also randomly assign mineral

sampling capabilities to each agent. When multiple rocks and soils are specified in

the environment, each agent may choose at random which sample data to collect.

Goals are assigned to each agent such that the team is able to complete the task

without communication. However, considering the uncertainties in the world, effective

communication would improve team performance.

To generate stochasticity in the environment, each location has some probability

of contributing an increase in the access-cost above the default value. The amount

increase is uniformly sampled from the interval [0, 10]. We model all cost changes in

the environment to occur at t = 0, but agents can only observe the change once they

land in the location. This is to avoid agents communicating observations that later

become obsolete.

In a single task execution, we specify an HTN problem and the cost of communi-

cation, and a communication model. We provide each agent with an HTN solver and

identical domain knowledge. All communications during execution are triggered from

the agent’s communication model. We evaluate the performance of a single execution

as the total incurred cost of all agents to achieve their specified goals.

Our implementation uses a comprehensive HOP adapted from the HTN planner,

SHOP2 [20]. We incorporated cost into SHOP2 by implementing a branch and bound

solver to compute an optimal solution. The output of our modified planner is the

AND-OR tree described in the previous section.
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Chapter 6

Results

We compare our proposed approach with four different communication baseline mod-

els:

• NoComm: Agents never communicate.

• RandComm: Agents communicate each observation with probability 0.5.

• FullComm: Agents communicate all observations.

• M1: Agents treat each observation as a one-shot SAT-DP and reason about

communication by evaluating the expected cost of each action.

M2 is our proposed model where agents reason about communication as described

in our approach section and use Bayesian plan recognition to reduce divergence in

mental models.

Our baseline model M1 is equivalent to the inform protocol from prior work by

[16]. However, our simulation environment differs from that of [16] and [2] in that

our agents do not have full observation of the board. In [16], agents were evaluated in

simulations with low state uncertainty and moderate planning uncertainty. Low state-

uncertainty means that the agent responsible for communicating new information has

an omniscient view of the board, including the position of the teammate at every time

step. Moderate planning uncertainty means that each agent must reason over possible

plans of its teammate. In contrast, we conduct simulations with what we consider
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to be both moderate state uncertainty and moderate planning uncertainty. In our

simulations, agents do not observe the actions of its teammates and therefore must

reason over both possible plans and possible current states of their teammates.

We evaluate our model with two sets of experiments. In the first experiment, we

reduce the planning uncertainty by modifying the HTN solver to output a determin-

istic plan for a given HTN problem. As a result, the plan distributions that agents

attribute to their teammates are deterministic and identical to the agents’ actual

plans. These simulation scenarios model situations where each agent’s mental model

of each other is highly accurate. However, there is still uncertainty in communication

because agents explore different regions of the world and modify their plans. Agents’

attributed state distributions cannot account for changes that were not communicated

to the agent.

For this experiment, we generated 100 5-by-5 world configurations with two agents

per world and with each location having 0.3 chance of incurring an unexpected cost.

For each problem, we ran our models with varying cost of communication c. We

report the median total incurred team cost of the five models per c-value over 100

problem configurations, shown in Figure 6-1.

Note that in our experiment, we use the same set of problems for each value of cost

of communication c. We expect that the averaged total cost for NoComm is constant

regardless of c since no messages were sent during execution and the total cost is the

aggregate cost incurred by every agent. On the other hand, FullComm is always linear

with slope proportional to the total number of observations made during execution.

The intersection between NoComm and FullComm provides insight into the effect of

the stochasticity in the world, representing the ratio between the amount of damage

caused by the stochasticity and their frequency of unanticipated occurrences in the

world. Given a world configuration, the best possible performance is indicated by

FullComm with c = 0, where teammates share all observations about the world at no

extra cost.

The difference in median performance that M2 demonstrates over M1 is the result

of reducing divergence of mental models via the first two logical approaches where
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Figure 6-1: Comparing five models in simulation environments with low planning
uncertainty where each task had one and only one possible decomposition. The world
uncertainties were generated with each locating having 0.3 probability of incurring
an increase in cost.
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Figure 6-2: Comparing four models in simulation environments with high planning
uncertainty and high state uncertainties. Opt plots the optimal team performance
where agents share all observations assuming 0 cost of communication.

agents assume 1) arrival of outgoing communication to update attributed mental

model of the receiver, and 2) sender of an incoming message has previously made

the same observation. Because attributed plans are deterministic in this experiment,

performing Bayesian plan recognition on incoming messages would not change the

distribution.

Our second experiment more realistically evaluates our model and baseline models

with both moderate state uncertainty and moderate planning uncertainty. Again, we

generate 100 5-by-5 world configurations with the same parameters as the previous

experiment. With multiple possible execution plans for a single problem, we repeated

each problem 25 times to report the average execution cost for a particular problem

with a specific value of c. We plot the median execution cost over 100 problem
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Figure 6-3: An illustration of M2’s performance gain over M1 as a function of the
top x percent of the total problems, where x is the x-axis.

configurations. Figure 6-2 compares the model performances over varying cost of

communication.

The average improvement that M2 demonstrates over M1 is the result of reducing

divergence of mental models as described in the Approach section, incorporating

the two logical methods as well as applying Bayesian plan recognition to incoming

messages.

From Figure 6-2, we observe that the median improvement our model demon-

strates over the baseline model is around one cost-point, which is about 2%. In most

randomly generated problems, M2 does not demonstrate significant improvement

over M1. For example, when agents make few observations or decide on exchang-

ing small number of communications, our proposed solution would not be able to

demonstrate the benefit of maintaining a synced mental model. However, there are

situations, which may occur with low likelihood, that could benefit significantly from
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effective communication strategies. We analyze the performance of M2 and M1 over

1000 random problem configurations with cost of communication varying from 0.1

to 2. Figure 6-3 illustrates M2’s performance gain over M1 averaged over the top

x percent of the total problems. Specifically, for 1% of the problems, our model

demonstrated an average of 71.1% improvement over M1, 50.1% improvement when

averaged over the top 10% of the problems, 39.8% improvement over the top 20% of

the problems, and 20.1% improvement over half of the problems.
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Chapter 7

Discussions and Applications

In our approach, we specifically considered HTN planning domains where methods

may have multiple decompositions and enabled agents to randomly select a decom-

position during planning. As a result, these assumptions introduced planning un-

certainties that our approach needed to address. These assumptions could be easily

eliminated in multi-agent planning by providing each agent with a deterministic plan-

ner or identical random seed to a pseudorandom number generator.

We consider planning uncertainty in our problem in order to build a framework

that can seamlessly be extended to mixed human-robot teams. When there are mul-

tiple options for executing a task, a human’s plan can no longer be deterministic.

In addition, the human may have personal preferences or external domain knowl-

edge, which can be modeled using our proposed Π-tree by assigning non-uniform

edge probabilities between OR-nodes and their children. In future works, these edge

probabilities can also be learned from past task executions.

To incorporate a human teammate, we specify the capability of the human in the

HTN planning domain and assign high cost of communication to the human agent.

This will result in agents communicating only the most important information to the

human agent and thereby limiting cognitive load of the human.
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Chapter 8

Conclusion and Future Work

In this paper, we formally defined the sequential SAT-DP to incorporate multiple

observations and to highlight the need for maintaining accurate mental models of

other teammates. We presented a decision-theoretic solution to the sequential SAT-

DP where we 1) used a probabilistic ordered AND/OR tree to represent a distribution

over possible solutions to a hierarchical planning problem, and 2) performed belief

updates by making logical assumptions about communication and by performing

Bayesian plan recognition on incoming messages. We demonstrated the effectiveness

of our solution by comparing against a baseline model that naively applies SAT-DP

solution over time.

The sequential extension to the SAT-DP problem provided in this work not only is

more realistic, but also opens the door to many time-based approaches. For example,

agents may incorporate confidence in their mental model of other teammates as a

function of the time passed since last communication. Other potential avenues for

future work includes further exploiting the hierarchical structures in the planning

domain to make faster evaluations and belief updates.
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