
Improving Information Flow Control Design with
Security Contexts

by

Paul Wang Hemberger

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c� Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 14, 2015

Certified by. .
Srini Devadas

Professor
Thesis Supervisor

Accepted by .
Albert R. Meyer

Chairman, Department Committee on Graduate Theses

2

Improving Information Flow Control Design with Security

Contexts

by

Paul Wang Hemberger

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
This thesis outlines a new language feature for Ruby: the security context, which
enables complex information flow control schemes to be written in Ruby without
modification to the virtual machine. Security contexts are Ruby objects that act as
transparent proxies and can be attached to other objects, allowing them to seamlessly
modify parameters and return values into and out of those objects’ methods. Security
contexts are demonstrated to be simple and effective in creating two flow control
applications that would otherwise pose significant challenge to build: taint tracking
as a Ruby library, and data flow assertions for Ruby on Rails applications. The
performance of these systems was benchmarked while running as a part of a Rails
application, and reached acceptable performance: taint tracking had no impact on
performance, and data flow assertions saw a 50% throughput decrease, while providing
considerable protection against privacy leaks and security vulnerabilities.

Thesis Supervisor: Srini Devadas
Title: Professor

3

4

Acknowledgments

I am immensely grateful for all of the support and guidance I’ve received from Prof.

Srini Devadas. Srini has always been quick to help and push my work in the right

direction. He taught me that once I have a hammer, I better find some nails. (I think

I found a few.)

Of course, I am equally indebted to Victor Costan, my research mentor for the past

three years. Since I began as a UROP, I have pinged Victor endlessly for his thoughts

not just on research, but on programming practice, classes, careers and whatever is

on my mind. No matter what I ask him, it seems that Victor somehow already has

substantial experience in the subject, and he has been an invaluable resource and

friend. He even helped me wade through my very first open source commit.

Working on my thesis was been a rollercoaster experience: hard oscillations be-

tween triumph (when my code started working) and despair (when I immediately

uncovered a new error). I must acknowledge and thank all of my friends and family

who have put up with me during this time. The M.Eng is not terribly long, but I am

sure I made it feel like eternity for those around me.

To Andrés Romero and Kevin White, for being fantastic friends who convincingly

pretended to enjoy proofreading my drafts. To Sam Peana, Vo Thanh Minh Tue, and

Klaudia Leja, for being goofy, wonderful people. To my fellow M.Eng’ers: Esther

Jang, Julián González, and Alex Gutierrez, for sharing ideas and commiserating with

me.

To my parents, without whom I would not be here (chuckle). To Chris and

Francesca, who bring infectious joy wherever they go. Thank you so much for your

endless love and support.

And most of all, to Jessica Fujimori, who makes me a better person and inspires

me every day. Thank you, thank you, thank you.

5

6

Contents

1 Introduction 15

1.1 Thesis Outline . 17

1.2 Related Flow Control Implementation Work 17

1.2.1 Virtual Machine Support . 18

1.2.2 Language Modifications . 18

1.2.3 Bytecode Hacking . 18

1.2.4 Source-to-Source Transformations 19

1.2.5 Static Analysis . 19

1.2.6 Monadic Types . 19

1.2.7 Runtime Isolation . 20

1.3 Scope . 20

1.4 Goals . 21

2 Overview of Flow Control Schemes 23

2.1 Taint Tracking . 23

2.2 Resin Data Flow Assertions . 25

3 Security Contexts 27

3.1 Identifying a Re-Useable Structure 27

3.2 Design . 28

3.2.1 Ruby Objects . 28

3.2.2 Method Hooks . 29

3.3 Implementation . 31

7

3.3.1 Virtual Machine Modifications 31

3.3.2 String Interpolation . 32

3.3.3 Ruby Standard Library . 33

4 Prototyping Taint Tracking 37

4.1 Security Context Design . 37

4.2 RubySpec Compatibility . 40

5 Prototyping Police 41

5.1 Overview of Rails Application Architecture 42

5.1.1 Model-View-Controller . 42

5.1.2 Rack Middleware . 42

5.2 Extensions to Rails . 43

5.2.1 ActiveRecord Domain-Specific Language 44

5.2.2 Filtering Middleware . 46

5.3 Label Propagation . 47

6 Evaluation 49

6.1 Performance Benchmarks . 49

6.1.1 Requests . 49

6.1.2 Police Policies . 50

6.1.3 Results . 50

6.2 Policy Protection . 53

6.3 Limitations . 53

6.4 Programmer Effort . 54

7 Future Work and Conclusions 57

7.1 Further Applications . 57

7.2 Future Work . 58

7.3 Conclusion . 59

A Listings 61

8

List of Figures

2-1 Taint flows from variable x to y automatically. 24

3-1 The String "hello" calling its #concat method when it has a security

context. The security context executes its pre-hook #pre_concat and

post-hook #post_concat before and after the method call, which can

change the arguments into and return value from "hello"#concat.

Here, the hook methods transparently pass the values on. 30

5-1 An overview of how Police fits into a Rails application. The policies

are defined on the model, and labeling and filtering is done at the data

boundaries, between the application and the network and database.

Label propagation ensures that labels flow all throughout the applica-

tion logic. 43

6-1 Visually comparing the throughput of requests from Table 6.1. 51

9

10

List of Tables

3.1 The API for security contexts’ pre-hooks and post-hooks 29

6.1 Requests per second for each type of request sent to Seven, averaged

over 10,000 requests. 50

11

12

Listings

3.1 Ruby snippet that taints a String and interpolates it into a new

String. The result should also be tainted. 32

3.2 Using a tainted argument in an untainted object’s method call can

taint the output. 33

3.3 Aliasing the Rubinius::Type#infect method to propagate the scheme

defined by the security context . 33

3.4 Police’s security context #infect method propagates the labels of

the object onto the receiver of the method. It will be called each time

the snippet in Listing 3.3 is called. 34

4.1 The TaintSecurityContext defines a post-hook to propagate taint

after String#upcase. The variable x starts without a security context,

so the variable y which results from x#upcase is not tainted. However

when x executes within TaintSecurityContext, taint from x#upcase

propagates to y, and y is also covered by the security context. 39

5.1 A policy on the Profile model that says that the only users allowed to

update a particular user’s name, university and department informa-

tion are admins and that user. The variable this refers to the instance

of the Profile being used, and user is the user of the current session 45

5.2 A policy that protects the contents of a Submission’s homework file

from being read by anyone but the user who submitted the file or an

admin. 45

13

A.1 Bytecode generated by stock Rubinius compiler for 3.1. The string_build

function is defined in the virtual machine and cannot be hooked from

Ruby. 61

A.2 Bytecode generated by the patched Rubinius compiler for 3.1. interpolate_join

is a Ruby method, which can be hooked. 62

A.3 Taint checking fully re-written using security contexts 63

A.4 Police’s middleware that labels incoming values with UserSupplied

labels, and checks response output for ReadRestriction labels 71

A.5 Police extension to ApplicationController to set the User of the

current session on all UserSupplied labels 73

A.6 Police extension to ActiveRecord to check :write policies before a

write, and to attach ReadRestriction labels to retrieved data 74

A.7 Police’s additions to Object to add in labels as a common property

of Ruby objects . 79

14

Chapter 1

Introduction

Language-level information flow control (IFC) is a powerful technique, and it has

been repeatedly demonstrated in research to be an effective solution to entire classes

of security vulnerabilities. But despite its track record, IFC has yet to make an

impact on commercial software in any meaningful way. There are no libraries to

easily add data flow assertions–which can automatically prevent many vulnerabilities

and privacy leaks–into production web applications, which is a loss for both users and

developers.

A key challenge is that there is no simple way to write IFC systems in the lan-

guage of the developer’s choice. IFC requires hooking into essential operations of the

language’s execution, which most languages cannot offer–they lack the flow control

structures needed to write flow control schemes. Without the proper structure to

build upon, implementing a scheme becomes a considerable undertaking, often with

considerable drawbacks. Adding in the proper hooks then requires out-of-band solu-

tions, like direct modifications to the language’s virtual machine, bytecode manipula-

tion or source-to-source transformation. Each is a complicated task, and conceptually

distant from actually working on flow control; the desired flow control scheme might

be simple, but building it requires expertise in unrelated areas. Even if one of these

techniques yields a successful IFC application, the barrier to usage is high, as spe-

cial transformations and changes to the toolchain make the application difficult to

distribute and use. Impeding distribution and deployment will stymie even the most

15

exciting work.

This thesis presents security contexts, language-level objects that offer a struc-

ture to build arbitrary flow control schemes. The security context offers a high-level

perspective on flow control. It allows a scheme to be purely defined as a user-level

application, and it has a sensible API that exposes the necessary hooks into the lan-

guage’s execution to build flow control systems. IFC can be written using security

contexts, packaged into a library, and included into an application without hesita-

tion. Their high-level design greatly lowers the barrier to prototyping flow control,

and eliminates the difficulty of distribution. Complex ideas can be distilled down to

simple and readable security contexts and tested quickly.

The central idea of the security context is its interposition on regular method

calls with its pre-hooks and post-hooks, methods that wrap around another object’s

methods to analyze or modify the data going in and out. The hooks act transparently–

a hooked method does not know of the security context’s pre-hooks or post-hooks–and

the hooks are written as ordinary language methods, requiring no special techniques.

They have a consistent API that makes using them uncomplicated and predictable.

Security contexts are designed to have no impact on existing code that does not use

them.

To demonstrate the practicality and power of security contexts, we have built

them into the Ruby language. Ruby is an expressive language that lends itself well

to prototyping new ideas, and it is widely used for web applications, due to the

popularity of the Ruby on Rails web framework. We specifically chose to use Rubinius,

an implementation of Ruby built on top of a custom C++ virtual machine and LLVM

JIT compiler. Rubinius is notable for implementing several core language features, as

well as all of the Ruby standard library, in Ruby rather than in the virtual machine.

This makes it a particularly good platform to experiment with, as its virtual machine

is designed for close interaction with Ruby logic to fully define the language. We

added security contexts into Rubinius with additions to the virtual machine and

standard library.

We demonstrate that security contexts are simple and effective in building two

16

different flow control schemes that normally require significant virtual machine modi-

fications or other techniques: taint tracking and data flow assertions. We then evalu-

ated our designs by applying these libraries to a Ruby on Rails web application, and

measured application performance. We found that given demanding information flow

control policies, our application reached acceptable performance, with an overhead of

0% to 47% depending on the benchmark. The code required to build these schemes

was quite reasonable; taint tracking required only 200 lines of code.

1.1 Thesis Outline

Chapter 2 summarizes two different flow control schemes for securing applications

that are unattainable without a proper flow control structure to support them. We

illustrate their utility and the challenges posed in building them.

Chapter 3 describes the full design of security contexts, our proposed flow control

structure.

Chapters 4 and 5 describes how security contexts were used to build the two

schemes outlined in Chapter 2.

Chapter 6 describes the performance and security impacts of using security context-

based applications within a production web application.

1.2 Related Flow Control Implementation Work

Significant research has been done on flow control schemes, particularly in the realm

of security policy enforcement for web applications [8, 15, 16, 22, 24, 34, 36], and it

has also been applied to operating systems [37], distributed systems [7], and browsers

[29]. The implementation process of these efforts has varied, but is rarely simple.

In this section we, summarize the different techniques used to achieve language-level

IFC.

17

1.2.1 Virtual Machine Support

Languages with any form of flow control have typically had their structures and logic

embedded into the language virtual machine. An example of this is seen in scripting

languages, such as Perl, PHP and Ruby which support taint tracking. The virtual

machine marks runtime objects as tainted, and contains all of the taint propagation

rules within the virtual machine’s codebase. This removes any flexibility for extension

to taint tracking as a user of the language–change can only be achieved by modification

to the language’s virtual machine, not through the language itself.

1.2.2 Language Modifications

With the inherent limitations of most languages in providing facilities to build flow

control schemes, naturally many researchers have taken to extending the languages to

add in the features they need. This typically involves changes to the virtual machine

[15, 16, 22, 24, 36]. Modifying the virtual machine is often a straightforward way

to change program execution, but it increases the barrier to widespread adoption.

Production software must be reliable, and running a system on top of a non-standard

virtual machine is a hard sell. It is also more challenging to disseminate the work, as

now users must install the new virtual machine and add it to their toolchain. It can

also be difficult to guarantee correctness, Resin [36] referred to having to modify the

PHP interpreter in 103 locations, which increases the risk of missing checks and adds

inertia when changing the design.

1.2.3 Bytecode Hacking

Bytecode hacking is one solution for changing execution to support flow control with-

out having to modify the virtual machine. The idea is to compile a program normally,

take the bytecode of that program and modify it to add in hooks, and output new

bytecode which supports the original program with the intended flow control scheme.

This technique has been used with the Java Virtual Machine [8, 22]. One downside of

bytecode hacking is that the running bytecode no longer exactly corresponds to the

18

source code of the original program, which could make debugging and understanding

the program’s execution challenging. It also requires deep knowledge of the bytecode

of the virtual machine, which could be a barrier for prototyping new ideas.

1.2.4 Source-to-Source Transformations

Source-to-source transformation aims to achieve a similar goal to bytecode hacking,

though it takes place one step earlier. The source code of a program is transformed

into source code with the necessary hooks for flow control, and then compiled into

bytecode with the standard virtual machine. The downsides are similar: the final

code no longer represents the source code of the original application, and writing

an accurate source-to-source transformation is a non-trivial task. Source-to-source

transformation was used in GuardRails [34], a Ruby on Rails policy system.

1.2.5 Static Analysis

Static analysis has been applied to a number of programming languages in the pursuit

of guaranteeing flow control properties at compile time [11, 20]. It can be a powerful

tool, though it has inherent limitations when applied to dynamic languages, where

methods might not even exist until certain code paths are executed. A dynamic

application, such as a website whose data policies depend on knowing the permissions

of the active user, is therefore not a well-suited target for static analysis.

1.2.6 Monadic Types

There are some languages that natively support the type of structures that flow

control schemes need. An example of this is Haskell [1], a pure, functional language

which supports monads, structures that contain values and define rules for how those

values interact with external values. While immensely powerful, Haskell and other

ML-derived languages have struggled to reach a wide audience, perhaps do to their

foreign nature compared to popular imperative and object-oriented languages. The

vast difference in language functionality means that the power of Haskell’s monads are

19

not easily translated to an object-oriented language like Ruby. This is unfortunate, as

incredible flow control work has been done with Haskell, such as Hails [14], a system

for building untrusted web platforms. It uses types to attach policies to data, and

the trusted runtime ensures that access control of those policies is always respected,

even when running untrusted code.

1.2.7 Runtime Isolation

Cowl [29] outlines a plan to bring coarse-grained information flow control to any

language. With a coarse-grained approach, a program is segmented into isolated

computational units, or tasks, which run with a specific security label. Tasks can

communicate with each other via send and receive messages, and the IFC manager

can impose restrictions on the message transfers based on the labels of each task.

The segmenting of the program and communication via explicit channels is similar

to that of processes and interprocess communication (IPC) in an operating system.

Applying this technique at the language level is powerful; Cowl is able to secure

complex mashup web application that run both trusted code and untrusted 3rd-

party code with minimal modification to the application. The downside is that the

coarse-grained approach loses flexibility compared to a fine-grained approach, and

applications may not be easy to partition in sensible ways.

1.3 Scope

One aspect of information flow control that we have not aimed to tackle are implicit

flows. Implicit flows occur when tainted data is used to govern the control flow

of an application. The branching that occurs off of tainted data can then disclose

information about the execution of the program or be manipulated to take a different

code path for a specific purpose. However, implicit flows are difficult to reason about,

as the data flow is no longer direct, and can lead to taint creep, where an increasingly

large portion of the application is tainted. This can quickly become unwieldy, and the

taint of the execution may not correspond clearly to the developer’s intended data

20

flow.

1.4 Goals

With the guarantees that it can offer, information flow control belongs in produc-

tion, everyday software, but has suffered from lack of built-in language support. We

want to demonstrate that the right feature can reduce the high barrier to building

flow control systems, and be performant and practical to use. We believe that we

have identified one with the security context, as it has enabled us to prototype in-

formation flow control systems that would be otherwise overwhelming to design, and

have demonstrated reasonable performance in a production web application. While

the security context itself requires modifications to the virtual machine, we want to

show that its construction offers a blueprint for an accessible and usable interface to

information flow control design.

We furthermore hope that this work elucidates the distinction between a flow con-

trol scheme and structure. Significant research effort has been focused on exploring

the capabilities of flow control schemes, but each effort must rehash the implemen-

tation process, which is rarely easy. But by focusing on the structure, it becomes

fast and practical to experiment with new schemes. Most schemes thus far have been

focused on security or privacy applications, but information flow control can benefit

many more applications than just these–if more researchers and developers had access

to languages with the right flow control structures, then more creative, more powerful

and more diversified flow control applications can be explored.

21

22

Chapter 2

Overview of Flow Control Schemes

Before continuing on to the design of security contexts, which enable the practical

implementation of flow control schemes, let us first briefly recap the functionality of

two well-researched flow control schemes to understand their desired behavior and

benefits.

2.1 Taint Tracking

Taint tracking is a long-standing feature built into languages like Perl, PHP and Ruby.

With taint tracking, objects are either untainted or tainted. Objects by default are

untainted. When untainted objects are combined with tainted objects, they become

tainted. All values produced by a tainted object will also be tainted. The program

can specifically untaint, or sanitize a value if it is deemed to be safe.

A common use case for taint tracking is to mark data coming from an untrusted

source as tainted, and verify that sensitive operations throughout the application are

not using tainted values. Because taint propagates, a taint check will catch if the

value in question belongs anywhere in the entire tainted data flow, not just if it was

the initial source of taint. This offers great flexibility, since the application can been

written without thought of tainting, as taint automatically propagates regardless of

the application’s logic, and still be protected by it at runtime.

This type of protection, tainting a source and checking values at sensitive opera-

23

Figure 2-1: Taint flows from variable x to y automatically.

tions, is particularly effective in catching injection vulnerabilities. Many varieties of

web vulnerabilities fall under this category, such as SQL injection, cross-site script-

ing and mass-assignment attacks, where malicious user data is processed by the ap-

plication without sanitization. In SQL injection, user-supplied data is substituted

into the application’s database queries, allowing an adversary direct access to the

database. Cross-site scripting occurs with user data reaches the HTML response of a

web server without checks, allowing the adversary to distribute malicious scripts that

run within the origin of the website. Mass-assignment attacks exploit how object-

relational mapper systems update database entries, and allow an adversary to insert

unintended attribute updates with modified request parameters. Clearly, executing

any user-supplied data without sanitization can be regrettable. However, using taint

tracking to mark user-supplied data as tainted, and the proper checks at the sensitive

operations can prevent all of these vulnerabilities. Such techniques have been used

to secure web applications before [8, 15, 24].

Despite its potential, taint tracking leaves something to be desired. As an object is

either tainted or untainted, there is no way to know when or why an object was tainted,

and it is difficult to differentiate how to sanitize or untaint different types of objects.

Perhaps more pressing is that the overall semantics of the taint tracking system is

not consolidated into one place, and it is instead expressed as checks throughout the

application, and those checks as a whole define the system. Forgetting a single check

at a critical junction in the application could be disastrous, and each check must know

24

how to sanitize the data at that point in the code. A developer must then not only

be conscious of the features she is building, but always be mindful of inserting taint

checks at the proper places. As the application grows large, this becomes increasingly

difficult to do correctly and consistently.

2.2 Resin Data Flow Assertions

Resin [36] details a much more powerful and thorough policy system using data

flow assertions. Data flow assertions expand on taint tracking by allowing for more

information to be propagated than the binary untainted or tainted value.

With data flow assertions, on object can be annotated with a policy object, which

itself can contain code or metadata. In contrast to tainting, policy objects are

language-level objects, so they can contain arbitrary data, such as marking a value

as sensitive and where it came from. The policy object then propagates with the data

flow of its host object, much like how taint propagates. Resin then has filter objects,

which are objects that demarcate data flow boundaries–points at which sensitive data

might be stored or sent out on the network, or where user-supplied data might be

executed within the program. Filter objects situate themselves on I/O channels and

function calls, and check data for policy objects. If any data is annotated with policy

objects, then the policies on those objects are enforced by the filter object.

This system allows for remarkable protection against programmer error and mali-

cious attacks. Sensitive data in a web application can be annotated with policy objects

that contain highly specific policies pertaining to their contents. For instance, a pass-

word could be annotated with a policy that says it can only be sent to a user with

a particular email address. After that data propagates throughout the application,

the filter object can examine the contents of the response, see its policy object, and

check if the intended recipient’s email address matches that of the policy. If not, the

web server can send an error message instead of disclosing sensitive information. If

it does match, then the response can continue as it would normally. The granularity

with which data flow assertions can operate is a significant improvement to simple

25

taint tracking.

Resin takes considerable care to prevent a number of distinct attack vectors.

By labeling sensitive user data with policy objects, Resin is able to automatically

enforce access control checks site-wide, which mitigates programmer errors that lead

to information disclosure and attacks like directory traversal. By labeling untrusted

data, it is able to prevent the execution of malicious data in attacks such as SQL

injection and cross-site scripting. The Open Web Application Security Project, known

as OWASP, regularly publishes a Top 10 list of the most common web application

vulnerabilities [35]. Against the most recent list, Resin outright prevents five classes

of vulnerabilities, and helps alleviate the threat from two others.

Data flow assertions scale well across increasingly large applications, where it

becomes difficult to coordinate cross-cutting data policies reliably. In a large ap-

plication, many features may make use of the same data in different ways. If that

data is sensitive, then each feature must take care to use proper access control. This

means continually repeating ad-hoc policy checks in increasingly separated parts of

the application. Unfortunately, even the best, security-conscious programmers can

make mistakes, and it seems inevitable that the data will be leaked. Resin solves

this challenge as the data and their policies become inextricably attached. As long as

the policies are reasonable, and the filter objects check in the right places, then data

cannot be disclosed to the wrong users. This removes a significant burden from the

programmer, and can greatly increase overall security.

The primary aspect of taint tracking and Resin-like data flow assertions that

makes them hard to implement is the propagation of taint and policy objects. Prop-

agating these values requires executing propagation logic as the program runs–the

application source code should not have to specify any explicit propagation calls.

Propagation thus becomes an aspect of the language runtime’s execution, which most

languages cannot hook into. Taint tracking gets around this limitation by placing

the propagation logic into the virtual machine directly, so that it is pre-baked into

the language runtime. Resin required significant virtual machine changes to reach a

similar effect with its policy objects.

26

Chapter 3

Security Contexts

Information flow control can enforce invariants or policies about an application’s

runtime execution without having to interfere with any of the application’s logic. It

can be thought of as a shadow computation, or type of metaprogram that executes

in the background as a part of the language runtime. Security contexts provide a

hook into the language runtime that allow a developer to write custom methods that

operate behind-the-scenes of regular program execution. This allows complex IFC to

be written in the same way as a normal program; security contexts are a re-useable

structure that can be fitted to numerous flow control schemes.

3.1 Identifying a Re-Useable Structure

To build a re-useable flow control structure, we first must identify what exactly a

flow control scheme needs to operate. In a program, data flows between variables via

function calls and statements. A flow control scheme wants to enact certain properties

about a program’s data flows, so it must have hooks into these operations to control

or track the flow.

Working with Ruby simplifies this task: all statements are expressions, every value

in Ruby is an object, and consequently all functions are method calls on objects. This

makes method calls the only data flow operation in Ruby. Hooking into Ruby’s data

flow is then a matter of hooking into method calls.

27

One existing template for hooking into method calls in a dynamic language is

ECMAScript 6’s notion of a Proxy class [23]. The security context is inspired by the

Proxy, which offers a simple API to wrap an object and hook into its methods.

3.2 Design

The layout of security contexts is simple: they are Ruby objects, any Ruby object can

have a security context object, and a security context may define pre-hooks and post-

hooks, which wrap an object’s method calls. The hooks are written in Ruby, exposing

the flow control scheme definition to a high level. An object with a security context

attached is known as a contextualized object, and a security context can use its pre-

hooks and post-hooks to control contextualized objects’ methods and data flow. This

is all the security context needs to offer–though the scale of its features are minimal,

this functionality enables powerful applications that would be otherwise challenging

to write and require extensive metaprogramming.

Practically, a contextualized Ruby object has a #security_context property that

points to a security context object, which then wraps its methods. On this level, it

appears that an object has a security context. However, conceptually it may be

enlightening to see this as the object executing within a particular context. The

exact nature of that context is defined by the security context, and varies with the

intended flow control scheme.

3.2.1 Ruby Objects

An important aspect of the security context is that it is a Ruby object, so using

it requires normal Ruby code. Allowing a developer to use the same language and

runtime for both the IFC and target application enormously simplifies the task of

implementing flow control. This is in strong contrast to many of the techniques that

were outline in Section 1.2.

28

3.2.2 Method Hooks

The power of the security context lies in its pre-hooks and post-hooks. This is the

important mechanism that allows a security context to trace the execution of an

application. When an object executes a method, the Ruby virtual machine searches

through the object’s hierarchy to find a method by that name. Then it executes

that method, with the object as the receiver. Pre-hooks and post-hooks surround

this process. When a method is called on a contextualized object, the VM locates

the relevant method in the object’s hierarchy, then it instead executes the pre-hook

of the security context, executes the original method with the original object as a

receiver, and then executes the post-hook of the security context. Security contexts

can therefore monitor messages passed into and out of an object, and can contextualize

the returned objects, allowing a security context to expand and cover all objects within

a particular data flow.

before_method(receiver, *args, &block)
the pre-hook receives the arguments to the original method and returns new
(or the same) arguments to be used instead, the hooked arguments.
after_method(receiving_object, return_value, *hooked_args)
the post-hook receives the return value of the original method and returns a
new one, the hooked return value. It also receives the hooked arguments that
went into the original method.

Table 3.1: The API for security contexts’ pre-hooks and post-hooks

A pre-hook is a Ruby method given three arguments: the receiver of the original

method call, the arguments intended for that method, and the block intended for

that method. It can then perform any logic to transform or record the arguments

and block, and then return the hooked arguments that will instead reach the original

method.1

A post-hook is also a Ruby method given three arguments: the receiver of the

method call, the return value from the method call, and the hooked arguments from
1
To prevent potential ambiguities when passing modified blocks to the original method, which

is outside of Ruby’s syntax, they must be given at the end of the list of return values, and marked

with a special hooked_block? property. In practice, we never had to use hooked_block when using

security contexts.

29

Figure 3-1: The String "hello" calling its #concat method when it has a secu-
rity context. The security context executes its pre-hook #pre_concat and post-hook
#post_concat before and after the method call, which can change the arguments into
and return value from "hello"#concat. Here, the hook methods transparently pass
the values on.

the accompanying pre-hook, if available. Similarly, it can transform or record any

values, and return a value that stands in (or is the same as) as the return value from

the original method call.

To clearly spell out the terminology used with hooks: the pre-hook receives the

arguments intended for the method call, and returns the arguments that the method

call will actually receive, called the hooked arguments. The method receives the hooked

arguments, and emits the return value that the post-hook receives. The post-hook then

returns a hooked return value, which is the value returned.

If a security context does not define any hooks on a contextualized object’s

method, then the method will execute normally. This minimizes the performance

hit of code execution outside of a context.

30

Writing a hook is straightforward: if a method were named #foo, then the pre-hook

method is named #before_foo, and the post-hook named #after_foo2. A security

context can define pre-hooks and post-hooks on any or all methods.

3.3 Implementation

3.3.1 Virtual Machine Modifications

Several modifications to the Rubinius virtual machine were made to add security

contexts into the language. We defined security contexts to be a property of Ruby

objects much in the same way an object can be tainted, and then modified method

execution to call pre-hooks and post-hooks when the receiver is contextualized.

Object Header

The Rubinius VM keeps a 32-bit header for every Ruby object. The header’s bits are

used to denote various properties and metadata of that object, such as whether or

not the object is frozen, tainted or trusted, as well as tags for the garbage collector.

Fortunately, the header did not make use of all 32-bits, so one bit was allocated to

mark whether or not an object has a security context.

Primitives

Rubinius couples its Ruby-defined language features and standard library to its virtual

machine through primitives. When a Ruby method calls a primitive, the interpreter

will generate bytecode that tells the virtual machine to directly call one of its own

functions to operate on the data on the stack. This allows Ruby code to dip into

the virtual machine for certain operations that its better suited for, such as object

allocation, deep copying, and fast string building methods.
2
There exists one caveat when defining pre-hooks and post-hooks that involve Ruby’s non-

alphanumeric method names. Methods named *, []=, +@ are valid, but are not valid when combined

with alphanumeric characters (e.g. after_[]= is an invalid name). For this reason, the pre-hooks

and post-hooks involving these methods are translated into alphanumeric versions, such as after_*

becoming after_op__multiply.

31

Fundamental properties of objects, such as frozen and taint, are written with

primitives that execute VM code that finds the header bits on the internal object and

returns a Boolean. We added similar primitives to find whether or not an object has

a security context. Because a security context is a Ruby object and cannot fit into

the header, we also made a special instance variable to store the security context, and

primitives to access its contents.

Call Sites

The virtual machine’s Call Site class handles the actual execution call of a Ruby

method. This class was modified to check if the receiver of the method had a security

context. If so, it would then check if it had a pre-hook or post-hook for the method,

by doing method lookups on the security context object. It then handled the calls to

those hooks by calling #send on the security context, with the arguments specified in

Section 3.2.2.

3.3.2 String Interpolation

One challenge we encountered was properly handling Ruby string interpolation. This

was similarly a sticking point for the developers of SafeWeb, a Ruby policy library

[16]. String interpolation happens when the String result of a Ruby expression is ex-

ecuted and substituted–interpolated–into a new String. Rubinius natively builds the

logic for this function into the virtual machine, and when it compiles a Ruby program,

generates bytecode that directly calls this VM function. Because security contexts

wrap around Ruby methods, not virtual machine methods, they cannot intercept the

results from the Ruby expressions that are executed during the interpolation process.

Unfortunately, this means that the resulting Strings escape the scope of the security

context, so security context cannot track this important data flow.

1 w = "world!".taint

2 "Hello #{w}"

Listing 3.1: Ruby snippet that taints a String and interpolates it into a new String.

32

The result should also be tainted.

To address this, we modified Rubinius’s bytecode generation to instead call a string

builder method written in Ruby when doing interpolation. When this operation

is moved into Ruby, security contexts can hook the method and handle the data

flow properly. A bytecode comparison can be seen in Listings A.1 and A.2. Not

surprisingly, moving string building from the virtual machine to Ruby is costly in

terms of performance, and is detailed in Section 6.1.3.

3.3.3 Ruby Standard Library

1 x = "hello, world"

2 y = x.match(/hello/.taint)

3 => "hello"

4 y.tainted?

5 => true

Listing 3.2: Using a tainted argument in an untainted object’s method call can taint

the output.

Security contexts hook into the method calls of a contextualized object, so in order

for the pre-hooks and post-hooks to run, the contextualized object must be the method

receiver. This brings up one challenging task of flow control in Ruby: handling the

case where a method’s argument is a contextualized object, but the receiver of the

method call is not. To be able to fully cover all data flow paths, the security context of

the contextualized object–even as an argument to a method–must be able to hook the

method call. Listing 3.2 illustrates this scenario with taint tracking: a tainted regular

expression is used to match text out of an untainted String. The String is the

receiver, and is not tainted (and would not have a security context), but the regular

expression is tainted and is passed in as an argument. Because the result might be the

same as the tainted argument depending on the match, the result should be tainted,

too.

33

1 module Rubinius

2 module Type

3 class << self

4 alias_method :old_infect, :infect

5 def infect(host, source)

6 if source.secure_context?

7 source.secure_context.infect host, source

8 end

9 old_infect(host, source)

10 end

11 end

12 end

13 end

Listing 3.3: Aliasing the Rubinius::Type#infect method to propagate the scheme

defined by the security context

1 module Police

2 module DataFlow

3 class SecureContext

4 def infect(other, source)

5 source.propagate_labels other

6 end

7 end

8 end

9 end

Listing 3.4: Police’s security context #infect method propagates the labels of the

object onto the receiver of the method. It will be called each time the snippet in

Listing 3.3 is called.

34

To handle this case, we hooked into Rubinius’s #infect method. #infect is the

method used to transfer taint and trust between objects. Rubinius has two variants

of #infect, one that exists in the virtual machine, and one that exists in the Ruby

bootstrapping code. The latter is just a primitive over the virtual machine code, but

it offers us the ability to hook into its call as it is written in Ruby.

Rubinius already places calls to #infect throughout its standard library at all

the points where taint or trust might propagate. We extended the method to call

#infect on a security context, if source of the infection has one. The security context

can then define its own #infect that defines how to propagate itself when one of its

contextualized objects is used as an argument to a method. Had we not had the

luxury of Rubinius’s #infect to piggyback, we could have added a call to a security

context’s #infect method in the Call Site when a contextualized object is passed

as an argument, to achieve the same effect.

Listing 3.3 shows how the built-in Rubinius #infect is extended to call #infect

on a security context, and Listing 3.4 shows how Police, our data flow assertions

library for Ruby on Rails applications, used this method to propagate its labels.

35

36

Chapter 4

Prototyping Taint Tracking

We reimplemented Ruby’s taint tracking behavior as a first test of security contexts

as a re-useable flow control structure. We mimicked the same propagation rules as

native tainting, and satisfied the language tests for tainting defined by RubySpec.

The performance of this application is detailed in Section 6.1.3.

4.1 Security Context Design

Taint tracking propagates taint within a data flow. To track a data flow with security

contexts, one can use its post-hooks and #infect methods. An object can be tainted

by giving it a security context. The security context then hooks into all of that

object’s methods, and if one of those methods can propagate taint, then the security

context will attach itself to the resulting values. If that new object propagates taint,

then yet again, the security context will hook its methods and attach itself to the

new values. In this way, a security context can model the behavior of taint tracking

by tracking data flow, with its presence on an object standing in for taint.

Successfully building track tracking from the ground up requires understanding

all of the possible flows of data where taint might propagate. As discussed in Section

3.1, in Ruby this means knowing the method calls that propagate taint among the

basic data types. If all of the basic types support propagation, then any developer-

defined object will support it appropriately as well, since those objects will simply

37

be a composition of the basic types. In particular, the Ruby String has numerous

methods that propagate taint and must be considered carefully.

Fortunately, we have a template for Ruby’s propagation rules: Rubinius’s native

taint tracking. We searched through the Rubinius VM and its Ruby standard library

to find all of the methods that handle tainting or propagation of taint. We then wrote

a security context that defines post-hooks for each of those methods. The post-hooks

take in the return values from those methods, taint the results according to Ruby’s

propagation rules, put those values into the same security context, and pass the values

back. We did not need pre-hooks because the arguments into the methods should not

be modified with taint checking.

38

1 class TaintSecurityContext

2 def after_upcase(obj, retval, hooked_args)

3 retval.taint

4 retval.security_context = self

5 end

6 end

7

8 x = "hello, world"

9 y = x.upcase

10 => "HELLO, WORLD"

11 y.tainted?

12 => false

13

14 x.security_context = TaintSecurityContext.new

15

16 y = x.upcase

17 => "HELLO, WORLD"

18 y.tainted?

19 =>true

Listing 4.1: The TaintSecurityContext defines a post-hook to propagate taint after

String#upcase. The variable x starts without a security context, so the variable

y which results from x#upcase is not tainted. However when x executes within

TaintSecurityContext, taint from x#upcase propagates to y, and y is also covered

by the security context.

The resulting code is pleasantly simple. Listing 4.1 illustrates one of these tainting

post-hooks for the Ruby method String#upcase, which returns a String’s value in

all upper-case letters. The intent is clear from the security context definition, and

furthermore, as the security context is extended to support all of Ruby’s taint prop-

agation rules, all of the logic is contained within a single class. This is in stark con-

39

trast to the current scattering of taint checks in Rubinius, which hovers at 52 explicit

method calls for tainting in the standard library, and 18 in the virtual machine–the

rules for tainting are difficult to piece together when they are so widely dispersed.

Listing A.3 contains the full tainting security context we developed, and contains a

near-perfect reproduction of Ruby’s native taint tracking.

To actively use our replacement taint tracking in Ruby, we redefined Kernel#taint

and related methods to use our security contexts. Kernel is a Module near the top

of Ruby’s object hierarchy, so nearly all runtime objects will contains its methods.

Ruby allows for this type of "monkey-patching" where core objects can be redefined

at runtime, which made our own code readily runnable.

4.2 RubySpec Compatibility

RubySpec is a project formerly maintained by the Rubinius team that serves as a liv-

ing specification for the Ruby language [28]. It contains thousands of tests that in total

constitute and verify the behavior of a correct implementation of Ruby. RubySpec

serves as an excellent barometer for functional correctness when making changes to

the language, and especially when trying to emulate existing behavior with a new

feature.

Using our modified Ruby, known as RBX-SC, with the tainting methods monkey-

patched to use the TaintSecurityContext, we verified that our implementation

passed all of the relevant RubySpec tests pertaining to tainting. There were a few cor-

ner cases where our design propagated tainted where native Ruby would not, caused

by the internals of how Rubinius distributes of logic across the C++ virtual ma-

chine and Ruby standard library. These could be changed if necessary, however the

propagation rules it did exhibit seemed reasonable and so no further changes were

made.

40

Chapter 5

Prototyping Police

The next system we prototyped was Police, a security framework that brings data

flow assertions to Ruby on Rails applications. The design is modeled after Resin,

but takes advantage of the rigid structure available in Ruby on Rails applications to

decrease the cost of adding it into an existing application.

To build and test Police, we used Seven, a Ruby on Rails application used by

MIT’s Introduction to Algorithms course to manage homework submissions, grading,

generating grade reports and more. It is a complex application with many compo-

nents, and constantly moves sensitive data. This makes it an excellent real-world

candidate for taint checking and policy enforcement.

Testing the correctness of Police involved building a suite of unit tests, and then

running it with Seven to verify that was compatible with a full-fledged application.

Adding Police to Seven took under 5 lines of code, and could be automatic with

a few short changes. The efficacy of Police’s policy enforcement is discussed in

Section 6.2.

Section 5.1 summarizes the layout of a Rails application, for those who might be

unfamiliar.

Section 5.2 details the design of Police.

41

5.1 Overview of Rails Application Architecture

Ruby on Rails is a successful framework for building web applications. It takes

a heavy-weight approach, bundling a number of complex features together such as

template rendering, routing, and an object-relational mapper (or ORM). The majority

of a Rails application is built behind the scenes for the developer. Rails’ opinionated

and regular design makes extending it to support Police straightforward, since all

applications made with it share the same overall structure.

5.1.1 Model-View-Controller

Ruby on Rails adopts the Model-View-Controller design pattern for building appli-

cations. This design pattern splits the task of building an application with a user

interface into three discrete components. For a web application, the breakdown of

responsibilities often comes down to:

• The model defines the data structures used by the application.

• The view defines the visual layout of a data structure or visual element.

• The controller receives commands and carries out the desired operation. Often

this will involve logic to retrieve data from a model or many models, pass that

data into a view, and return the HTML output.

Rails is built up from many packages. ActiveModel is Rails’ implementation of

the Model components, and in a default application it closely works with ActiveRe-

cord, the ORM. ActionView contains the templating logic for generating views, and

ActionPack contains the Controller definitions.

5.1.2 Rack Middleware

Rails operates on top of Rack, which is an API that connects web servers to frame-

works. It handles incoming request data into the Rails app, and outgoing response

42

Figure 5-1: An overview of how Police fits into a Rails application. The policies
are defined on the model, and labeling and filtering is done at the data boundaries,
between the application and the network and database. Label propagation ensures
that labels flow all throughout the application logic.

data produced by the Rails app. It supports middleware, which are applications that

hook into this request processing cycle.

Figure 5-1 presents a full picture of the structure of a Rails application. Requests

come in through Rack, the controller retrieves data from the models and persistent

storage, gives it to the view, and outputs the page through Rack. This design is

standard across all Rails applications.

5.2 Extensions to Rails

Police consists of three central pieces. The first is a policy domain-specific language

to define security and privacy policies for the application’s data. The second is filters

that label incoming data with those policies and verify the policies of outgoing data.

The third is the label propagation logic that allows labels to follow the data flow of

43

the application.

5.2.1 ActiveRecord Domain-Specific Language

Domain-specific languages (DSLs) expose simple interfaces to complex logic. Ruby

is well suited for defining domain-specific languages, and Rails and its ecosystem

has leveraged this functionality significantly. ActiveRecord ’s data validations [25],

used to specify the proper format of a model’s data, and CanCan [2], used to define

authorization checks on model attributes, both define properties on models through

DSLs. The DSL for Police is inspired by these libraries, in an effort to make it as

simple as possible to use, and familiar to current developers.

Police extends ActiveRecord, the object-relational mapping layer of Rails with

class methods to define policies on models. An individual policy offers either :read

and :write protection over individual attributes of each model. :read policies are

used to prevent unintended information disclosure, and :write policies can prevent

unauthorized or inappropriate writes to the database. :write policies are sufficient to

prevent mass-assignment attacks, which plagued Rails for years before ActiveRecord

was fully patched [4, 19].

A policy is defined by a set of attributes on the model to protect, the action to

protect (either :read or :write) and an anonymous function that contains the policy

check. When invoked, the anonymous function is given a reference to the current user,

so that the attribute can enforce access control.

44

1 class Profile < ActiveRecord::Base

2 police :name, :university, :department, :write => (lambda do |this, user|

3 this.user == user or user.admin?

4 end)

5 end

Listing 5.1: A policy on the Profile model that says that the only users allowed to

update a particular user’s name, university and department information are admins

and that user. The variable this refers to the instance of the Profile being used,

and user is the user of the current session

The DSL also provides support for nested relationships of models. Rails model

relations can quickly become complex, and it can be useful to specify a policy on a

nested attribute. Listing 5.2 illustrates this case with models from Seven: a homework

Submission has an owner, which is a User, and can have a HomeworkFile. However

a HomeworkFile is simply a blob data type that does not know which Submission it

belongs to. There should be a policy that no students besides the one who submitted

the file should be able to read its contents. This policy should belong to Submission,

since it is the model that connects a User who submitted the file to the contents of

the homework file. The contents of the homework file is not a simple attribute of

Submission, so Police allows it to be specified through a list of attributes and be

protected in the same way as if it were one of Submission’s own direct attributes.

1 class Submission < ActiveRecord::Base

2 police [:db_file, :f, :file_contents], :read => (lambda do |this, user|

3 user && (this.is_owner?(user) || user.admin?)

4 end)

5 end

Listing 5.2: A policy that protects the contents of a Submission’s homework file from

being read by anyone but the user who submitted the file or an admin.

45

5.2.2 Filtering Middleware

Police’s filters sit at the boundaries of a Rails application to label incoming data and

prevent the export of policy-protected data. The filters reside in Rack middleware

and in hooks to ActiveRecord.

Police’s Rack middleware labels all request data, such as GET parameters, the

querystring and form data, with a UserSupplied label. The label, a Ruby object,

at first contains a nil reference to the active user’s User model, as the middleware

does not yet know which user the active session belongs to. Police then attaches

a lambda method to the RackEnvironment, a hash map of Rack’s state, that when

called, sets the UserSupplied label to refer to a given User.

In a Rails application, the controller is the only module that knows the cur-

rent user. Because the middleware labeled request data with a UserSupplied la-

bel, but did not know the current user, the controller is then responsible for setting

the User on the labels. This is accomplished through Police’s module to extend

ApplicationController, the parent controller to all other controllers. ApplicationController

executes its code before any custom controller for the application, so Police adds

in a snippet that sets the User of the UserSupplied labels to that of the current

session by calling the lambda method attached to the RackEnvironment. In this way,

UserSupplied labels can freely propagate after the middleware filter, before the cur-

rent user is even known, and once the user is known, the labels will all refer to the

correct user.

With these steps, all request data will be labeled as coming from the current user

once execution reaches the controllers. There are then two important cases that must

be handled: writing data to the database, and returning an HTTP response. These

are durable actions that must honor the labels of the data they process–failure to do

so could lead to absent access control and myriads of problems.

Police uses ActiveRecord ’s :before_save and :before_update hooks to enforce

:write policies before writing to the database. Police will look through all of

the labels attached to the model instance that is about to be saved. If there are

46

any UserSupplied labels, it can then extract the User associated with the current

request. It will then invoke the policy methods specified for the model, passing them

the current User so that the policies can perform access control checks for the user. If

all policies are satisfied at this point, ActiveRecord can continue on with its database

save or update. If there are policy failures, the operation is rolled back and the

application returns an error.

:read policies are enforced before returning an HTTP response by using ActiveRe-

cord ’s :after_initialize hook. :after_initialize executes after a model is in-

stantiated, and Police then labels each of its policy-protected fields with ReadRestriction

labels with a reference to the model’s class. These labels will flow throughout the

remainder of the Rails application as it generates a response.

The Police Rack middleware will eventually receive the response’s contents, and

check if any of it contains ReadRestriction labels. If it finds any, it looks up which

models they came from, and therefore which policies must be enforced before the

data exits the application. It can then execute the policy checks, and appropriately

continue with or deny the response.

5.3 Label Propagation

Label propagation is the key idea to enforcing :read and :write policies without

explicit checks. Once an object is labeled, all derived values will be too, and eventually

if any of them reach a data boundary, filters will verify that the data satisfies the

application’s policies.

With Police, when an object is labeled, it is given a security context. The

security context transparently propagates labels and itself to new objects, so that

labels follow data flow. The propagation rules used by the security context are the

same as those for tainting, so few modifications had to be made between Police’s

security context and the taint checking security context.

Police defines new convenience methods on Object, such as :label_with, :labeled?

and :has_label?. In usage, the security contexts are invisible to a user of Police.

47

The security contexts provide the label propagation, but never need to be directly

acted upon. This helps separate the logic of labels and policy control from the mech-

anism to propagate them between objects.

48

Chapter 6

Evaluation

6.1 Performance Benchmarks

We benchmarked the performance of our security context-based taint tracking and

data flow assertions with Seven. For taint tracking, we wrote a tainting middleware,

that tainted all user-supplied values in the incoming HTTP request. For the data

flow assertions, we installed Police into our application and wrote several policies

for the application’s data models.

For each test, we used ApacheBench to send 10,000 requests to the application,

and recorded the average throughput and latency. The benchmarks were run on an

Intel i7-3720QM with 8GB memory.

6.1.1 Requests

We evaluated our application against the following requests:

• A GET to the login page of Seven, which contains a simple login form without

any particular data policies.

• A GET to the home page after logging in. The home page contains a newsfeed

of recent homework uploads, posted assignments and who posted them, and

upcoming deadlines, all of which is data that must be loaded dynamically from

49

the database and then interpolated into HTML templates. This makes it a

computationally intensive process, in contrast to loading the login page.

• A POST to change a user’s profile information. This includes request data from

the user, which must propagate taint or labels if available.

• A GET to a user-owned homework file, which after passing access control checks,

leads to a direct download. With Police, this tests the overhead of the Ac-

tiveRecord labeling and filtering for :read restrictions.

6.1.2 Police Policies

When testing Police, we wrote three policies for the application to protect a stu-

dent’s data:

• Restricting uploaded homework files to only be readable by the student or an

administrator.

• Restricting an assignment’s grading to only be readable by the student or an

administrator.

• Protecting a user’s profile information to only be changeable by that user.

6.1.3 Results

RBX RBX-SC RBX-SC Native Taint RBX-SC SC Taint RBX-SC Police
Login Page 15.61 11.12 11.83 11.19 11.27
Submission 23.63 17.76 17.73 18.46 9.33
Profile 5.73 5.33 5.93 5.79 4.20
Home 2.48 1.77 1.88 1.89 1.59

Table 6.1: Requests per second for each type of request sent to Seven, averaged over
10,000 requests.

50

Login Page Submission Profile Home
0

5

10

15

20

25

R
eq

ue
st

s
pe

r
se

co
nd

RBX
RBX-SC
RBX-SC with native tainting
RBX-SC with security context-based tainting
RBX-SC with Police

Figure 6-1: Visually comparing the throughput of requests from Table 6.1.

To establish a baseline, we first measured unmodified Rubinius v2.5.0 and RBX-

SC v2.5.0, our modified version of Rubinius 2.5.0 with security contexts, across these

tests without any tainting middleware or Police policies. From Table 6.1, we can

see that RBX-SC has a performance drop between 28.7% on the login page load

to 6.9% on the profile update. The primary slowdown is due to RBX-SC’s Ruby-

level hook into string interpolation, rather than using the Rubinius VM’s optimized

string builder methods. Without this hook, the overhead of RBX-SC on code without

security contexts is a single if-statement check per method call.

Using RBX-SC, we then measured the performance cost of tainting using Ru-

binius’s built-in tainting, versus tainting via security contexts. These numbers are

quite close, and bode well for security context-based flow control schemes. In fact,

the test for accessing a homework file was faster on the security context tainting than

native, which hints that the noise of parsing a request and querying the database

might overshadow any overhead in using security contexts for tainting. This is fur-

51

ther evident when looking at the results of plain RBX-SC, which has results all within

the same tight range and is actually a bit slower on average. Tainting natively or with

security contexts seems to have near negligible impact on Rails app performance.

However, with Police we can see that the numbers do dip on all tests aside from

the login page, which had no policies attached to its data. The home page throughput

declines 10% compared to plain RBX-SC, as some of the homepage’s content has

read restrictions that must be checked. Updating profile information decreases in

throughput by 27.5%, since each of the POST request parameters must be labeled,

and then policy checked before committing to the database. Perhaps most surprising

is the decrease of 47.5% throughput for accessing a read protected homework file.

This request involves no template rendering, which has a high CPU burden, which

might have masked the overhead of label propagation in other requests. It is worth

noting that Police’s performance on the login page suggests negligible slowdown for

pages that do not handle policy-protected data.

These numbers are all within the realm of reason for a security-conscious applica-

tion. They furthermore add negligible memory usage: we used security contexts as

singleton objects, so their memory overhead was a single Ruby object. It is also worth

noting that RBX-SC has not been optimized, and there is significant low-hanging fruit

to further improve its performance. In particular, when the VM executes the pre-

hooks and post-hooks, it first checks if the hook methods exist, and then executes the

method call, which in itself requires another identical lookup. This makes five calls

in total: each hook, lookups for each hook, and the original method call. Caching the

lookups is an easy win for performance. Another area for improvement is the Ruby-

level string interpolation method, which has not been fine-tuned for performance.

String interpolation is a ubiquitous operation whose performance strongly affects the

performance of the application as a whole, as seen in the difference in baselines of

RBX and RBX-SC.

52

6.2 Policy Protection

To measure the efficacy of Police’s policies to enforce read and write restrictions,

we removed the explicit access control checks throughout Seven and instead attached

policies to the models. We then attempted to exploit the absence of access control

checks to manipulate data owned by other users from a user account that was not

privileged to do so. These included attempts to:

• Update another user’s profile information

• Read a protected user’s profile information

• Directly download the generated PDF homework file of another user

• Load the homework grade report of another user

• Intentionally mix in read-protected information into the user’s newsfeed

All of these attempts were prevented by Police, which was able to track the

provenance of sensitive data into the database write or page output and cause the

application to abort the request when a policy would have been violated. Police’s

success across these requests was warming to see, though not altogether a surprise–the

design is modeled after Resin, which has shown that such a system is conceivable and

powerful. Police’s novelty lies in its implementation, built on the security context,

that allowed such the entirety of the scheme to come to life as a Ruby script, rather

than fragmenting the work across virtual machine modifications and web application

changes.

6.3 Limitations

One shortcoming of information flow control in Ruby is that Fixnum (Integer) and

Boolean values are internally represented with immutable singletons. They therefore

do not support tainting, the thinking being that they cannot be created by an external

source, so if those objects exist within the runtime then they are implicitly sanitized.

53

This design prevents us from attaching a security context to Fixnums and Booleans,

so we are unable to track their data flow.

This does pose some limitations on the potential policies that Police can define.

For instance, a User’s grades for an assignment are stored as Integer values. Ideally,

these grades should be :read policy protected from being accidentally or maliciously

revealed to another non-staff user, but because of Ruby’s limitations, the values

cannot be labeled with ReadRestrictions so this policy cannot be attached to the

grade numbers themselves.

If required, this can be worked around by storing all sensitive values at String

types, but that introduces complexity and can require restructuring how data is

stored, which hampers the plug-and-play goal of Police.

6.4 Programmer Effort

Building security context-based taint checking took under 200 lines of code, and passes

all relevant RubySpec tests.

Police is under 600 lines of code for both the label propagation logic as well as

hooks into Ruby on Rails. The majority of the security context propagation code is

largely borrowed from the taint tracking reimplementation. Police is bundled into

a Ruby Gem, and was added into the Rails application with two lines of code. A

typical policy is written in a familiar DSL, and was often only 1-3 lines of code. The

full source code for both applications is listed in Appendix A.

While identifying all of the proper hooks to fully support propagation through

data flow is not necessarily trivial, for most schemes that follow the native tainting

propagation rules, it only must be done once. Police was able to use all of the same

propagation rules as taint tracking, but with the addition of moving labels between

objects, which is a simple change.

Furthermore, it cannot be overstated how powerful it is to have an entire scheme

documented within a single class. Part of the complexity of identifying taint tracking’s

propagation rules lay in its lack of centralized definition–it had hitherto existed as

54

a scattering of statements all throughout the virtual machine and standard library.

Consolidating the logic into a single place in the codebase dramatically increases the

ease of comprehending and developing the scheme, lowering the overall programming

effort required.

55

56

Chapter 7

Future Work and Conclusions

We have demonstrated security contexts to be a viable structure for building flow

control schemes. We have specifically focused on security-related applications, but

this is not all security contexts can do! IFC is a powerful technique that can benefit

a wide variety of applications, many of which can be built with security contexts.

7.1 Further Applications

Security contexts open up a large number of powerful flow control applications. Some

possible avenues to explore:

• Entropy tracking of probabilistic values–randomly generated values can be at-

tached with a security context. The context can define how the entropy of the

value changes based on the operations it undergoes throughout the application.

• Digital-rights management–protected content can be attached with a security

context that manages fine-grain policies, e.g. marking a song with a policy that

asserts it cannot be played more than five times. Trishul [21], a modified JVM

with label propagation explored this as one of its core applications.

• Classification / Declassification policies–a traditional use of flow control, to

mark data with different tiers of classification and prevent the leakage of sensi-

tive data to unprivileged users, or similar lattice-based policy schemes [10].

57

• Dynamically building models of objects and methods–track the types and ranges

of values into and out of methods in production. This could be extended to

automatically generate tests for methods once enough data is gathered.

• Data-oriented profiling–understanding the specific flow of a piece of data through-

out a large application and its effect on other values. This could perhaps be

used to track observability.

• Character-level tainting–this is a fine-grain approach to have separate labels on

individual characters within a String, and not just on the String in entirety.

Security contexts could demarcate the index boundaries of certain labels for

characters in a String, and then hook into String methods to create the merge

rules.

The nature of the hook methods also offer a number of smaller, perhaps less

exciting opportunities:

• Automatic argument fixing–pre-hooks can be used to automatically correct or

modify arguments going in to a method.

• Profiling–understanding how often methods are called during execution. Ru-

binius inserts profiling methods directly into its virtual machine, but security

contexts could avoid this requirement.

• Invariants/Type Checking–pre-hooks and post-hooks can be used to assert in-

variant properties of the arguments and return values. For the truly devious,

this could be expanded to a more rigorous type checking system.

7.2 Future Work

The security context offers all of the features needed to implement IFC, but its API

may not satisfy all developers. Exploring further interfaces, using the security context

as a base, could be fruitful. Police used security contexts behind the scenes so that

58

a developer only ever had to use Police’s DSL to specify policies, and never had to

touch the security contexts directly. This is a good first step, and the code of the

security context is the next step for simplification and abstraction.

Of course, one of the biggest barriers to adoption of information flow control

is that most languages cannot support them. Security contexts were designed to

demonstrate that a simple structure is all that is needed, but unfortunately, the

security context is not yet a part of any mainstream language. Adoption of the

security context or comparable design into a widely used language would go a long way

towards bringing flow control to every day applications. The ECMAScript 6 Proxy,

whose design inspired the security context, will ideally bring such functionality to

JavaScript. We have not spent adequate time with the Proxy to fully understand its

capabilities and limitations, but it could potentially bring flow control to JavaScript-

based applications, which would be a potent tool for the web.

7.3 Conclusion

Researchers interested in information flow control have to keep reinventing the wheel

when it comes to implementing their ideas. Most languages lack the features necessary

to natively build runtime flow control schemes, which stunts the development of new

and exciting ideas. But building flow control systems should not be so challenging–

with the right language features, it can and should be simple and accessible.

The security context was designed to fill in this gap. It provides all of the functions

needed to develop information flow control ideas. Its pre-hooks and post-hooks give

it runtime access to an object’s data flow, and it is exists as user-level code, not

as complex logic scattered throughout the language virtual machine. This greatly

lowers the barrier to the flow control design process, and expedites the development

and testing cycle.

We have shown the security context to be effective in building two schemes: taint

tracking and data flow assertions for Rails applications. Ruby’s taint tracking was

fully emulated as a single security context class, and the data flow assertions library

59

is similarly straightforward. The consolidation of flow control logic into single classes

is an enormous improvement over the existing systems that scatter logic throughout

the language, sometimes in over 100 locations. The performance of these schemes

running on a production application was reasonable, particularly for applications

handling sensitive data.

60

Appendix A

Listings

1 0000: push_literal "world!"

2 0002: string_dup

3 0003: send_stack :taint, 0

4 0006: set_local 0 # w

5 0008: pop

6 0009: push_literal "Hello "

7 0011: push_local 0 # w

8 0013: allow_private

9 0014: meta_to_s :to_s

10 0016: string_build 2

11 0018: pop

12 0019: push_true

13 0020: ret

Listing A.1: Bytecode generated by stock Rubinius compiler for 3.1. The

string_build function is defined in the virtual machine and cannot be hooked from

Ruby.

61

1 0000: push_literal "world!"

2 0002: string_dup

3 0003: send_stack :taint, 0

4 0006: set_local 0 # w

5 0008: pop

6 0009: push_const_fast :String

7 0011: push_literal "Hello "

8 0013: push_local 0 # w

9 0015: allow_private

10 0016: meta_to_s :to_s

11 0018: send_stack :interpolate_join, 2

12 0021: pop

13 0022: push_true

14 0023: ret

Listing A.2: Bytecode generated by the patched Rubinius compiler for 3.1.

interpolate_join is a Ruby method, which can be hooked.

62

1 class TaintContext

2 attr_accessor :tainted

3

4 @@simple_methods =

5 [# Rails, SafeBuffer

6 "concat",

7 "safe_concat",

8 "initialize_copy",

9

10 # Object

11 "clone",

12 "dup",

13 "to_f",

14 "to_a",

15 "to_s",

16 "to_str",

17

18 # String

19 "b", "byteslice", "capitalize", "center",

20 "chomp", "chop", "crypt", "delete",

21 "downcase", "dump", "element_set", "encode",

22 "gsub", "insert", "ljust", "lstrip",

23 "modulo", "multiply", "plus", "prepend",

24 "reverse", "rjust", "rstrip", "squeeze",

25 "strip", "sub", "succ", "next",

26 "swapcase", "tr", "tr_s", "transform",

27 "upcase",

28

29 "find_character",

30

31 # Regexp

63

32 "match",

33 "match_start",

34 "search_from",

35 "last_match"]

36

37 @@multiparam_methods = ["split"]

38

39 @@operator_methods = ["multiply", # *

40 "divide", # /

41 "plus", # +

42 "minus", # -

43 "modulo", # %

44 "not", # !

45 "gt", # >

46 "lt", # <

47 "gte", # >=

48 "lte", # <=

49 "backtick", # ‘

50 "invert", # ~

51 "not_equals", # !=

52 "similar", # ===

53 "match", # =~

54 "comparison", # <=>

55 "lshift", # <<

56 "rshift", # >>

57 "index", # []

58 "element_assignment", # []=

59 "bitwise_and", # &

60 "bitwise_or", # |

61 "bitwise_xor", # ^

62 "exponent", # **

63 "uplus", # +@

64

64 "uminus"] # -@

65

66 def initialize(tainted)

67 puts "Initializing the Tainting Security Context"

68 @tainted = tainted

69

70 if @tainted

71 define_singleton_method("after_slice") do |obj, arg, method_args|

72 case method_args[0]

73 when String

74 if method_args[0].tainted? and not arg.nil?

75 arg.taint

76 end

77 else

78 arg.taint

79 end

80

81 return arg

82 end

83

84 @@simple_methods.each do |meth|

85 define_singleton_method("after_#{meth}") do |obj, arg, method_args|

86 if obj.is_a? Array

87 if obj.empty?

88 return arg

89 end

90 end

91

92 # Range should not pass on taint to its to_s, unless the

93 # begin or ending strings of it are tainted. The Range object

94 # itself shouldn’t pass it on.

95 if meth == "to_s"

65

96 if obj.is_a? Range and not arg.tainted?

97 return arg

98 end

99

100 if obj.is_a? Hash and obj.empty?

101 return arg

102 end

103 end

104

105 arg.taint

106 end

107 end

108

109 @@multiparam_methods.each do |meth|

110 define_singleton_method("after_#{meth}") do |obj, args, method_args|

111 unless obj.is_a? Enumerable

112 if args.is_a? Enumerable

113 args.each do |arg|

114 arg.taint

115 end

116 else

117 args.taint

118 end

119 end

120

121 return args

122 end

123 end

124

125 @@operator_methods.each do |meth|

126 define_singleton_method("after_op__#{meth}") do |obj, args,

method_args|

66

127 if not obj.is_a? Enumerable

128 if args.is_a? Enumerable

129 args.each do |arg|

130 arg.taint

131 end

132 else

133 args.taint

134 end

135 end

136

137 return args

138 end

139 end

140 end

141 end

142

143 def infect(host, source)

144 host.taint

145 end

146 end

147

148 module Kernel

149 def taint

150 if is_a? TrueClass or is_a? FalseClass or is_a? NilClass

151 return self

152 end

153

154 if tainted? or frozen? or nil?

155 return self

156 end

157

158 self.secure_context = SecurityManager::TaintedContext

67

159 self

160 end

161

162 def tainted?

163 if not secure_context?

164 return false

165 end

166

167 self.secure_context == SecurityManager::TaintedContext

168 end

169

170 def untaint

171 if is_a? TrueClass or is_a? FalseClass or is_a? NilClass

172 return self

173 end

174

175 if frozen?

176 return self

177 end

178

179 self.secure_context = nil

180 self

181 end

182

183 module SecurityManager

184 TaintedContext = TaintContext.new(tainted=true)

185 end

186 end

187

188 class String

189 alias_method :old_modulo, :%

190

68

191 def %(*args)

192 ret = old_modulo *args

193

194 unless %w(%e %E %f %g %G).include? self

195 if self.eql? ’%p’

196 args.each do |arg|

197 Rubinius::Type.infect ret, arg.inspect

198 end

199 else

200 args.each do |arg|

201 Rubinius::Type.infect ret, arg

202 end

203 end

204 end

205

206 ret

207 end

208 end

209

210 class Array

211 alias_method :old_pack, :pack

212

213 def pack(directives)

214 ret = old_pack directives

215

216 self.each do |a|

217 Rubinius::Type.infect ret, a

218 end

219

220 Rubinius::Type.infect ret, directives

221

222 ret

69

223 end

224 end

225

226 module Rubinius

227 module Type

228 class << self

229 alias_method :old_infect, :infect

230

231 def infect(host, source)

232 if source and source.respond_to? :secure_context? and

source.secure_context?

233 source.secure_context.infect host, source

234 end

235

236 old_infect(host, source)

237 end

238 end

239 end

240 end

Listing A.3: Taint checking fully re-written using security contexts

70

1

2 module Police

3 class Middleware

4 def call(env)

5 user_supplied_label = Police::DataFlow::UserSupplied.new

6 req = Rack::Request.new(env)

7

8 # Label all of the parameters from the user’s request

9 req.params.each do |k, v|

10 if v.is_a? Hash

11 v = label_hash(v, user_supplied_label)

12 req.update_param k, v

13 else

14 req.update_param k, v.label_with(user_supplied_label)

15 end

16 end

17

18 [’QUERY_STRING’, ’REQUEST_URI’, ’ORIGINAL_FULLPATH’,

19 ’rack.request.query_string’, ’rack.request.form_vars’].each do

|user_supplied_data|

20 env[user_supplied_data].label_with user_supplied_label

21 end

22

23 env[’police.from_user_label’] = user_supplied_label

24

25 env[’police.set_user’] = lambda do |user|

26 user_supplied_label.payload = user

27 end

28

29 status, headers, response = @app.call(env)

30

71

31 if response.is_a? Rack::BodyProxy

32 response.each do |v|

33 v.labels.each do |label|

34 if label.is_a? Police::DataFlow::ReadRestriction

35 origin = label.payload

36 origin.enforce_read_restrictions

env[’police.from_user_label’].payload

37 end

38 end

39 end

40 end

41 return status, headers, response

42 end

43 end

44 end

Listing A.4: Police’s middleware that labels incoming values with UserSupplied

labels, and checks response output for ReadRestriction labels

72

1 module Police

2 module Controller

3 extend ActiveSupport::Concern

4

5 included do

6 before_action :set_user

7 end

8

9 def set_user

10 request.env[’police.set_user’].call current_user

11 end

12 end

13 end

Listing A.5: Police extension to ApplicationController to set the User of the

current session on all UserSupplied labels

73

1 module Police

2 class PoliceError < StandardError

3 end

4

5 module Model

6 module DSL

7 extend ActiveSupport::Concern

8

9 included do

10 extend ActiveModel::Naming

11 extend ActiveModel::Callbacks

12 extend ActiveModel::Translation

13

14 after_initialize :start_dataflow, if: Proc.new {

self.class.police_policies }

15 before_save :check_dataflow_save, if: Proc.new {

self.class.police_policies }

16 before_update :check_dataflow_update, if: Proc.new {

self.class.police_policies }

17 end

18

19 module ClassMethods

20 attr_accessor :police_policies

21

22 def police(*protected_fields, action_hash)

23 if action_hash.keys.any? { |action| not [:read, :write].include?

action }

24 raise PoliceError, "cannot create Police policy for action

#{action}"

25 end

26

74

27 policy = Policy.new protected_fields, action_hash

28

29 @police_policies ||= []

30 @police_policies << policy

31 end

32 end

33

34 def enforce_read_restrictions(user)

35 check_dataflow(:read, user)

36 end

37

38 def label_for_action(action)

39 case action

40 when :read

41 Police::DataFlow::ReadRestriction.new self

42 else

43 raise PoliceError, "no known label for action #{action}"

44 end

45 end

46

47 def attach_policy(policy)

48 policy.protected_fields.each do |field|

49 if policy.protected_actions.include? :read

50 attach_label field, label_for_action(:read)

51 end

52 end

53 end

54

55 def enforce_policy(policy, action, user=nil)

56 return true if not policy.protects_action? action

57 results = []

58

75

59 if user.nil?

60 policy.protected_fields.each do |field|

61 field_with_labels = self

62

63 if field.kind_of? Enumerable

64 field.each do |subfield|

65 field_with_labels = field_with_labels.send(subfield)

66 end

67 else

68 field_with_labels = send(field)

69 end

70

71 field_with_labels.labels.each do |label|

72 user = label.payload if label.is_a?

Police::DataFlow::UserSupplied

73 break

74 end

75

76 break if user

77 end

78 end

79

80 results << policy.action_hash[action].call(self, user)

81 results.all? { |r| r == true }

82 end

83

84 def start_dataflow

85 if self.class.police_policies

86 self.class.police_policies.each do |policy|

87 attach_policy policy

88 end

89 end

76

90 end

91

92 def check_dataflow(action, user=nil)

93 self.class.police_policies.each do |policy|

94 if not enforce_policy policy, action, user

95 raise PoliceError, "object fails policy #{policy} for action

#{action}, user #{user}"

96 end

97 end

98 end

99

100 def check_dataflow_save

101 check_dataflow(:write)

102 end

103

104 def check_dataflow_update

105 check_dataflow(:write)

106 end

107

108 # Attaches a label to a field that will propagate if needed

109 # Attaching a label also attaches a security context that will

110 # provide the necessary data flow

111 def attach_label(field, label)

112 if field.kind_of? Enumerable

113 to_label_object = self

114

115 field.each do |subfield|

116 if to_label_object

117 to_label_object = to_label_object.send(subfield)

118 else

119 return

120 end

77

121 end

122

123 to_label_object.label_with label

124 else

125 send(field).label_with label

126 end

127 end

128 end

129 end

130 end

131

132 ActiveRecord::Base.send :include, Police::Model::DSL

133 puts "Included Police into ActiveRecord"

Listing A.6: Police extension to ActiveRecord to check :write policies before a

write, and to attach ReadRestriction labels to retrieved data

78

1 class Object

2 @labels = Set.new

3

4 def labels

5 @labels ||= Set.new

6 @labels

7 end

8

9 def label_with(label)

10 return self if frozen? or nil?

11

12 if is_a? TrueClass or is_a? FalseClass or is_a? NilClass

13 return self

14 end

15

16 return self if has_label? label

17

18 if not secure_context?

19 self.secure_context = Police::DataFlow::SecureContextSingleton

20 end

21

22 @labels ||= Set.new

23 @labels.add label

24

25 self

26 end

27

28 def propagate_labels(other)

29 @labels.each { |label|

30 label.propagate other } if labeled?

31 end

79

32

33 def has_label?(label)

34 @labels ||= Set.new if not @labels

35 @labels.include? label

36 end

37

38 def has_labels?(*labels_list)

39 labels_list.all? { |l| has_label? l }

40 end

41

42 def labeled?

43 return false if not @labels

44

45 not @labels.empty?

46 end

47

48 # Can pass in :all to clear all labels

49 def remove_label(label)

50 if is_a? TrueClass or is_a? FalseClass or is_a? NilClass

51 return self

52 end

53

54 return self if frozen?

55

56 if label == :all

57 @labels = Set.new

58 else

59 @labels.delete? label

60 end

61

62 self.secure_context = nil if not labeled?

63

80

64 self

65 end

66

67 def no_label_to_s

68 nolabel = dup

69 nolabel.remove_label :all

70

71 nolabel

72 end

73 end

Listing A.7: Police’s additions to Object to add in labels as a common property of

Ruby objects

81

82

Bibliography

[1] Austin Seipp Adam Bergmark, Ricky Elrod. Haskell language. https://www.
haskell.org/. Accessed: 2015-04-23.

[2] Ryan B. Cancan: Authorization gem for ruby on rails. https://github.com/
ryanb/cancan. Accessed: 2015-04-08.

[3] Jean Bacon, David Eyers, TFJ-M Pasquier, Jatinder Singh, Ioannis Papagian-
nis, and Peter Pietzuch. Information flow control for secure cloud computing.
Network and Service Management, IEEE Transactions on, 11(1):76–89, 2014.

[4] GitHub Blog. Public key security vulnerabil-
ity and mitigation. https://github.com/blog/
1068-public-key-security-vulnerability-and-mitigation. Accessed:
2015-04-08.

[5] Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Zaveri, and
David Evans. Guardrails: a data-centric web application security framework.
In Proceedings of the 2nd USENIX conference on Web application development,
pages 1–1. USENIX Association, 2011.

[6] Avik Chaudhuri and Jeffrey S Foster. Symbolic security analysis of ruby-on-rails
web applications. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 585–594. ACM, 2010.

[7] Winnie Cheng, Dan RK Ports, David A Schultz, Victoria Popic, Aaron
Blankstein, James A Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov.
Abstractions for usable information flow control in aeolus. In USENIX Annual
Technical Conference, pages 139–151, 2012.

[8] Erika Chin and David Wagner. Efficient character-level taint tracking for java.
In Proceedings of the 2009 ACM workshop on Secure web services, pages 3–12.
ACM, 2009.

[9] Benjamin Davis and Hao Chen. Dbtaint: cross-application information flow
tracking via databases. Proc. of WebApps, 10, 2010.

[10] Dorothy E Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236–243, 1976.

83

[11] Dorothy E Denning and Peter J Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[12] Petros Efstathopoulos and Eddie Kohler. Manageable fine-grained information
flow. ACM SIGOPS Operating Systems Review, 42(4):301–313, 2008.

[13] Andrey Ermolinskiy, Sachin Katti, Scott Shenker, L Fowler, and Murphy Mc-
Cauley. Towards practical taint tracking. EECS Department, University of Cal-
ifornia, Berkeley, Tech. Rep. UCB/EECS-2010-92, 2010.

[14] Daniel B Giffin, Amit Levy, Deian Stefan, David Terei, David Mazieres, John C
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web
applications. In OSDI, pages 47–60, 2012.

[15] William GJ Halfond, Alessandro Orso, and Pete Manolios. Wasp: Protecting
web applications using positive tainting and syntax-aware evaluation. Software
Engineering, IEEE Transactions on, 34(1):65–81, 2008.

[16] Petr Hosek, Matteo Migliavacca, Ioannis Papagiannis, David M Eyers, David
Evans, Brian Shand, Jean Bacon, and Peter Pietzuch. Safeweb: A middleware
for securing ruby-based web applications. In Proceedings of the 12th International
Middleware Conference, pages 480–499. International Federation for Information
Processing, 2011.

[17] Butler W Lampson. A note on the confinement problem. Communications of
the ACM, 16(10):613–615, 1973.

[18] Benjamin Livshits and Stephen Chong. Towards fully automatic placement of
security sanitizers and declassifiers. ACM SIGPLAN Notices, 48(1):385–398,
2013.

[19] Patrick McKenzie. Weapons of mass assignment. Commun. ACM, 54(5):54–59,
2011.

[20] Andrew C Myers. Jflow: Practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 228–241. ACM, 1999.

[21] Srijith Nair. Remote policy enforcement using java virtual machine. 2010.

[22] Srijith K Nair, Patrick ND Simpson, Bruno Crispo, and Andrew S Tanenbaum.
A virtual machine based information flow control system for policy enforcement.
Electronic Notes in Theoretical Computer Science, 197(1):3–16, 2008.

[23] Mozilla Developer Network. Proxy. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Proxy. Accessed: 2015-
04-07.

84

[24] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. Automatically hardening web applications using precise tainting. Security
and Privacy in the Age of Ubiquitous Computing, pages 295–307, 2005.

[25] Ruby on Rails. Active record validations. http://guides.rubyonrails.org/
active_record_validations.html. Accessed: 2015-04-14.

[26] Ioannis D Papagiannis. Practical and efficient runtime taint tracking. 2013.

[27] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow secu-
rity. Selected Areas in Communications, IEEE Journal on, 21(1):5–19, 2003.

[28] Brian Shirai. Rubyspec: The standard you trust. http://rubyspec.org/. Ac-
cessed: 2015-04-13.

[29] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazieres. Protecting users by confining javascript with
cowl. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), 2014.

[30] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe
haskell. In ACM SIGPLAN Notices, volume 47, pages 137–148. ACM, 2012.

[31] FJ-M Pasquier Thomas, Jean Bacon, and Brian Shand. Flowr: Aspect oriented
programming for information flow control in ruby.

[32] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weis-
man. Taj: effective taint analysis of web applications. ACM Sigplan Notices,
44(6):87–97, 2009.

[33] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross site scripting prevention with dynamic data
tainting and static analysis. In NDSS, 2007.

[34] Jonathan Burket Patrick Mutchler Michael Weaver and Muzzammil Zaveri David
Evans. Guardrails: A data-centric web application security framework. In 2nd
USENIX Conference on Web Application Development, page 1, 2011.

[35] D Wichers. Owasp top 10. Online at https://www. owasp. org/index. php/Cat-
egory: OWASP_ Top_ Ten_ Project, 2013.

[36] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M Frans Kaashoek. Improv-
ing application security with data flow assertions. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 291–304. ACM,
2009.

[37] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making information flow explicit in histar. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation, pages 263–278. USENIX
Association, 2006.

85

