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Abstract

In this thesis, I give the first construction of a succinct garbling scheme for RAM
programs. For a program requiring space 𝑆 and time 𝑇 to compute, the size of
its garbling is �̃�(𝑆) instead of poly(𝑇 ). This construction relies on the existence of
indistinguishability obfuscation, as well as the existence of injective one-way functions.

As a building block, I introduce and construct a primitive called asymmetrically
constrained encryption (ACE). This primitive is an encryption system for which keys
can be punctured on succinctly described sets of plaintexts. For programs acting on
ACE-encrypted values, I give a natural and general condition for their obfuscations
to be indistinguishable, using the fact that the encryption and decryption keys can
be separately punctured.

This succinct garbling scheme serves as a drop-in replacement for the ubiquitous
garbled circuits of Yao, but with better asymptotic parameters. In some cases, these
improved parameters allow qualitatively new applications.
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Chapter 1

Introduction

The ability to cryptographically obfuscate general programs holds great prospects

for securing the future digital world. However, current general-purpose obfuscation

mechanisms are highly inefficient. One of the main sources of inefficiency is the fact

that the existing mechanisms work in different models of computation than those used

to write modern computer programs. Specifically, the candidate indistinguishability

obfuscator of Garg et al. [GGH+13a] and most other general purpose obfuscators in

the literature are designed for boolean circuits, and incur a polynomial overhead in

both the size and the depth of the circuit. Assuming circuit obfuscators that satisfy

a stronger security property (differing input obfuscation), Boyle et al. [BCP14] and

Ananth et al. [ABG+13a] show how to transform these obfuscators to act directly on

Turing machines.

However, working in either the circuit model or the Turing machine model does

not take advantage of the fact that realistic computations are invariably the result

of relatively short programs written for RAM machines, where the program is ex-

ecuted on CPU with random access to large amounts of memory. When applying

obfuscators to a RAM program (ie a program written for a RAM machine), one has

to first translate the program to a circuit or a Turing machine. Such translation

may incur unreasonable overhead in of itself, even before applying the obfuscator.

Furthermore, since the obfuscated program is now a circuit or a Turing machine, one

cannot meaningfully exploit the advantages of the RAM model in running it.
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We show how to obfuscate RAM programs directly, without paying the overhead

associated with transforming to Turing machines or circuits. The central piece of

our construction and the focus of this thesis is an efficient method for garbling RAM

programs.

Garbled RAM programs. Garbling is a way to take a function 𝑓 and an input

𝑥, and encode them as 𝑓, �̃� ← Garble(𝑓, 𝑥) in a way which reveals nothing more

than 𝑓(𝑥). One obviously desirable property is efficiecy: computing 𝑓 and �̃� should

be easier than just computing 𝑓(𝑥). The efficiency of a scheme depends on the

representation of 𝑓 ; if 𝑓 is given as a circuit, then just reading 𝑓 takes as much time as

computing 𝑓(𝑥). We give the first construction of an efficient garbling scheme in which

functions are represented as RAM programs. As one of several easy applications, we

then show how to transform circuit obfuscators into RAM program obfuscators.

Given a RAM program Π, a memory configuration 𝑥, and security parameter 𝜆,

Garble outputs a RAM program Π̃ of size poly(|Π|, 𝜆) and an encoded input �̃� of size

𝑂(|𝑥| · log1+𝜖(𝜆)) (for any positive constant 𝜖). Running Π̃ with �̃� as initial memory

gives Π(𝑥), and Π̃ and �̃� reveal nothing more than Π(�⃗�) and the running time (as well

as the sizes of Π and �⃗�). More precisely, there is an efficient probabilistic algorithm

Sim such that, for any Π and any 𝑥, Garble(Π, 𝑥) ≈ Sim(Π(𝑥), |𝑥|, |Π|, 𝑇Π,𝑥), where

𝑇Π,𝑥 is the running time of Π on 𝑥.

Our construction uses as building blocks an injective one way function and an

indistinguishability obfuscator for circuits.

Applicability. Our garbling scheme for RAM programs can be used in practically

any place where garbling schemes for circuits have been used, with commensurate

efficiency gains. We remark that our garbling scheme represents RAM program inputs

as memory configurations. While this is the most general case, we do incur a loss of

efficiency when the input is smaller than the computation’s memory usage. However,

many computations (particularly in crytography) have low memory requirements (say,

linear in the input size), thus making the dependence on space less critical. Below we
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give a brief overview of some applications.

Indistinguishability obfuscation for RAM programs. Our main application

of our RAM garbling scheme is in converting an indistinguishability obfuscator for

circuits to one for RAM programs. An indistinguishability obfuscator takes a func-

tion description 𝑓 and outputs a functionally equivalent 𝒪(𝑓). If 𝑓0 and 𝑓1 are

functionally equivalent and have equally sized representations, then 𝒪(𝑓0) and 𝒪(𝐹1)

must be indistinguishable. For RAM programs, there is another prerequisite: the

two RAM programs must have the same running time on every input. Indistinguish-

ably obfuscation was introduced as a weak notion of obfuscation to circumvent the

impossibility results of Barak et al. [BGI+01], and a candidate indistinguishability

obfuscator for circuits (which we will denote by i𝒪) was recently given by Garg et al.

[GGH+13a]. Since then, indistinguishability obfuscation for circuits has been shown

to have extensive applications [SW14].

Our obfuscator (i𝒪𝑅𝐴𝑀) has the following parameters. It relies on, as build-

ing blocks, subexponentially-hard indistinguishability obfuscators for circuits and

subexponentially-hard injective one-way functions.1 Suppose the input is a RAM

program Π taking 𝑛-bit inputs and using 𝑆 ≥ 𝑛 bits of space. i𝒪𝑅𝐴𝑀 outputs a

circuit Π′ of size poly(𝑆, |Π|, 𝜆), where 𝜆 is the security parameter. Evaluating Π(𝑥)

given only Π′ and 𝑥 takes time |Π′|+ 𝑇Π,𝑥 · poly(𝑛, 𝜆), where 𝑇Π,𝑥 is the running time

of Π on 𝑥.

Publicly Verifiable Delegation of Computation: Our garbled RAM scheme

yields a simple 2-round publicly verifiable delegation scheme: to delegate the com-

putation of Π(𝑥) for a RAM program Π and input 𝑥, the delegator first samples a

pair (𝑠𝑘, 𝑣𝑘) of signature and verification keys of a digital signature scheme. He then

garbles a RAM program Π′ that on input 𝑥, runs Π to obtain Π(𝑥), and then outputs

(Π(𝑥), 𝑆𝑖𝑔𝑛(𝑠𝑘,Π(𝑥))). Finally he sends Garble(Π′, 𝑥) to the worker and publishes

𝑣𝑘. The worker will evaluate the garbling to obtain 𝑦, 𝜎. This result is verified by

1Subexponential hardness assumptions essentially state that an adversary cannot win a security
game with substantially better probability than guessing the secret key (or randomness).
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checking that 𝜎 is a valid signature of 𝑦 with respect to 𝑣𝑘. Soundness follows im-

mediately from the security of the garbled RAM and unforgeability of the signature

scheme.

Functional Encryption Functional encryption is a strengthening of public-key

encryption, in which restricted decryption keys 𝑆𝐾𝑓 can be issued, associated with a

function 𝑓 . Dec(𝑆𝐾𝑓 ,Enc(𝑚)) yields 𝑓(𝑚), and 𝐷𝐾𝑓 does not allow the computation

of anything else. Gentry et al. [GHRW14] show how a RAM garbling scheme can be

used to construct a functional encryption scheme in which functions are represented

by RAM programs. With our RAM garbler, this gives the following parameters.

The key generation time and size of a decryption key 𝑆𝐾Π for a RAM program Π is

(poly(|Π|) + 𝑆Π) · poly(𝜆, log 𝑇Π, log𝑆Π). Here 𝑇Π is the worst-case run-time of Π and

𝑆Π is the space usage of Π. Decrypting a ciphertext corresponding to a plaintext 𝑥

using 𝑆𝐾Π takes time (𝑆Π + 𝑇Π,𝑥) · poly(𝜆, log 𝑇Π, log𝑆Π) where 𝑇Π,𝑥 is the run-time

of Π on input 𝑥.

Reusable Garbled RAM Gentry et al. [GHRW14] also gave a reduction showing

that functional encryption for RAM programs can be used to build a reusable garbling

scheme for RAM programs. When this is built using our RAM garbler, the resulting

reusable garbled RAM scheme is also succinct.

Multiparty Computation of RAM Programs. Gentry et al. [GHRW14] ob-

served that any efficient garbled RAM can be used in any standard MPC protocol

to obtain a new protocol with improved efficiency. To compute a functionality 𝑓 on

inputs �⃗�, the parties jointly compute Garble(Π, �⃗�), where Π is a RAM program com-

puting 𝑓 . One party then evaluates the garbling and sends the result to all the other

parties. When this protocol is instantiated with our RAM garbler, the evaluator takes

time which is �̃�(𝑆Π +𝑇Π,�⃗�), where 𝑆Π is space used by Π and 𝑇Π,�⃗� is the running time

on �⃗�.
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1.1 Our techniques

1.1.1 RAM Garbling from Weak Garbling and Oblivious Ram

Our ultimate goal is to fully garble a RAM program Π on an input 𝑥, revealing

nothing more than the final output Π(𝑥). We will build a full RAM garbling scheme

out of another primitive, which we call weak garbling, and an oblivious RAM.

Weak Garbling We first construct a somewhat weaker primitive which we call weak

garbling. Weak garbling is syntactically the same as garbling: it takes a program Π

and an input 𝑥, and outputs Π̃, �̃�. Weak garbling guarantees that Π̃0, �̃�0 and Π̃1, �̃�1

are indistinguishable if Π0 and Π1 on 𝑥0 and 𝑥1 access exactly the same locations,

which are succinctly described by a circuit for the first 𝑗 steps, and if after these 𝑗

steps, they have the same internal state and external memory configuration.

We then apply weak garbling to a RAM program which has been transformed to

be oblivious with special additional properties.

Oblivious RAM An oblivious RAM program Π′ on input 𝑥′ simulates execution of

an underlying program Π on an underlying input 𝑥, such that the addresses accessed

by Π′ are independent of the underlying addresses accessed by Π. We require two

other natural properties:

1. For all 𝑗, the distribution of addresses accessed by Π′ on the 𝑗𝑡ℎ underlying

access is independent of the previously accessed addresses and the underlying

access pattern, and is efficiently sampleable.

2. For any fixed underlying access pattern, one can efficiently sample the distri-

bution of ORAM states (including external memory) that are consistent with a

preceding sequence of accessed addresses.

We show that the ORAM of Shi et al. [SCSL11], simplified by Chung and Pass [CP13]

has these properties. We denote Π′, 𝑥′ by AddORAM(Π, 𝑥).
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Construction and Reduction Garble is constructed by composing our weak gar-

bling scheme with such an oblivious RAM. That is,

Garble(Π, 𝑥) ≡ WkGarble(AddORAM(Π, 𝑥)).

We show that Garble(Π, 𝑥) ≈ Sim(Π(𝑥)) by a simple hybrid argument. The 𝑖𝑡ℎ hy-

brid is WkGarble(Π′
𝑖, 𝑥

′
𝑖) for some Π′

𝑖, 𝑥′
𝑖. Π′

𝑖 is a program which does 𝑖 dummy steps

accessing addresses 𝐼1, . . . , 𝐼𝑖. Each 𝐼𝑗 consists of several addresses and is sampled

independently according to the distribution of addresses accessed by the ORAM on

time 𝑗. Π′
𝑖 then runs Π through the ORAM until Π halts. 𝑥′

𝑖 is the memory config-

uration of Π when executed for 𝑖 steps on 𝑥, encoded to be compatible with ORAM

accesses. This memory configuration could be encoded in a number of ways, each

resulting from some random ORAM setup, and randomness used for each ORAM ac-

cess. We pick the encoding at random, conditioned on the ORAM accesses accessing

locations 𝐼1, . . . , 𝐼𝑖. Our extra ORAM properties allow us to efficiently sample this

distribution.

In order to switch from the 𝑖𝑡ℎ hybrid to the 𝑖+ 1𝑡ℎ hybrid in the proof of security

for Garble, we need to indistinguishably change the behavior of Π′
𝑖 on the 𝑖+1𝑡ℎ access.

We proceed in three steps.

First, weak garbling allows us to hard-code the locations accessed at the 𝑖 + 1𝑡ℎ

timestep: if the time is 𝑖 + 1, Π′
𝑖 accesses a hard-coded list of addresses 𝐼𝑖+1, without

writing new values to these locations. We simultaneously switch 𝑥′
𝑖 to an encoding

of the memory configuration resulting from executing Π for 𝑖 + 1 steps on 𝑥. This

change is easily seen to satisfy the conditions under which weak garbling guarantees

indistinguishability.

Next, we sample 𝐼𝑖+1 according to OSample(𝑖 + 1) independently of the rest of

Π′
𝑖, and we sample 𝑥′

𝑖+1 to be consistent with this 𝐼𝑖+1 (and 𝐼1, . . . , 𝐼𝑖). Our ORAM

properties guarantee that changing 𝐼𝑖+1 and 𝑥′
𝑖+1 in this way is indistinguishable.

Finally, we apply weak garbling again to remove the hard-coding of the locations

accessed at time 𝑖 + 1.

14



1.1.2 Weak Garbling from Verifiable Reads

We will weakly garble a RAM program Π with input 𝑥 by first applying a verifiable

reads transformation to obtain a different RAM program Π′ and memory 𝑥′. Then we

encrypt each word of 𝑥′, yielding �̃�, and we augment Π′’s transition function so that

it acts on encrypted state and encrypted memory words. Finally, we i𝒪-obfuscate

Π′’s transition function to obtain Π̃. The weak garbling WkGarble(Π, 𝑥) is defined as

Π̃, �̃�.

Verifiable Reads Suppose one is given an external memory which is semi-malicious :

on any access, the memory can return any value previously written to memory, not

necessarily the most recent value. Then one can simulate a semi-malicious memory up

to aborts by storing message authentication codes (MACs) with every value written

to a fully malicious memory which is computationally bounded. A natural question

is whether one can also simulate an honest external memory. This seems to be a

necessary component of a secure RAM garbler, because a distinguisher might “eval-

uate” the garbled RAM program by answering memory accesses arbitrarily. Indeed,

Gentry et al. [GHL+14] give a method for simulating an honest external memory up

to aborts, given a semi-mqqalicious external memory.

While this abstraction suffices to prove security of Gentry et al.’s non-succinct

garbled RAM construction, our proof relies on specific properties of their construction.

We describe this construction further, as well as the properties we need, in Chapter 7.

Asymmetrically Constrained Encryption This construction involves an indis-

tinguishability obfuscated circuit that has encryption and decryption keys hard-coded.

We only prove security with a special type of encryption which we call Asymmetrqi-

cally Constrained Encryption (ACE). ACE is a secret-key deterministic encryption

system in which either an encryption key or a decryption key can be punctured at

a succinctly-described set - that is, a set for which membership in the set can be

decided by a small circuit.

ACE must also satisfy a few security properties. A decryption key punctured on

15



a set 𝑆 should be indistinguishable from an unpunctured key. However, using such a

punctured decryption key to decrypt should never yield a message in 𝑆. Finally, given

keys punctured at a set 𝑆, encryptions of messages in 𝑆 should be indistinguishable.

Security of Weak Garbling To show security of weak garbling, we will indistin-

guishably change the weak garbling WkGarble(Π, 𝑥) into the obfuscation of a program

which only executes “dummy” steps for the first 𝑗 steps of computation.

Consider the transition function 𝛿Π′ for the verifiable reads-transformed RAM

program Π′. This transition function takes a state 𝑞 and a memory word 𝑤 as input,

and produces (among other things) a state 𝑞′ and a memory word 𝑤′ as output.

Suppose that 𝑆𝑄 and 𝑆𝑊 are “invariant” sets of Π′: whenever 𝑞 is in 𝑆𝑄 and 𝑤 is

in 𝑆𝑊 then 𝑞′ is also in 𝑆𝑄 and 𝑤′ is also in 𝑆𝑊 . If 𝑆𝑄 and 𝑆𝑊 are also succinctly

described, then we show that we can indistinguishably change Π′ so that it outputs ⊥

whenever 𝑞 /∈ 𝑆𝑄 or 𝑤 /∈ 𝑆𝑊 . The indistinguishability of this change relies crucially

on the properties of ACE; we alternately puncture encryption keys using i𝒪 and then

apply ACE’s indistinguishability of punctured decryption keys.

We will change 𝛿Π′ on the first 𝑗 steps into a dummy computation’s transition

function, one timestep at a time. We use the so-called “punctured programming”

technique of Sahai and Waters [SW14], for which we need the above property of

ACE. The idea of punctured programming is the following steps for changing the

behavior of 𝛿Π′ at some time 𝑗. Hard code the behavior of 𝛿Π′ when its inputs are

the “correct” (ciphertext) inputs at time 𝑗. Similarly, hard-code these ciphertexts

as outputs instead of ever actually encrypting the corresponding messages. Then

puncture the encryption and decryption keys at all messages corresponding to time

𝑗, and use ciphertext indistinguishability to change the hard-coded ciphertexts to

encryptions of something else. Finally, unpuncture the encryption and decryption

keys and un-hard-code the ciphertexts.

One may then raise an objection. We can’t puncture the encryption and decryp-

tion keys at all possible messages corresponding to time 𝑗, because we have only

hard-coded ciphertexts for one pair of messages. To resolve this, we construct invari-
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ant sets 𝑆𝑄 and 𝑆𝑊 such that when we restrict our attention to 𝑆𝑄 and 𝑆𝑊 , 𝛿Π′ has

the desired properties. Namely, there is only one state 𝑞 at time 𝑗 and one corre-

sponding 𝑤 such that 𝛿Π′(𝑞, 𝑤) ̸= ⊥. By first indistinguishably restricting 𝛿Π′ to 𝑆𝑄

and 𝑆𝑊 , the punctured programming argument can be made to work.

The proof of security for our weak garbling scheme is presented in more detail in

Chapter 7.

1.2 Previous Work

Garbling schemes were first introduced by Yao [Yao82] to implement secure two-

party computation. Yao’s construction allowed 𝑛 parties holding inputs 𝑥1, . . . , 𝑥𝑛 to

evaluate a function 𝑓(𝑥1, . . . , 𝑥𝑛), while learning nothing about each other’s inputs.

The complexity of Yao’s protocol is proportional to the size of the circuit computing 𝑓 .

Subsequent multiparty computation protocols [GMW87, BOGW88, AL11] have for

the most part continued to represent functionalities as circuits. One notable exception

is the work of Boyle et al. [BGT13] which focuses on multiparty RAM computations

with sublinear running times.

Many other areas of cryptography study computing on encrypted data. For ex-

ample, there has been a large body of work on fully homomorphic encryption [Gen09,

vDGHV09, BV11, BGV12], attribute-based encryption [SW05, GPSW06, GVW13,

GGH+13b] and functional encryption [SS10, AGVW13], all of which use the Boolean

circuit model of computation. An exception is the work of Waters [Wat12] that

constructs an attribute-based encryption scheme for finite state machines, a uniform

model of computation.

Barak et al. [BGI+01] showed that a strong notion of program obfuscation known

as virtual black-box obfuscation is unconditionally impossible to achieve. One def-

inition of obfuscation they proposed as possibly achievable was indistinguishability

obfuscation. In 2013, Garg et al. [GGH+13a] introduced a candidate construction

of an indistinguishability obfuscator for circuits. Subsequently, many applications

[SW14, CGP14, Wat14, BPR14, GGG+14] of indistinguishability obfuscation for cir-
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cuits have been found.

In a recent paper, [GLOS14] show how to transform a RAM machine with worst-

case running time 𝑡 into a garbled RAM program whose size and running time are

polynomially related to 𝑡. Their construction only relies on the existence of one-way

functions. In our work we reduce the size of the garbled RAM program to depend

only logarithmically on 𝑡, at the cost of assuming not only one-way functions, but also

indistinguishability obfuscators for circuits. We also achieve input-specific running

times instead of worst-case.

[GHRW14] assume the existence of various types of obfuscators, and construct

reusable garbled RAM schemes. Our succinct garbled RAM strictly improves upon

their construction based on only indistinguishability obfuscation.

1.3 Other Related Work

The work in this thesis was first published in [CHJV14] as joint work with Ran

Canetti, Abhishek Jain, and Vinod Vaikuntanathan. Concurrently and indepen-

dently, Bitansky et al. [BGT14] and Lin and Pass [LP14] gave constructions for

garbling and indistinguishability obfuscation of Turing machines, assuming only in-

distingushability obfuscation and one way functions. While the general thrusts of

the three works is similar, the technical approaches taken are very different. Fur-

thermore, the specific results obtained are incomparable. Specifically, they provide

a generic mechanism for using indistingushability obfuscation to transform any “lo-

cally computable” garbling mechanism (i.e., a garbling mechanism where each portion

of the garbled program can be generated “locally”, without knowledge of the other

portions) into a succinct one. The mechanism is essentially the same as our garbling-

to-obfuscation transformation: they obfuscate a circuit that generates a portion of the

garbled program, where the randomness for the garbling mechanism is obtained by

applying a puncturable PRF to the input. They then apply this simple-but-powerful

general mechanism to the Yao garbling scheme for circuits.

These two approaches achieve very similar parameters, but are still incomparable.
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Our scheme is slightly more succinct, while their scheme relies on a slightly weaker

assumptions. In our scheme a garbled RAM program is of size poly(𝜆, log 𝑇, log𝑆) and

an encoded input is of size 𝑂(𝑆 ·log1+𝜖(𝜆)). In their scheme a garbled RAM program is

of size 𝑆 ·poly(𝜆, log 𝑇, log𝑆) and an encoded input is of size 𝑆 ·poly(𝜆). In our scheme

we need to i𝒪-obfuscate circuits with depth 𝑂(log(𝜆)) and input length 𝑂(log1+𝜖(𝜆)).

In Bitansky et al.’s scheme, they i𝒪-obfuscate circuits with depth 𝑂(log(𝜆)) and input

length 𝑂(log(𝜆)). Our scheme also requires injective one-way functions, while their

scheme uses any one-way function.

Another difference between the two approaches, which is perhaps more significant

than the difference in parameters, is the approach: while their approach is to apply

obfuscation on top of existing garbling mechanisms (which may in of themselves

be composed of multiple components), our approach is to try to use the power of

obfuscation to the fullest, with few other primitives, and with minimal modification

to the structure of the underlying program. Indeed, our resulting garbled program

has a very similar structure to the original program and can potentially be run on a

standard random access computer with minimal adjustments.

In a follow-on work, Koppula et al. [KLW14] apply techniques somewhat similar

to ours to construct a fully succinct garbling scheme for Turing machines - that is,

their garblings are of size �̃�(1) · poly(𝜆), and their runtime is �̃�(𝑇 ) · poly(𝜆), where

𝑇 is the Turing machine runtime. Notably, they do not achieve RAM runtimes for a

garbling scheme.
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Chapter 2

Background

In this chapter we review some standard cryptographic primitives, as well as the

definition of i𝒪 obfuscation. We will use 𝜆 to denote the security parameter. Two

distribution ensembles 𝒜 = {𝐴𝜆}𝜆>0 and ℬ = {𝐵𝜆}𝜆>0 are computationally indistin-

guishable if for every probabilistic polynomial time (PPT) distinguisher 𝐷, there is a

negligible function negl(·) such that for all 𝜆,

Pr
[︀
𝐷(1𝜆, 𝑥𝑏) = 𝑏

⃒⃒
𝑥0 ← 𝐴𝜆, 𝑥1 ← 𝐵𝜆, 𝑏← {0, 1}

]︀
≤ 1

2
+ negl(𝜆).

In this case, we say that 𝒜 ≈ ℬ.

2.1 Injective Non-interactive Bit Commitment

An injective non-interactive bit commitment scheme is a pair of polynomials 𝑛(·)

and 𝑚(·) and an ensemble of efficiently computable injective functions Commit𝜆 :

{0, 1} × {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) such that for all polynomial time adversaries 𝒜,

Pr
[︀
𝒜(1𝜆,Commit𝜆(𝑏; 𝑟)) = 𝑏

⃒⃒
𝑏← {0, 1}, 𝑟 ← {0, 1}𝑛(𝜆)

]︀
<

1

2
+ negl(𝜆)

We can construct an injective non-interactive commitment scheme given an injec-

tive one-way function 𝑓 : 𝑛′(𝜆) → 𝑚′(𝜆), and we give the construction here without

proof. Without loss of generality 𝑓 has a hard-core bit because the Goldreich-Levin

21



[GL89] transformation of a one-way function into one with an explicit hard-core bit

preserves injectivity. Then define 𝑛(𝜆) = 𝑛′(𝜆), 𝑚(𝜆) = 𝑚′(𝜆) + 1, and

Commit𝜆(𝑏; 𝑟) = 𝑓(𝑟)‖(𝑏⊕ ℎ(𝑟))

2.2 Puncturable Pseudorandom Functions

A puncturable family of PRFs are a special case of constrained PRFs [BW13, BGI14,

KPTZ13], where the PRF is defined on all input strings except for a set of size

polynomial in the security parameter. Below we recall their definition, as given by

[SW14].

Syntax A puncturable family of PRFs is defined by a tuple of algorithms

(GenPRF,PuncturePRF,EvalPRF) and a pair of polynomials 𝑛(·) and 𝑚(·) :

∙ Key Generation GenPRF is a PPT algorithm that takes as input the security

parameter 𝜆 and outputs a PRF key 𝐾

∙ Punctured Key Generation PuncturePRF(𝐾,𝑆) is a PPT algorithm that takes

as input a PRF key 𝐾, a set 𝑆 ⊂ {0, 1}𝑛(𝜆) and outputs a punctured key 𝐾{𝑆}

∙ Evaluation EvalPRF(𝐾, 𝑥) is a deterministic algorithm that takes as input a

(punctured or regular) key 𝐾, a string 𝑥 ∈ {0, 1}𝑛(𝜆) and outputs 𝑦 ∈ {0, 1}𝑚(𝜆)

Definition 1. A family of PRFs (GenPRF,PuncturePRF,EvalPRF) is puncturable if it

satisfies the following properties :

∙ Functionality preserved under puncturing. Let 𝐾 ← GenPRF, and 𝐾{𝑆} ←

PuncturePRF(𝐾,𝑆). Then, for all 𝑥 /∈ 𝑆, EvalPRF(𝐾, 𝑥) = EvalPRF(𝐾{𝑆}, 𝑥).

∙ Pseudorandom at punctured points. For every PPT adversary (𝐴1, 𝐴2)

such that 𝐴1(1
𝜆) outputs a set 𝑆 ⊂ {0, 1}𝑛(𝜆) and 𝑥 ∈ 𝑆, consider an experiment

where 𝐾 ← GenPRF and 𝐾{𝑆} ← PuncturePRF(𝐾,𝑆). Then

⃒⃒
𝑃𝑟[𝐴2(𝐾{𝑆}, 𝑥,EvalPRF(𝐾, 𝑥)) = 1]− 𝑃𝑟[𝐴2(𝐾{𝑆}, 𝑥, 𝑈𝑚(𝜆)) = 1]

⃒⃒
≤ negl(𝜆)
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where 𝑈ℓ denotes the uniform distribution over ℓ bits.

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of

PRFs from one-way functions yields puncturable PRFs.

Theorem 1 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exist, then

for all polynomials 𝑛(𝜆) and 𝑚(𝜆), there exists a puncturable PRF family that maps

𝑛(𝜆) bits to 𝑚(𝜆) bits.

Remark 1. In the above construction, the size of the punctured key 𝐾{𝑆} grows

linearly with the size of the punctured set 𝑆.

Remark 2. We will also use statistically injective puncturable PRF families in our con-

structions. These are families of PRFs for which with high probability over the choice

of 𝐾, EvalPRF(𝐾, ·) is injective. Any PRF family mapping {0, 1}𝑛 → {0, 1}2𝑛+𝜔(log 𝜆)

can be made statistically injective with high probability by XOR-ing with a family

of pairwise independent hash functions [SW14].

2.3 Indistinguishability Obfuscation for Circuits

Here we recall the notion of indistinguishability obfuscation that was defined by Barak

et al. [BGI+01]. Intuitively speaking, we require that for any two circuits 𝐶1 and 𝐶2

that are “functionally equivalent” (i.e., for all inputs 𝑥 in the domain, 𝐶1(𝑥) = 𝐶2(𝑥)),

the obfuscation of 𝐶1 must be computationally indistinguishable from the obfuscation

of 𝐶2. Below we present the formal definition following the syntax of [GGH+13a].

Definition 2 (Indistinguishability Obfuscation for all circuits). A uniform PPT ma-

chine i𝒪 is called an indistinguishability obfuscator if the following holds:

∙ Correctness: For every 𝜆 ∈ N, for every circuit 𝐶, for every input 𝑥 in the

domain of 𝐶, we have that

Pr[𝐶 ′(𝑥) = 𝐶(𝑥) : 𝐶 ′ ← i𝒪(1𝜆, 𝐶)] = 1.

23



∙ Efficiency: There exists a polynomial 𝑃 such that for every 𝜆 ∈ N, for every

circuit 𝐶, |i𝒪(𝐶)| ≤ 𝑃 (𝜆, |𝐶|).

∙ Indistinguishability: For every 𝜆 ∈ N, for all pairs of circuits 𝐶0, 𝐶1, if

𝐶0(𝑥) = 𝐶1(𝑥) for all inputs 𝑥 and |𝐶0| = |𝐶1|, then

i𝒪(1𝜆, 𝐶0) ≈ i𝒪(1𝜆, 𝐶1)

2.4 Garbling Schemes

A garbling scheme is an algorithm Garble which takes as inputs a function 𝑓 , an input

𝑥, and the security parameter 1𝜆 in unary. Garble outputs a garbled function 𝑓 and

a garbled input �̃�.

The representation of functions and their inputs will be important when we discuss

succinctness. Classical garbling schemes represent 𝑓 as a circuit and 𝑥 as a bitstring;

more recent ones and the construction of this work represent 𝑓 as a RAM program.

In this work we represent inputs as an initial memory configuration for the RAM

program.

Garble must satisfy the following properties:

– Correctness: For all functions 𝑓 and inputs 𝑥,

Pr
[︁
𝑓(�̃�) = 𝑓(𝑥)

⃒⃒⃒
𝑓, �̃�← Garble(𝑓, 𝑥, 1𝜆)

]︁
= 1

– Security: There is a PPT algorithm Sim such that for all functions 𝑓 and

inputs 𝑥,

Sim(𝑓(𝑥), |𝑓 |, |𝑥|, 1𝜆) ≈ Garble(𝑓, 𝑥, 1𝜆)

Garbling schemes (including ours) commonly have another property:

– Separability: Garble can be decomposed into three algorithms: KeyGen,

Garble𝑃𝑟𝑜𝑔 and Garble𝐼𝑛. KeyGen takes the security parameter in unary and gen-
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erates a garbling key, which is shared between Garble𝑃𝑟𝑜𝑔 and Garble𝐼𝑛. Condi-

tioned on 𝐾, Garble𝑃𝑟𝑜𝑔 garbles the function independently of Garble𝐼𝑛 garbling

the input.

That is,

Garble(𝑓, 𝑥, 1𝜆) ≡ Garble𝑃𝑟𝑜𝑔(𝐾, 𝑓),Garble𝐼𝑛(𝐾, 𝑥)

when 𝐾 ← KeyGen(1𝜆).

Remark 3. Separability is a property which can apply to any transformation of a

RAM program and corresponding input. The other transformations we use in this

work – namely, an Oblivious RAM and a weak garbling scheme – will also satisfy

separability. One can easily see that the composition of two separable transformations

is itself separable.

The last property of our RAM garbling scheme, and the one most unique to

our work, is succinctness. This is nothing more than requiring that Garble𝑃𝑟𝑜𝑔

and Garble𝐼𝑛 both run in polynomial time, when functions are represented as RAM

programs.
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Chapter 3

Techniques Overview

3.1 Asymmetrically Constrained Encapsulation

One of the contributions of this work is the definition of a primitive that we call Asym-

metrically Constrained Encryption (ACE), which greatly enhances our ability to show

indistinguishability of obfuscated programs. Informally, this is a deterministic and

secret-key encryption scheme which guarantees both confidentiality and authenticity.

Crucially, in addition to this, the scheme allows to constrain both the encryption key

𝐸𝐾 and the decryption key 𝐷𝐾. That is, for a set 𝑆, one can compute a constrained

encryption key 𝐸𝐾{𝑆} that can encrypt all messages outside of 𝑆, and a constrained

decryption key 𝐷𝐾{𝑆} that can decrypt all ciphertexts that decrypt to messages

outside 𝑆.

Using ACE. Our constructions are i𝒪-obfuscations of circuits that decrypt their

inputs (which are ciphertexts) and encrypt their outputs. We would like to argue that

the i𝒪 obfuscation of two circuits 𝐶0 and 𝐶1 are indistinguishable if they differ only on

a set of “bad inputs” 𝑆 which the adversary cannot encrypt. But i𝒪 is not that strong

a notion. It guarantees indistinguishability only if encryptions of bad inputs do not

exist. Previous works avoid this issue by assuming a stronger notion of obfuscation

called extractability obfuscation [BCP14] or differing inputs obfuscation [ABG+13b],

which we wish to avoid.
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Our solution tries to achieve non-existence of bad ciphertexts to the extent pos-

sible. Correctness of the encryption scheme means that every input, even a bad

one, must have a valid encryption. Our first idea is to puncture the decryption key

so ciphertexts of bad messages never decrypt. To move between these two worlds

unnoticeably, we also require that the real decryption key 𝐷𝐾 is computationally

indistinguishable from a “punctured” decryption key 𝐷𝐾{𝑆}.

However, this last requirement seems to raise concerns. If the set of bad inputs is

known and the encryption key is known, then a punctured decryption key cannot be

indistinguishable from an unpunctured one. Unfortunately, our obfuscated circuits

contain the encryption key 𝐸𝐾, which makes this a real concern. Our second idea is to

puncture the encryption key also, so that it cannot encrypt bad inputs any more. Once

this is done, one can expect indistinguishability of punctured versus unpunctured

decryption keys. Indeed, this is exactly what we achieve. Namely, the punctured

decryption key 𝐷𝐾{𝑆} and the real decryption key 𝐷𝐾 are indistinguishable given

the punctured encryption key 𝐸𝐾{𝑆 ′} for any set 𝑆 ′ ⊇ 𝑆, as well as ciphertexts of

any messages that lie outside of 𝑆.

Finally, the set of bad inputs cannot be arbitrary if we require the encryption and

decryption keys to be small. Indeed, the keys could otherwise be used to compress

arbitrary data, which is information theoretically impossible. Our solution is to only

consider sets of bad inputs 𝑆 for which set membership is decidable by a small circuit

𝐶𝑆 that takes as input 𝑥 and decides if 𝑥 ∈ 𝑆.

3.1.1 Construction

Our ACE construction is heavily inspired by the “hidden sparse triggers” technique

of Sahai and Waters [SW14], and is identical to the “puncturable deterministic en-

cryption” of Waters [Wat14]. In particular, our ciphertexts for a message 𝑚 are of

the form

𝐶 =
(︀
𝐹1(𝑚), 𝐹2(𝐹1(𝑚))⊕𝑚)
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where 𝐹1 and 𝐹2 are puncturable pseudorandom functions (PPRFs). Despite these

similarities, ACE is a much more demanding primitive.

In particular, ACE is different from puncturable deterministic encryption in at

least two respects. First, we define and crucially use the fact that the encryption

and decryption keys can be punctured separately, on different sets. Secondly, and

perhaps more importantly, a punctured decryption key 𝐷𝐾{𝑆} is indistinguishable

from 𝐷𝐾{𝑆 ′} as long as one does not have access to ciphertexts of messages in the

symmetric difference 𝑆 ∆ 𝑆 ′.

Indistinguishability of Punctured Decryption: A Sketch. We will show how

to puncture a decryption key at one additional point, and then use an easy sequence

of hybrids to puncture the entire set 𝑆. Here we suffer a security loss of |𝑆|, but in

our applications 𝑆 and in fact the entire message space 𝑀 will have polynomially

bounded size, so this is acceptable.

To puncture at a point 𝑚*, we use an injective bit-commitment (constructed

from an injective OWF) to indistinguishably sabotage a check in Dec. This check

asserts that for a ciphertext 𝛼‖𝛽, 𝛼 = 𝐹1(𝑚), where 𝑚 is the tentative decrypted

value. We will make this (i𝒪-obfuscated) check always fail by making the following

indistinguishable changes.

1. If 𝑚 = 𝑚*, the check is replaced by Commit(0;𝛼) = 𝑧, where 𝑧 is hard-coded

as Commit(0;𝐹1(𝑚
*)). The indistinguishability of this change uses i𝒪, where

functional equivalence follows from Commit’s injectivity.

2. The key for 𝐹1 is punctured at 𝑚* giving 𝐾{𝑚*}. Indistinguishability is by i𝒪,

where functional equivalence follows because 𝐹1 is no longer ever evaluated at

𝑚*.

3. 𝑧 is hard-coded as Commit(0; 𝑟), where 𝑟 is chosen uniformly at random. Indis-

tinguishability is by the pseudorandomness at punctured points of 𝐹1. We note

in order for this step to work, all copies of 𝐹1 seen by the adversary must be
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punctured at 𝑚*. In particular, this is where the argument breaks down if the

adversary is given 𝐸𝐾 or an encryption of 𝑚*.

4. 𝑧 is hard-coded as Commit(1; 𝑟). Indistinguishability is by the computationally

hiding property of the commitment.

5. The check that Commit(0;𝛼) = 𝑧 is replaced by False. Indistinguishability is

by i𝒪, since by injectivity 𝑧 is not in the image of Commit(0, ·), so no 𝛼 will

make the check return True.

6. The key for 𝐹1 is unpunctured at 𝑚* by i𝒪.

3.2 Garbled RAM Overview

Our main application of ACE is the construction of a succinct garbled RAM. We give

an overview of the construction and the proof ideas here. We refer the reader to

Chapter 8 for formal definitions and proofs. Our construction is greatly simplified by

defining a weaker primitive which we call weak garbling of RAM programs.

3.2.1 Weak Garbling

Definition

Syntactically, a weak garbling scheme (parameterized by 𝑠) is an algorithm WkGarble.

As input, WkGarble takes a RAM program Π and an initial memory �⃗�, and as output it

produces another RAM program Π′ and initial memory �⃗�′. In addition to correctness

(Π(�⃗�) = Π′(�⃗�′)) and efficiency (Π′ must take roughly the same time and space as

Π and �⃗�′ must be roughly the same size as �⃗�), WkGarble must satisfy the following

security property:

Suppose 𝑖1, . . . , 𝑖𝑡 are a sequence of memory addresses describable by a circuit Γ

with |Γ| ≤ 𝑠. Let Π0 and Π1 be RAM machines, and let �⃗�0 and �⃗�1 be initial memory

configurations such that first 𝑡 locations accessed in Π0|�⃗�0 and Π1|�⃗�1 are 𝑖1, . . . , 𝑖𝑡 (here

Π|�⃗� denotes the execution of Π on �⃗�). Suppose that after 𝑡 steps Π0|�⃗�0 and Π1|�⃗�1 both
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output the same value, or they both have the same state and memory configuration.

If Π0 and Π1’s transition functions are also functionally equivalent on all states with

timestamp larger than 𝑡, then WkGarble(Π0, �⃗�0) ≈ WkGarble(Π1, �⃗�1).

Construction

WkGarble first transforms Π and �⃗� to have a “verifiable reads” property against

“semi-malicious memories”. It then transforms the resulting �⃗�′ and the transition

function of Π′ so that every word of memory is encrypted using ACE. Similarly,

the state of Π′ is also encrypted using ACE. Finally, the transition function is i𝒪-

obfuscated, and WkGarble outputs (Π′′, �⃗�′′). In the language of Chapter 5, Π′′, �⃗�′′ is

Harden((Π′, (𝑄,𝑊 )), �⃗�′), where 𝑄 denotes the universe of states of Π′ and 𝑊 denotes

the universe of words in �⃗�′.

A semi-malicious memory is an adversarial external memory storing words from

a universe 𝑊 at addresses in [𝑁 ]. When the semi-malicious memory receives a read

request, rather than answering correctly, it can answer with any arbitrary previously

written value. In order for this to differ meaningfully from a fully malicious memory

(which can answer read requests completely arbitrarily), 𝑊 should be larger than

{0, 1}. Indeed in our applications 𝑊 will be strings of 𝑂(log 𝜆) length.

Π′ having verifiable reads means that Π′ can verify that the values read from

memory are correct. Against a semi-malicious memory, this property is essentially

the same as the predictably timed writes of [GHRW14], and in fact our construction

uses basically the same generic transformation. A location tag and timestamp is

added to each word written to memory. To ensure that each word read from memory

has a predictable timestamp, we access memory via a binary tree structure, in which

each node holds the timestamps of its children.

Security Proof

The security of the above construction would be straight-forward if instead of i𝒪-

obfuscation we could use a much stronger obfuscator, such as virtual black-box obfus-

cation. In Chapter 5, we develop general techniques for showing indistinguishability
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of i𝒪-obfuscated programs which take ACE-encrypted inputs and outputs.

The proof of security for WkGarble shows a sequence of indistinguishable hybrids,

the 𝑖𝑡ℎ of which replaces the first 𝑖 steps of Π with dummy accesses, and gives as initial

memory the memory configuration of Π after 𝑖 steps of execution on �⃗�. Showing

indistinguishability then consists of applying Theorem 2 with a suitable invariant.

3.2.2 Full Garbling Construction

We garble a RAM program Π and an initial memory �⃗� by applying two transforma-

tions. We first apply the oblivious RAM transformation of Shi et al. [SCSL11], which

was simplified by Chung and Pass [CP13]. We then weakly garble the result to obtain

(Π̃, ˜⃗𝑥).

We note that both the ORAM and our weak garbling scheme are separable – They

consist of a key generation phase, after which the program and initial memory con-

figuration can be transformed separately. This implies that the full garbling scheme

is also separable.

3.2.3 Overview of the Security Proof

Simulator

We would like to simulate Garble(Π, �⃗�) given only Π(�⃗�), 𝑇 (the running time of Π on

�⃗�). Sim(Π(�⃗�)) is defined as the weak garbling of (Π′, �⃗�′), where

– Π′ first makes �̃�(𝑇 ) dummy accesses, each of which “looks like” an ORAM

executing a single underlying access. Then Π′ outputs Π(�⃗�).

– �⃗�′ is a length-𝑁 ′ memory configuration containing just⊥. Here 𝑁 ′ is the number

of words that the ORAM needs to simulate a memory of size 𝑁 .

We show that Sim(Π(�⃗�)) is indistinguishable from Garble(Π, �⃗�) by a hybrid ar-

gument. The main idea is that by using a suitable property of the oblivious RAM,

we can bootstrap WkGarble into a full garbling scheme. In the hybrids, we replace
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the real computation with a dummy computation one step at a time, starting at the

beginning.

ORAM Properties

We require the following two natural properties from the ORAM:

1. The locations accessed by the ORAM at a time 𝑗 are independent of the un-

derlying accesses, and can be efficiently sampled.

2. The ORAM’s state and memory configuration at time 𝑡 can be efficiently sam-

pled given the initial memory configuration, the underlying accesses, and the

real accesses made by the ORAM.

3. The ORAM has low worst-case overhead. In particular, the ORAM simulates

each underlying access with only polylog(𝑁) physical accesses. Here 𝑁 is the

size of the underlying memory.

The ORAM of Shi et al. [SCSL11], simplified by Chung and Pass [CP13], has all

of these properties.

These properties together with WkGarble allows us to move (in a long sequence of

hybrids) to a hybrid in which all of the locations accessed by Π̃ are computable by a

small circuit Γ. A last application of WkGarble indistinguishably switches the initial

memory to encryptions of many ⊥s. This hybrid is then simulatable given only Π(�⃗�),

|Π|, |�⃗�|, and the running time 𝑇 .

3.2.4 Optimizations

Eliminating double obfuscation In our construction as given, we have two layers

of obfuscation - one to implement ACE, and an obfuscated circuit that contains ACE

keys. This is only necessary for the modularity of our proof - the properties of ACE

could be proved directly in our construction with only one layer of i𝒪 obfuscation.
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Generating the encrypted initial memory We note that the 𝑂(𝑆) · poly(𝜆)

dependence in our scheme is only in the running time of Encode, and does not use ob-

fuscation. This is because this encryption can be done with the underlying PRF keys

rather than the obfuscated encryption algorithm. In particular, we only obfuscate

one small circuit.
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Chapter 4

Asymmetrically Constrained

Encryption

We define and construct a new primitive called Asymmetrically Constrained Encryp-

tion (ACE). Essentially, an ACE scheme is a deterministic authenticated secret key

encryption scheme, with the following additional properties:

1. For each message 𝑚 and key 𝐾, there is at most a single string that decrypts

to 𝑚 under key 𝐾.

2. The full decryption algorithm is indistinguishable from a version which is punc-

tured at a succinctly described set of messages (namely at some 𝑆 ⊂ℳ which

is decidable by a small circuit). Furthermore, indistinguishably holds even when

given ciphertexts and a constrained encryption algorithm, as long as the trivial

attack doesn’t work.

These properties will be central in our analysis of iterated circuit obfuscation.

4.1 Definition

An asymmetrically constrained encryption scheme consists of five polynomial-time

algorithms (Setup,GenEK,GenDK,Enc,Dec) described as follows:
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∙ Setup: Setup(1𝜆, 1𝑛, 1𝑠) is a randomized algorithm that takes as input the

security parameter 𝜆, the input length 𝑛, and a “circuit succinctness” parameter

𝑠, all in unary. Setup then outputs a secret key 𝑆𝐾.

Letℳ = {0, 1}𝑛 denote the message space, where 𝑛 = poly(𝜆). While 𝑛 and 𝑠

are arguments of Setup, we will generally think of them as given.

∙ (Constrained) Key Generation: Let 𝑆 ⊂ℳ be any set whose membership

is decidable by a circuit 𝐶𝑆. We say that 𝑆 is admissible if |𝐶𝑆| ≤ 𝑠. Intu-

itively, the set size parameter 𝑠 denotes the upper bound on the size of circuit

description of sets on which encryption and decryption keys can be punctured.

– GenEK(𝑆𝐾,𝐶𝑆) takes as input the secret key 𝑆𝐾 of the scheme and the

description of circuit 𝐶𝑆 for an admissible set 𝑆. It outputs an encryption

key 𝐸𝐾{𝑆}. We write 𝐸𝐾 to denote 𝐸𝐾{∅}.

– GenDK(𝑆𝐾,𝐶𝑆) also takes as input the secret key 𝑆𝐾 of the scheme and

the description of circuit 𝐶𝑆 for an admissible set 𝑆. It outputs a decryp-

tion key 𝐷𝐾{𝑆}. We write 𝐷𝐾 to denote 𝐷𝐾{∅}.

Unless mentioned otherwise, we will only consider admissible sets 𝑆 ⊂ℳ.

∙ Encryption: Enc(𝐸𝐾 ′,𝑚) is a deterministic algorithm that takes as input an

encryption key 𝐸𝐾 ′ (that may be constrained) and a message 𝑚 ∈ ℳ and

outputs a ciphertext 𝑐 or the reject symbol ⊥.

∙ Decryption: Dec(𝐷𝐾 ′, 𝑐) is a deterministic algorithm that takes as input a

decryption key 𝐷𝐾 ′ (that may be constrained) and a ciphertext 𝑐 and outputs

a message 𝑚 ∈ℳ or the reject symbol ⊥.

Correctness. An ACE scheme is correct if the following properties hold:

36



1. Correctness of Decryption: For all 𝑛, all 𝑚 ∈ ℳ, all sets 𝑆, 𝑆 ′ ⊂ ℳ s.t.

𝑚 /∈ 𝑆 ∪ 𝑆 ′,

Pr

⎡⎢⎢⎢⎣Dec(𝐷𝐾,Enc(𝐸𝐾,𝑚)) = 𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑆𝐾 ← Setup(1𝜆),

𝐸𝐾 ← GenEK(𝑆𝐾,𝐶𝑆′),

𝐷𝐾 ← GenDK(𝑆𝐾,𝐶𝑆)

⎤⎥⎥⎥⎦ = 1.

Informally, this says that Dec ∘ Enc is the identity on messages which are in

neither of the punctured sets.

2. Equivalence of Constrained Encryption: Let 𝑆𝐾 ← Setup(1𝜆). For any message

𝑚 ∈ℳ and any sets 𝑆, 𝑆 ′ ⊂ℳ with 𝑚 not in the symmetric difference 𝑆∆𝑆 ′,

Pr

⎡⎢⎢⎢⎣Enc(𝐸𝐾,𝑚) = Enc(𝐸𝐾 ′,𝑚)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑆𝐾 ← Setup(1𝜆),

𝐸𝐾 ← GenEK(𝑆𝐾,𝐶𝑆),

𝐸𝐾 ′ ← GenEK(𝑆𝐾,𝐶𝑆′)

⎤⎥⎥⎥⎦ = 1.

3. Unique Ciphertexts: If Dec(𝐷𝐾, 𝑐) = Dec(𝐷𝐾, 𝑐′) ̸= ⊥, then 𝑐 = 𝑐′.

4. Safety of Constrained Decryption: For all strings 𝑐, all 𝑆 ⊂ℳ,

Pr
[︁
Dec(𝐷𝐾, 𝑐) ∈ 𝑆

⃒⃒⃒
𝑆𝐾 ← Setup(1𝜆), 𝐷𝐾 ← GenDK(𝑆𝐾,𝐶𝑆)

]︁
= 0

This says that a punctured key 𝐷𝐾{𝑆} will never decrypt a string 𝑐 to a message

in 𝑆.

5. Equivalence of Constrained Decryption: If Dec(𝐷𝐾{𝑆}, 𝑐) = 𝑚 ̸= ⊥ and 𝑚 /∈

𝑆 ′, then Dec(𝐷𝐾{𝑆 ′}, 𝑐) = 𝑚.

Security of Constrained Decryption. Intuitively, this property says that for any

two sets 𝑆0, 𝑆1, no adversary can distinguish between the constrained key 𝐷𝐾{𝑆0}

and 𝐷𝐾{𝑆1}, even given additional auxiliary information in the form of a constrained

encryption key 𝐸𝐾 ′ and ciphertexts 𝑐1, . . . , 𝑐𝑡. To rule out trivial attacks, 𝐸𝐾 ′ is
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constrained at least on 𝑆0∆𝑆1. Similarly, each 𝑐𝑖 is an encryption of a message

𝑚 /∈ 𝑆0∆𝑆1.

Formally, we describe security of constrained decryption as a multi-stage game

between an adversary 𝒜 and a challenger.

∙ Setup: 𝒜 choose sets 𝑆0, 𝑆1, 𝑈 s.t. 𝑆0∆𝑆1 ⊆ 𝑈 ⊆ℳ and sends their circuit de-

scriptions (𝐶𝑆0 , 𝐶𝑆1 , 𝐶𝑈) to the challenger. 𝒜 also sends arbitrary polynomially

many messages 𝑚1, . . . ,𝑚𝑡 such that 𝑚𝑖 /∈ 𝑆0∆𝑆1.

The challenger chooses a bit 𝑏 ∈ {0, 1} and computes the following: (a) 𝑆𝐾 ←

Setup(1𝜆), (b) 𝐷𝐾{𝑆𝑏} ← GenDK(𝑆𝐾,𝐶𝑆𝑏
), (c) 𝐸𝐾 ← GenEK(𝑆𝐾, ∅), (d) 𝑐𝑖 ←

Enc(𝐸𝐾,𝑚𝑖) for every 𝑖 ∈ [𝑡], and (e) 𝐸𝐾{𝑈} ← GenEK(𝑆𝐾,𝐶𝑈). Finally, it

sends the tuple (𝐸𝐾{𝑈}, 𝐷𝐾{𝑆𝑏}, {𝑐𝑖}) to 𝒜.

∙ Guess: 𝒜 outputs a bit 𝑏′ ∈ {0, 1}.

The advantage of 𝒜 in this game is defined as adv𝒜 =
⃒⃒
Pr[𝑏′ = 𝑏]− 1

2

⃒⃒
. We require

that adv𝒜(𝜆) ≤ negl(𝜆).

Remark 4. Looking ahead, in our construction of ACE, we have

adv𝒜(𝜆) = poly(|𝑆0∆𝑆1|, 𝜆) · (adv𝑂𝑊𝐹 (𝜆) + advi𝒪(𝜆))

for any 𝑆0, 𝑆1. When |𝑆0∆𝑆1| is super-polynomial, we require something like subex-

ponential hardness of one-way functions as well as subexponential hardness of i𝒪 in

order for adv𝒜 to be negligible. As we will see later, our garbled RAM construction

has ℳ = {0, 1}𝑂(log 𝜆), which means |𝑆0∆𝑆1| ≤ |ℳ| ≤ poly(𝜆) so we can rely on

polynomial assumptions.

Selective Indistinguishability of Ciphertexts. Intuitively, this property says

that no adversary can distinguish between encryptions of 𝑚0 from encryptions of 𝑚1,

even given additional auxiliary information. The auxiliary information corresponds

to constrained encryption and decryption keys 𝐸𝐾 ′, 𝐷𝐾 ′, as well as some ciphertexts
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𝑐1, . . . , 𝑐𝑡. In order to rule out trivial attacks, 𝐸𝐾 ′ and 𝐷𝐾 ′ should both be punctured

on at least {𝑚0,𝑚1}, and none of 𝑐1, . . . , 𝑐𝑡 should be an encryption of 𝑚0 or 𝑚1.

Formally, we require that for all sets 𝑆, 𝑈 ⊂ ℳ, for all 𝑚*
0,𝑚

*
1 ∈ 𝑆 ∩ 𝑈 , and all

𝑚1, . . . ,𝑚𝑡 ∈ℳ ∖ {𝑚*
0,𝑚

*
1}, the distribution

𝐸𝐾{𝑆}, 𝐷𝐾{𝑈}, 𝑐*0, 𝑐*1, 𝑐1, . . . , 𝑐𝑡

is indistinguishable from

𝐸𝐾{𝑆}, 𝐷𝐾{𝑈}, 𝑐*1, 𝑐*0, 𝑐1, . . . , 𝑐𝑡

where 𝑆𝐾 ← Setup(1𝜆), 𝐸𝐾 ← GenEK(𝑆𝐾, ∅), 𝐸𝐾{𝑆} ← GenEK(𝑆𝐾,𝐶𝑆),

𝐷𝐾{𝑈} ← GenDK(𝑆𝐾,𝐶𝑈), 𝑐*𝑏 ← Enc(𝐸𝐾,𝑚*
𝑏), and 𝑐𝑖 ← Enc(𝐸𝐾,𝑚𝑖).

Definition 3. An ACE scheme is secure if it satisfies the properties of correctness,

unique ciphertexts, security of constrained decryption and selective indistinguishabil-

ity of ciphertexts.

4.2 Construction

We now present a construction of an asymmetrically constrainable encryption scheme.

Our scheme is based on the “hidden triggers” mechanism in the deniable encryption

scheme of [SW14], and additionally makes use of indistinguishability obfuscation.

Notation. Let ℱ1 = {𝐹1,𝑘}𝑘∈{0,1}𝜆 be a puncturable injective pseudorandom func-

tion family, where 𝐹1,𝑘 : {0, 1}𝑛 → {0, 1}2𝑛+log1+𝜖(𝜆). Let ℱ2 = {𝐹2,𝑘}𝑘∈{0,1}𝜆 be

another puncturable pseudorandom function family, where 𝐹2,𝑘 : {0, 1}2𝑛+log1+𝜖(𝜆) →

{0, 1}𝑛. Let i𝒪 be an indistinguishability obfuscator for all circuits.

Let 𝑠 denote the set description size parameter for ACE. Let 𝑝 = poly(𝑛, 𝜆, 𝑠) be

a parameter to be determined later.
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Construction. We now proceed to describe our scheme 𝒜𝒞ℰ = (Setup,GenEK,

GenDK,Enc,Dec).

Setup(1𝜆): The setup algorithm first samples fresh keys 𝐾1 ← GenPRF(1𝜆) and 𝐾2 ←

GenPRF(1𝜆) for the puncturable PRF families ℱ1 and ℱ2 respectively. We will write

𝐹𝑖 to denote the function 𝐹𝑖,𝐾𝑖
.

GenEK((𝐾1, 𝐾2), 𝐶𝑆): The encryption key generation algorithm takes as input keys

𝐾1, 𝐾2 and the circuit description 𝐶𝑆 of an admissible set 𝑆. It prepares a circuit

representation of 𝒢enc (Algorithm 1), padded to be of size 𝑝. Next, it computes the

encryption key 𝐸𝐾{𝑆} ← i𝒪(𝒢enc) and outputs the result.

Constants: 𝐾1, 𝐾2, circuit 𝐶𝑆

Input: Message 𝑚 ∈ {0, 1}𝑛
1 if 𝐶𝑆(𝑚) then return ⊥;
2 else
3 𝛼← 𝐹1(𝑚);
4 𝛽 ← 𝐹2(𝛼)⊕𝑚;
5 return 𝛼‖𝛽
6 end

Algorithm 1: (Constrained) Encryption 𝒢enc

GenDK((𝐾1, 𝐾2), 𝐶𝑆): The decryption key generation algorithm takes as input keys

𝐾1, 𝐾2 and the circuit description 𝐶𝑆 of an admissible set 𝑆. It prepares a circuit

representation of 𝒢dec (Algorithm 2), padded to be of size 𝑝. It then computes the

decryption key 𝐷𝐾{𝑆} ← i𝒪(𝒢dec) and outputs the result.

Constants: 𝐾1, 𝐾2, circuit 𝐶𝑆

Input: Ciphertext 𝑐 ∈ {0, 1}3𝑛+log1+𝜖(𝜆)

1 parse 𝑐 as 𝛼‖𝛽 with 𝛽 ∈ {0, 1}𝑛;
2 𝑚← 𝐹2(𝛼)⊕ 𝛽;
3 if 𝐶𝑆(𝑚) then return ⊥;
4 else if 𝛼 ̸= 𝐹1(𝑚) then return ⊥;
5 else return 𝑚;

Algorithm 2: (Constrained) Decryption 𝒢dec

Enc(𝐸𝐾 ′,𝑚): The encryption algorithm simply runs the encryption key program

𝐸𝐾 ′ on message 𝑚 to compute the ciphertext 𝑐← 𝐸𝐾 ′(𝑚).
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Dec(𝐷𝐾 ′, 𝑐): The decryption algorithm simply runs the decryption key program 𝐷𝐾 ′

on the input ciphertext 𝑐 and returns the output 𝐷𝐾 ′(𝑐).

This completes the description of our construction of 𝒜𝒞ℰ .

4.3 Proof of Security

Correctness. We first argue correctness:

1. Correctness of Decryption: This follow directly from the definitions of Algo-

rithm 1 and Algorithm 2 and the perfect correctness of i𝒪.

2. Equivalence of Constrained Encryption: This follows directly from the definition

of Algorithm 1 and the perfect correctness of i𝒪.

3. Uniqueness of Encryptions: A ciphertext 𝑐 = 𝛼‖𝛽 decrypts to 𝑚 ̸= ⊥ only if

𝛼 = 𝐹1(𝑚) and 𝛽 = 𝐹2(𝛼). So there can be only one ciphertext which decrypts

to 𝑚.

4. Safety of Constrained Decryption: This follows directly from the definition of

Algorithm 2 and the perfect correctness of i𝒪.

5. Equivalence of Constrained Decryption: This follows directly from the definition

of Algorithm 2 and the perfect correctness of i𝒪.

Security of Constrained Decryption. We now prove that 𝒜𝒞ℰ satisfies security

of constrained decryption.

Lemma 1. The proposed scheme 𝒜𝒞ℰ satisfies security of constrained decryption.

Proof. Let 𝑆0, 𝑆1, 𝑈 be arbitrary subsets of {0, 1}𝑛 s.t. 𝑆0∆𝑆1 ⊆ 𝑈 and let 𝐶𝑆0 , 𝐶𝑆1 , 𝐶𝑈

be their circuit descriptions. Let 𝑚1, . . . ,𝑚𝑡 be arbitrary messages such that every

𝑚𝑖 ∈ 𝑀 ∖ (𝑆0∆𝑆1). Let 𝑆𝐾 ← Setup(1𝜆), 𝐸𝐾 ← GenEK(𝑆𝐾, ∅) and 𝐸𝐾{𝑈} ←

GenEK(𝑆𝐾,𝐶𝑈). For every 𝑖 ∈ [𝑡], let 𝑐𝑖 ← Enc(𝐸𝐾,𝑚𝑖). Further, for 𝑏 ∈ {0, 1}, let
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𝐷𝐾{𝑆𝑏} ← GenDK(𝑆𝐾,𝐶𝑆𝑏
). We now argue that no PPT distinguisher can distin-

guish between (𝐸𝐾{𝑈}, 𝐷𝐾{𝑆0}, {𝑐𝑖}) and (𝐸𝐾{𝑈}, 𝐷𝐾{𝑆1}, {𝑐𝑖}) with advantage

more than 𝜖𝑆0,𝑆1 = |𝑆0∆𝑆1| · (adv𝑂𝑊𝐹 (𝜆) + advi𝒪(𝜆)).

We will prove this via a sequence of |𝑆0∆𝑆1| indistinguishable hybrid experiments

𝐻𝑖 where in experiment 𝐻0, the decryption key is 𝐷𝐾{𝑆0} whereas in experiment

𝐻|𝑆0Δ𝑆1|, the decryption key is 𝐷𝐾{𝑆1}. Without loss of generality, we will suppose

that 𝑆0 ⊆ 𝑆1. The general case follows because

𝐷𝐾{𝑆0} ≈ 𝐷𝐾{𝑆0 ∩ 𝑆1} ≈ 𝐷𝐾{𝑆1}

where we have omitted the auxiliary information of encryption keys and ciphertexts.

We now proceed to give details. Let 𝑢𝑖 denote the lexicographically 𝑖𝑡ℎ element of

𝑆1 ∖𝑆0. Throughout the experiments, we will refer to the encryption key and decryp-

tion key programs given to the distinguisher as 𝐸𝐾 ′ and 𝐷𝐾 ′ respectively. Similarly,

(unless stated otherwise) we will refer to the unobfuscated algorithms underlying 𝐸𝐾 ′

and 𝐷𝐾 ′ as 𝒢 ′enc and 𝒢 ′dec, respectively.

Hybrid 𝐻𝑖: In the 𝑖𝑡ℎ hybrid, the decryption key program 𝒢 ′dec first checks whether

𝑚 ∈ 𝑆1 and 𝑚 ≤ 𝑢𝑖. If this is the case, then it simply outputs ⊥. Otherwise, it

behaves in the same manner as 𝐷𝐾{𝑆0}. The underlying unobfuscated program 𝒢 ′dec
is described in Algorithm 3.

For notational simplicity, set 𝑢0 = −∞. Therefore, in experiment 𝐻0, 𝒢 ′dec has

the same functionality as 𝐷𝐾{𝑆0}, and in 𝐻|𝑆1∖𝑆0|, 𝒢 ′dec has the same functionality

as 𝐷𝐾{𝑆1}.

We now construct a series of intermediate hybrid experiments 𝐻𝑖,0, . . . , 𝐻𝑖,7 where

𝐻𝑖,0 is the same as 𝐻𝑖 and 𝐻𝑖,7 is the same as 𝐻𝑖+1. For every 𝑗, we will prove that

𝐻𝑖,𝑗 is computationally indistinguishable from 𝐻𝑖,𝑗+1, which will establish that 𝐻𝑖

and 𝐻𝑖+1 are computationally indistinguishable.

Hybrid 𝐻𝑖,0: This is the same as experiment 𝐻𝑖.

Hybrid 𝐻𝑖,1: This is the same as experiment 𝐻𝑖,0 except that we modify 𝒢 ′dec as in
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Input: ciphertext 𝑐 ∈ {0, 1}3𝑛+log1+𝜖(𝜆)

Constants: PPRF keys 𝐾1, 𝐾2, circuits 𝐶𝑆0 , 𝐶𝑆1

1 Parse 𝑐 as 𝛼‖𝛽;
2 𝑚← 𝐹2(𝛼)⊕ 𝛽;
3 if 𝑚 ≤ 𝑢𝑖 and 𝑚 ∈ 𝑆1 then return ⊥ ;
4 else if 𝑚 ∈ 𝑆0 then return ⊥;
5 else if 𝛼 ̸= 𝐹1(𝑚) then return ⊥;
6 else return 𝑚;

Algorithm 3: (Constrained) Decryption 𝒢 ′dec in Hybrid 𝑖

Algorithm 4. If the decrypted message 𝑚 is 𝑢𝑖+1, then instead of checking whether

𝛼 ̸= 𝐹1(𝑚) in line 5, 𝒢 ′dec now checks whether Commit(0;𝛼) ̸= Commit(0;𝐹1(𝑢𝑖)),

where Commit is a perfectly binding injective commitment.

Input: ciphertext 𝑐 ∈ {0, 1}3𝑛+log1+𝜖(𝜆)

Constants: PPRF keys 𝐾1, 𝐾2, circuits 𝐶𝑆0 , 𝐶𝑆1 , message 𝑢𝑖+1,
𝑧 = Commit(0;𝐹1(𝑢𝑖+1))

1 Parse 𝑐 as 𝛼‖𝛽;
2 𝑚← 𝐹2(𝛼)⊕ 𝛽;
3 if 𝑚 ≤ 𝑢𝑖 and 𝑚 ∈ 𝑆1 then return ⊥ ;
4 else if 𝑚 ∈ 𝑆0 then return ⊥;
5 else if 𝑚 = 𝑢𝑖+1 and Commit(0;𝛼) ̸= 𝑧 then return ⊥;
6 else if 𝛼 ̸= 𝐹1(𝑚) then return ⊥;
7 else return 𝑚;

Algorithm 4: 𝒢 ′dec in Hybrid 𝑖, 1

Hybrid 𝐻𝑖,2: This is the same as experiment 𝐻𝑖,1 except that we modify 𝒢 ′dec as

follows:

∙ The PRF key 𝐾1 in 𝒢 ′dec is punctured at 𝑢𝑖+1, i.e., 𝐾1 is replaced with 𝐾1{𝑢𝑖+1} ←

PuncturePRF(𝐾1, 𝑢𝑖+1).

Hybrid 𝐻𝑖,3: This is the same as experiment 𝐻𝑖,2 except that we modify the program

𝒢 ′enc underlying 𝐸𝐾 ′ such that the PRF key 𝐾1 hardwired in 𝒢 ′enc is replaced with

the same punctured key 𝐾1{𝑢𝑖+1} ← PuncturePRF(𝐾1, 𝑢𝑖+1) as is used in 𝒢 ′dec

Hybrid 𝐻𝑖,4: This is the same as experiment 𝐻𝑖,3 except that the hardwired value

𝑧 in 𝒢 ′dec is now computed as Commit(0; 𝑟) where 𝑟 is a randomly chosen string in
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{0, 1}2𝑛+log1+𝜖(𝜆).

Hybrid 𝐻𝑖,5: This is the same as experiment 𝐻𝑖,4 except that the hardwired value 𝑧 in

𝒢 ′dec is now set to Commit(1; 𝑟) where 𝑟 is a randomly chosen string in {0, 1}2𝑛+log1+𝜖(𝜆).

Hybrid 𝐻𝑖,6: This is the same as experiment 𝐻𝑖,5 except that we now modify 𝒢 ′dec such

that it outputs ⊥ when the decrypted message 𝑚 is 𝑢𝑖+1. An equivalent description

of 𝒢 ′dec is that in line 3, it now checks whether 𝑚 ≤ 𝑢𝑖+1 instead of 𝑚 ≤ 𝑢𝑖.

Hybrid 𝐻𝑖,7: This is the same as experiment 𝐻𝑖,6 except that the PRF key corre-

sponding to 𝐹1 is unpunctured in both 𝒢 ′enc and 𝒢 ′dec. That is, we replace 𝐾1{𝑢𝑖+1}

with 𝐾1 in both 𝒢 ′enc and 𝒢 ′dec. Note that experiment 𝐻𝑖,7 is the same as experiment

𝐻𝑖+1.

This completes the description of the hybrid experiments. We now argue their

indistinguishability.

Indistinguishability of 𝐻𝑖,0 and 𝐻𝑖,1. Since Commit is injective, we have that the

following two checks are equivalent: 𝛼 ̸= 𝐹1(𝑚) and Commit(0;𝛼) ̸= Commit(0;𝐹1(𝑚)).

Then, we have that the algorithms 𝒢 ′dec in 𝐻𝑖,0 and 𝐻𝑖,1 are functionally equivalent.

Therefore, the indistinguishability of 𝐻𝑖,0 and 𝐻𝑖,1 follows from the security of the

indistinguishability obfuscator i𝒪.

Indistinguishability of 𝐻𝑖,1 and 𝐻𝑖,2. Let 𝒢 ′dec (resp., 𝒢 ′′dec) denote the unobfuscated

algorithms underlying the decryption key program 𝐷𝐾 ′ in experiments 𝐻𝑖,1 (resp.,

𝐻𝑖,2). We will argue that 𝒢 ′dec and 𝒢 ′′dec are functionally equivalent. The indistin-

guishability of 𝐻𝑖,0 and 𝐻𝑖,1 then follows from the security of the indistinguishability

obfuscator i𝒪.

Let 𝑐𝑖+1 = 𝛼𝑖+1‖𝛽𝑖+1 denote the unique ciphertext such that Dec(𝐷𝐾, 𝑐𝑖+1) = 𝑢𝑖+1

(where 𝐷𝐾 denotes the unconstrained decryption key program). First note that on

any input 𝑐 ̸= 𝑐𝑖+1, both 𝒢 ′dec and 𝒢 ′′dec have identical behavior, except that 𝒢 ′dec uses the

PRF key 𝐾1 while 𝒢 ′′dec uses the punctured PRF key 𝐾1{𝑢𝑖+1}. Since the punctured

PRF scheme preserves functionality under puncturing, we have that 𝒢 ′dec(𝑐) = 𝒢 ′′dec(𝑐).

Now, on input 𝑐𝑖+1, after decrypting to obtain 𝑢𝑖+1, 𝒢 ′dec computes Commit(0;𝐹1(𝑢𝑖+1))

and then checks whether Commit(0;𝛼𝑖+1) ̸= Commit(0;𝐹1(𝑢𝑖+1)) whereas 𝒢 ′′dec simply
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checks whether Commit(0;𝛼𝑖) ̸= 𝑧. But since the value 𝑧 hardwired in 𝒢 ′′dec is equal

to Commit(0;𝐹1(𝑢𝑖+1)), we have that 𝒢 ′dec(𝑐𝑖) = 𝒢 ′′dec(𝑐𝑖).

Thus we have that 𝒢 ′dec and 𝒢 ′′dec are functionally equivalent.

Indistinguishability of 𝐻𝑖,2 and 𝐻𝑖,3. Let 𝒢 ′enc (resp., 𝒢 ′′enc) denote the unobfus-

cated algorithms underlying the encryption key program 𝐸𝐾 ′ in experiments 𝐻𝑖,1

and 𝐻𝑖,2. Note that the only difference between 𝒢 ′enc and 𝒢 ′′enc is that the former con-

tains the PRF key 𝐾1 while the latter contains the punctured PRF key 𝐾1{𝑢𝑖+1}.

However, note that neither 𝒢 ′enc nor 𝒢 ′′enc ever evaluate 𝐹1 on 𝑢𝑖+1. Thus, since the

punctured PRF preserves functionality under puncturing, we have that 𝒢 ′enc and 𝒢 ′′enc
are functionally equivalent. The indistinguishability of 𝐻𝑖,2 and 𝐻𝑖,3 follows from the

security of the indistinguishability obfuscator i𝒪.

Indistinguishability of 𝐻𝑖,3 and 𝐻𝑖,4. From the security of the punctured PRF, it

follows immediately that 𝐻𝑖,3 and 𝐻𝑖,4 are computationally indistinguishable.

Indistinguishability of 𝐻𝑖,4 and 𝐻𝑖,5. 𝐻𝑖,4 and 𝐻𝑖,5 are computationally indistin-

guishable because of the hiding properties of Commit.

Indistinguishability of 𝐻𝑖,5 and 𝐻𝑖,6. Let 𝒢 ′dec (resp., 𝒢 ′′dec) denote the unobfuscated

algorithms underlying the decryption key program 𝐷𝐾 ′ in experiments 𝐻𝑖,5 and 𝐻𝑖,6.

We will argue that with all but negligible probability, 𝒢 ′dec and 𝒢 ′′dec are functionally

equivalent. The indistinguishability of 𝐻𝑖,5 and 𝐻𝑖,6 then follows from the security of

the indistinguishability obfuscator i𝒪.

Let 𝑐𝑖 denote the unique ciphertext corresponding to the message 𝑢𝑖. We note

that with overwhelming probability, the random string 𝑧 (hardwired in both 𝐻𝑖,5 and

𝐻𝑖,6) is not in the image of the PRG. Thus, except with negligible probability, there

does not exist an 𝛼𝑖 such that 𝑃𝑅𝐺(𝛼𝑖) = 𝑧. This implies that except with negligible

probability, 𝒢 ′dec(𝑐𝑖) = ⊥. Since 𝒢 ′′dec also outputs ⊥ on input 𝑐𝑖 and 𝒢 ′dec,𝒢 ′′dec behave

identically on all other input ciphertexts, we have that 𝒢 ′dec and 𝒢 ′′dec are functionally

equivalent.

Indistinguishability of 𝐻𝑖,6 and 𝐻𝑖,7. This follows in the same manner as the

indistinguishability of experiments 𝐻𝑖,2 and 𝐻𝑖,3. We omit the details.
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Completing the proof. Note that throughout the hybrids, we use the security of

three cryptographic primitives: injective commitments, pseudorandom functions, and

indistinguishability obfuscation. In total, (ignoring constant multiplicative factors)

we have |𝑆0∆𝑆1| hybrids where 𝑆0∆𝑆1 is the symmetric set difference. Thus, overall,

we get that no adversary can distinguish between

𝐸𝐾{𝑈}, 𝐷𝐾{𝑆0}, 𝑐1, . . . , 𝑐𝑡

and

𝐸𝐾{𝑈}, 𝐷𝐾{𝑆1}, 𝑐1, . . . , 𝑐𝑡

with advantage more than

𝜖𝑆0,𝑆1 = |𝑆0∆𝑆1| · (adv𝐶𝑂𝑀(𝜆) + adv𝑃𝑅𝐹 (𝜆) + advi𝒪(𝜆)).

Replacing adv𝐶𝑂𝑀(𝜆)+adv𝑃𝑅𝐹 (𝜆) with poly(𝜆) ·adv𝑂𝑊𝐹 , where OWF is the injective

one-way function used to construct the commitment and puncturable PRF, we get

𝜖𝑆0,𝑆1 = |𝑆0∆𝑆1| · poly(𝜆) · (adv𝑂𝑊𝐹 (𝜆) + advi𝒪(𝜆))

as required.

Selective Indistinguishability of Ciphertexts. We now prove that𝒜𝒞ℰ satisfies

indistinguishability of ciphertexts.

Lemma 2. The proposed scheme 𝒜𝒞ℰ satisfies selective indistinguishability of ci-

phertexts.

Proof. The proof of the lemma proceeds in a sequence of hybrid distributions where

we make indistinguishable changes to 𝐸𝐾{𝑈}, 𝐷𝐾{𝑆}, and the challenge ciphertexts

(𝑐*0, 𝑐
*
1). The “extra” ciphertexts 𝑐1, . . . , 𝑐𝑡 remain unchanged throughout the hybrids.

Hybrid 𝐻0. This is the real world distribution. For completeness (and to ease the

presentation of the subsequent hybrid distributions), we describe the sampling process
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here. Let 𝑆, 𝑈 ⊂ ℳ = {0, 1}𝑛 be the sets chosen by the adversary and 𝐶𝑆, 𝐶𝑈 be

their corresponding circuit descriptions. Let 𝑚*
0,𝑚

*
1 be the challenge messages in

𝑆 ∩ 𝑈 and (𝑚1, . . . ,𝑚𝑡) be the extra messages in {0, 1}𝑛. Then

1. Sample PRF keys 𝐾1 ← GenPRF(1𝜆), 𝐾2 ← GenPRF(1𝜆), 𝑏← {0, 1}.

2. For 𝑏 ∈ {0, 1}, compute 𝛼*
𝑏 ← 𝐹1(𝑚

*
𝑏), 𝛾*

𝑏 ← 𝐹2(𝛼
*
𝑏) and 𝛽*

𝑏 = 𝛾*
𝑏 ⊕ 𝑚*

𝑏 . Let

𝑐*𝑏 = 𝛼*
𝑏‖𝛽*

𝑏 .

3. For every 𝑗 ∈ [𝑡], compute 𝛼𝑗 ← 𝐹1(𝑚𝑗), 𝛾𝑗 ← 𝐹2(𝛼𝑗) and 𝛽𝑗 = 𝛾𝑗 ⊕𝑚𝑗. Let

𝑐𝑗 = 𝛼𝑗‖𝛽𝑗.

4. Compute 𝐸𝐾{𝑈} ← i𝒪(𝒢 ′enc) where 𝒢 ′enc is described in Algorithm 5.

5. Compute 𝐷𝐾{𝑆} ← i𝒪(𝒢 ′dec) where 𝒢 ′dec is described in Algorithm 6.

6. Output the following tuple:

(︀
𝐸𝐾{𝑆}, 𝐷𝐾{𝑈}, 𝑐*𝑏 , 𝑐*1−𝑏, 𝑐1, . . . , 𝑐𝑡

)︀
.

Constants: 𝐾1, 𝐾2, circuit 𝐶𝑈

Input: message 𝑚
1 if 𝐶𝑈(𝑚) then return ⊥;
2 else
3 𝛼← 𝐹1(𝑚);
4 𝛽 ← 𝐹2(𝛼)⊕𝑚;
5 return 𝛼‖𝛽
6 end

Algorithm 5: 𝒢 ′enc in Hybrid 𝐻0

Hybrid 𝐻1. Modify 𝒢 ′enc: the hardwired PRF key 𝐾1 is replaced with a punctured

key 𝐾1{𝑚*
0,𝑚

*
1} ← PuncturePRF(𝐾1, {𝑚*

0,𝑚
*
1}).

Hybrid 𝐻2. Modify 𝒢 ′dec: the hardwired PRF key 𝐾1 is replaced with a punctured

key 𝐾1{𝑚*
0,𝑚

*
1} ← PuncturePRF(𝐾1, {𝑚*

0,𝑚
*
1}).
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Constants: 𝐾1, 𝐾2, circuit 𝐶𝑆

Input: ciphertext 𝑐
1 Parse 𝑐 as 𝛼‖𝛽;
2 𝑚← 𝐹2(𝛼)⊕ 𝛽;
3 if 𝐶𝑆(𝑚) then return ⊥;
4 else if 𝛼 ̸= 𝐹1(𝑚) then return ⊥;
5 else return 𝑚;

Algorithm 6: 𝒢 ′dec in Hybrid 𝐻0

Hybrid 𝐻3. Modify 𝒢 ′dec: Perform the following check in the beginning. If input

ciphertext 𝑐 = 𝑐*𝑏 for 𝑏 ∈ {0, 1} then output ⊥. The modified 𝒢 ′dec is described in

Algorithm 7

Constants: 𝐾1{𝑚*
0,𝑚

*
1}, 𝐾2, circuit 𝐶𝑆, 𝑐*0, 𝑐*1

Input: ciphertext 𝑐
1 if 𝑐 = 𝑐*𝑏 for 𝑏 ∈ {0, 1} then return ⊥;
2 Parse 𝑐 as 𝛼‖𝛽;
3 𝑚← 𝐹2(𝛼)⊕ 𝛽;
4 if 𝐶𝑆(𝑚) then return ⊥;
5 else if 𝛼 ̸= 𝐹1(𝑚) then return ⊥;
6 else return 𝑚;

Algorithm 7: 𝒢 ′dec in Hybrid 3

Hybrid 𝐻4. Modify challenge ciphertexts 𝑐*𝑏 = 𝛼*
𝑏‖𝛽*

𝑏 : Generate each 𝛼*
𝑏 as a truly

random string.

Hybrid 𝐻5. Modify 𝒢 ′enc: the hardwired PRF key 𝐾2 is replaced with a punctured

key 𝐾2{𝛼*
0, 𝛼

*
1} ← PuncturePRF(𝐾2, {𝛼*

0, 𝛼
*
1}). Here we assume the set {𝛼*

0, 𝛼
*
1} is

sorted lexicographically.

Hybrid 𝐻6. Modify 𝒢 ′dec: we change the check performed in line 1 of Algorithm 7.

For any input ciphertext 𝑐 = 𝛼‖𝛽, if 𝛼 = 𝛼*
𝑏 for 𝑏 ∈ {0, 1}, then output ⊥. Note

that 𝒢 ′dec only has 𝛼*
𝑏 hardwired as opposed to 𝑐*𝑏 . The modified 𝒢 ′dec is described in

Algorithm 8.

Hybrid 𝐻7. Modify 𝒢 ′dec: the hardwired PRF key 𝐾2 is replaced with the same a

punctured key 𝐾2{𝛼*
0, 𝛼

*
1} ← PuncturePRF(𝐾2, {𝛼*

0, 𝛼
*
1}) as was used in 𝒢 ′enc.

Hybrid 𝐻8. Modify challenge ciphertexts 𝑐*𝑏 = 𝛼*
𝑏‖𝛽*

𝑏 : For 𝑏 ∈ {0, 1}, generate 𝛽*
𝑏 as
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Constants: PPRF keys 𝐾1{𝑚*
0,𝑚

*
1}, 𝐾2, circuit 𝐶𝑆, ciphertext prefixes 𝛼*

0, 𝛼
*
1

Input: ciphertext 𝑐
1 parse 𝑐 as 𝛼‖𝛽;
2 if 𝛼 = 𝛼*

𝑏 for 𝑏 ∈ {0, 1} then return ⊥;
3 𝑚← 𝐹2(𝛼)⊕ 𝛽;
4 if 𝐶𝑆(𝑚) then return ⊥;
5 else if 𝛼 ̸= 𝐹1(𝑚) then return ⊥;
6 else return 𝑚;

Algorithm 8: 𝒢 ′dec in Hybrid 6

a truly random string.

This completes the description of the hybrid experiments. We will now first prove

indistinguishability of experiments 𝐻𝑖 and 𝐻𝑖+1 for every 𝑖. We will then observe that

no adversary can guess bit 𝑏 in the final hybrid 𝐻8 with probability better than 1
2
.

This suffices to prove the claim.

Indistinguishability of 𝐻0 and 𝐻1. Let 𝒢 ′enc and 𝒢 ′′enc denote the algorithms un-

derlying the encryption key program 𝐸𝐾{𝑈} in 𝐻0 and 𝐻1 respectively. Note that

due to the check performed in line 1, both 𝒢 ′enc and 𝒢 ′′enc output ⊥ on each challenge

message 𝑚*
𝑏 . In particular, line 4 is not executed in both 𝒢 ′enc and 𝒢 ′′enc for every input

message 𝑚*
𝑏 . (In fact, line 4 is only executed when the input message 𝑚 /∈ 𝑆.) Then,

since the punctured PRF scheme preserves functionality under puncturing, we have

that 𝒢 ′enc (using 𝐾1) and 𝒢 ′′enc (using 𝐾1{𝑚*
0,𝑚

*
1}) are functionally equivalent. The

indistinguishability of 𝐻0 and 𝐻1 follows from the security of the indistinguishability

obfuscator i𝒪.

Indistinguishability of 𝐻1 and 𝐻2. Let 𝒢 ′dec and 𝒢 ′′dec denote the algorithms un-

derlying the decryption key program 𝐷𝐾{𝑆} in 𝐻1 and 𝐻2 respectively. Note that

due to the check performed in line 3, both 𝒢 ′dec and 𝒢 ′′dec output ⊥ on either challenge

ciphertext 𝑐*𝑏 . In particular, line 4 is not executed in both 𝒢 ′dec and 𝒢 ′′dec for either 𝑚*
𝑏 .

Then, since the punctured PRF scheme preserves functionality under puncturing, we

have that 𝒢 ′dec (using 𝐾1) and 𝒢 ′′dec (using 𝐾1{𝑚*
0,𝑚

*
1}) are functionally equivalent.

As a consequence, the indistinguishability of 𝐻1 and 𝐻2 follows from the security of

the indistinguishability obfuscator i𝒪.
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Indistinguishability of 𝐻2 and 𝐻3. Let 𝒢 ′dec and 𝒢 ′′dec denote the algorithms un-

derlying the decryption key program 𝐷𝐾{𝑆} in 𝐻2 and 𝐻3 respectively. Note that

the only difference between 𝒢 ′dec and 𝒢 ′′dec is that 𝒢 ′′dec performs an additional check

whether the input ciphertext 𝑐 is equal to either challenge ciphertext 𝑐*𝑏 . However,

note that due to line 3, 𝒢 ′dec also outputs ⊥ on such input ciphertexts. Thus, 𝒢 ′dec
and 𝒢 ′′dec are functionally equivalent and the indistinguishability of 𝐻2 and 𝐻3 follows

from the security of the indistinguishability obfuscator i𝒪.

Indistinguishability of 𝐻3 and 𝐻4. This follows immediately from the security of

the punctured PRF family ℱ1. (Note that each ciphertext 𝑐1, . . . , 𝑐𝑡 can be generated

using the punctured PRF key, because they are not encryptions of 𝑚*
0 or 𝑚*

1.)

Indistinguishability of 𝐻4 and 𝐻5. Note that with overwhelming probability, the

random strings 𝛼*
𝑏 are not in the range of the 𝐹1. Therefore, except with negligible

probability, there does not exist a message 𝑚 such that 𝐹1(𝑚) = 𝛼*
𝑏 for 𝑏 ∈ {0, 1}.

Since the punctured PRF scheme preserves functionality under puncturing, 𝒢 ′enc (using

𝐾2) and 𝒢 ′′enc (using 𝐾2{Σ2}) behave identically on all input messages, except with

negligible probability. The indistinguishability of 𝐻4 and 𝐻5 follows from the security

of the indistinguishability obfuscator i𝒪.

Indistinguishability of 𝐻5 and 𝐻6. Let 𝒢 ′dec and 𝒢 ′′dec denote the algorithms under-

lying the decryption key program 𝐷𝐾{𝑆} in 𝐻5 and 𝐻6 respectively. Note that the

only difference between 𝒢 ′dec and 𝒢 ′′dec is their description in line 1: 𝒢 ′′dec hard-codes an

output of ⊥ for every ciphertext of the form 𝑐 = �̃�*
𝑏‖⋆ while 𝒢 ′dec only hard-codes an

output of ⊥ for ciphertexts 𝑐*𝑏 = 𝛼*
𝑏‖𝛽*

𝑏 . In particular, the execution of 𝒢 ′dec continues

onward from line 2 for every 𝑐 = 𝛼*
𝑏‖𝛽 such that 𝛽 ̸= 𝛽*

𝑏 . However, note that with

overwhelming probability, each of the random strings 𝛼*
𝑏 is not in the range of the

𝐹1. Thus in line 5, 𝒢 ′dec will also output ⊥ on every 𝑐 = 𝛼*
𝑏‖𝛽, except with negligible

probability. As a consequence, we have that except with negligible probability, 𝒢 ′dec
and 𝒢 ′′dec have identical input/output behavior, and therefore, the indistinguishability

of 𝐻5 and 𝐻6 follows from the security of the indistinguishability obfuscator i𝒪.

Indistinguishability of 𝐻6 and 𝐻7. Let 𝒢 ′dec and 𝒢 ′′dec denote the algorithms un-
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derlying the decryption key program 𝐷𝐾{𝑆} in 𝐻6 and 𝐻7 respectively. Note that

due to the check performed in line 2 (see Algorithm 8), line 3 is not executed in both

𝒢 ′dec and 𝒢 ′′dec whenever the input ciphertext 𝑐 is of the form 𝛼*‖⋆. Then, since the

the punctured PRF scheme preserves functionality under puncturing, 𝒢 ′dec (using 𝐾2)

and 𝒢 ′′dec (using 𝐾2{𝛼*
0, 𝛼

*
1}) are functionally equivalent and the indistinguishability

of 𝐻6 and 𝐻7 follows from the security of the indistinguishability obfuscator i𝒪.

Indistinguishability of 𝐻7 and 𝐻8. This follows immediately from the security

of the punctured PRF family ℱ2 (note that with overwhelming probability, each

ciphertext 𝑐1, . . . , 𝑐𝑡 can be generated with the punctured 𝐹2, because the �̃�*
𝑏 are

chosen randomly).

Finishing the proof. Observe that in experiment 𝐻8, every challenge ciphertext 𝑐𝑏𝑖
consists of independent uniformly random strings 𝛼*

𝑏‖𝛽*
𝑏 that information theoretically

hide the bit 𝑏. Further, 𝐸𝐾{𝑈} and 𝐷𝐾{𝑆} are also independent of bit 𝑏. Therefore,

the adversary cannot guess the bit 𝑏 with probability better than 1
2
.

Remark 5. In our discussion, we used the security properties of i𝒪 somewhat loosely.

We basically said that if 𝐶0 ≡ 𝐶1 then i𝒪(𝐶0) ≈ i𝒪(𝐶1). In particular, we ignored

the constraint that |𝐶0| = |𝐶1|. To formalize the proof, we pad 𝒢enc to be as large

as 𝒢enc is in any of our hybrids, and we do a similar thing for 𝒢dec. One can check

that 𝒢enc and 𝒢dec are not too large in any of our hybrids. |𝒢enc| and |𝒢dec| are both

bounded by poly(𝑛, 𝜆, 𝑠). Here 𝑛 is the message length, 𝜆 is the security parameter,

and 𝑠 is the “succinctness” parameter – the maximum admissible size for a set’s circuit

description.
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Chapter 5

How to use ACE

We’ll develop techniques using ACE to garble computations consisting of repeated

identical steps - for example, a Turing machine’s transition function. The garbled

functionality will consist of an obfuscated “hardened block” which executes this step,

acting on an encrypted intermediate state. If one uses ACE to encrypt the state

and i𝒪 to obfuscate the block, then this chapter develops a useful condition for two

hardened blocks to be indistinguishable.

5.1 Blocks

We aim to instantiate a computational “block”, to which we can apply a Harden

transformation.

Definition 4. We say that 𝐵 = (𝐶, (ℳ1, . . . ,ℳℓ)) is a block mapping

ℳ𝑖1 × · · · ×ℳ𝑖𝑛 →ℳ𝑗1 × · · · ×ℳ𝑗𝑚

if 𝐶 is a circuit also mappingℳ𝑖1 × · · · ×ℳ𝑖𝑛 →ℳ𝑗1 × · · · ×ℳ𝑗𝑚 . Here eachℳ𝑘

is a message space, and we say thatℳ1, . . . ,ℳℓ are the encapsulated types of 𝐵.

Example 1. The principle block we will harden in our RAM garbling construction

is (𝛿, (𝑄,𝑊 )), where 𝛿 : 𝑄×𝑊 → 𝑄×𝑊 × [𝑁 ]× 𝑌 is the transition function for a

RAM program.
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Definition 5. Given a block 𝐵 = (𝐶, (ℳ1, . . . ,ℳℓ)) mapping ℳ𝑖1 × · · · ×ℳ𝑖𝑛 →

ℳ𝑗1 × · · · ×ℳ𝑗𝑚 as well as inputs �⃗�𝑖 ∈ℳ*
𝑖 , we define Harden(1𝜆, 𝐵, �⃗�1, . . . , �⃗�ℓ) as:

1. Let 𝐸𝐾𝑖, 𝐷𝐾𝑖 ← Setup𝐴𝐶𝐸(1𝜆) for 𝑖 = 1, . . . , 𝑙 such that 𝐸𝐾𝑖 can be used to

encrypt messages inℳ𝑖.

Let

𝐷𝑗(𝑥) =

⎧⎪⎨⎪⎩Dec(𝐷𝐾𝑗, 𝑥) if 𝑗 ∈ {1, . . . , 𝑙}

𝑥 otherwise

and

𝐸𝑗(𝑥) =

⎧⎪⎨⎪⎩Enc(𝐸𝐾𝑗, 𝑥) if 𝑗 ∈ {1, . . . , 𝑙}

𝑥 otherwise

2. Define 𝐶 ′ = (𝐸𝑗1‖ · · · ‖𝐸𝑗𝑚) ∘ 𝐶 ∘ (𝐷𝑖1‖ · · · ‖𝐷𝑖𝑛) (here 𝑓‖𝑔 denotes parallel

composition of functions, defined as (𝑓‖𝑔)(𝑥, 𝑦) = 𝑓(𝑥), 𝑔(𝑦)).

3. Harden outputs i𝒪(1𝜆, 𝐶 ′), Enc*(𝐸𝐾1, �⃗�
1), . . . , Enc*(𝐸𝐾ℓ, �⃗�

ℓ), where Enc* de-

notes component-wise encryption.

For ease of notation, we will often omit the security parameter and even �⃗�1, . . . , �⃗�ℓ,

just write Harden(𝐵) instead.

Remark 6. Harden is separable. Shared randomness can be used to compute the set

of keys {𝐸𝐾𝑖, 𝐷𝐾𝑖}ℓ𝑖=1, and then 𝐵 can be hardened independently of the inputs

�⃗�1, . . . , �⃗�ℓ.

Example 2. When Π is a RAM program with transition function 𝛿 : 𝑄×𝑊 → 𝑄×

𝑊×[𝑁 ]×𝑌 and �⃗� is an initial memory configuration (𝑥1, . . . , 𝑥𝑁), Harden((𝛿, (𝑄,𝑊 ), �⃗�)

consists of two parts. First is the i𝒪 obfuscation of the circuit depicted in Figure 5-1.

The other is the ACE-encrypted initial memory:

Enc(𝐸𝐾𝑊 , 𝑥1), . . . ,Enc(𝐸𝐾𝑊 , 𝑥𝑁)
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CPU:

𝛿
Dec Enc

EncDec

Encapsulated Memory

Output 𝑦

�̃�

𝑤 𝑤′

𝑤′

Address 𝑎

𝑞
𝑞

𝑞′
𝑞′

Figure 5-1: This circuit takes an encrypted state 𝑞 and an encrypted word �̃� as

input. As outputs it may produce an encrypted state 𝑞′, an encrypted word 𝑤′, and

a memory address 𝑎 to access next. Alternatively, it may produce a final output 𝑦.

𝑤 is interpreted as the word read from memory by 𝑞, while 𝑤′ is the word written to

memory by 𝑞. 𝑎 is the location accessed by 𝑞′.

5.2 Preliminary Definitions

In this section we prove a general theorem giving conditions under which

Harden(1𝜆, (𝐶0, (ℳ1, . . . ,ℳℓ)), (�⃗�
1
0, . . . , �⃗�

ℓ
0)

is indistinguishable from

Harden(1𝜆, (𝐶1, (ℳ1, . . . ,ℳℓ)), (�⃗�
1
1, . . . , �⃗�

ℓ
1),

when 𝐶0 and 𝐶1 both map from the same domainℳ𝑖1×· · ·ℳ𝑖𝑛 to the same codomain

ℳ𝑗1 × · · · ×ℳ𝑗𝑚 .

Definition 6 (Invariant Set). Given a block 𝐵 with encapsulated typesℳ1, . . . ,ℳℓ,
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as well as vectors �⃗�1 ∈ℳ*
1, . . . , �⃗�ℓ ∈ℳ*

ℓ
1, we say that sets (𝑆1 ⊂ℳ1, . . . , 𝑆ℓ ⊂ℳℓ)

are invariant if:

1. For 𝑖 ∈ {1, . . . , ℓ}, 𝑆𝑖 contains each element of �⃗�𝑖

2. 𝐵(𝑇𝑖1 × · · · × 𝑇𝑖𝑛) ⊂ 𝑇𝑗1 × · · ·𝑇𝑗𝑚 , where we define

𝑇𝑘 =

⎧⎪⎨⎪⎩𝑆𝑘 if 𝑘 ∈ {1, . . . , ℓ}

ℳ𝑘 othrwise

Remark 7. The minimal invariant sets are called the reachable sets, and have an

intuitive definition: 𝑆𝑘 is the set of all possible elements of ℳ𝑘 that can be reached

by applying 𝐵 to previously obtained inputs, if the unencapsulated inputs are allowed

to be freely chosen.

The essential limitation of i𝒪 compared to VBB obfuscation in our techniques

is that we can only reason about succinctly described invariant sets, rather than

precisely the reachable set. This is because we want our garbled programs to be

succinct, and their size is determined by the size of the largest hybrid.

Definition 7. We say that a set 𝑆 is 𝑠-succinct if membership in 𝑆 is decidable by

circuits with total size 𝑠.

Informally, the main condition for Harden(𝐵0) and Harden(𝐵1) to be indistinguish-

able is that 𝐵0 and 𝐵1 are in some sense “isomorphic” – that is, functionally equivalent

up to permutations of the encapsulated types. Actually our theorem will apply when

the isomorphism is succinctly described; we shall see that more interesting cases follow

as a corollary by repeatedly applying this basic case.

Definition 8. We say that 𝐵0 and 𝐵1 with encapsulated types ℳ1, . . .ℳℓ are iso-

morphic on invariant sets 𝑆1, . . . , 𝑆ℓ by injections 𝜄𝑗 : 𝑆𝑗 →˓ ℳ𝑗 if on 𝑇𝑖1 × · · · × 𝑇𝑖𝑛 ,

if

(𝜄𝑗1 × · · · × 𝜄𝑗𝑚) ∘𝐵0 ≡ 𝐵1 ∘ (𝜄𝑖1 × · · · × 𝜄𝑖𝑛)

1The notation 𝑆* denotes the set of all finite sequences of elements in 𝑆.
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where for 𝑗 /∈ {1, . . . , ℓ}, 𝜄𝑗 is defined as the identity function mapping ℳ𝑗 → ℳ𝑗.

𝑇𝑘 is again defined as in Definition 6.

We will prove that Harden(𝐵0) and Harden(𝐵1) are indistinguishable if 𝐵0 and 𝐵1

are isomorphic on succinct invariant sets, with one caveat: each encapsulated type

must have a timestamp, which is bounded by some polynomial in 𝜆 and increases on

every execution of 𝐵0 or 𝐵1.

Definition 9. We say that a block 𝐵 with encapsulated typesℳ1, . . .ℳℓ is ascending

if each encapsulated type has a timestamp attribute, and for all inputs to 𝐵, the

encapsulated outputs always have larger timestamp than any encapsulated input. We

say that 𝐵 is 𝑇 -bounded if 𝐵 outputs ⊥ whenever any of its inputs have timestamp

greater than 𝑇 .

5.3 Diamond Theorem

Theorem 2. Suppose blocks 𝐵0 and 𝐵1 are isomorphic on 𝑠-succinct sets 𝑆1, . . . , 𝑆ℓ

by “singleton” injections 𝜄1, . . . , 𝜄ℓ. That is, each 𝜄𝑗 differs from the identity on at most

one point. Suppose further that 𝐵0 and 𝐵1 are ascending and poly(𝜆)-bounded, and

|ℳ𝑗| = poly(𝜆) for each encapsulated type ℳ𝑗. Then

Harden(𝐵0, �⃗�1, . . . , �⃗�ℓ) ≈ Harden(𝐵1, 𝜄1(�⃗�1), . . . , 𝜄ℓ(�⃗�ℓ)

where 𝐵0 and 𝐵1’s circuits are both padded by an amount 𝑝 which is polynomial in the

succinctness parameter 𝑠, the security parameter 𝜆, and the input / output lengths.

Proof. We give several indistinguishable hybrid distributions 𝐻0 through 𝐻6, starting

with the left-hand side and ending with the right-hand side.

Hybrids Overview Let 𝑆1, . . . , 𝑆ℓ be 𝑠-succinct invariant sets of 𝐵0 and 𝜄1, . . . , 𝜄ℓ

be injections such that such that (𝜄𝑗1 × · · · × 𝜄𝑗𝑚) ∘ 𝐵0 ≡ 𝐵1 ∘ (𝜄𝑖1 × · · · × 𝜄𝑖𝑛) on

𝑇𝑖1 × · · · × 𝑇𝑖𝑛 .
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1. First, we puncture the ACE keys (both encryption and decryption) for each

encapsulated type ℳ𝑗 at ℳ𝑗 ∖ 𝑆𝑗. This is an indistinguishable change by

Lemma 3.

2. For each 𝑗 ∈ {1, . . . , ℓ}, suppose 𝜄𝑗 maps 𝑥𝑗 ↦→ 𝑦𝑗. We also puncture 𝐸𝐾𝑗 and

𝐷𝐾𝑗 at 𝑥𝑗 and 𝑦𝑗. Where necessary to preserve functionality, we hard-code the

correspondence 𝑥𝑗 ↔ 𝑥𝑗 and 𝑦𝑗 ↔ 𝑦𝑗 . Here 𝑥𝑗 and 𝑦𝑗 denote Enc(𝐸𝐾𝑗, 𝑥𝑗)

and Enc(𝐸𝐾𝑗, 𝑦𝑗) respectively. If 𝑦𝑗 /∈ 𝑆𝑗, we only hard-code 𝑥𝑗 ↔ 𝑥𝑗 (not

𝑦𝑗 ↔ 𝑦𝑗 ). This change is indistinguishable by i𝒪.

3. In the hard-coded correspondence, we swap 𝑥𝑗 and 𝑦𝑗 . We apply the same

substitution to the element-wise encryptions of 𝑥1, . . . , 𝑥ℓ. This is indistin-

guishable by ACE’s ciphertext indistinguishability, applied ℓ times – once for

each encapsulated type.

4. In each hard-coded correspondence, we swap 𝑥𝑗 and 𝑦𝑗. Simultaneously, we

replace 𝐵0 by 𝐵1. This is indistinguishable by i𝒪 because this is functionally

equivalent to replacing 𝐵0 by 𝜄−1
𝑗1
× · · · × 𝜄−1

𝑗𝑚
∘ 𝐵1 ∘ 𝜄𝑖1 × · · · × 𝜄𝑖𝑛 , where all

encapsulated inputs inputs are guaranteed to be in the appropriate 𝑆𝑗.

5. For each 𝑗 ∈ {1, . . . , ℓ}, we reduce the puncturing of 𝐸𝐾𝑗 and 𝐷𝐾𝑗 so that

the keys for typeℳ𝑗 are punctured atℳ𝑗 ∖ 𝜄𝑗(𝑆𝑗) and remove the hard-coded

correspondence 𝑥𝑗 ↔ 𝑥𝑗 and 𝑦𝑗 ↔ 𝑦𝑗 . This is indistinguishable by i𝒪.

6. For each 𝑗 ∈ {1, . . . , ℓ}, we unpuncture 𝐸𝐾𝑗 and 𝐷𝐾𝑗. Since (𝜄1(𝑆1), . . . , 𝜄ℓ(𝑆ℓ))

must be invariant sets of 𝐵1 containing 𝜄1(�⃗�1), . . . , 𝜄ℓ(�⃗�ℓ), this is indistinguish-

able by Lemma 3. Now the distribution is exactly that of the right-hand side.

It now remains to prove indistinguishability of step 1 (and similarly, of step 6).
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Lemma 3. If 𝐵 is an ascending block with 𝑠-succinct invariant sets 𝑆1, . . . , 𝑆ℓ are

containing �⃗�1, . . . , �⃗�ℓ, then

�̃�,Enc*(�⃗�1), . . . ,Enc
*(�⃗�ℓ) ≈ �̃�{ℳ𝑗 ∖ 𝑆𝑗},Enc*(�⃗�1), . . . ,Enc

*(�⃗�ℓ)

Here �̃� is constructed as in Harden(𝐵), and �̃�{ℳ𝑗 ∖ 𝑆𝑗} is the same but with the

ACE keys for each encapsulated type ℳ𝑗 punctured at ℳ𝑗 ∖ 𝑆𝑗.

Proof. We give a sequence of hybrid distributions starting with the left-hand side and

ending with the right-hand side. In these hybrids we puncture the ACE keys on an

increasing sequence of sets.

Definition of 𝐻𝑖. Define

𝑍𝑗,𝑖 = {𝑚 ∈ℳ𝑗 : 𝑚’s timestamp is less than 𝑖 and 𝑚 /∈ 𝑆𝑗}

Then 𝐻𝑖 is defined as:

�̃�{𝑍1,𝑖, . . . , 𝑍ℓ,𝑖},Enc*(𝑥1), . . . ,Enc
*(𝑥ℓ)

It is easy to see that 𝐻0 is the left-hand side of our desired indistinguishability,

while 𝐻𝑇+1 (where 𝑇 is the maximum possible timestamp) is the right-hand side. So

we just need to show that 𝐻𝑖 is indistinguishable from 𝐻𝑖+1. This follows from the

following two indistinguishable steps:

1. For each encapsulated typeℳ𝑗, we puncture its encryption key 𝐸𝐾𝑗 at 𝑍𝑗,𝑖+1.

This is indistinguishable because in 𝐻𝑖, the decryption keys are punctured so

that every input passed to 𝐵 with timestamp less than 𝑖 is in 𝑆𝑘 for the appro-

priate 𝑘. By the invariance of 𝑆, every output of 𝐵 with timestamp less than

𝑖 + 1 must also be in 𝑆𝑗. So nothing in 𝑍𝑗,𝑖+1 is ever encrypted. By ACE’s

equivalence of punctured encryption keys, puncturing the encryption key does

not change functionality and is hence indistinguishable by i𝒪.
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2. For each encapsulated typeℳ𝑗, we puncture its decryption key 𝐷𝐾𝑗 at 𝑍𝑗,𝑖+1.

This is indistinguishable by ACE’s indistinguishability of punctured decryption

keys, since the encryption key 𝐸𝐾𝑗 is already punctured at 𝑍𝑗,𝑖+1.

As stated earlier, isomorphism by singleton injections is a basic case which extends

to isomorphism by other succinctly described injections. In particular, we have the

following corollaries.

Corollary 1. Let 𝜄1, . . . , 𝜄ℓ be injections of size 𝑝 = 𝑂(1), meaning 𝜄𝑗(𝑥) ̸= 𝑥 for

𝑝 values of 𝑥. If ascending blocks 𝐵0 and 𝐵1 are such that (𝜄𝑗1 × · · · × 𝜄𝑗𝑚) ∘ 𝐵0 ≡

𝐵1 ∘ (𝜄𝑖1 × · · · × 𝜄𝑖𝑛) on 𝑠-succinct invariant sets of 𝐵0, then

Harden(𝐵0, 𝑥1, . . . , 𝑥ℓ) ≈ Harden(𝐵1, 𝜄1(𝑥1), . . . , 𝜄ℓ(𝑥ℓ))

where the padding of 𝐵0 and 𝐵1 is proportional to 𝑠 + 𝑝.

Proof. This follows from the fact that any injection changing 𝑝 points can be written

as 𝜄1 ∘ · · · ∘ 𝜄𝑝 for injections 𝜄1, . . . , 𝜄𝑝, and then applying Theorem 2 𝑝 times.

Corollary 2. Suppose for each 𝑗 ∈ {1, . . . , ℓ}, 𝜄𝑗 is an injection which is equal to

𝜃1 ∘ · · · ∘ 𝜃𝑝, where each 𝜃𝑖 is an injection of size 𝑂(1) and 𝑝 is poly(𝜆). Suppose

further that for each 𝑖, 𝜃𝑖 ∘ · · · ∘ 𝜃𝑝 can be computed and inverted by circuits of size 𝑠.

If ascending blocks 𝐵0 and 𝐵1 are isomorphic on 𝑠′-succinct invariant sets 𝑆1, . . . , 𝑆ℓ

by 𝜄1, . . . , 𝜄ℓ, then

Harden(𝐵0, 𝑥1, . . . , 𝑥ℓ) ≈ Harden(𝐵1, 𝜄1(𝑥1), . . . , 𝜄ℓ(𝑥ℓ))

where the padding of �̃�0 and �̃�1 is proportional to 𝑂(𝑠 + 𝑠′).

Proof. This follows from applying Corollary 1 𝑝 times.

Remark 8. While we have presented the diamond theorem for a single block, an

analogous version for multiple blocks is provable using the same techniques. In spirit,
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this is almost the same as combining the multiple blocks into a single block with an

unencapsulated input selecting the block to execute.

61



62



Chapter 6

Garbling Iterated Functions

Our techniques are best understood in the application of garbling iterated functions,

which may be of independent interest. In Chapter 8, we generalize the techniques

presented here to garble RAM programs.

We want to garble a function of the form 𝑓(𝑥) = 𝑔𝑇 (𝑥), where 𝑔𝑇 denotes 𝑔

composed with itself 𝑇 times. Garbling means encoding 𝑓 as 𝑓 and 𝑥 as �̃� such that:

1. (Correctness) One can compute 𝑓(𝑥) from 𝑓, �̃�.

2. (Security) 𝑓, �̃� does not reveal side information other than 𝑇 , |𝑔|, and |𝑥|. More

precisely, there is a probabilistic polynomial-time algorithm Sim such that 𝑓, �̃�

is computationally indistinguishable from Sim(𝑓(𝑥), 𝑇, |𝑔|, |𝑥|).

𝑓 and 𝑥 are chosen selectively, which is why we can speak of 𝑓, �̃� as a distribution

which depends only on 𝑓 and 𝑥.

We will use the language of computational blocks which we developed in Chapter 5.

An iterated function is just a computational block (𝑔) repeated 𝑡 times; our garbling

will be the hardening of this block, along with the initial input 𝑥 .

6.1 Construction

Given a function 𝑓 = 𝑔𝑇 (𝑥), we first define a block 𝐵 : 𝑄 → 𝑄 × 𝑋,where 𝑋 is

the domain (and codomain) of the inner function 𝑔, and 𝑄 is [𝑇 ]×𝑋. The notation
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𝑄 → 𝑄 ×𝑋 simply means that 𝑄 is the only encapsulated type.

𝐵((𝑡, 𝑥)) =

⎧⎪⎨⎪⎩(𝑡 + 1, 𝑔(𝑥)),⊥ if 𝑡 < 𝑇

⊥, 𝑞 otherwise

The garbling of 𝑓 is Harden(𝐵, (0, 𝑥)) with 𝑂(𝑛 + log 𝑇 ) padding, where 𝑛 is the

bit-length of elements of 𝑋.

Correctness of this construction follows because evidently given �̃� and 0, 𝑥 , one

can repeatedly evaluate �̃� obtaining 1, 𝑔(𝑥) , . . . , 𝑇, 𝑔𝑇 (𝑥) , and finally 𝑔𝑇 (𝑥) =

𝑓(𝑥).

6.2 Security Proof

Theorem 3. Assuming sub-exponentially secure i𝒪 and sub-exponentially secure in-

jective one-way functions, there is a PPT algorithm Sim such that for all circuits 𝑔,

all 𝑇 , all 𝑥, and all PPT 𝒜,

Pr

⎡⎣𝒜(𝑓𝑏, �̃�𝑏) = 𝑏

⃒⃒⃒⃒
⃒⃒ 𝑏← {0, 1}; 𝑓0, �̃�0 ← Garble(𝑔, 𝑇 );

𝑓1, �̃�1 ← Sim(𝑔𝑇 (𝑥), 𝑇, |𝑥|, |𝑔|);

⎤⎦ <
1

2
+ negl(𝜆)

Proof. Let 𝑥𝑖 denote 𝑔𝑖(𝑥). We show a sequence of indistinguishable hybrid distribu-

tions:

𝐻0 ≈ 𝐻1 ≈ · · · ≈ 𝐻𝑇 ,

where 𝐻𝑇 is efficiently sampleable given 𝑔𝑇 (𝑥), |𝑥|, |𝑔|, and 𝑇 .

Hybrid 𝐻𝑖. 𝐻𝑖 is defined as Harden(𝐵𝑖, (0, 𝑥𝑖)), where

𝐵𝑖((𝑡, 𝑥)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝑡 + 1, 𝑥),⊥ if 𝑡 < 𝑖

(𝑡 + 1, 𝑔(𝑥)),⊥ if 𝑖 ≤ 𝑡 < 𝑇

⊥, 𝑥 otherwise
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To show 𝐻𝑖 ≈ 𝐻𝑖+1, we introduce 𝑖 + 1 intermediate hybrids 𝐻𝑖,𝑖 through 𝐻𝑖,0.

Hybrid 𝐻𝑖,𝑗. 𝐻𝑖,𝑗 is defined as Harden(𝐵𝑖,𝑗, (0, 𝑥𝑖)), where

𝐵𝑖,𝑗((𝑡, 𝑥)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝑡 + 1, 𝑥),⊥ if 𝑡 < 𝑗 or 𝑗 < 𝑡 < 𝑖 + 1

(𝑡 + 1, 𝑔(𝑥)),⊥ if 𝑡 = 𝑗 or 𝑖 + 1 ≤ 𝑡 < 𝑇

⊥, 𝑥 otherwise

Claim 1. For each 𝑖 ∈ {0, . . . , 𝑇 − 1}, 𝐻𝑖 ≈ 𝐻𝑖,𝑖.

Proof. This follows from i𝒪 because 𝐵𝑖,𝑖 is functionally equivalent to 𝐵𝑖.

Claim 2. For each 𝑖 ∈ {0, . . . , 𝑇 − 1} and 𝑗 ∈ {1, . . . , 𝑖}, 𝐻𝑖,𝑗 ≈ 𝐻𝑖,𝑗−1.

Proof. We apply Theorem 2.

∙ Define

𝑆 = {(𝑡, 𝑥) ∈ 𝑄 : if 𝑡 ≤ 𝑗 then 𝑥 = 𝑥𝑖 and if 𝑡 = 𝑗 + 1 then 𝑥 = 𝑥𝑖+1}

𝑆 is clearly 𝑂(𝑛 + log 𝑇 )-succinct, and also (0, 𝑥𝑖) ∈ 𝑆.

∙ Let 𝜄 : 𝑆 →˓ 𝑄 be the injection which maps (𝑗, 𝑥𝑖) to (𝑗, 𝑥𝑖+1), and is the identity

elsewhere.

Invariance of 𝑆 𝑆 is an invariant of 𝐵𝑖,𝑗, as can be seen by casework. Suppose

that (𝑡, 𝑥) ∈ 𝑆 and that 𝐵𝑖,𝑗(𝑡, 𝑥) is 𝑞′,⊥.

1. If 𝑡 < 𝑗, then 𝑥 must be 𝑥𝑖. By definition of 𝐵𝑖,𝑗, 𝑞′ is (𝑡 + 1, 𝑥𝑖). 𝑡 + 1 is at

most 𝑗, so 𝑞′ is in 𝑆.

2. If 𝑡 = 𝑗, then 𝑥 must be 𝑥𝑖. By definition of 𝐵𝑖,𝑗, 𝑞′ is (𝑗 + 1, 𝑥𝑖+1), which is in

𝑆.

3. If 𝑡 > 𝑗, then 𝑞′ has a timestamp whic is greater than 𝑗 + 1, so 𝑞′ is vacuously

in 𝑆.
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Isomorphism of 𝐵𝑖,𝑗 and 𝐵𝑖,𝑗−1 on 𝑆 For all (𝑡, 𝑥) ∈ 𝑆, ((𝜄 × id) ∘ 𝐵𝑖,𝑗)(𝑡, 𝑥) =

(𝐵𝑖,𝑗−1 ∘ 𝜄)(𝑡, 𝑥), as can be seen by casework.

1. If 𝑡 < 𝑗 − 1, then 𝐵𝑖,𝑗 and 𝐵𝑖,𝑗−1 are functionally identical, and outputs in 𝑄

that either produce have timestamp 𝑡′ < 𝑗. This means that 𝜄 has no effect

on either the input or the output to 𝐵𝑖,𝑗−1, so 𝐵𝑖,𝑗 ∘ 𝜄 and (𝜄 × id) ∘ 𝐵𝑖,𝑗−1 are

functionally identical.

2. If 𝑡 = 𝑗 − 1, then 𝑥 = 𝑥𝑖. ((𝜄 × id) ∘ 𝐵𝑖,𝑗)(𝑡, 𝑥) = (𝑗, 𝑥𝑖+1),⊥. On the right-

hand side, we compute (𝐵𝑖,𝑗−1 ∘ 𝜄)(𝑡, 𝑥). 𝜄(𝑡, 𝑥) = 𝑗 − 1, 𝑥𝑖. 𝐵𝑖,𝑗−1(𝑗 − 1, 𝑥𝑖) =

(𝑗, 𝑥𝑖+1),⊥

3. If 𝑡 = 𝑗, then 𝑥 = 𝑥𝑖. ((𝜄 × id) ∘ 𝐵𝑖,𝑗)(𝑡, 𝑥) = (𝑗 + 1, 𝑥𝑖+1),⊥. On the right-

hand side, we compute (𝐵𝑖,𝑗−1 ∘ 𝜄)(𝑡, 𝑥). 𝜄((𝑡, 𝑥)) = 𝑗, 𝑥𝑖+1. 𝐵𝑖,𝑗−1(𝑗, 𝑥𝑖+1) =

(𝑗 + 1, 𝑥𝑖+1),⊥.

4. If 𝑡 > 𝑗, then 𝐵𝑖,𝑗 and 𝐵𝑖,𝑗−1 are functionally identical, and outputs in 𝑄 that

either produce have timestamp 𝑡′ > 𝑗. This means that �̄� has no effect on

either the input or the output to 𝐵𝑖,𝑗−1, so 𝐵𝑖,𝑗 and �̄�∘𝐵𝑖,𝑗−1 ∘ �̄� are functionally

identical.

Theorem 2 thus implies that 𝐻𝑖,𝑗 ≈ 𝐻𝑖,𝑗−1.

Claim 3. For each 𝑖 ∈ {0, . . . , 𝑇 − 1}, 𝐻𝑖,0 ≈ 𝐻𝑖+1.

Proof. This follows from Theorem 2.

∙ Define

𝑆 = {(𝑡, 𝑥) : if 𝑡 = 0 then 𝑥 = 𝑥𝑖}.

𝑆 is clearly 𝑂(𝑛 + log 𝑇 )-succinct, and also (0, 𝑥𝑖) ∈ 𝑆.

∙ Let 𝜄 : 𝑆 →˓ 𝑄 be the injection which maps (0, 𝑥𝑖) to (0, 𝑥𝑖+1) and is the identity

elsewhere.

Invariance of 𝑆. 𝑆 is an invariant set of 𝐵𝑖,0 because 𝐵𝑖,0 never outputs an element

of 𝑄 with timestamp 0, so 𝐵𝑖,0’s outputs in 𝑄 are always vacuously in 𝑆.
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Isomorphism of 𝐵𝑖,0 and 𝐵𝑖+1 on 𝑆. For all (𝑡, 𝑥) in 𝑆, ((𝜄 × id) ∘ 𝐵𝑖,0)(𝑡, 𝑥) =

(𝐵𝑖+1 ∘ 𝜄)(𝑡, 𝑥), as can be seen by casework.

1. If 𝑡 = 0, then 𝑥 = 𝑥𝑖. Then (𝜄× id)(𝐵𝑖,0(𝑡, 𝑥)) = (1, 𝑥𝑖+1),⊥. On the other hand,

we compute (𝐵𝑖+1 ∘ 𝜄)(𝑡, 𝑥). 𝜄((𝑡, 𝑥)) = (0, 𝑥𝑖+1). 𝐵𝑖+1(0, 𝑥𝑖+1) = (1, 𝑥𝑖+1),⊥.

2. If 𝑡 > 0, 𝐵𝑖,0 and 𝐵𝑖+1 are functionally equivalent and 𝜄 is the identity, so the

equality is clear.

Theorem 2 then implies the claim.

This concludes the security proof.
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Chapter 7

Weak RAM Garbling

In this chapter, we begin to consider RAM programs. We generalize the techniques

from Chapter 6 to construct a weak notion of RAM garbling.

7.1 Definitions

7.1.1 RAM program

There are several ways to formalize what a RAM program is, usually by defining some

succinct transition function. This transition function will have an input state and an

output state, along with several inputs and outputs for reading or writing to memory.

We simplify the transition function’s definition by assuming that each memory access

of the RAM program consists of a read followed by a write to the same address.

Defining the asymptotic behavior of a RAM program as input sizes grow is tricky,

so we will suppose a RAM program is given with a fixed memory size 𝑁 . The words

stored at a memory address come from a word set 𝑊 . 𝑊 is commonly {0, 1}, but

when transforming RAM machines (as when garbling a RAM program), it will be

useful to support a more general word set. When a RAM program terminates, it

outputs an answer 𝑦 ∈ 𝑌 . 𝑌 can be any set, but is often taken to be {0, 1}.

Formally, we say that a RAM program Π is an integer 𝑁 , finite sets 𝑄, 𝑊 , and

𝑌 , and a transition function 𝛿Π : 𝑄×𝑊 → 𝑄×𝑊 × [𝑁 ]⊔ 𝑌 . A RAM program may
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have an initial state 𝑞0 ∈ 𝑄, but without loss of generality, we will say that 𝑞0 is ⊥

(the real initial state can always be hard-coded in 𝛿Π).

7.1.2 Weak Garbling

Before constructing our full RAM garbling scheme, we will first construct a weak

notion of garbling, satisfying the following property.

Definition 10. A weak garbling scheme is an algorithm WkGarble satisfying correct-

ness and indistinguishability security, given below.

Correctness : For all RAM programs Π and inputs 𝑥,

Pr
[︁
Π̃(�̃�) = Π(𝑥)

⃒⃒⃒
Π̃, �̃�← WkGarble(Π, 𝑥, 1𝜆)

]︁
≥ 1− negl(𝜆)

Indistinguishability Security Let Π0 and Π1 be RAM programs, and let 𝑥0 and

𝑥1 be memory configurations. WkGarble(Π0, 𝑥0, 1
𝜆) and WkGarble(Π1, 𝑥1, 1

𝜆) are com-

putationally indistinguishable if all of the following hold.

– The first 𝑡* addresses 𝑎1, . . . , 𝑎𝑡* accessed by Π0 on 𝑥0 are the same as the first

𝑡* addresses accessd by Π1 on 𝑥1. Furthermore, there is a small circuit Γ such

that for 𝑡 < 𝑡*, 𝑎𝑡 = Γ(𝑡).

– Either:

Π0(�⃗�0) and Π1(�⃗�1) yield identical internal states and external memory con-

tents immediately after the 𝑡*-th step.

Π0(�⃗�0) and Π1(�⃗�1) both give the same output immediately after the 𝑡*-th

step.

– The transition function of Π0 and the transition function of Π1, restricted to

states with a timestamp of at least 𝑡*, are functionally equivalent.
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7.2 Construction

WkGarble(Π, �⃗�) takes a RAM program Π and a memory configuration �⃗� as input and

outputs Harden(Π′, �⃗�′), where Π′ is another RAM program (to be defined), and �⃗�′ is

a memory configuration.

Π′ is defined as a RAM program with Π hard-coded. Π′ views memory as a

complete binary tree (we will say location 𝑖 stores a node whose children are at 2𝑖

and 2𝑖 + 1).

Π′’s states take the form (𝑡, 𝑡𝑒𝑥𝑝, 𝑖, 𝑖exp, 𝑞Π). 𝑡 is the timestamp, 𝑡𝑒𝑥𝑝 is the times-

tamp that the currently accessed word must have. 𝑖 is the address that Π is currently

accessing, and 𝑖exp is the location tag that the currently accessed word must have. 𝑞Π

is the current state of the emulated Π.

To execute an access of Π to address 𝑎𝑡, Π′ accesses each node on the path to the

𝑎𝑡ℎ𝑡 leaf. At each access, Π′ expects a particular timestamp, and Π′ will abort if the

node it is given does not have that timestamp. Similarly, Π′ knows what location it

is accessing, and it will abort if the given node does not have that location tag.

Π′ knows what timestamp to expect because in addition to a “self-timestamp”, each

non-leaf node contains timestamps for both of its children. The invariant is that a

parent’s timestamp for its child should match the child’s self-timestamp. Π′ maintains

this invariant in the obvious way. In particular, when Π′ accesses a node at time 𝑡, it

writes that node back with two of its timestamps set to 𝑡 - the self-timestamp, and

the timestamp corresponding to whichever child Π′ will access next.1 Our timestamp

convention is that a state with timestamp 𝑡 writes a word with timestamp 𝑡, and the

first timestamp is 1.

Say that �⃗� = (𝑥1, . . . , 𝑥𝑁). Without loss of generality suppose that 𝑁 is a power

of two. Then we define �⃗�′ as (𝑥′
1, . . . , 𝑥

′
2𝑁−1), where

𝑥′
𝑖 =

⎧⎪⎨⎪⎩(𝑖, 0, 0, 0,⊥) if 𝑖 ≤ 𝑁 − 1

(𝑖, 0,⊥,⊥, 𝑥𝑖−(𝑁−1)) otherwise.

1Π′ is said to be “at time 𝑡” if Π’s emulated state has timestamp 𝑡. Thus every node accessed in
a tree traversal is written with the same self-timestamp.
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Generally the components of �⃗�′ take the form (𝑖, 𝑡, 𝑡𝐿, 𝑡𝑅, 𝑣). We call 𝑖 the location

label, 𝑡 the self-timestamp, 𝑡𝐿 and 𝑡𝑅 the timestamps of the left (respectively right)

child, and we call 𝑣 the stored value. Sometimes we say that a word is at leaf 𝑗 to

mean that its location label is 𝑗 + (𝑛− 1) (and therefore the word’s value is 𝑥𝑗).

WkGarble outputs Π̃, ˜⃗𝑥← Harden(Π′, (⊥), �⃗�′).

7.3 Security Proof

It suffices to prove a simpler lemma: informally, that a RAM program performing

𝑗 dummy steps is indistinguishable from a RAM program performing 𝑗 + 1 dummy

steps.

Definition 11. Suppose Π is a RAM program on 𝑁 words, and suppose Γ is a

circuit mapping [𝑇 ] → [𝑁 ]. For any 𝑗 ∈ [𝑇 ], define 𝐷𝑗,𝑞*,Γ,Π as a RAM program

which executes the following steps:

1. At time 𝑡 ∈ {1, . . . , 𝑗−1}, access but don’t modify address Γ(𝑡). At these times

the state of 𝐷𝑗,𝑞*,Γ,Π is (𝑡,⊥).

2. At time 𝑡 = 𝑗, resume execution as Π, using 𝑞* as the starting state and accessing

whatever location 𝑞* accesses.

3. At time 𝑡 > 𝑗, just act as Π. At these times the state of 𝐷𝑗,𝑞*,Γ,Π is (𝑡, 𝑞𝑡) for

some 𝑞𝑡 which is a state of Π.

Lemma 4. Let Π be a RAM machine which on state 𝑞𝑗 modifies memory �⃗�𝑗−1

into �⃗�𝑗 in a single step by accessing location Γ(𝑗), resulting in state 𝑞𝑗+1. Then

WkGarble(𝐷𝑗,𝑞𝑗 ,Γ,Π, �⃗�𝑗−1) is indistinguishable from WkGarble(𝐷𝑗+1,𝑞𝑗+1,Γ,Π, �⃗�𝑗)

Proof. We will let Π0 denote the circuit that WkGarble(𝐷𝑗,𝑞𝑗 ,Γ,Π) hardens and Π1

denote the circuit that WkGarble(𝐷𝑗+1,𝑞𝑗+1,Γ,Π) hardens.

The lemma follows from an application of Corollary 2. Suppose that at location

Γ(𝑗), �⃗�𝑗−1 has value 𝑣𝑗−1 while �⃗�𝑗 has value 𝑣𝑗.
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Definition of 𝑆𝑊 If 𝑊 ′′ is the set of words of Π0, define 𝑆𝑊 ⊂ 𝑊 ′′ as the set of

𝑤 = (𝑖, 𝑡, 𝑡𝐿, 𝑡𝑅, 𝑣) satisfying the following properties:

1. If 𝑖 = Γ(𝑗) and 𝑡 < 𝑗, then 𝑣 = 𝑣𝑗.

2. If 𝑖 is on the path to Γ(𝑗) and if 𝑡 ≥ 𝑗, then 𝑡𝐿 ≥ 𝑗 or 𝑡𝑅 ≥ 𝑗, whichever

corresponds to the next node on the path to Γ(𝑗).

Definition of 𝑆𝑄 If 𝑄′′ is the set of states of Π0, define 𝑆𝑄 ⊂ 𝑄′′ as the set of

𝑞 = (𝑡, 𝑡𝑒𝑥𝑝, 𝑖, 𝑖𝑒𝑥𝑝, 𝑞Π) satisfying the following properties:

1. 𝑞Π is of the form (𝑡, 𝑞𝑡) for some 𝑞𝑡 which is a state of Π. Also 0 ≤ 𝑡𝑒𝑥𝑝 < 𝑡, and

𝑖𝑒𝑥𝑝 is a node on the path to 𝑖.

2. If 𝑡 < 𝑗 then 𝑞Π = (𝑡,⊥) and 𝑖 = Γ(𝑡).

3. If 𝑡 = 𝑗 then 𝑞Π = (𝑗, 𝑞𝑗) and 𝑖 = Γ(𝑗).

4. If 𝑡 ≥ 𝑗 and if 𝑖𝑒𝑥𝑝 is a node on the path to Γ(𝑗) then 𝑡𝑒𝑥𝑝 ≥ 𝑗.

Definitions of 𝜄𝑊 and 𝜄𝑄 Define the injection 𝜄𝑊 : 𝑆𝑊 →˓ 𝑊 ′′ as

𝜄𝑊 ((𝑖, 𝑡, 𝑡𝐿, 𝑡𝑅, 𝑣) =

⎧⎪⎨⎪⎩(𝑖, 𝑡, 𝑡𝐿, 𝑡𝑅, 𝑣𝑗+1) if 𝑖 = Γ(𝑗) and 𝑡 < 𝑗

(𝑖, 𝑡, 𝑡𝐿, 𝑡𝑅, 𝑣) otherwise

and 𝜄𝑄 : 𝑆𝑄 →˓ 𝑄′′ as

𝜄𝑄((𝑡, 𝑡𝑒𝑥𝑝, 𝑖, 𝑖𝑒𝑥𝑝, 𝑞Π) =

⎧⎪⎨⎪⎩(𝑡, 𝑡𝑒𝑥𝑝, 𝑖, 𝑖𝑒𝑥𝑝, (𝑗,⊥)) if 𝑡 = 𝑗

(𝑡, 𝑡𝑒𝑥𝑝, 𝑖, 𝑖𝑒𝑥𝑝, 𝑞Π) otherwise

It’s not hard to see that 𝑆𝑊 , 𝑆𝑄 are invariant sets of Π0.

Isomorphism of Π0 and Π1: In order to apply Corollary 2, we must observe that

for all 𝑞 = (𝑡, 𝑡𝑒𝑥𝑝, 𝑖, 𝑖𝑒𝑥𝑝, 𝑞Π) ∈ 𝑆𝑄 and all 𝑤 = (𝑖𝑊 , 𝑡𝑊 , 𝑡𝐿, 𝑡𝑅, 𝑣) ∈ 𝑆𝑊 ,

((𝜄𝑄 × 𝜄𝑊 × id× id) ∘ Π0)(𝑞, 𝑤) = (Π1 ∘ (𝜄𝑄 × 𝜄𝑊 ))(𝑞, 𝑤) (7.1)
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This follows from casework: Without loss of generality 𝑡𝑒𝑥𝑝 = 𝑡𝑊 , 𝑖𝑒𝑥𝑝 = 𝑖𝑊 , be-

cause otherwise the Verifiable Reads transformation ensures that both Π0(𝑞, 𝑤) and

Π1(𝜄𝑄(𝑞), 𝜄𝑊 (𝑤)) output ⊥. Let 𝑡′ denote the timestamp of the output state 𝑞′ of

Π0(𝑞, 𝑤), and let 𝑤′ denote the written word.

1. If 𝑡 ≤ 𝑗 − 1 and 𝑡′ ≤ 𝑗 − 1, then Π0(𝑞, ·) and Π1(𝑞, ·) are functionally equivalent

and 𝜄𝑄(𝑞) = 𝑞, 𝜄𝑄(𝑞′) = 𝑞′. Furthermore, given that 𝑡𝑊 < 𝑗 and 𝑖𝑊 = 𝑖𝑒𝑥𝑝, 𝜄𝑊

is “orthogonal” to both Π0(𝑞, ·) and Π1(𝑞, ·) in its action on memory words: 𝜄𝑊

acts only on the underlying value and location tag, while Π0 and Π1 ignore these

attributes. So indeed Π1(𝜄𝑄(𝑞), 𝜄𝑊 (𝑤)) is equal to ((𝜄𝑄×𝜄𝑊 × id× id)∘Π0)(𝑞, 𝑤).

2. If 𝑡 = 𝑗 − 1 and 𝑡′ = 𝑗, then Π0(𝑞, ·) and Π1(𝑞, ·) are still functionally equiva-

lent and 𝜄𝑄(𝑞) = 𝑞. 𝑆𝑄 is defined enough so that we know 𝑞′ is of the form

(𝑗, 𝑗 − 1,Γ(𝑗),Root, 𝑞𝑗), while Π1 produces a new state of the form (𝑗, 𝑗 −

1,Γ(𝑗),Root, (𝑗,⊥)) which is exactly 𝜄𝑄(𝑞′).

Again since both 𝑡𝑊 and 𝑡′𝑊 are less than 𝑗, an orthogonality argument shows

that Π1(𝑞, 𝜄𝑊 (𝑤)) outputs a word which is 𝜄𝑊 (𝑤′), so 𝑃𝑖1 also outputs a word

which is 𝜄𝑊 (𝑤′).

3. If 𝑡 = 𝑗 and 𝑡′ = 𝑗, then Π0(𝑞, ·) and Π1(𝜄𝑄(𝑞), ·) are not accessing a leaf node, so

they are functionally equivalent and 𝜄𝑊 (𝑤) = 𝑤 and 𝜄𝑊 (𝑤′) = 𝑤′. Since 𝑞 and

𝜄𝑄(𝑞) aren’t accessing a leaf node, Π0’s and Π1’s action on them is orthogonal to

the action of 𝜄𝑄, so Π1(𝜄𝑄(𝑞), 𝜄𝑊 (𝑤)) is equal to ((𝜄𝑄× 𝜄𝑊 × id× id) ∘Π0)(𝑞, 𝑤).

4. If 𝑡 = 𝑗 and 𝑡′ = 𝑗 + 1, then by the constraints of 𝑆𝑄 and 𝑆𝑊 , 𝑞 is of the

form (𝑗, 𝑡𝑒𝑥𝑝,Γ(𝑗),Γ(𝑗), (𝑗, 𝑞𝑗)), and 𝑤 is of the form (Γ(𝑗), 𝑡𝑒𝑥𝑝,⊥,⊥, 𝑣𝑗) where

𝑡𝑒𝑥𝑝 < 𝑗.

So we can compute

𝜄𝑊 (𝑤) = (Γ(𝑗), 𝑡𝑒𝑥𝑝,⊥,⊥, 𝑣𝑗+1)

and

𝜄𝑄(𝑞) = (𝑗, 𝑡𝑒𝑥𝑝,Γ(𝑗),Γ(𝑗), (𝑗,⊥))
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and verify that Π1(𝜄𝑄(𝑞), 𝜄𝑊 (𝑤)) is equal to ((𝜄𝑄 × 𝜄𝑊 × id× id) ∘ Π0)(𝑞, 𝑤).

5. If 𝑡 > 𝑗, then Property 4 of 𝑆𝑄 ensures that 𝜄𝑊 (𝑤) = 𝑤 (otherwise 𝑖𝑒𝑥𝑝 =

𝑖𝑊 = Γ(𝑗) and 𝑡𝑊 < 𝑗, but 𝑡𝑒𝑥𝑝 ≥ 𝑗). The timestamps of 𝑞, 𝑞′, and 𝑤′

are all at least 𝑗 + 1, so it is also the case that 𝜄𝑄(𝑞) = 𝑞, 𝜄𝑄(𝑞′) = 𝑞′ and

𝜄𝑊 (𝑤′) = 𝑤′. So in Equation 7.1, the 𝜄𝑄’s and 𝜄𝑊 ’s vanish, and it is sufficient

to show Π0(𝑞, 𝑤) = Π1(𝑞, 𝑤).

But Π0(𝑞, ·) and Π1(𝑞, ·) are functionally equivalent, so this is true.

The full security property follows from Lemma 4 by a hybrid argument sketched in

Figure 7-1. Lemma 4 states that paths differing by a diamond (or the left-most trian-

gle) are indistinguishable, and it is easy to see that the top path can be transformed

into the bottom path by a sequence of diamonds.

𝑞1 𝑞2 · · · 𝑞𝑡*−1

(1,⊥) (2,⊥) · · · (𝑡* − 1,⊥) 𝑞𝑡*

𝑞′1 𝑞′2 · · · 𝑞′𝑡*−1

Figure 7-1: Each path of length 𝑡* is a hybrid corresponding to some number of

dummies followed by either Π0 or Π1. The initial memory configuration for the

hybrid corresponding to a path is not shown, but depends on the first non-⊥ state.
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Chapter 8

Full RAM Garbling

In this chapter, we construct a garbling scheme for RAM programs by combining the

primitive of weak garbling from Chapter 7 and the strong oblivious RAM described

in Appendix A. In contrast to weak garbling, here we hide the locations accessed by

a RAM program, even if they are not locally computable.

A RAM program’s input is given as an initial memory configuration �⃗� ∈ 𝑊𝑁 .

8.1 Oblivious RAM (ORAM)

An ORAM is a way of transforming a RAM program to have an oblivious access

pattern – one in which the addresses accessed reveal nothing about the underlying

program. This is often thought of as an atomic transformation of a program Π and

memory configuration �⃗� into an oblivious program Π′ and memory configuration �⃗�′

given by AddORAM(Π, �⃗�), but we will think of it as an online transformation.

That is, at the beginning of the 𝑡𝑡ℎ underlying access, the ORAM has some state 𝑞𝑡.

Given an underlying address 𝑎𝑡, the ORAM emulates an access to 𝑎𝑡 by adaptively

making 𝜂 accesses to addresses 𝑎′𝑡,1, . . . , 𝑎′𝑡,𝜂, and then returning a value 𝑥𝑡 and a

new state 𝑞𝑡+1. We implicitly assume the ORAM has a small worst-case overhead 𝜂;

in particular, 𝜂 is poly(log𝑁). An ORAM also provides an Encode𝑂𝑅𝐴𝑀 procedure

which encodes the initial memory �⃗� and produces an initial ORAM state 𝑞0.

Correctness requires that for any initial memory �⃗�, and for any sequence of under-
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lying accesses 𝑎1, . . . , 𝑎𝑡, the values 𝑥1, . . . , 𝑥𝑡 returned by the ORAM are with high

probability the same as if accesses 𝑎1, . . . , 𝑎𝑡 were executed non-obliviously on the

unencoded �⃗�.

In addition to a standard information-theoretic ORAM security property, we will

require that the conditional distribution on the ORAM’s internal state and external

memory after 𝑡 underlying steps can be efficiently sampled given the following values:

– The addresses that the ORAM accessed up to time 𝑡.

– The underlying memory contents at time 𝑡.

– The most recent time that each underlying memory address was accessed.

In Appendix A, we show that the ORAM construction of Chung and Pass satisfies

our desired properties.

8.2 Construction of Garble:

On input (Π, �⃗�, 1𝜆), Garble outputs WkGarble(AddORAM(Π, �⃗�, 1𝜆), 1𝜆). WkGarble and

AddORAM are both functionality-preserving and separable transformations, so Garble

is also functionality-preserving and separable.

8.3 Security Proof

We now show that our garbling scheme reveals nothing more than Π(�⃗�), as well as

the running time 𝑇 , the memory size |�⃗�|, and the program size |Π|. More precisely:

Theorem 4. Assuming the existence of an injective one-way function and an i𝒪-

obfuscator for circuits, there is a PPT algorithm Sim such that for all RAM programs

Π, all initial memory configurations �⃗�, if Π’s running time1 is 𝑇 , then for all PPT

1For now we speak only of worst-case running times, but achieving input-specific running times
is also possible.
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𝒜,

Pr

⎡⎣𝒜(Π̃𝑏, ˜⃗𝑥𝑏, 1
𝜆) = 𝑏

⃒⃒⃒⃒
⃒⃒ 𝑏← {0, 1}, Π̃0, ˜⃗𝑥0 ← Garble(Π, �⃗�, 1𝜆),

Π̃1, ˜⃗𝑥1 ← Sim(Π(�⃗�), 𝑇, |�⃗�|, |Π|, 1𝜆)

⎤⎦ <
1

2
+ negl(𝜆).

Proof Overview We give 2(𝑇 + 1) hybrid distributions 𝐻0, 𝐻
′
1, 𝐻1, . . . , 𝐻

′
𝑇 , 𝐻𝑇 ,

followed by a qualitatively different hybrid 𝐻𝑇+1. 𝐻0 will be exactly the distribution

Garble(Π, �⃗�, 1𝜆) and 𝐻𝑇+1 will be sampleable given only Π(�⃗�), 𝑇 , |�⃗�|, and |Π|, and so

we will define Sim as the algorithm which samples 𝐻𝑇+1.

Proof. Our hybrids are as follows.

Hybrid 𝐻𝑖 (0 ≤ 𝑖 ≤ 𝑇 ). 𝐻𝑖 is WkGarble(Π′, �⃗�′
𝑖), where Π′ and �⃗�′

𝑖 are sampled as

follows:

1. Sample a puncturable PRF 𝐹 ← GenPRF(1𝜆).

2. For 𝑗 = 1, . . . , 𝑖, define 𝐼𝑗 = OSample(𝑗;𝐹 (𝑗)).

3. Sample 𝑞𝑂𝑅𝐴𝑀,𝑖, �⃗�
′
𝑖 ← Sim𝑂𝑅𝐴𝑀 (⃗𝑡𝑖, �⃗�𝑖, 𝐼1, . . . , 𝐼𝑖). Here after 𝑖 steps of executing

Π on �⃗�, �⃗�𝑖 is the external memory contents and �⃗�𝑖 is the vector of last-written

times for each external memory locations.

4. Define Π′ as a RAM program which accesses but does not modify locations

𝐼1, . . . , 𝐼𝑖 and then resumes emulation of Π as usual from the 𝑖 + 1𝑡ℎ step. Π′

has 𝑞𝑂𝑅𝐴𝑀,𝑖 and 𝐹 hard-coded. If Π on �⃗� terminates after 𝑖 steps and produces

an output Π(�⃗�), then Π′ has Π(�⃗�) hard-coded. Otherwise, if Π’s internal state

after 𝑖 execution steps is given by 𝑞Π,𝑖, then Π′ has 𝑞Π,𝑖 and 𝑎𝑖 hard-coded, where

𝑎𝑖 is the address accessed by 𝑞Π,𝑖.

Hybrid 𝐻 ′
𝑖 (0 ≤ 𝑖 ≤ 𝑇 ) 𝐻 ′

𝑖 is WkGarble(Π′, �⃗�′
𝑖+1), where Π′ and �⃗�′

𝑖+1 are sampled

as follows:

1. Sample a puncturable PRF 𝐹 ← GenPRF(1𝜆).
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2. For 𝑗 = 1, . . . , 𝑖, define 𝐼𝑗 = OSample(𝑗;𝐹 (𝑗)).

3. Sample 𝑞𝑂𝑅𝐴𝑀,𝑖, �⃗�
′
𝑖 ← Sim𝑂𝑅𝐴𝑀 (⃗𝑡𝑖, �⃗�𝑖, 𝐼1, . . . , 𝐼𝑖). Here after 𝑖 steps of executing

Π on �⃗�, �⃗�𝑖 is the external memory contents and �⃗�𝑖 is the vector of last-written

times for each external memory locations.

4. Let 𝐼𝑖+1 denote the (physical) memory addresses accessed by an ORAM on state

𝑞𝑂𝑅𝐴𝑀,𝑖 for underlying access 𝑎𝑖 using random bits 𝐹 (𝑖+1). Here 𝑎𝑖 denotes the

𝑖+1𝑡ℎ address accessed by the underlying Π when executed on �⃗�. Let 𝑞𝑂𝑅𝐴𝑀,𝑖+1

and �⃗�′
𝑖+1 denote the resulting ORAM state and external memory configuration.

5. Define Π′ as a RAM program which performs dummy accesses to locations

𝐼1, . . . , 𝐼𝑖+1 and then resumes emulation of Π as usual from the 𝑖 + 2𝑡ℎ step.

Π′ has 𝑞𝑂𝑅𝐴𝑀,𝑖+1 and 𝐹 hard-coded. If Π on �⃗� terminates after 𝑖 + 1 steps

and produces an output Π(�⃗�), then Π′ has Π(�⃗�) hard-coded. Otherwise, if Π’s

internal state after 𝑖 + 1 execution steps is given by 𝑞Π,𝑖+1, then Π′ has 𝑞Π,𝑖+1

and 𝑎𝑖+1 hard-coded, where 𝑎𝑖+1 is the address accessed by 𝑞Π,𝑖+1.

Hybrid 𝐻𝑇+1. 𝐻𝑇+1 is WkGarble(Π′
𝑇+1, �⃗�

′
𝑇+1), where Π′

𝑇+1 and �⃗�′
𝑇+1 are sampled

as follows:

1. Sample a PPRF 𝐹 ← GenPRF(1𝜆)

2. Define Π′
𝑇+1 to make dummy accesses to 𝐼1, . . . , 𝐼𝑇 , where 𝐼𝑗 = OSample(𝑗;𝐹 (𝑗)),

and then output Π(�⃗�). Π′
𝑇+1 has 𝐹 , 𝑇 , and Π(�⃗�) hard-coded.

3. Define �⃗�′
𝑇+1 as the length-𝑁 ′ vector (⊥, . . . ,⊥), where 𝑁 ′ is the size of an

ORAM-encoded length-𝑁 memory.

Claim 4. 𝐻𝑖 ≈ 𝐻 ′
𝑖

Proof. Π′
𝑖 executed on �⃗�′

𝑖 and Π′
𝑖,0 executed on �⃗�′

𝑖+1 have the same state, memory

configuration, and functionality after the 𝑖+ 1𝑡ℎ underlying step, and they access the

same memory locations (succinctly described by OSample and the PRF key 𝐾. So

the security of WkGarble implies that 𝐻𝑖 ≈ 𝐻 ′
𝑖.
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Claim 5. 𝐻 ′
𝑖 ≈ 𝐻𝑖+1.

Proof. 𝐻 ′
𝑖 and 𝐻𝑖+1 differ only in how 𝑞𝑂𝑅𝐴𝑀,𝑖+1, 𝐼𝑖+1, and �⃗�′

𝑖+1 are generated: In

𝐻𝑖+1 they are the result of one honest step executed on a simulated 𝑞𝑂𝑅𝐴𝑀,𝑖, �⃗�𝑖,

while in 𝐻 ′
𝑖 they are just simulated. But because Sim𝑂𝑅𝐴𝑀 samples the correct

conditional distribution on 𝑞𝑂𝑅𝐴𝑀,𝑖+1, �⃗�
′
𝑖+1 given 𝐼1, . . . , 𝐼𝑖+1, these two distributions

are the same. This is proved formally in Lemma 5 in Appendix A, which gives us the

desired indistinguishability.2

Claim 6. 𝐻𝑇 ≈ 𝐻𝑇+1

Proof. This is applying the security of WkGarble again, since 𝐻𝑇 and 𝐻𝑇+1 access the

same succinctly described set of locations. Specifically, at time 𝑖, they access the 𝑖

(mod 𝜂)’th address of OSample(⌊ 𝑖
𝜂
⌋;𝐹 (⌊ 𝑖

𝜂
⌋)). 𝐻𝑇 and 𝐻𝑇+1 also both give the same

output (Π(�⃗�)) after 𝜂𝑇 execution steps, and for higher timestamps their transition

functions are functionally equivalent (they always output ⊥).3

Hybrid 𝐻𝑇+1 can be sampled given Π(�⃗�), 𝑇 , |�⃗�|, and |Π|, which allows us to define

Sim as the algorithm which samples 𝐻𝑇+1. This concludes the proof of Theorem 4.

2𝐻 ′
𝑖 actually hard-codes 𝐼𝑖+1 while 𝐻𝑖+1 computes 𝐼𝑖+1 as OSample(𝑖 + 1;𝐹 (𝑖 + 1)), but this

difference is indistinguishable by a standard technique using the puncturability of 𝐹 .
3 Here we are simplifying the proof by assuming the execution time is given at garble-time. We

can also achieve an input-specific running time 𝑇 * if we assume a prior polynomial bound 𝑇𝑚𝑎𝑥 on
the worst-case running time. We go through an intermediate hybrid, where we use Theorem 2 to
indistinguishably change the transition function to be ⊥ on all timestamps between 𝑇 * and 𝑇𝑚𝑎𝑥.
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Appendix A

Oblivious RAM

We describe the oblivious RAM of Chung and Pass [CP13], which is a simplification

of [SCSL11], and we highlight the security property needed for our garbled RAM

construction.

A.1 Construction

Starting with a RAM machine Π that uses 𝑁 memory words, the construction trans-

forms it into a machine Π′ that uses 𝑁 ′ = 𝑁 · poly(log𝑁, 𝜆) memory words. While

the eventual goal is to store 𝑂(1) words in the local state of Π′, Chung and Pass start

with a “basic” construction in which the local state of Π′ consists of a “position map”

pos : [𝑁/𝛼]→ [𝑁/𝛼] for some constant 𝛼 > 1.

The 𝑁 underlying memory locations are divided into 𝑁/𝛼 “blocks” each storing 𝛼

underlying memory words. The external memory is organized as a complete binary

tree of 𝑁/𝛼 leaves. The semantics of the position map is that the 𝑖-th block of memory

maps to the leaf labeled pos(𝑖). Let 𝑑 = log(𝑁/𝛼). The CP/SCSL invariant is that:

“Block 𝑖 is stored in some node on the path from the root to the leaf labeled

with pos(𝑖).”

Each internal node of the tree stores a few memory blocks. In particular, each

internal node, labeled by a string 𝛾 ∈ {0, 1}≤𝑑 is associated with a “bucket” of 𝛽
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blocks for some 𝛽 = polylog(𝑁).

The reads and writes to a location 𝑟 ∈ [𝑁 ] in the CP/SCSL ORAM proceed as

follows:

∙ Fetch: Let 𝑏 = ⌊𝑟/𝛼⌋ be the block containing the memory location 𝑟, and let

𝑖 = 𝑟 mod 𝛼 be the component within block 𝑏 containing the location 𝑟. We

first look up the leaf corresponding to block 𝑏 using the (locally stored) position

map. Let 𝑝 = Pos(𝑏).

Next, we traverse the tree from the roof to the leaf 𝑝, reading and writing the

bucket associated to each internal node exactly once. In particular, we read the

content once, and then we either write it back, or we erase a block once it is

found, and write back the rest of the blocks.

∙ Update Position Map: Pick a uniformly random leaf 𝑝′ ← [𝑁/𝛼] and set (in the

local memory) Pos(𝑏) = 𝑝′.

∙ Write Back: In the case of a READ, add the tuple (𝑏, 𝑝′, 𝑣) to the root of the tree.

In the case of a WRITE, add the tuple (𝑏, 𝑝′, 𝑣′) where 𝑣′ is the new value to

be written. If there is not enough space in the bucket associated with the root,

output overflow and abort. (We note that [CP13, SCSL11] show that, setting

the parameters appropriately, the probability that the overflow event happens

is negligible).

∙ Flush the Block: Pick a uniformly random leaf 𝑝* ← [𝑁/𝛼] and traverse the tree

from the roof to the leaf 𝑝* making exactly one read and one write operation for

every memory cell associated with the nodes along the path so as to implement

the following task: “push down” each tuple (�̃�, 𝑝, 𝑣) read in the nodes traversed

as far as possible along the path to 𝑝* while ensuring that the tuple is still on

the path to its associated leaf 𝑝 (i.e., maintaining the CP/SCSL invariant). In

other words, the tuple ends up in the node 𝛾 = the longest common prefix of

𝑝* and ̃︀𝑝. If at any point some bucket is about to overflow, abort outputting

overflow.
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The following observation is central to the correctness and security of the CP/SCSL

ORAM:

Observation 1. Each oblivious READ and WRITE operation traverses the the tree

along two randomly chosen paths, independent of the history of operations so far.

This key observation follows from the facts that (1) Each position in the position

map is used exactly once in a traversal (and before this traversal, this position is

not used in determining what nodes to traverse), and (2) the flushing, by definition,

traverses a random path, independent of the history.

A.2 Security Property

Suppose an underlying access pattern is given; we will consider the randomized pro-

cedure of executing this sequence of accesses via this ORAM. We want a randomized

“dummy” access algorithm OSample which on input 𝑗 outputs a list of locations. This

list should be distributed according to the real distribution of accesses corresponding

to the 𝑗𝑡ℎ underlying access.

We can now describe our desired security property. Fix some underlying access

pattern 𝑎1, . . . , 𝑎𝑡, including both the addresses and values written, and fix an initial

memory configurtaion �⃗�. Let 𝑄𝑠 be a random variable for the entire ORAM state

(both private registers and memory configuration) after the 𝑠𝑡ℎ underlying access,

and let 𝐼𝑗 be a random variable for the addresses accessed by the ORAM on the 𝑗𝑡ℎ

underlying access.

Lemma 5. There exists a PPT algorithms Sim such that for any 𝑠, and any possible

(non-zero probability) values 𝑖1, . . . , 𝑖𝑠−1 of 𝐼1, . . . , 𝐼𝑠−1, for all PPT adversaries 𝒜,

Pr

⎡⎣𝒜(𝑞𝑏𝑠, 𝑖
𝑏
𝑠) = 𝑏

⃒⃒⃒⃒
⃒⃒ 𝑞0𝑠−1 ← Sim(𝑖1, . . . , 𝑖𝑠−1), 𝑞

0
𝑠 , 𝑖

0
𝑠 ← OAccess(𝑎𝑠; 𝑞𝑠−1)

𝑖1𝑠 ← OSample(𝑠), 𝑞1𝑠 ← Sim(𝑖1, . . . , 𝑖𝑠)

⎤⎦ ≤ 1

2
+negl(𝜆)

This is a consequence of the following two claims.

Claim 7. 𝐼𝑠 is independent of 𝐼1, . . . , 𝐼𝑠−1 and 𝑎1, . . . , 𝑎𝑠, and is efficiently sampleable.
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Proof. This follows immediately from Observation 1.

This lets us define OSample(𝑠) as the efficient algorithm which samples 𝐼𝑠. Specif-

ically, in the CP/SCSL ORAM, OSample samples and outputs two uniformly random

paths in each tree.

Claim 8. The conditional distribution 𝑄𝑠|𝐼1, . . . , 𝐼𝑠 is efficiently sampleable for all

values of 𝐼1, . . . , 𝐼𝑠 (that jointly occur with non-zero probability).

Proof. Recall that 𝑄𝑠 has two parts: a position map Pos and memory contents �̃�𝑠,

which are structured as a tree. We first give the sampling procedure for the basic

construction, and then extend it to the recursive case. It is easy to verify that this

procedure produces the correct distribution.

To sample 𝑄𝑠 given a sequence of memory accesses (𝑖1, . . . , 𝑖𝑠), do the following.

For every memory block 𝑏 ∈ [𝑁/𝛼], let 𝜏𝑏 ≤ 𝑠 be the last time when block 𝑏 was

accessed. Let 𝐼𝑗 = (𝐼 read𝑗 , 𝐼flsh𝑗 ) be the pair of paths that comprise each 𝐼𝑗.

∙ For each block 𝑏, pick a uniformly random leaf 𝑝𝑏 ← ⌊𝑁/𝛼⌋. Compute the

unique internal node 𝛾𝑏 such that 𝛾𝑏 is the largest common prefix between 𝑝𝑏

and any of 𝐼flsh𝜏𝑏
, . . . , 𝐼flsh𝑠 .

∙ Construct Pos by letting Pos(𝑏) = 𝑝𝑏.

∙ Construct �̃�𝑠 by writing each memory block 𝑏 together with its value at time 𝑠

to the internal node 𝛾𝑏.

To sample 𝑄𝑠 for the recursive construction, we note that this basic sampler

doesn’t need to �⃗� and the entire access pattern; it only needs to know each 𝜏𝑏 described

above, as well as the memory contents at time 𝑠. This information ({𝜏 ′𝑏′}, �⃗�′
𝑠) for

the next smaller recursive case is readily computable. �⃗�′
𝑠 for the next level ORAM

is just Pos, which we have already computed. 𝜏 ′𝑏′ is the maximum of 𝜏𝑏 over all

𝑏 corresponding to 𝑏′. So we can run the basic sampler repeatedly until we have

sampled 𝑄𝑠 for the whole recursive construction.
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This allows us to define Sim as the above procedure for efficiently sampling 𝑄𝑠

conditioned on 𝐼1 = 𝑖1, . . . , 𝐼𝑠 = 𝑖𝑠.

We can now prove a stronger (statistical) version of Lemma 5, knowing that Sim

and OSample output the correct conditional distributions.

Claim 9. Pr[𝑞0𝑠 , 𝑖
0
𝑠 = 𝑞𝑠, 𝑖𝑠] ≈ Pr[𝑞1𝑠 , 𝑖

1
𝑠 = 𝑞𝑠, 𝑖𝑠].

Proof.

Pr[𝑞0𝑠 , 𝑖
0
𝑠 = 𝑞𝑠, 𝑖𝑠] ≈ IE𝑞𝑠−1 [Pr[𝑞𝑠, 𝑖𝑠|𝑞𝑠−1, 𝑖1, . . . , 𝑖𝑠−1]|𝑖1, . . . , 𝑖𝑠−1]

= Pr[𝑞𝑠, 𝑖𝑠|𝑖1, . . . , 𝑖𝑠−1]

= Pr[𝑞𝑠|𝑖1, . . . , 𝑖𝑠] Pr[𝑖𝑠|𝑖1, . . . , 𝑖𝑠−1]

= Pr[𝑞𝑠|𝑖1, . . . , 𝑖𝑠] Pr[𝑖𝑠]

≈ Pr[𝑞1𝑠 , 𝑖
1
𝑠 = 𝑞𝑠, 𝑖𝑠].

1. The first approximate equality follows from Sim approximately sampling 𝑞𝑠−1

given 𝑖1, . . . , 𝑖𝑠−1 and from OAccess (exactly) sampling 𝑞𝑠, 𝑖𝑠 given 𝑞𝑠−1.

2. The second equality is just marginalization over 𝑞𝑠−1.

3. The third equality is the chain rule for probabilities.

4. The fourth equality is Claim 7 - namely that the locations accessed at time 𝑠

are independent of previously accessed locations.

5. The fifth approximate equality follows from OSample approximately sampling

𝑖𝑠.
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