
HandsOn: A Portable System for Collaboration on
Virtual 3D Objects Using Binocular Optical Head-Mounted Display

by

Kevin Winata Wong
S.B. Computer Science and Engineering, M.I.T., 2014

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2015

© 2015 Kevin Wong. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature of Author: __
Department of Electrical Engineering and Computer Science

May 21, 2015

Certified by: ___
Pattie Maes, Alexander W. Dreyfoos Professor of Media Arts and Sciences

Thesis Supervisor

Accepted by: __
Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

 2

 3

HandsOn: A Portable System for Collaboration on
Virtual 3D Objects Using Binocular Optical Head-Mounted Display

by

Kevin Wong

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2015

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

In this increasingly globalized and technological world, professionals often have to collaborate
remotely on 3D content, especially in fields such as urban planning or architectural design. We
propose HandOn, a portable system for collaboration on virtual 3D objects. HandsOn leverages the
recent advances in optical head-mounted display and finger tracking technology, allowing users to
view digital content as if it were merged with the physical reality, while being able to manipulate
the objects using simple hand gestures. Supporting both co-located and remote collaboration, this
proof-of-concept system is designed to be portable and easy-to-setup, in contrast with many
previous systems that require elaborate setup. Our findings suggests that HandsOn greatly
increases awareness of remote collaborators and their actions by displaying the remote user’s
hands while interacting with the virtual objects, and that gestural hand-based interactions felt
natural to the users. We also found that the illusion of the physical and the virtual being merged
improved the overall experience, even though this aspect could be further improved by using
better hardware.

Thesis Supervisor: Pattie Maes
Title: Alexander W. Dreyfoos Professor of Media Arts and Sciences

 4

 5

Acknowledgments

I would like to express my deepest gratitude to my thesis supervisor, Prof. Pattie Maes, for her
invaluable help and tireless mentorship. She has been thoroughly involved and supported me in
the planning, the design, the execution, and the analysis stages of this thesis. She suggested
brilliant ideas whenever I needed them the most, while being open to new ideas at the same time.
Without all her assistance and guidance, this thesis would not have been possible.

I further want to thank Takako Aikawa, Kanda University of International Studies, and the Sano
Foundation for supporting my study in the Master of Engineering program at MIT.

I would also like to thank the people in the Fluid Interfaces Group for their kind support and many
thought-provoking discussions regarding my work and other intellectually stimulating topics.

Finally, I would like to thank my parents, my siblings, and my friends for their relentless support
and encouragement.

 6

 7

Contents

1 Introduction .. 9

2 Background ... 13
 2.1 Related Work ... 13
 2.2 A Brief Overview of Optical HMDs ... 15

3 HandsOn: Designing the User Experience ... 19
 3.1 Design Principles .. 19
 3.2 User Scenario Walkthrough ... 20

4 HandsOn: System Overview .. 23
 4.1 System Specification .. 23
 4.2 Supported Hand Gestures .. 25
 4.3 Remote User Rendering for Remote Collaboration .. 27
 4.4 Hardware Context .. 28
 4.5 Software Context ... 31

5 System Implementation ... 35
 5.1 HandsOn Client Application ... 38
 5.2 HandsOn Server Application .. 39
 5.3 HandsOn Display Application .. 39
 5.4 AR Marker-Hands Calibration .. 41
 5.5 Binocular Optical See-Through Calibration .. 42

6 Evaluation .. 47
 6.1 User Study ... 47
 6.2 Results ... 48
 6.3 Discussions ... 50

7 Conclusions ... 53

Appendices
A HandsOn Tracking Configuration .. 55
B HandsOn Marker Sheet ... 59

References ... 61

 8

 9

1

Introduction

Remote collaboration is a challenging topic that has been tackled by researchers for many years.

Designers and experts often have to work remotely due to geographical constraints in this

increasingly globalized world. While simple audio or video conferencing technology such as Skype

or Google Plus Hangout might be sufficient for communicating with families, these tools do not

provide professionals with a shared task space where they can collaborate on more complex tasks,

e.g. an architectural design meeting in which these experts must be able to visualize digital

content at various level of details and modify the content.

Furthermore, many of these tasks require the designers to work with virtual content such as 3D

models. This is where augmented reality (AR) comes in. AR interfaces shows great promise for this

particular type of interaction since they allow users to interact with the virtual world in ways

never previously thought to be possible, by merging the virtual and the physical space. The most

popular AR applications currently run on mobile devices that act as a window to the new mixed

reality. They do this by augmenting the camera live image with virtual content. Not only does AR

allow seamless interaction between the real and virtual environment, it allows delivery of spatial

and gestural cues of remote collaborators in ways never thought possible, making it a suitable

system for remote collaboration.

Recently, there have been many developments in the field of display technologies, especially head-

mounted displays (HMDs). Various display and sensor technology have been made available both

to the academic community and the general public, allowing researchers to focus on the

 10

interaction aspect of designing an AR-based user interface instead of reinventing the tracking

capability or display technology.

In this thesis, we present HandsOn, a proof-of-concept system for remote collaboration on virtual

3D content. Being an AR-based system, HandsOn seeks to bridge the gap between the virtual and

the physical by placing virtual objects in the real world that the user can perceive in space by

wearing a binocular optical head-mounted display. Moreover, users can simultaneously view and

interact with the virtual objects by using their hands. HandsOn also supports remote collaboration,

where remote user’s hands are also presented to local users to increase gesture and action

awareness among collaborators.

This thesis is structured as follows: Chapter 2 will discuss the background work related to

HandsOn. The current state of optical head-mounted display technology, which HandsOn uses, is

also discussed. Chapter 3 will discuss the design principles on top of which HansdOn is built.

These are the guiding principles that manifest themselves in all the design decisions that the

author made when implementing the system. Chapter 4 moves on with a high-level overview of

the system. This chapter includes the specification of HandsOn based on the design principles

outlined in Chapter 3. This chapter also discusses both the hardware context and the software

context of the system, since gaining an understanding of these will guide the reader through the

next chapter. Chapter 5 discusses the implementation details of HandsOn. In this chapter, all the

main software components are discussed in more detail. System setup and calibration procedures

are also outlined in this chapter. Chapter 6 discusses the user study that we conducted to test the

system and the results that we obtained. Finally, chapter 7 concludes the thesis by providing a

summary of the work and outlines future work.

 11

As we shall see in the next chapter, there are many systems that have been created in order to

achieve this goal of augmented-reality based collaboration. However, HandsOn’s main

contribution lies in its portability, ease of use and setup, and its remote collaboration aspect, as

opposed to the systems described in the next chapter, which require elaborate calibration and

setup procedure. Furthermore, HandsOn also takes advantage of recent advances in the field of

optical HMDs and hand tracking, by utilizing commercially available display and sensor

technologies.

 12

 13

2

Background

2.1 Related Work

There are many commercially available videoconferencing systems, e.g. Skype, Google Plus

Hangouts, Cisco WebEx Conferencing. These systems support communication at a distance by

providing users with a live video and audio feed of remote users, enabling face-to-face

communication with them. However, these systems do not support collaboration on specific tasks,

let alone collaboration on virtual content, as they do not present the user with a shared task space

that is crucial for efficient task-based collaboration.

Augmented Reality (AR) is a promising candidate for both collaborative tasks and manipulating

virtual contents. AR allows virtual content to coexist with the physical space, creating the illusion

that the two are being merged and possibly allowing seamless interaction between the user and

the virtual content. Much research has been done in the field of collaborative AR and many

research papers have been published in the field of collaboration on virtual content using various

types of output devices. A system such as (T)ether [1] employs a touch display and hand-tracking

to support co-located collaboration on and manipulation of virtual objects, leveraging

proprioception by using touch as an input. A system called Tangible Windows [2] uses a surface

that acts as both a window to display additional information and an input device. BeThere [3]

explores the use of 3D gestures for remote collaborations on both physical and virtual objects

using a mobile device as an output device while utilizing depth sensors to capture and share a 3D

representation of the physical space that is shared with a remote user. Other displays such as

volumetric displays [4] and projective displays [5] have been explored as well.

 14

Recently, head-mounted displays (HMDs) have become increasingly popular as an output device

for AR, even though the first prototype went as far back as the 1968 [6]. Video see-through

devices, such as the Occulus Rift, are especially popular. ShowMe [7] is a project similar to

BeThere [3] but using a portable video see-through setup that allows a user to communicate with

a peer using video, audio, and hand gestures. Using ShowMe, a novice user can receive help from

an expert user who can see the view of the novice user, allowing the expert user to reference

objects using hand gestures in real-time.

A different type of HMD called optical HMDs may offer better results than its video see-through

counterparts. In [8] the advantages and disadvantages of optical versus video see-through HMDs

are discussed. The main issues being discussed include system latency, occlusion, the fidelity of the

real-world view, and user acceptance. While video see-through allows simultaneous rendering of

the real and virtual content—in which latency is not an issue—optical see-through is capable of

presenting the user with unobstructed view of the physical reality, making sure that visual and

proprioception information is synchronized. These tradeoffs must be considered when designing a

system that uses any of these HMDs.

Furthermore, a comparison between video see-through and optical see-through displays for

collaborative tasks [9, 10] shows that optical see-through displays are better at communicating

gaze and gesture awareness, most likely due to the improved perception of non-verbal cues.

Considering the advantages of optical see-through HMDs, not surprisingly there are a number of

systems that have implemented a collaboration system using optical HMDs. The ARTHUR system

[11] is a collaborative workspace that supports complex design and planning decisions for co-

located architects and urban planners. It uses an elaborate setup that involves tracked see-through

HMD, placeholder and pointer tracking as a tangible AR-based user interface, and hand gesture

 15

recognition, supporting application scenarios such as urban and city planning and 3D CAD

modeling.

Similarly, the Studierstube system [12] is a multi-user augmented reality system for visualization,

presentation, and education using see-through HMDs. The Studierstube system is interesting in

that it incorporates layering of data in the system, where each collaborator can have a different

type of data with the same spatiotemporal structure displayed individually, e.g. plumbers and

electricians collaborating on the same building structure, with the plumber viewing the plumbing

system and the electricians viewing the electrical system of the building.

HandsOn is unique in that it leverages recent advances in the field of optical HMDs and hand

tracking. A reasonably comfortable, commercially available, optical HMD called the Moverio BT-

200 is used. Not only does it merge the physical and the virtual space using optical HMD, it also

allows users to interact with the virtual objects using simple hand gestures. HandsOn is designed

to be easy to setup by using the small hand tracking devices called the Leap Motion sensor, making

HandsOn truly portable. Furthermore, unlike most of the systems described above, HandsOn is

designed to work for both co-located and remote collaboration on virtual objects, where the

remote user hands will be rendered to increase gestural awareness.

2.2 A Brief Overview of Optical HMDs

An optical Head-Mounted Display (HMD) is a type of wearable display that is capable of projecting

images into its user’s eyes while allowing the user to see through it. Optical HMDs, especially

binocular ones, are central in the development of HandsOn, or any AR-based collaborative

applications that aims to overlay virtual content realistically in the physical world. Therefore, it is

necessary to gain a better understanding of the engineering behind optical HMD. This section aims

to present a brief overview of the state of the art of optical HMD technology.

 16

Many techniques have been implemented for see-through HMD. They can be grouped into two

main families: curved-mirror based optical HMD and waveguide based optical HMD. Curved-

mirror based optical HMD uses semi-reflective curved mirrors placed in front of the eye with an

off-axis optical projection system, such as Vuzix and Laster. The second alternative, waveguide

based optical HMD, is more feasible and popular, since the projective light source does not need to

be in front of the eyes. However, since the projector is located on the side of the displays, the light

needs to be “guided”—hence the name waveguide—so that it can be reflected into the eyes of the

user.

There are several waveguide techniques being employed in currently available optical HMD,

including diffractive waveguide technique, holographic waveguide technique, polarized waveguide

technique, and reflective waveguide technique, with the most notable ones being the last two

techniques.

The polarized waveguide technique, which utilizes embedded polarized reflectors to direct light

waves to the pupil, is promising since it does not suffer from small field-of-view (FOV) issues as

other waveguide technique does. However, costly manufacturing process and its inability to use

plastic as opposed to fragile glass as the transparent material are some of the drawbacks of this

technique. This technique is employed by the Lumus prototype.

The reflective waveguide technique, which is employed by the Google Glass and Epson Moverio

products, including the Moverio BT-200 that is used in HandsOn, utilizes simple semi-reflective

mirrors, which leads to lower manufacturing cost [13]. However, the FOV is limited since it is

proportional to the size of the mirrors, which is proportional to the thickness of the glasses. Hence,

a large FOV can only be achieved by utilizing thicker glasses.

 17

At the time this thesis is written, there have been many recent developments in the field of

displays for AR-based applications, with two most notable ones being the Magic Leap [14] and

Microsoft HoloLens [15]. However, currently there has only been self-reported description of

people using the system since only a handful of people have seen live demonstrations of the Magic

Leap or the Microsoft HoloLens. According to Microsoft, the HoloLens allows users to view virtual

content as if they are holograms in the physical world, but it is not clear how it works other than

the fact that it uses transparent lens and sensors. A tester who has tried using the HoloLens

reported being able to view and manipulate 3D virtual content and perform remote collaboration

tasks using it [18]. The Magic Leap claims to achieve similar, if not better, augmentation effect.

The same tester reported more vivid, crisper image that blends well with the surrounding world. A

closer look at the patents filed by the company reveals that the device works by mimicking 3D

patterns of light rays called “light fields” that our eyes receive from real objects, allowing human

eyes to focus on the depths of an artificial 3D scene as they would in the real world—hence, a

realistic-looking augmented-reality.

 18

 19

3

HandsOn: Designing the User Experience

Before a single line of code is written or any hardware choices are made, it is important to

determine exactly what kind of system is being built. Therefore, laying out the design principles

and scripting a concrete user scenario walkthrough is critical in the early stages of designing

HandsOn. The following two subsections describe the design principles on which HandsOn is built

upon and walks through the user scenario that HandsOn is materializing.

3.1 Design Principles

HandsOn is a collaborative system that helps user collaborate using natural gestures on virtual

content. Naturally, HandsOn is built on top of the following design principles:

1. Merging of the Physical and the Virtual. Augmenting the real world with virtual content

will provide the most natural way to visualize and manipulate virtual content. Therefore,

HandsOn strives to provide its users with a consistent view of the virtual content as if they

are a physical object in the real world with a fixed position and orientation and can be

viewed from any angle.

2. Natural Hand-Based Interaction. There are many ways to interact with digital content that

are overlaid in the physical world, e.g. using voice commands or using less direct control

devices. However, in order to achieve a high degree of realism, it is important to be able

to directly manipulate the virtual content as a user would manipulate real objects: by

using their hands and fingers. Therefore, HandsOn seeks to utilize natural hand-based

 20

interaction as much as possible to allow interaction and manipulation of rendered virtual

content.

3. Collaboration. HandsOn is envisioned to be a collaborative platform, where multiple users

can interact with other users and visualize and manipulate objects together. The

collaboration could happen between co-located users or remote users. Therefore, it is

important to have a synchronized view of virtual content in the system across all users.

4. Portability. HandsOn has to be portable; the system should be easily usable anywhere, and

requires minimal and simple procedure to setup. This principle requires that the system is

comfortable enough to be worn to perform specific tasks while requiring no or minimal

and easily accessible peripheral apparatus.

3.2 User Scenario Walkthrough

The following fictitious scenario describes the ideal representation of a system that achieves the

design principles described above.

Joe, who lives in Florida, is a car designer who works for a Boston-based company. Most of the time

Joe would design specific components of a car by himself in his house using a 3D modeling software,

on which his remote location poses no problem. However, designing a car is a collaborative process

and he needs to be able to present his design and completed milestones regularly several times a week

effectively from Florida to his colleagues in Boston. Meanwhile, in the Boston office, Joe’s colleague

Sarah is leading a design meeting that requires complex collaborative efforts from multiple designers

and engineers, including Joe himself.

 21

Using HandsOn, Joe and Sarah’s team can all view the current 3D models of all the different

components during their meeting. All they have to do is run the HandsOn application on their laptops,

put on the head-mounted display that has embedded sensor for hand tracking, connect all the devices

to the network, and they can suddenly see all the car components in the meeting room as if they are

real.

Joe began the meeting by presenting the design of a component that he has been working on. From his

home he was able to point at different virtual parts of the component that he designed by using his

hands. Meanwhile in Boston, his colleagues can see a representation of Joe’s hands rendered using

realistic augmented reality, as if they are in the same room as them. Similarly, when Sarah comments

on the some parts of the component while pointing at the component, Joe can see what she was doing

by looking at the hands labeled as “Sarah.”

The meeting proceeds with different team members presenting their components to each other, and Joe

can follow everything that is happening since he can see all the components as if they are in his room

in Florida.

When adjustments need to be made to some parts, someone would bring the component to the center

of the room and start adjusting certain parts of the component as if it were made of clay. This works

for both the people in the Boston office and Joe in Florida. Finally, the meeting ended and Joe begins

working on the next iteration of the design process, looking forward to his next virtual meeting with

his colleagues.

The scenario described above shows the design principles in action. Augmented reality allows

users, both Joe and Sarah’s team to visualize and manipulate virtual 3D models as if they are real

objects. Everyone can point, move, and change the 3D models using their hands; this shows how

 22

natural hand-based interaction works in the system. It works for co-located collaboration since

everyone in Sarah’s team can view and manipulate objects, while the fact that Joe is able to do the

same thing shows the remote collaboration aspect of the system. Finally, it is portable since all the

users have to do is run the application on their laptop, connect to the network, and put on the

head mounted display.

As will become apparent in the upcoming sections, the current implementation of HandsOn has

not yet been able to achieve everything that is described in the idealistic user scenario described

above. However, it is one step towards the ideal scenario described above.

 23

4

HandsOn: System Overview

As has been previously described in the previous section, HandsOn seeks to enable users to

collaborate on 3D virtual content both on co-located or remote scenario using natural hand

gestures. To achieve this goal, HandsOn is developed by combining many different types of sensors

and system components. This section describes a brief system overview of the entire HandsOn

technological ecosystem, and provides an introduction to a detailed system implementation in the

following section.

4.1 System Specification

Our current implementation of HandsOn meets the following specifications based on the design

principles described in the previous section.

Merging the Physical and the Virtual: Marker-Based Augmented Reality

HandsOn uses marker-based tracking to align virtual content properly on the physical space as

viewed by the user. A marker-based tracking is used since it is judged to be the most efficient and

reliable way to track the environment.

Fundamentally, in order to merge the physical and the virtual, it is necessary to build a model of

the physical workspace, thereby giving the software information of where the display is currently

focusing on in the physical workspace. The software can then use this information to properly

align the rendering of the virtual content relative to what the user is seeing, therefore creating the

illusion that the virtual is merged with the physical.

 24

There are many ways to retrieve this tracking information; one way is by using electromagnetic

position and orientation tracking system such as the Polhemus Fastrak used by [12]. Another way

is by using computer vision based motion capture system that typically employs reflective marker

attached to the tracked objects. These tracking systems, however, requires an elaborate setup

which severely limits portability.

Therefore, HandsOn utilizes maker-based tracking for AR applications. The hardware that

HandsOn uses has a built-in camera, which makes using this technique feasible. Properly

calibrated, it is possible to truly augment the physical reality with virtual contents as if the virtual

contents are physical objects.

There are drawbacks to using this computer-vision based tracking: unlike electromagnetic-based

tracking system that does not suffer from obstruction of line-of-sight, marker-based tracking is

unable to perform continuous tracking properly when the view of the camera is obstructed by the

user or objects. However, electromagnetic-based tracking is not an option is contradicts portability.

Natural Hand-Based Interaction: Hand and Finger Tracking

In order to achieve natural hand-based interaction with virtual content, it is necessary for the

HandsOn system to track the hand and the fingers of its users. This tracking information can then

be used to recognize certain gestures and the positions of the finger joints relative to the sensor.

HandsOn uses the commercially available Leap Motion Sensor to track the fingers. The Leap

Motion Sensor also comes with a developer SDK that allows easy access to the tracking data, such

as joint positions and simple gesture recognition.

 25

Furthermore, it is also necessary to calibrate with respect to the sensor’s location and orientation

and the marker’s position. This calibration step is necessary to properly pinpoint where the hand is

located relative to the marker, which in turn is calibrated relative to the physical reality.

Collaboration: Central Server of the Virtual World that Synchronizes All Displays

HandsOn needs to support collaboration between co-located users and remote users at the same

time. This means that all users need to be able to see a consistent state of the system—what

objects are in the system, where they are located, and their orientation—across all users. This

would not be an issue if we were working with physical objects, but it is an important requirement

to maintain while working with virtual objects in order to achieve realism.

Portability: Wireless Setup Requiring Local Area Network (LAN) Connectivity and Printable Marker

Sheet

In order to support portability, HandsOn should be easy to setup. A printable augmented-reality

marker sheet should be easily available to the users. The finger-tracking device should be portable

and easy to setup, and calibrating the relative position of the sensor and the marker should be

simple and easy to do. In addition, HandsOn should also work seamlessly over simple wireless

connection.

4.2 Supported Hand Gestures

Three distinct gestural interactions are supported in HandsOn. See Fig. 1 for pictures. The first

interaction is highlighting an object by pointing at the object using the tip of the index finger.

When the tip of the index finger is within the interaction range of any object, the highlighted

object will be emphasized by using thicker lines. The second interaction is moving an object by

pinching using the hand, and releasing the pinch to place the object. Finally, the third interaction

is changing the point of view of the entire virtual space. Often users need to view the virtual

content in order to understand the 3D structure of the virtual object fully. This can be done by

 26

pinching the space by using to hands, and doing a rotating movement as if the virtual space itself

is being rotated.

 (a) (b)

(c)

Figure 1. Supported gestural interactions. (a) Highlighting an object by pointing. (b)

Moving an object by pinching. (c) Changing the point of view by pinching using both

hands. Note that these pictures are captured from a tablet, not from a see-through HMD.

 27

4.3 Remote User Rendering for Remote Collaboration

Figure 2. The same action: highlighting an object, as performed by a local hand

(top left) and a remote hand (top right) as viewed by a local user. Note that these

two pictures are captured from a tablet, not from a see-through HMD. The bottom

picture is a screenshot taken from the see-through HMD in the presence of a

remote user, as is evident from the hands being rendered. Side-by-side rendering is

used, and since the display is semi-transparent, only the virtual content is rendered

with no camera feed as the background, as is typical in an AR application running

on a tablet.

 28

In the remote setup, remote users have to be represented in some ways to inform the local users of

remote actions. HandsOn renders the skeleton of the remote user hands to keep the local users

updated on the actions of the remote users. See Fig. 2 for pictures. Note that only the remote users

will be rendered this way. Local hands are not rendered since the physical hands are already

located in the same space.

4.4 Hardware Context

The HandsOn system is built using many hardware components, each of them are commercially

available. Therefore, it is important to understand the overall hardware context of the system

before diving into the details. Please see Fig. 4, 5, and 6 for illustrations.

Figure 3. HandsOn system’s hardware context diagram for remote collaboration. Each

location has one computer running a client, and each client is connected to an output

device, which is worn by a user. Dashed lines indicate wireless connectivity.

 29

Figure 4. HandsOn system’s hardware context diagram for co-located collaboration. Only

a single client computer is used, connected to a one Leap Motion sensor. However, the

client can be connected to more than one output device, allowing multiple co-located

users to view the virtual content by wearing the see-through glasses. Dashed lines indicate

wireless connectivity.

It is important to understand that HandsOn works for both co-located collaboration and remote

collaboration, with each of them having slightly different hardware context. In a remote

collaboration setup, there is a client computer on each location. Each location will have displays

that are connected to a client computer equipped with a finger-tracking sensor. In a co-located

setup, there will only be one client computer with a finger-tracking sensor but is connected to

possible multiple displays.

 30

Figure 5. A user is testing the system. Note all the hardware elements that are shown in

the picture: Moverio BT-200 worn by the user, Leap Motion sensor connected to the client

computer, a computer running the client application, and a marker sheet attached to a

vertical surface.

Moverio BT-200 glasses are used for the display. It is a commercially available optical see-through

head-mounted display with built-in camera and it is commercially available. HandsOn is able to

merge the virtual and the physical through marker-based AR tracked by the camera, and since

there are two separate displays for each eye, the Moverio BT-200 can render stereoscopic 3D

images, allowing realistic depth perception. Since the display is very personal—it is in the form of

glasses—the virtual content is only visible to someone who wears these glasses. Another important

thing to note is that the glasses do not operate independently; it is necessary to connect the glasses

to a specialized Android device through a proprietary connector. Therefore, all rendering has to be

done in the Android device poses important constraints to the system.

 31

Leap Motion Sensor is used for hand and finger tracking. Together with the provided SDK, this

small device allows precise enough tracking to allow simple but natural hand-based interaction. It

provides finger joint information and simple pinch and grab gesture recognition.

A general-purpose computer is used to connect all the pieces together. The glasses are connected

to this computer wirelessly, and the Leap Motion is connected over serial connection to the

computer. In a remote setup, the computer also connects to a remote computer.

The current implementation of HandsOn works over wireless LAN connection, where two

computers are connected over wireless, one being a client, and the other one being both a central

server and a client in a remote setup. Another device that needs to be connected is the display,

and at the moment, the displays are connected to the server computer.

Another important piece of the system is not electronic; it is the AR marker sheet. This sheet needs

to be printed out and placed on a vertical service in order to use HandsOn. The marker will be

tracked by the camera of the Moverio BT-200 glasses to compute the relative position of the

glasses and the world.

4.5 Software Context

In addition to understanding the numerous hardware components, it is also important to consider

the software ecosystem of HandsOn before jumping into the details of the system architecture. Fig.

6 describes the software context of HandsOn.

 32

Figure 6. HandsOn system’s software context diagram. Note the flow of the data from the

input to the visual output. Also note how the Client Application runs on the client

computer while the Display Application runs on the Moverio BT-200.

There are two different hardware devices involved, each running an application that is part of the

HandsOn system. First, there is the Android device that is connected to the Moverio BT-200. This

Android device runs the HandsOn Display Application that takes rendering matrices computed by

the Metaio SDK using the live camera input. Second, there is the client computer that runs the

HandsOn Client Application that takes tracking data from the Leap Motion SDK, send that

information to the HandsOn Server Application, which may or may not be running on the same

device, and synchronizes all displays connected to the client computer.

 33

The Leap Motion SDK is an easy-to-use library to retrieve inferred finger-tracking information for

the Leap Motion Sensor. It provides real-time joint positions and recognizes simple gestures such

as pinching and grabbing, which is very useful for implementing natural hand-based interaction.

The Metaio SDK is an Augmented Reality SDK that is supports the Moverio BT-200 glasses,

complete with a calibration routine that can be performed in order to perfectly register the marker

on each of eye. In HandsOn system’s software context, the Metaio SDK runs on the Android device

that is connected to the glasses. The Metaio SDK is capable of accessing the camera live image

and, with the calibration data and tracking configurations, compute the position and orientation of

the glasses relative to the marker. With this information, the Metaio SDK can generate the model,

view, and projection matrices that are used to render the virtual content using OpenGL ES 2.0

stereoscopically.

Each of the applications and libraries described above will be described in more details in the

following section.

 34

 35

5

System Implementation

Figure 7. The system architecture of HandsOn. See text for detailed explanation.

 36

Before we begin discussing the implementation details of HandsOn, please see Fig. 7, which

outlines the system architecture of HandsOn. Note that the diagram combines the major features

of the hardware context diagram and the software context diagram from the previous section.

There are three major components in the system: HandsOn Display Application, HandsOn Client

Application, and HandsOn Server Application, each serving a clearly defined role. The Display

Application runs on the Android device connected to the Moverio BT-200, receives data from the

Server Application, and renders the virtual content for the user. The Client Application retrieves

hand-tracking information from the Leap Motion sensor, sends it to the server, receives virtual

content state from the server, and sends that information to the Display Application to be

rendered. Meanwhile, the server receives all input from the Client Applications, updates the

system states and virtual content, and synchronizes all the updates with the Client Applications.

The following subsections will describe each of these applications in detail.

It is important to note the multiplicity of each component in the system. Fig. 8 describes the

multiplicity of the Display, Client, and Server Applications. In any collaboration session, there can

only be one Server Application running, since there has to be one entity that keeps track of

everything that is happening, and is able to update anyone requesting information about the state

of the system. In other words, the server is the central brain of the system. A Server Application

takes input from any number of Client Applications and updates each of them accordingly. This

multiplicity supports the remote collaboration aspect of HandsOn, since typically, a single

workspace is represented by one Client Application that retrieves hand-tracking input and

synchronizes it with the server. Furthermore, a Client Application can be connected to any number

of Display Applications. This multiplicity supports the co-located collaboration aspect of HandsOn,

since multiple users can view the virtual content on the same workspace at the same time. This is

due to the fact that a user needs to wear the Moverio BT-200, which runs the Display Application,

in order to view the virtual content.

 37

Figure 8. The multiplicity of the HandsOn Client, Server, and Display Applications. A

server can synchronizes with multiple clients, while each client can render to multiple

displays. A sample instance of the HandsOn system with three client applications running

and a total of five displays is depicted.

In the current implementation of HandsOn, both the Server Application and the Client Application

runs on the same machine. Furthermore, the Server Application synchronizes with all connected

HMDs to simplify the software system. Audio communication is also not implemented, as this can

be easily done using third-party video-conferencing system, such as Skype or Google Hangout.

Furthermore, this proof-of-concept implementation, unlike the system described above, works only

 38

over LAN but produces the exact same behavior, which is sufficient to simulate and evaluate the

system. A router is used to connect all the devices wirelessly.

5.1 HandsOn Client Application

The HandsOn Client Application is the main input of the application. Running on a computer

connected to a Leap Motion sensor, the Client Application retrieves hand-tracking data from the

Leap Motion Sensor through the Leap Motion SDK. The Client Application is implemented on

OpenFrameworks, an open source framework that suits building highly visual application and has

support for many popular libraries.

The Client Application takes advantage of the Leap Motion SDK to access the hand and finger

tracking data from the sensor. These joint positions are then stored and sent to the Server

Application to be processed and synchronized with all connected clients. The Leap Motion SDK

also recognizes simple pinch and grab gesture, which are then linearly combined in HandsOn to

form a robust pinching recognition using empirically determined parameters. This pinching

recognition is used by the server to update the state of the virtual world, as pinching an object

allows the user to move the object. As the current Leap Motion SDK does not allow data retrieval

from more than one Leap Motion Sensor, each computer can only run a single Client Application.

One important role of the client application is to send the processed hand information to the

Server Application, where this information is used to update the state of the virtual content, based

on the user interaction with the virtual object. The Server Application in turn sends the most

current state of the system, which includes object positions and orientations, back to the client,

which will then be forwarded to the Display Application so that the virtual world can be

stereoscopically rendered for the user.

 39

5.2 HandsOn Server Application

The HandsOn Server Application is the central brain of the system—the ones that controls and

maintain the state of the system. The Server Application receives hand input from all connected

clients and updates the virtual world accordingly. Implemented using OpenFrameworks, it uses

Open Sound Control (OSC) protocol to communicate with the clients.

The Server Application also manages the interaction between users and virtual objects. Given the

finger positions and hand poses, the server moves an object whenever a user pinches inside an

object. Another possible interaction with the virtual world is rotating the point of view so that the

user can view the virtual scene from a different angle, reinforcing the 3D feeling of the virtual

objects. The current implementation is limited to moving objects and changing the point of view of

the user, but it is possible to extend the implementation to include other interactions, such as

rotating an object.

Ideally, in order for the user to see the virtual world merged with the physical world, the Server

Application would send the virtual content states to the Client Applications, which in turn

forwards it to the Display Applications. However, in the current implementation of HandsOn, the

Client Application is skipped since it is assumed that all clients are connected to the same LAN,

which yields the same behavior in simulated remote collaboration.

5.3 HandsOn Display Application

The HandsOn Display Application is the main output of the system, through which the users can

view the virtual content overlaid on top of the virtual world. Running on the Android device

connected to the Moverio BT-200 glasses, this application renders the virtual scene twice, once for

each eye, yielding a stereoscopic view of the virtual 3D objects. The Moverio BT-200 has a total

 40

resolution of 960x540 per eye, with support for side-by-side 3D mode, meaning the left half of the

screen will be stretched to fill the left eye display, and the right half of the screen will be stretched

to fill the right eye display, which means only half of the horizontal resolution is available in 3D

mode.

In order to render the virtual content as if it was merged with the physical world, precise tracking

of the position and orientation the glasses is necessary. This is done by using marker-based AR

tracking, which is provided by the Metaio SDK. Using the Metaio SDK, it is possible to define a

coordinate system based on the relative positions of the markers, and by processing the live

camera image, the Metaio SDK can provide the necessary transformation matrices that is used to

render the virtual content.

As has been mentioned above, we can define a coordinate system based on the relative positions

of the markers, and this can be done by using a pre-defined tracking configuration. A tracking

configuration contains all the relative positions and orientations of all the markers in the system.

See Appendix A for more details. Another important component of the marker-based tracking

system is a marker sheet that can be easily printed by the user, and this marker sheet has to be

precisely as defined by the tracking configuration. See Appendix B for details. It was found that

using many of smaller markers—six markers is used—works better than using one big marker

since the user’s hand sometimes occludes the marker as viewed from the camera if the marker is

too big.

Once the Display Application knows how to render the virtual content, it needs to know what kind

of virtual content to render. For example, the application needs to know where the remote fingers

are located, what kind of virtual objects to render, and where to place them on the scene. The

Display Application receives this information from the Client Application. JavaOSC library [16] is

 41

used to mediate the communication between the two applications. Remote hands are rendered as

simple lines to indicate where the fingers are located (Fig. 2), whereas the actual hands, or so

called local hands, are not rendered, since it is physically in the same space of the user, which

means it is entirely visible to the user.

Since all rendering work has to be done on the Android device, the rendering capability is very

constrained with respect to memory and versatility, leading to rendering of simple 3D object

primitives only, such as lines or cubes. However, we realized that this is due to the limitation of

the hardware, and using a different type of optical HMD would alleviate or solve the problem

completely, so we decided not to pursue rendering complex objects. A partial solution to this

problem on the Moverio BT-200 is discussed in the discussion section of the thesis.

5.4 AR Marker-Hand Calibration

In order to accurately align the hand positions as returned by the Leap SDK, which in turn is

required to properly merge the virtual content and reality, it is necessary to perform a simple

calibration step that takes into account the infinitely many different possible marker and leap

relative position. This calibration procedure greatly supports the portability aspect of HandsOn, as

there is no need for a fully calibrated setup; all the user needs to do is mount the marker sheet on

a vertical surface, place the Leap Motion Sensor on a horizontal surface, and proceed with the

calibration step on the Client Application.

The goal of the calibration procedure is to obtain a vector from the center of the Leap Motion

Sensor and the center of the marker sheet. In order to do this, the user needs to point at the center

of the marker sheet and press the designated key ‘c’ while the Client Application is running. A

proper calibration is achieved when the visualization matches the real position of the hand joints.

Note that the marker needs to be at a 90 degrees angle with respect to the Leap Motion Sensor for

 42

the calibration procedure to work. This calibration procedure only need to be performed once after

every start-up, or after the sensor has been moved.

Figure 9. What the user have to do to calibrate (a) as visualized on the client (b) in the

real world, i.e. pointing at the center of the marker sheet and pressing the calibration key

‘c’.

5.5 Binocular Optical See-Through Calibration

In order to achieve realism, it is important to render virtual content as if it is part of the physical

world. Being part of the physical world means that any virtual content should be viewed as if it is

a physical object, thereby having a consistent position and orientation and can be consistently

viewed by the user from any point of view at any point in time. See Fig. 10. Therefore, it is

necessary to properly calibrate the display.

The goal of this calibration procedure is to obtain a precise representation of the camera frustum

relative to the right and left displays of the glasses. These parameters can be represented in many

different ways, but the calibration procedure of the Metaio SDK yields a translation offset and a

rotation offset for each of the display relative to the camera. These offsets are then used by the

rendering module to place the virtual camera in the scene to render the virtual content properly.

 43

Figure 10. Virtual content rendering when not calibrated (left) and calibrated (right). Not

calibrated: virtual content does not have consistent position and orientation, which is

supposed to be immediately above the marker—when viewed from different angles.

Calibrated: virtual content has consistent position and orientation when viewed from any

angle. Images taken from [17].

Figure 11. Sample calibration parameters as obtained after completing the calibration procedure.

<?xml version="1.0"?>
<HandEyeCalibration>
 <Metadata>
 <ToolboxVersion>6.0.1, v6010 (metaio SDK v6.0.1)</ToolboxVersion>
 <Device>EPSON_embt2 (embt2; EPSON; embt2; D1.0.5)</Device>
 <Date>2015-03-26 23:28:12.315-0400</Date>
 </Metadata>
 <!-- Transformation from camera to eye (display) coordinates -->
 <Transform for="ECT_RENDERING_STEREO_LEFT">
 <!-- Translation in millimeters -->
 <TranslationOffset>
 <X>107.973</X>
 <Y>-10.3894</Y>
 <Z>-30.7591</Z>
 </TranslationOffset>
 <!-- Rotation specified as unit quaternion -->
 <RotationOffset>
 <X>-0.0171863</X>
 <Y>0.0146289</Y>
 <Z>0.00643986</Z>
 <W>0.999725</W>
 </RotationOffset>
 </Transform>
 <Transform for="ECT_RENDERING_STEREO_RIGHT">
 <!-- Translation in millimeters -->
 <TranslationOffset>
 <X>46.5881</X>
 <Y>-6.80305</Y>
 <Z>-7.4931</Z>
 </TranslationOffset>
 <!-- Rotation specified as unit quaternion -->
 <RotationOffset>
 <X>-0.016325</X>
 <Y>0.0139466</Y>
 <Z>0.00442303</Z>
 <W>0.99976</W>
 </RotationOffset>
 </Transform>
</HandEyeCalibration>

 44

Ideally, the calibration should have been performed by the manufacturer, with calibration

parameters readily available online. However, the manufacturing process of the Moverio BT-200 is

not precise enough to yield to same calibration parameters for each pair. Hence, each pair needs

to be calibrated individually, and the built-in calibration parameters would only work in a small

number of devices, yielding an inexact overlay in most pairs.

Fortunately, the Metaio SDK provides a simple calibration routine that is available in a

downloadable Android application called Metaio Toolbox. The calibration routine is a simple four-

step process [17]. During the calibration procedure, the user will be prompted to match a

transparent grid overlay of a certain size to the user’s own view of a real marker with a known

physical size. This is repeated for each eye, left and right, and for two different marker sizes. Once

completed, a calibration file is generated and stored in the device.

It is important to realize that a calibration procedure is not necessary for video see-through

application, where the virtual content is rendered on top of camera feed. In this case, the marker

location and orientation is conveyed to the user through the camera feed instead of directly

through the eyes of the user, so overlaying the virtual content on top of the marker is relatively

simple. However, video see-through AR does not achieve the same kind of realism that optical see-

through AR can, as the user does not perceive the mixed-reality world directly but through a

camera feed.

One obvious limitation of this calibration procedure is that it needs to be performed for each pair,

thereby requiring a new user with non-calibrated glasses to execute the calibration routine before

they can use any binocular see-through application. However, it is reasonable to expect that future

devices can be manufactured in a more precise fashion, therefore eliminating the need to calibrate

each pair individually.

 45

Another limitation that is more challenging involves user-specific calibration. Accurate rendering

of virtual content on the real world involves precise measurement of the relative position and

orientation of the eyes of the user, the camera used to track the markers, and the see-through

displays. While this can be estimated to a certain degree, variations due to anatomical variation

between users will change both the relative position of the display and the eye, which can lead to

less-than-realistic perception of mixed-reality. A headset with eye-tracking capability can improve

the situation, but this is beyond the scope of this thesis.

 46

 47

6

Evaluation

6.1 User Study

We conducted a user study to test the usability and effectiveness of the system as a gestural

remote collaboration system on virtual content. We invited 6 subjects (2 males, 4 females) to

participate in a formal user test in a controlled environment in which they have to perform specific

tasks in pairs and collected their feedback. Before the main user study, we also conducted an

informal pilot test of the system in an uncontrolled environment with no specific tasks to perform,

and collected the testers’ feedback. None of the participants in the formal user study had seen the

optical HMD or the Leap Motion sensor prior to this study.

During the formal user study, the remote setup for HandsOn is used, where the HandsOn system is

setup in two separate rooms and connected wirelessly. Each pair of participants was briefed on

how to interact with the system before they started. During the study, the participants were given

specific written instructions to take turns pointing at one of the displayed objects, e.g. colored

cubes, move them around to a certain location, observe the remote users execute the tasks, and

communicate with the remote users using gestures. All pairs of users were able to complete the

tasks in less than 20 minutes.

 48

6.2 Results

Figure 12. Average of user ratings on a 5-point Likert scale with 5 being the highest rating

for each respective aspect. The error bars are +/- 1 standard deviation from the average.

Overall, we received positive feedback from the users. We found that users were very satisfied

with HandsOn when it comes to communicating gestural information with remote users. They

expressed that the rendering of the remote user’s hands greatly increased the sense of co-presence

and general awareness of the remote actions, as reflected by the consistently high ratings for this

particular aspect. Furthermore, the system is also rated quite highly, 3.7 out of 5.0, in terms of

collaborativeness since they were able to complete the designated tasks with minimal problems

(see Fig. 12).

Users felt reasonably comfortable using the Moverio BT-200—a rating of 3.2 out of 5.0—with

occasional complaints about how the glasses are too heavy or will not stay properly in place,

mostly for participants who were wearing glasses. Many of them also commented on how they felt

 49

that the stereoscopic rendering really adds to the experience and how it gives the illusion of the

virtual coexisting with the physical. Many users complained about how the virtual image is shaky

and would not stay in place, which does not ruin the entire experience but definitely a nuisance to

the users. This is caused by low resolution of the built-in camera of the Moverio BT-200, since the

same problem is not observed when a tablet with higher resolution camera is used. Another

interesting observation that we made was that a small number of users found it difficult to discern

the 3-dimensional aspect of the rendering, and this phenomenon was observed in both our formal

and informal testing sessions.

Users also felt that the interaction with the virtual objects felt natural, as pointing and pinching

are natural actions a person would do to manipulate objects. While about half of the users found it

easy to interact with the virtual objects, the other half of the users found it hard to initiate the

interaction with the virtual objects, yielding lower ratings—2.8 out of 5.0—for ease of interaction.

This was due the inability of the Leap Motion sensor to track the fingers of the users well outside

of its optimal tracking region, which is a small region about 20 centimeters above the sensor.

Many times, the hands are lost by the tracking system or the system would return unreliable finger

joint positions. This severely limits the effective interaction range of the system, as the users have

to position and orient their hands and the virtual objects in a space larger than the Leap Motion

sensor’s optimal tracking region. A better sensor, such as a high-resolution depth camera, would

help track the hands in a larger region of space. However, finger tracking is a difficult problem to

solve and it is not the focus of HandsOn. Another possible solution is to use marker-based

tracking, e.g. by attaching color markers on the finger and performing computer vision analysis to

track finger positions and poses.

When asked about possible user scenarios, many users connected the system immediately to their

backgrounds. One of the participants is a chemical engineer and expressed how this system would

 50

be very useful for her, as her team often have to design a chemical plant collaboratively with a

remote team, often the clients. Her current solution includes the use of video conferencing system

or remotely logging into the remote team’s computer, but a more extensive version of HandsOn

could allow both teams to actively participate and visualize the end product in a decision-making

meeting. She imagined how she could decide where to place new equipment or piping in a

chemical plant expansion using HandsOn, which are often ambiguous and difficult to decipher

from 2D drawings and layouts. Another participant who is an architect expressed similar ideas for

meetings with clients or design sessions with fellow architects, which require many participants to

highlight different aspects of one key model with a lot of details. Other ideas such as a learning

tool for the study of 3D geometry in mathematics and interactive games were also mentioned by

users.

6.3 Discussion

HandsOn has proved to be a helpful system for remote collaboration on virtual objects. However,

we realized that there are rooms for improvements. Some of these are due to the limitation of the

device that we are currently using, the Moverio BT-200, while some others fell in the general

challenge of designing and implementing an AR-based system.

6.3.1	
 	
 	
 3D	
 Depth	
 Perception	
 and	
 Depth	
 Occlusion	

Some users mentioned that it is difficult to pinpoint where the virtual object is located even

though it has been stereoscopically rendered. What is interesting is that not all user responses are

the same—some reported that it is very easy to pinpoint where the virtual object is located and

that the merging between virtual and the physical is very good, i.e. the user can easily select,

pinch, and move an object as if they were in real objects.

 51

One tester said that the tester personally is not very adept at 3D depth perception, self-explaining

the tester’s difficulty at using the system. Another commented that it is confusing to use the system

because it is possible to see the virtual image even though the hand is supposed to be occluding

the object, i.e. the lack of depth occlusion in the current implementation of the system. This

problem of implementing depth occlusion is a common challenge in implementing AR-based

system, since the system requires extensive sensing of the surrounding environment in real-time in

order to know which object is occluding another.

One possible solution that will alleviate the problem is to head-mount a depth sensor to build a

depth map of the physical world which is aligned with the user’s own view. This will allow the

system to render virtual objects selectively: objects that are behind the obstructing objects will not

be rendered. A different placement option of the depth sensors can also be explored—such as

placing the depth sensor on the workspace instead of head-mounting it—but this will require

possibly complicated setup procedure, thereby limiting the portability aspect of HandsOn.

6.3.2	
 	
 	
 Client	
 Rendering	

The fact that the rendering is performed on the Android device that is connected to the Moverio

BT-200 severely limits the range of objects that can be rendered. For example, using the current

version of the Metaio SDK, it is not a simple task to render 3D model when in see-through mode,

which is one of the reason that only simple objects are implemented. Furthermore, the rendering

capability is limited by the amount of available memory on a mobile device. One possible solution

is to use a hardware that can be connected directly to a general-purpose computer and displays

whatever is on the screen, at the expense of portability, but this contradicts the portability aspect

of HandsOn.

One solution that is likely to work is by letting the Client Application perform the rendering on the

computer, and then streams the resulting video to the Display Application, which then simply

 52

displays the received video. However, a two-way communication is necessary because the Client

Application requires the model, view, and projection matrices for each eye, which depends on the

location of the marker on the live camera image, to be sent by the Display Application. Therefore,

in this case, the role of the Display Application is reduced to tracking the marker, sending that

information, and receiving the video stream from the Client Application, but this will lead to an

improved rendering and development environment, as the computer that runs on the Client

Application does not have the constraints of a mobile device like the Android device running the

Display Application.

There are, however, issues that might arise in this new setup: sending the marker tracking

information, rendering on the Client Application, and sending the resulting video back, may

introduce unacceptable latency to the system, leading to loss of consistency in the merging of the

physical and the virtual world.

 53

7

Conclusions

We proposed HandsOn, a portable system for collaboration on virtual objects that supports both

co-located collaboration and remote collaboration. HandsOn takes advantage of the most recent

advances in display and sensing technology, combining optical see-through HMD and finger

tracking to merge the physical space with virtual objects, which users can manipulate using simple

hand gestures. This proof-of-concept system is designed to be portable, to run wirelessly, and to be

able to be easily setup using a simple calibration procedure as described in section 5.4 and 5.5.

We received positive feedback from our user study participants. HandsOn did well on increasing

user awareness on remote user and actions, as well as creating the illusion of the physical and the

virtual space being merged. However, users found it difficult at times to initiate object

manipulation using hand gestures. This is mostly due to the limited tracking capabilities of the

Leap Motion sensor, which often yields inaccurate finger tracking. Furthermore, the HMD’s built-in

camera’s limited resolution sometimes lead to unstable virtual rendering in poor lighting

conditions.

Even though most of the limitations of the current system are due to the limitation of the Moverio

BT-200 optical HMD that we are using, future work should not focus on overcoming these

barriers, since better display technologies, such as the Microsoft’s HoloLens and the Magic Leap,

and better finger tracking technology will eventually solve the problem in the future. Instead,

future research should focus on exploring ways to design a truly 3D user interface for interacting

with virtual objects. Challenges will be abundant in this topic since the general population is not

 54

yet accustomed to truly natural, 3D user interfaces, especially when there is no haptic feedback.

Therefore, haptic feedback for AR-based interfaces is also another research subject worth

exploring. Implementing occlusion for AR-based interfaces is also a very important subject to

pursue, since true AR would require occlusion to create the perfect illusion of the virtual being

merged with the physical reality.

 55

Appendix A

HandsOn Tracking Configuration

The following is the content of the tracking configuration file used by the Metaio SDK to track the
AR markers described in Appendix B.

<?xml version="1.0"?>
<TrackingData>
 <Sensors>
 <Sensor type="MarkerBasedSensorSource">
 <SensorID>HandsOnMarkerTracking</SensorID>
 <Parameters>
 <MarkerTrackingParameters>
 <TrackingQuality>robust</TrackingQuality>
 <ThresholdOffset>128</ThresholdOffset>
 <NumberOfSearchIterations>2</NumberOfSearchIterations>
 </MarkerTrackingParameters>
 </Parameters>

 <SensorCOS>
 <SensorCosID>Marker1</SensorCosID>
 <Parameters><MarkerParameters>
 <Size>80</Size><MatrixID>1</MatrixID>
 </MarkerParameters></Parameters>
 </SensorCOS>
 <SensorCOS>
 <SensorCosID>Marker2</SensorCosID>
 <Parameters><MarkerParameters>
 <Size>80</Size><MatrixID>2</MatrixID>
 </MarkerParameters></Parameters>
 </SensorCOS>
 <SensorCOS>
 <SensorCosID>Marker3</SensorCosID>
 <Parameters><MarkerParameters>

<Size>80</Size><MatrixID>3</MatrixID>
</MarkerParameters></Parameters>

 </SensorCOS>
 <SensorCOS>
 <SensorCosID>Marker4</SensorCosID>

<Parameters><MarkerParameters>
<Size>80</Size><MatrixID>4</MatrixID>
</MarkerParameters></Parameters>

 </SensorCOS>
 <SensorCOS>

<SensorCosID>Marker5</SensorCosID>
<Parameters><MarkerParameters>
<Size>80</Size><MatrixID>5</MatrixID>
</MarkerParameters></Parameters>

 </SensorCOS>
 <SensorCOS>

<SensorCosID>Marker6</SensorCosID>
<Parameters><MarkerParameters>
<Size>80</Size><MatrixID>6</MatrixID>
</MarkerParameters></Parameters>

 </SensorCOS>
 </Sensor>
 </Sensors>

 <Connections>
 <COS>

 56

 <Name>HandsOnCOS</Name>
 <Fuser Type="SmoothingFuser">
 <Parameters>
 <KeepPoseForNumberOfFrames>3</KeepPoseForNumberOfFrames>
 <GravityAssistance></GravityAssistance>
 <AlphaTranslation>0.8</AlphaTranslation>
 <GammaTranslation>0.8</GammaTranslation>
 <AlphaRotation>0.5</AlphaRotation>
 <GammaRotation>0.5</GammaRotation>

 <ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrientatio
nSensor>
 </Parameters>
 </Fuser>

 <SensorSource>
 <SensorID>HandsOnMarkerTracking</SensorID>
 <SensorCosID>Marker1</SensorCosID>
 <HandEyeCalibration>

 <TranslationOffset><X>0</X><Y>0</Y><Z>0</Z></TranslationOffset>

 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset><X>82</X><Y>-45</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </COSOffset>
 </SensorSource>

 <SensorSource>
 <SensorID>HandsOnMarkerTracking</SensorID>
 <SensorCosID>Marker2</SensorCosID>

 <HandEyeCalibration>
 <TranslationOffset><X>0</X><Y>0</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </HandEyeCalibration>

 <COSOffset>
 <TranslationOffset><X>0</X><Y>-45</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </COSOffset>
 </SensorSource>

 <SensorSource>
 <SensorID>HandsOnMarkerTracking</SensorID>
 <SensorCosID>Marker3</SensorCosID>

 <HandEyeCalibration>
 <TranslationOffset><X>0</X><Y>0</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </HandEyeCalibration>

 <COSOffset>
 <TranslationOffset><X>-83</X><Y>-45</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </COSOffset>
 </SensorSource>
 <SensorSource>
 <SensorID>HandsOnMarkerTracking</SensorID>
 <SensorCosID>Marker4</SensorCosID>

 <HandEyeCalibration>
 <TranslationOffset><X>0</X><Y>0</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </HandEyeCalibration>

 57

 <COSOffset>
 <TranslationOffset><X>82</X><Y>45</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </COSOffset>
 </SensorSource>
 <SensorSource>
 <SensorID>HandsOnMarkerTracking</SensorID>
 <SensorCosID>Marke5</SensorCosID>

 <HandEyeCalibration>
 <TranslationOffset><X>0</X><Y>0</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </HandEyeCalibration>

 <COSOffset>
 <TranslationOffset><X>0</X><Y>45</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </COSOffset>
 </SensorSource>
 <SensorSource>
 <SensorID>HandsOnMarkerTracking</SensorID>
 <SensorCosID>Marker6</SensorCosID>

 <HandEyeCalibration>
 <TranslationOffset><X>0</X><Y>0</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </HandEyeCalibration>

 <COSOffset>
 <TranslationOffset><X>-83</X><Y>45</Y><Z>0</Z></TranslationOffset>
 <RotationOffset><X>0</X><Y>0</Y><Z>0</Z><W>1</W></RotationOffset>
 </COSOffset>
 </SensorSource>

 </COS>
 </Connections>
</TrackingData>

 58

 59

Appendix B

HandsOn Marker Sheet

The following is a scaled-down version of the HandsOn Marker Sheet.

Unfortunately, the full-sized version cannot be included in this thesis due to margin constraints.
A ready-to-print version in PDF format is available here:

https://drive.google.com/file/d/0B2l223gZ6JZSWGhiUk0yNVlUV0k/view?usp=sharing

Please make sure to print the marker sheet on letter-sized paper with no scaling applied.
Otherwise the tracking configuration file described in Appendix A will not work properly.

 60

 61

References

[1] David Lakatos, Matthew Blackshaw, Alex Olwal, Zachary Barryte, Ken Perlin, and Hiroshi Ishii.
2014. T(ether): spatially-aware handhelds, gestures and proprioception for multi-user 3D
modeling and animation. In Proceedings of the 2nd ACM symposium on Spatial user interaction
(SUI ‘14). ACM, New York, NY, USA, 90-93.

[2] Spindler, M., Büschel, W., and Dachselt, R. Use Your Head: Tangible Windows for 3D
Information Spaces in a Tabletop environment. Proc. ITS '12, 245-254.

[3] Rajinder S.Sodhi, Brett R.Jones, David Forsyth, Brian P.Bailey, and Giuliano Maciocci.
BeThere: 3D Mobile Collaboration with Spatial Input. In Proc. CHI 2013, ACM Press (2013), 179-
188.

[4] Grossman, T. and Balakrishnan, R.. Collaborative interaction with volumetric displays. Proc.
CHI '08, 383-392.

[5] Agrawala, M., Beers, A., McDowall, I., Fröhlich, B., Bolas, M., and Hanrahan, P. The two-user
Responsive Workbench: support for collaboration through individual views of a shared space.
Proc. SIGGRAPH '97, 327-332.

[6] Ivan E.Sutherland. A head-mounted three- dimensional display. In Proc. AFIPS 1968, ACM
Press (1968), 757-764.

[7] Judith Amores, Xavier Benavides, and Pattie Maes. A Remote Collaboration System that
Supports Immersive Gestural Communication. Work In Progress, CHI 2015.

[8] J.P. Rolland and H. Fuchs, "Optical Versus Video See-through Head-Mounted Displays in
Medical Visualization," Presence: Teleoperators and Virtual Environments, vol. 9, no. 3, June
2000, pp. 287-309.

[9] Kiyokawa, K., Takemura, H., Yokoya, N. "SeamlessDesign for 3D Object Creation," IEEE
MultiMedia, ICMCS '99 Special Issue, Vol.7, No.1, pp.22-33, 2000.

[10] Mark Billinghurst , Hirokazu Kato, Collaborative augmented reality, Communications of the
ACM, v.45 n.7, July 2002.

 [11] Broll, Wolfgang, Irma Lindt, Jan Ohlenburg, Michael Wittkämper, Chunrong Yuan, Thomas
Novotny, Chiron Mottram, A. Fatah gen Schieck, and A. Strothman. "Arthur: A collaborative
augmented environment for architectural design and urban planning." (2004).

[12] Schmalsteig, D., Fuhrmann, A., Szalavari, Z., Gervautz, M., Studierstube - An Environment
for Collaboration in Augmented Reality. In CVE ’96 Workshop Proceedings, 19-20th September
1996, Nottingham, Great Britain.

[13] Sarayeddine, K., & Mirza, K. (2013, May). Key challenges to affordable see-through wearable
displays: the missing link for mobile AR mass deployment. InSPIE Defense, Security, and
Sensing (pp. 87200D-87200D). International Society for Optics and Photonics.

 62

[14] Magic Leap (2015). http://www.magicleap.com.

[15] Microsoft HoloLens (2015). https://www.microsoft.com/microsoft-hololens/en-us.

[16] Illposed Software – Java OSC (Download) (2015).
http://www.illposed.com/software/javaosc.html

[17] Metaio SDK: Stereo See-Through Calibration (2015).
http://dev.metaio.com/sdk/documentation/standalone-apps/toolbox/stereo-see-through-
calibration/

[18] Reality Check: Comparing HoloLens and the Magic Leap (2015).
http://www.technologyreview.com/news/535806/reality-check-comparing-hololens-and-magic-
leap/

