
Using a Symbolic Language Parser to Improve
Markov Language Models

by

Duncan Clarke McIntire Townsend

S.B. Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 30, 2015

Certified by. .
Boris Katz

Principal Research Scientist
Thesis Supervisor

Accepted by .
Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Using a Symbolic Language Parser to Improve Markov

Language Models

by

Duncan Clarke McIntire Townsend

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Electrical Engineering

Abstract

This thesis presents a hybrid approach to natural language processing that combines
an n-gram (Markov) model with a symbolic parser. In concert these two techniques
are applied to the problem of sentence simplification. The n-gram system is com-
prised of a relational database backend with a frontend application that presents a
homogeneous interface for both direct n-gram lookup and Markov approximation.
The query language exposed by the frontend also applies lexical information from the
START natural language system to allow queries based on part of speech. Using the
START natural language system’s parser, English sentences are transformed into a
collection of structural, syntactic, and lexical statements that are uniquely well-suited
to the process of simplification. After reducing the parse of the sentence, the resulting
expressions can be processed back into English. These reduced sentences are ranked
by likelihood by the n-gram model.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist

Acknowledgments

I would like to thank my advisor, Boris Katz, for his tenacious support of me not only

through my M.Eng. thesis, but also through my undergraduate education. I would

also like to thank Sue Felshin for her guidance and patience with me as I learned how

to use the systems employed by the MIT CSAIL Infolab Group. Finally, I would like

to thank my parents for their warmth and positive demeanor as they supported me

through both my undergraduate and graduate careers at MIT.

6

Contents

1 Introduction 11

2 Building an n-gram Database 13

2.1 Backends . 13

2.1.1 MongoDB . 13

2.1.2 PostgreSQL . 14

2.2 Query Language . 15

2.2.1 Query Features . 15

2.2.2 Query Structure . 16

3 START 19

3.1 T-expressions . 19

4 Intelligent Backoff 23

4.1 Justification . 23

4.2 Simplification . 24

4.2.1 Parsing . 24

4.2.2 Pruning . 24

4.2.3 Generation . 27

4.2.4 Ranking . 27

4.3 Backoff . 27

5 Summary 29

5.1 Applications . 30

7

8

List of Tables

4.1 English Word Dependency Locality 23

4.2 START parse of “That fluffy cat quickly ate the fish which swims be-

cause the cat was bored”, reduced for clarity. 25

4.3 START parse of “That fluffy cat quickly ate the fish which swims be-

cause the cat was bored” . 26

9

10

1. Introduction

Markov language models, also known as n-gram language models, are a popular and

effective method of measuring the relative correctness of natural language phrases.

N-gram models are parameterized by the “Markov window”, the number of words

in sequence that the model captures the probability of before resorting to Markov

approximation. If the Markov window is set too large, the model suffers from spar-

sity. Sparsity happens when the training data set is too small to accurately represent

the probability of uncommon word sequences. With a small training data set, many

possible word sequences will not appear in the training data. As so-called “big data”

approaches to machine learning become more popular, training data sets become

larger and so larger Markov windows become appropriate. There is, however, a limit

to this approach. Training data sets need to become exponentially larger as Markov

windows grow. Additionally, storage and indexing requirements grow exponentially

with the Markov window, making n-gram models with large n inappropriate for en-

vironments with constrained computing resources. Sparsity is frequently addressed

using a backoff or smoothing method. Among the most commonly used are additive

smoothing, [2] Good-Turing estimation, [4] and Katz backoff [9].

The n-gram model used in this thesis uses a Markov window of 5. This means that

word dependencies that span more than 5 words cannot be captured by the model.

The result of this thesis is a model that can capture word dependencies with much

larger spans without increasing the size of the model’s database or the training data

set.

This model combines the statistical approach to language as embodied by an n-

gram model with a symbolic, grammatical approach to language as embodied by Boris

11

Katz’s START natural language parser. [5, 6, 7, 8] The grammar-driven approach

provided by START can improve the n-gram model by allowing its Markov window

to “stride” over modifiers and dependent clauses. The statistics-driven approach of the

n-gram model can correct unusual phrasing that prevents a match against START’s

knowledge base. To demonstrate this, two systems have been built on a common

framework. A system of intelligent n-gram backoff demonstrates the ability of a

symbolic approach to improve a statistical one. A system that ranks the relative

correctness of alternative phrasings and chooses the most correct one demonstrates

the ability of a statistical approach to improve a symbolic one.

This combined symbolic–statistical approach improves the statistical model with-

out resorting to ever-larger training data sets and databases, and improves the sym-

bolic model’s permissiveness, which has historically been a limitation of those types

of approaches.

This thesis will address the technical challenges of constructing an n-gram database

with a large training corpus and large n. First, it will discuss the architectural chal-

lenges of building a query language for an n-gram database that naturally expresses

the kinds of queries that are most useful. Next, the START natural language parsing

system and its ternary expression internal representation will be described. Finally,

this thesis will present the details of an intelligent backoff system combining both the

START natural language parser and the n-gram database that is capable of analyzing

longer and more complex structures than an ordinary n-gram model.

12

2. Building an n-gram Database

An n-gram database ought to have several key qualities:

∙ a query language that naturally expresses the kinds of equivalences that are

present in natural language

∙ a homogeneous interface across both direct n-gram lookup and Markov approx-

imation

∙ a “high recall” mode that accepts a generalized n-gram pattern and returns all

specific n-grams that match

To easily express the equivalences in natural language, the database should store the

canonical form of each n-gram that encapsulates the differences between n-grams that

are relevant to a native speaker. Having a homogeneous interface for both lookup and

Markov approximation requires that a frontend application be built that exposes a

query language independent of the backend representation of the n-gram data. This

query language must also support some form of pattern matching and generalize n-

gram syntax to enable a “high recall” mode. The system constructed for this thesis

supports all three of these qualities.

2.1 Backends

2.1.1 MongoDB

This thesis uses the Google Trillion Word Corpus [1] as its data set. The Google Tril-

lion Word Corpus consists of the count of each 1-, 2-, 3-, 4-, and 5-gram that appeared

13

in a trillion words scraped from the internet by the Google Machine Translation Team

in January 2006. In the initial work performed for this thesis, these n-gram/count

pairs were formatted as JSON and stored in a sharded MongoDB database. This was

an initial success because MongoDB’s relatively free-form JSON document structure

lent itself well to expressing the concept of a canonical form of each n-gram.

Although MongoDB’s document structure flexibility was great for constructing

certain kinds of queries, the expressiveness of MongoDB’s query language was lacking.

The lack of joins in MongoDB’s query language forces the front-end application to

perform many sub-queries and aggregation steps to perform the approximation. Since

the aggregation steps are being performed in the front-end application, they are less

efficient in both processing time and memory usage. Since each sub-query requires a

network round trip, they are also slow.

The second major problem with MongoDB was a result of MongoDB’s lack of

durability guarantees. This first manifested after attempting to perform a backup

and restore of the MongoDB database following a migration to a new machine. It

was discovered that the newly restored database had fewer documents stored in it

than the source material. After investigation, this was attributed to both a failure to

commit documents as they were being created and a disturbing phenomenon where

the read-only MongoDB collections lose documents over time. A stop-gap solution

was constructed that involved initially checking the collections for missing documents

and then regularly restoring the database from a known-good backup.

2.1.2 PostgreSQL

Ultimately, the issues with MongoDB’s lack of relational joins and durability out-

weighed the benefit of MongoDB’s flexible document structure and easy sharding.

During Markov approximation, n-gram data is highly relational. MongoDB’s lack of

joins and any other features supporting a relational dataset made it unsuitable for

storing the n-gram data. A second iteration of the database backend was in order.

After some work to separate the front-end query language from the backend database

interface, a second backend interface was created based on PostgreSQL.

14

Although there were initial difficulties creating a schema that accurately reflected

the kinds of canonicalization that most queries require while still being efficiently

indexable, the ability to use joins in queries proved to be a great boon. PostgreSQL’s

durability guarantees also removed the problems faced with MongoDB. The current

form of the database has completely removed support for MongoDB because its main-

tenance was too costly for it to be worthwhile.

2.2 Query Language

Although the structure of the database backend was a major technical challenge,

the API presented to the end-user was a more interesting architectural challenge.

Initially, the interface replicated a legacy system built by Yuan Shen of the CSAIL

Infolab group. Shen’s work was intended as a resource for comparing possible spelling

corrections for a particular word in fixed context. Although his interface was excellent

for that purpose, it lacked the flexibility of a more general-purpose system. To that

end, an API was developed that exposed a uniform interface for directly looking up

n-grams in the database and for performing Markov approximation.

2.2.1 Query Features

This API took a sequence of whitespace-separated words and a set of canonicalization

parameters and returned all matching n-grams and their counts. For n-grams with

length larger than the widest Markov window (5), the counts were replaced with the

Markov approximation of the frequency. Initially, the query language engine was a

very thin front-end for the underlying database, but as it was used, more features

were added.

The first few features were a heterogeneous collection of functionality that other

members of the CSAIL Infolab group found useful. The first feature added to the

query language was the automatic conversion of words not found in the Google Trillion

Word Corpus lexicon to the special token “<UNK>”. “<UNK>” in the Google Trillion

Word Corpus represents words with frequency too low to appear in the lexicon. The

15

next feature added was the ability to specify an n-gram prefix and obtain all n+1-

grams with that prefix. This is useful in predictive text and autocorrection. This was

later generalized by adding a “<WILD>” special token that matches all words. By

using a “<WILD>” token at the end of a sequence, it is possible to query based on

sequence prefixes.1

A more restrictive form of “<WILD>” was developed in response to the use case

where after making a query containing “<WILD>”, the results were then filtered

using some lexicon. The special tokens “<ADJECTIVE>”, “<ADVERB>”, “<NOUN>”,

“<PREPOSITION>”, and “<VERB>” were added, representing any word that can be

that part of speech, according to START’s lexicon.2

As a later enhancement, “<NOUN>” was given attributes such as gender, num-

ber, and proper/common that can be used to make it more restrictive. Similarly,

“<VERB>” was given attributes for the five possible conjugations of a verb in En-

glish: “past”, “present-participle”, “past-participle”, third person singular

“present”, and “other”.3

2.2.2 Query Structure

The initial version of the API assumed that all queries were whitespace-separated

sequences of words. This assumption was a poor one and introduced bugs from two

sources. First, special tokens like “<VERB present>” contain whitespace. Second,

the tokenization performed on the corpus before generating the n-grams was not

simply whitespace-splitting. This second bug turned out to be the more complex

one. According to the documentation supplied with the Google Trillion Word Corpus,

tokenization was performed with a tokenizer similar to the one used in the Penn

Treebank [10] Wall Street Journal section. After examination, however, the data in

the n-gram database does not reflect the use of a tokenizer as described. Rather

1For example, the 3-gram query “John <WILD> Mary” matches both 3-grams “John and Mary”
and “John loves Mary”.

2Similar to the previous example, the 3-gram query “John <VERB> Mary” matches “John loves
Mary” but not “John and Mary”.

3The 3-gram query “John <VERB present> Mary” matches “John loves Mary” but not “John
loved Mary”.

16

than attempt to imperfectly replicate the tokenizer that was used on the original

corpus, an interface was exposed that allows the user to explicitly tokenize their

own sentences from strings into token sequences. This interface takes JSON-encoded

arrays of strings and returns the appropriate n-grams and counts. Future work may

include a tokenizer, but it is beyond the scope of this thesis to attempt to replicate

the one used in the Google Trillion Word Corpus.

17

18

3. START

START [5, 6, 8] is a natural language system that models English syntax and se-

mantics. In addition to its use as a natural language parser, START contains a com-

monsense knowledge engine that is closely coupled to its understanding of English

semantics. START’s primary application is to natural language question answering.

The interface at http://start.csail.mit.edu/ differs from conventional search en-

gines in the kinds of responses START produces. START compares user questions

to the information in its knowledge base to provide direct answers to those ques-

tions, instead of keyword matches as seen in conventional search engines. START’s

question-answering capability is not the capability that this thesis makes use of, how-

ever. START’s English-language parsing and generation capabilities are the focus of

this work.

3.1 T-expressions

START’s internal language representation consists of a collection of ternary expres-

sions (abbreviated as T-expressions or texps). Ternary expressions are 3-tuples in the

form:

[subject relation object]

In this thesis, T-expressions will be written between square brackets and with whites-

pace separating the 3 elements (subject, relation, and object). The subject and object

may be either T-expressions or atoms; the relation must be an atom. Atoms are either

global constants (proper nouns, some special relations, and other singleton entities),

or instances (actions, common nouns, properties, modifiers, etc.). Global constants

19

are represented in this thesis by the name of the constant. Instances are represented

in this thesis by the name of the instance and a unique base-10 number distinguish-

ing that instance from all other instances. The name of the instance and the unique

number are joined together with a “+” character to make the representation of the

instance.

The simplest T-expressions are those such as [cat eat+1 fish], expressing the

action “eats” being performed by the agent “cat” on the object “fish”. More com-

plicated T-expressions can have “nested” subjects or objects, such as [John know+1

[Mary like+2 cake+3]], which expresses “John knows that Mary likes cake”.1 START’s

T-expression language is much richer than this, however.

T-expressions can be broken down into 3 broad categories. Structural T-expressions

describe the semantic relationships between the words that compose a sentence with-

out regard to their inflection or part of speech. Syntactic T-expressions describe the

inflection and syntactic roles of the words in the sentence and serve to disambiguate

word usage. Lexical T-expressions provide information about word definitions and

parts of speech. This thesis is primarily concerned with altering the structure of

sentences by manipulating the structural T-expressions, although it makes use of

syntactic T-expressions to find alternate inflections and uses lexical T-expressions to

identify structural T-expressions that may be of interest.

Structural T-expressions come in two major forms. T-expressions in the form:

[subject verb object]2

form the “backbone” of a sentence and express the main actions. There may be more

than one T-expression in this form, but all but one of them will be subordinated by

some other relation. T-expressions may also have the form:

[subject special_relation object]

In this case, special_relation is one of a fixed list of special structural relations.3

1Additional lexical T-expressions are required to disambiguate tense and the use of “that”.
2verb is always written in the infinitive; other, syntactic T-expressions provide information about

its inflection. If verb is intransitive, then object will be the constant null.
3The special structural relations are has_effect, has_intensifier, has_method,

has_modifier, has_quantity, has_property, has_purpose, has_rel_clause, is, is-a, and
related-to.

20

The meaning of these special structural relations depends on the relation.4 For ex-

ample, the special structural T-expression

[cat+1 has_property fluffy+2]

tells us that the noun “cat” has an adjective modifier “fluffy”. So the noun phrase is

“fluffy cat”.

Syntactic T-expressions are all in the form:

[subject special_relation object]

Because these T-expressions control the inflection of words, they have an effect on

the corresponding sentence. Although there are many syntactic T-expressions, we

are primarily concerned with those that control the inflection of nouns and verbs.5

As with structural T-expressions, the meaning of the special syntactic relations is

dependent on the relation in question.6

Lexical T-expressions are also all in the form:

[subject special_relation object]

Lexical T-expressions do not always have an effect on the corresponding sentence, and

are sometimes included in parses as supplementary information. Similar to syntactic

T-expressions, there are many special lexical relations. However, only relations that

assist in the identification of subordinate clauses are of any concern. These are the

is_clausal and has_category relations.7

4has_effect, has_method, has_purpose, has_rel_clause, and related-to join two other T-
expressions together. has_intensifier, has_modifier, has_quantity, and has_property apply
simple modifiers to words. is and is-a represent verbs of being (am, are, be, been, being, is, was,
were) and are similar in use to ordinary verbs, but are special-cased because of the complicated
behavior of verbs of being.

5These syntactic relations are has_det, is_perfective, is_progressive, has_modal, and
has_position.

6has_det controls which determiner a noun has, if any. is_perfective and is_progressive
control the perfective and progressive aspects of verbs. has_modal specifies the aspectual modal, if
any. has_position controls the position of a subordinate clause relative to its subject.

7is_clausal is used to mark clausal verbs and subordinating conjunctions. has_category is
used to mark the part of speech of any word that may be ambiguous.

21

22

4. Intelligent Backoff

4.1 Justification

Markov approximation gives the frequency of n-grams of any length that could have

appeared in the corpus (up to the Markov window). However, due to the problem of

sparsity (as discussed in the Introduction), there are possible utterances that do not

appear in the database simply because they did not appear in the training data (or

in the case of the Google Trillion Word Corpus, did not have frequency above 40). It

would be useful to be able to evaluate the relative likelihood of these n-grams, even

at low accuracy.

To that end, a system of intelligent backoff was implemented for n-grams with

length beyond that of the Markov window. This intelligent backoff encapsulates the

idea that although the vast majority of English-language word dependencies are cap-

tured by the Markov window of 5 [3], as seen in Table 4.1, there are still a significant

minority that are not. The backoff system shortens sentences by removing modifiers

and dependent clauses, splitting independent clauses from each other, and altering

the inflection of the words in the sentence.

Table 4.1 English Word Dependency Locality
Markov window 2 3 6 10
dependencies captured 74.2% 86.3% 95.6% 99.0%

from Collins, A New Statistical Parser Based on Bigram Lexical Dependencies [3]

23

4.2 Simplification

In this method, backoff effectively increases the length of the Markov window by

removing modifiers and subordinate clauses. After the intervening modifiers and sub-

ordinate clauses between two words that share a dependency have been removed, the

Markov window can capture that dependency and give an estimate of how likely that

dependency is. By selectively deleting T-expressions from the parse of the sentence,

the system trims these intervening elements and simplifies the sentence. The simpli-

fication process produces a set of possible simplifications of the given sentence. Many

of these simplifications are so reduced as to be almost meaningless, while others have

awkward phrasing. Only the combined symbolic–statistical approach can eliminate

those simplifications that would never occur in normal English.

4.2.1 Parsing

The first step of simplification is to parse the raw sentence into a set of T-expressions

that represent it. It is on this set of T-expressions that the remainder of the simpli-

fication process operates. START takes a whitespace-separated, case-agnostic string

that represents the sentence and returns the parse as XML, which gets read into a

more idiomatic in-memory structure for later processing.

For example, the sentence “That fluffy cat quickly ate the fish which swims because

the cat was bored” corresponds to the T-expression set in Table 4.3. Of the T-

expressions in the parse listed in Table 4.3, only the structural T-expressions and a

subset of the syntactic and lexical T-expressions as discussed in § 3.1 are of interest.

This reduced set of T-expressions is listed in Table 4.2. The next sections refer to

these T-expressions in examples, shown in footnotes.

4.2.2 Pruning

Pruning proceeds in four stages. The first stage identifies pruning opportunities.

These can be as simple as identifying all T-expressions with has_det as the relation

or identifying those T-expressions that are the object of a relation that has been

24

Table 4.2 START parse of “That fluffy cat quickly ate the fish which swims because
the cat was bored”, reduced for clarity.

[[cat+6 eat+1 fish+5] because+2 [somebody bore+2 cat+6]]
[[cat+6 eat+1 fish+5] has_modifier+1 quickly]
[cat+6 has_property+3 fluffy]
[fish+5 has_rel_clause+3 [fish+5 swim+3 null]]
[cat+6 has_det that]
[[[cat+6 eat+1 fish+5] has_modifier+1 quickly] has_position mid_verbal]
[[cat+6 eat+1 fish+5] has_position leading]
[cat+6 has_det definite]
[because+2 is_clausal Yes]
[fish+5 has_det definite]
[because+2 has_category relation]

marked with [* is_clausal Yes].1 The second stage takes the opportunities that

were identified in the previous stage and from them, computes those elements that

should be merely deleted (leaving any other elements that are still referenced else-

where intact), and those elements that should be purged entirely (deleting any other

elements that reference them).2 The third stage considers all combinations of the

opportunities identified in the first stage and applies all the deletions for those op-

portunities. The fourth stage takes each of the reduced T-expression sets produced

by the third stage and performs a cleanup step where any T-expressions that modify

or are subordinate to elements that have been deleted are themselves deleted.3 The

resulting set of reduced T-expression sets is passed back to START for “generation”.

1For example, the T-expression [because+2 is_clausal Yes] signals that there is an opportu-
nity to prune the subordinate clause headed by because+2.

2Although the T-expression [because+2 is_clausal Yes] signals the opportunity for prun-
ing, the pruner actually deletes the object of the T-expression [[cat+6 eat+1 fish+5] because+2
[somebody bore+2 cat+6]], namely [somebody bore+2 cat+6]. The pruner purges it entirely,
deleting it and all references to it.

3After the third and fourth stages, the maximally reduced set of T-expressions includes the
following structural and “interesting” syntactic and semantic T-expressions:
[[cat+6 eat+1 fish+5] has_position leading]
[cat+6 has_det definite]
[fish+5 has_det definite]

25

Table 4.3 START parse of “That fluffy cat quickly ate the fish which swims because
the cat was bored”

[[cat+6 eat+1 fish+5] because+2 [somebody bore+2 cat+6]]
[[cat+6 eat+1 fish+5] has_modifier+1 quickly]
[cat+6 has_property+3 fluffy]
[fish+5 has_rel_clause+3 [fish+5 swim+3 null]]
[cat+6 has_det that]
[[[cat+6 eat+1 fish+5] has_modifier+1 quickly] has_position mid_verbal]
[[cat+6 eat+1 fish+5] has_person 3]
[[cat+6 eat+1 fish+5] has_tense past]
[[cat+6 eat+1 fish+5] has_position leading]
[somebody has_number singular]
[somebody is_proper Yes]
[cat+6 has_det definite]
[[somebody bore+2 cat+6] has_person 3]
[[somebody bore+2 cat+6] has_tense past]
[[somebody bore+2 cat+6] has_voice passive]
[[somebody bore+2 cat+6] passive_aux be]
[[somebody bore+2 cat+6] has_clause_type tensed]
[because+2 is_clausal Yes]
[[[cat+6 eat+1 fish+5] because+2 [somebody bore+2 cat+6]] is_main Yes]
[cat+6 has_number singular]
[fish+5 has_number singular]
[fish+5 has_det definite]
[[fish+5 swim+3 null] has_person 3]
[[fish+5 swim+3 null] has_tense present]
[cat+6 has_category noun]
[eat+1 has_category verb]
[fish+5 has_category noun]
[has_modifier+1 has_category relation]
[quickly has_category adv]
[because+2 has_category relation]
[somebody has_category noun]
[bore+2 has_category verb]
[has_property+3 has_category relation]
[fluffy has_category adj]
[swim+3 has_category verb]
[null has_category nil]
[has_rel_clause+3 has_category relation]

26

4.2.3 Generation

In addition to its parsing capabilities, START has the ability to generate English

sentences from their T-expression sets. This thesis takes advantage of this capability

by transforming the reduced T-expression sets produced by pruning back into their

“flat” English representation.4

4.2.4 Ranking

After parsing, pruning, and generation, the resulting sentences are ranked by their

likelihood. Because these sentences are of different lengths, for each sentence, the

likelihood is the probability that a sentence of the same length has the same content

(ignoring case, diacritics, and punctuation). This step suffers from the same Markov

approximation problems as discussed earlier, but because the reduced sentences are

shorter, the Markov window can capture a larger proportion of the dependencies in

the sentence.

4.3 Backoff

Using the simplification capabilities described in § 4.2, it is possible to augment the

normal Markov approximation mechanism with a backoff mechanism. Normal Markov

approximation suffers from problems of sparsity and the limited Markov window.

Using a backoff system that incrementally removes modifiers and subordinate clauses

helps to solve both of these problems. Backoff using simplification helps to solve the

sparsity problem by making sentences more generic. More generic sentences are more

likely to have been observed in the training corpus. Although making sentences more

generic makes them more likely to appear in the training corpus, if the “backbone”

of the original sentence is nonsense, the simplified sentence is likewise unlikely to

appear.

4The maximally reduced T-expression set mentioned earlier, when generated back into English
by START, produces “The cat ate the fish.”.

27

Backoff using simplification also helps to solve the limited Markov window problem

by shortening the distance between words that share a dependency. In particular,

by removing intervening modifiers and subordinate clauses, the Markov model can

analyze more long-distance word dependencies. Sometimes, relations can be exposed

to analysis by the Markov model just by reordering the modifiers and subordinate

clauses. In this case, the system can analyze the sentence without the information

loss caused by removing those modifiers and subordinate clauses.

Using this backoff scheme, the system can discover that “The well-dressed tall

soft-spoken man walked slowly down the curved street.” is potentially correct, while

“The talkative red shoe vigorously eats the mountains.” is almost certainly not. “The

talkative red shoe vigorously eats the mountains.” does not appear in the training

corpus at all, even after simplification to “Shoe eats mountains.”. However, “The man

walked.” does appear in the database, so at least the action is reasonable, even if the

modifiers are not.

28

5. Summary

The work of this thesis is composed of three parts: an n-gram language model, the

interface to the START natural language system, and the simplification system built

on top of those. To support the kinds of queries that are most useful to the user

of an n-gram model, a query language was designed that can query based on part

of speech, as well as being able to ignore capitalization, punctuation, and diacritical

marks.

The START natural language system is a broadly applicable system which con-

tains the natural language parser that is used in this thesis. START’s natural lan-

guage parser transforms English sentences into a set of T-expressions that expose

the structural, syntactic, and lexical information of the sentence. The separability of

these T-expressions and the ease with which they can be manipulated by programs

facilitate the construction of systems that work by parsing sentences with START,

modifying the resulting T-expression set, and then generating the T-expressions back

into English with START.

This thesis describes a simplifier that works in four stages built on top of START

and the n-gram system developed for this thesis. The simplifier parses English into T-

expression sets using START. These T-expression sets are then reduced in a pruning

step that exposes the “backbone” of the sentence. These reduced T-expression sets

are generated back into English by START before being ranked for correctness by the

n-gram system. The result is a list of simpler sentences, ordered by their “correctness”

as analyzed by the n-gram system. These simpler sentences can be used to analyze

the correctness of words in a more generic context than the original, or to widen the

apparent window of the n-gram model. Systems that rely on an n-gram model could

29

use the work in this thesis to enhance their models.

The simplifier is used for intelligent backoff when Markov approximation cannot

accurately capture the dependencies between words, or when sparsity causes otherwise

correct utterances to be declared incorrect. By reducing the distances between words

sharing a dependency, the simplifier exposes that dependency to analysis by the n-

gram model. By making sentences more generic, the simplifier reduces the problem

of sparsity in the training dataset of the n-gram model.

5.1 Applications

The system of simplification and intelligent backoff has applications anywhere overly

specific sentences need to be made more generic or n-grams are being applied to data

where the Markov assumption does not hold or sparsity is a problem. Specifically,

this system was developed to assist the START question answering system with overly

specific questions. For example, if START is asked “How many bright shiny pennies

are there in a dollar?” it cannot answer the question. However, after applying the

simplification process, one of the sentences we obtain is “Are there pennies in a dol-

lar?”. START can answer this question and arrives at the correct answer of “Yes.

There are 100 cents in one dollar.”.

Other applications include automatically simplifying documents by removing com-

plicated modifiers and subordinate clauses. This system also could be applied to work

with the Genesis [11, 12, 13, 14] system as an automated method of extracting the

backbone of a sentence for story understanding. Future work may augment this sim-

plifier to replace words with a special token (as discussed in § 2.2.1) representing

their part of speech or enhance the simplifier to transform passive voice sentences

into active voice and vice versa.

30

Bibliography

[1] Thorsten Brants and Alex Franz. All our n-gram are be-
long to you. http://googleresearch.blogspot.com/2006/08/
all-our-n-gram-are-belong-to-you.html Accessed: January 28, 2015.

[2] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. In Proceedings of the 34th annual meeting on As-
sociation for Computational Linguistics, ACL ’96, pages 310–318, Stroudsburg,
PA, USA, 1996. Association for Computational Linguistics.

[3] Michael John Collins. A new statistical parser based on bigram lexical dependen-
cies. In Proceedings of the 34th annual meeting on Association for Computational
Linguistics, pages 184–191. Association for Computational Linguistics, 1996.

[4] I. J. Good. The population frequencies of species and the estimation of popula-
tion parameters. Biometrika, 40(3-4):237–264, 1953.

[5] Boris Katz. A three-step procedure for language generation. A.I. Memo 599,
Massachusetts Institute of Technology Artificial Intelligence Laboratory, Decem-
ber 1980.

[6] Boris Katz. Annotating the world wide web using natural language. In Proceed-
ings of the 5th RIAO Conference on Computer Assisted Information Searching
on the Internet (RIAO 1997), pages 136–159, June 1997.

[7] Boris Katz, Gary Borchardt, and Sue Felshin. Natural language annotations for
question answering. In Proceedings of the 19th International FLAIRS Conference
(FLAIRS 2006), Melbourne Beach, FL, May 2006.

[8] Boris Katz and Patrick H. Winston. Parsing and generating English using com-
mutative transformations. A.I. Memo 677, Massachusetts Institute of Technology
Artificial Intelligence Laboratory, May 1982.

[9] S. Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 35(3):400–401, 1987.

[10] Mitchell Marcus, Ann Taylor, Robert MacIntyre, Ann Bies, Constance Cooper,
Mark Ferguson, and Alyson Littman. The Penn Treebank Project. http://www.
cis.upenn.edu/~treebank/ Accessed: January 28, 2015.

31

[11] Patrick H. Winston. The genesis story understanding and story telling sys-
tem a 21st century step toward artificial intelligence. Technical report, Mas-
sachusetts Institute of Technology Computer Science and Artificial Intelligence
Laboratory, June 2014. http://groups.csail.mit.edu/genesis/papers/
StoryWhitePaper.pdf Accessed: January 28, 2015.

[12] Patrick Henry Winston. The strong story hypothesis and the directed perception
hypothesis. In Pat Langley, editor, Technical Report FS-11-01, Papers from the
AAAI Fall Symposium, pages 345–352, Menlo Park, CA, 2011. AAAI Press.

[13] Patrick Henry Winston. The next 50 years: a personal view. Biologically Inspired
Cognitive Architectures, 1:92–99, 2012.

[14] Patrick Henry Winston. The right way. Advances in Cognitive Systems, 1:23–36,
2012.

32

