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Abstract

In this thesis we attempt to estimate the influence of university technology transfer offices in the
process of commercializing university discoveries. Using already available data from over one
hundred universities and more detailed data we collected directly from eleven universities, we
assess how effective technology transfer offices are in facilitating the commercialization process.

The thesis consists of three main analyses. The first two are cross-sectional. We build regres-
sion models that use the key determinants (research expenditures, faculty quality rating, and
resources provided for technology transfer) to make predictions about the number of licenses,
patents, and invention disclosures for each university. We use Data Envelopment Analysis to
evaluate the ”excellence” score of universities (based on the number of licenses, patents, royalty
income, faculty publications, graduate student enrollment, and awarded Ph.D. degrees). We
then look at how these scores correlate with the resources universities provide for technology
transfer. The results from these cross-sectional analyses suggest that there is a strong positive
correlation between investment and success in technology transfer. In the course of this inves-
tigation of the technology transfer offices it was necessary to consider the influence of variables
not directly related to technology transfer. Our results imply that there are diminishing rates of
return for research expenditures, and that ”good” faculty perform research more cost effectively
than other faculty.

While the cross-sectional analyses show if investment correlates with success, these methods
do not tell us about the causal relationship between the two. To shed light on the causal
relationship we collected detailed time series data from eleven universities, and analyze the
evidence. Our results imply that hiring professionals will lead to an increase in the licensing
rate, and that universities respond to an increase in the licensing rate by hiring more support
staff for technology transfer.

Our results imply that investing in technology transfer is good for the university, because
it may yield a positive return on the investment. It is good for industry, because they can
make further use of university discoveries. Last, but not least, it is good for the general public,
because it pushes inventions out of the laboratory and into the marketplace.

Thesis Supervisor: Arnold I. Barnett
Title: Professor of Operations Research and Management
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Chapter 1

Introduction

In 1996 expenditures for Research and Development in the United States were $184
billion. About $22 billion of the research was performed at universities and colleges,
and, of this, $13.5 billion were federal dollars. There are many benefits resulting from
university research, both tangible and intangible. This dissertation focuses on analyzing
how new technologies that are invented at universities are disseminated and applied in
society.

Most universities operate a Technology Transfer Office (TTO). This office provides
the interface between faculty and industry. If many great inventions are being made at
universities, they are of little value if they are never put to use, or as President Lyndon
Johnson said when he arrived on the NIH campus in 1966: “We must make sure that no
life-giving discovery is locked up in the laboratory.” [GAO68]

University technology transfer offices are, in principle, very important for drawing
maximum benefits from the investment in university research. But theory and practice
often diverge. This dissertation addresses questions about the effectiveness of university
TTOs. Are TTOs promoting university research outcomes, or are they instead obsta-
cles to the commercialization of new technologies? Are new university-based inventions
reaching the market because of effective technology transfer, or do the TTOs just man-
age a process that would exist even without them? Is the investment universities make
in technology transfer a good investment?

1.1 What is Technology Transfer?

Clyatt [CLY85] defines technology transfer as:

. the process by which science and technology are diffused throughout
human activity. Wherever systematic rational knowledge developed by one
group or institution is embodied in a way of doing things by other institu-
tions or groups we have technology transfer. This can be either transfer from
more basic scientific knowledge into technology, or adaptation of an existing
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technology to a new use. Technology transfer differs from ordinary scien-
tific information transfer in the fact that to be really transferred it must be
embodied in an actual operation of some kind.!

University technology transfer takes many forms. The most obvious is technology
licensing in which new technologies are put to practical use. The faculty first secure
exclusive rights to use their invention, and then look for industrial parties that may be
interested in using the technology. The industrial parties pay the inventor royalties based
on sales or other terms of the agreement. Another form of technology transfer occurs when
university graduates introduce new ideas and knowledge to their employers. Similarly,
faculty often engage in consulting work with industry. This provides an opportunity
for the faculty to apply the state-of-the-art methodology to real problems. Another
form of technology transfer has long been practiced through consortia. Companies join
a consortium, usually involving a substantial membership fee. A team of faculty then
receive funds and access to real world data, and in return the members of the consortium
have unlimited access to all research outcomes from the work. Historically consortia
have been utilized in the petroleum industry but are now becoming more widespread.
Finally, when faculty publish papers and go to conferences it is a medium for sharing
their knowledge and get valuable feedback.

1.2 Motivation

This work was originally motivated by a hypothesis about the negative impact of uni-
versity TTOs. A senior Vice President at one of the major pharmaceutical companies
recently suggested that university technology transfer specialists were major obstacles to
commercializing technologies developed by university faculty. He suggested that everyone
would be better off if industry had greater flexibility in working directly with university
researchers on commercializing their inventions; industry could take make greater use of
university research outcomes, and universities and faculty would benefit from increased
royalty income. He is by no means the first person to make this hypothesis. Numerous
interviews with TTO specialists have confirmed that many people hold this opinion.

If this hypothesis is correct the commercialization process of university discoveries
should be reformed. The primary goal of university technology transfer is to push uni-
versity research outcomes to the marketplace and help interested users to utilize the
technology in return for a moderate compensation. If the current arrangement is not
meeting this goal we need to go back to the drawing board.

But what is the other alternative? People who are of the opinion that TTO specialists
hinder the commercialization process may prefer working directly with faculty about
using their inventions, or they may prefer an entirely different mechanism for marketing

loriginally from H. Brooks (1966), National Science Policy and Technology Transfer.
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university research outcomes. In this thesis we look at how the “amount” of resources
provided for technology transfer and the success at such transfer relate to each other.

This problem is very relevant from an Operations Research perspective. The tech-
niques of OR are helpful in breaking the problem down to smaller pieces and analyzing
the behavior of each piece. We build models—calibrated on empirical data—that suggest
what the main determinants of success in commercializing university discoveries are. By
looking at the degree of influence of TTOs in the models, we gather evidence about the
effectiveness of the current structure of university/industry collaborations.

Most of the analysis focuses on two output measures as evidence of successful technol-
ogy transfer activities. We look at patents that are granted to U.S. universities. Patents
are, in some fields of research, the final manifestation that the research was successful.
The other measure we focus on is license agreements. License agreements are contracts
between the licensee (usually a for-profit corporation) and the licensor (in our case the
university and faculty). The license agreements are tangible proof that inventions from
university research are being used.

It is clear that university priorities vary. Some universities emphasize putting re-
search outcomes to practical use, while others focus on other issues. Low investment in
technology transfer may not be a sign of low research quality, but that the emphasis is
on other areas of application.

Considering that universities spend over $20 billion on research and receive more
than $300 million in royalties per year, it is clear that only a small improvement in the
commercialization of university research outcomes would be very valuable.

1.3 Data Sources

In addition to the sources mentioned below, we collected data directly from universities.
This was necessary to determine the causal relationship in the licensing process. The
data collection effort is outlined in section 5.3.

The Association of University Technology Managers (AUTM) is a nonprofit profes-
sional and educational society created to assist administrators of patent and copyright
programs at universities to license technologies, encourage the production of inventions,
and to make appropriate recommendations to assure the effective transfer of technology
to the public. AUTM association has polled its members since 1991 [AUT96], and this
is our primary source of data related to technology transfer. This database has infor-
mation on the following: 1) the number of options and licenses executed (1991-1995),
2) the number of new U.S. patent applications (1991-1995), 3) the number of invention
disclosures received (1991-1995), 4) gross royalties received (1991-1995), 5) people pro-
viding professional services for technology transfer (1992-1995), 6) people providing staff
support for technology transfer (1992-1995), 7) legal fee expenditures for patents and/or
copyrights (1991-1995), 8) aggregate research expenditures (1991-1995), and more.

The National Research Council performed a study in 1993 [NRC95]. This study is
aimed at gathering information about research-doctorate programs in the United State;
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to provide a large, recent database that can be used by scholars who focus their work
on characteristics of the national higher learning educational system and its associated
research enterprise. We use this database to get 1) the number of faculty publications
(1988-1992), 2) the number of full and part time graduate students enrolled (fall 1992),
3) the number of Ph.D.’s produced by university (from academic year 1987-1988 to 1991-
1992), and 4) the scholarly quality of program faculty in 1993 (see section 3.4.3).

The National Science Foundation compiles a database each year with the reported
research expenditures of American universities, by university and department [SRS95b).
This survey is the primary source of information on separately budgeted research and
development expenditures within universities in the United States. These data have been
collected from universities for over twenty years.

The U.S. Patent and Trademark Office summarizes patent activity by U.S. colleges
and universities between 1969-95 [TAF96]. Separate summaries are provided for those
institutions ranked in top 100 by total research and development (R&D) expenditures in
fiscal year 1994. Patent data presented in this report were obtained from the Technology
Assessment and Forecast database, which is maintained by the Office of Electronic In-
formation Products. We use these data to get longer time series for patents (figure 2-1),
and they also have classification information on patents.

1.4 Organization and Conclusions

The dissertation consists of three main analyses. In Chapter 3 we build models that use
the most important determinants of research output to make predictions of the num-
* ber of patents, licenses, and invention disclosures. In Chapter 4 we use Data Envelop-
ment Analysis to evaluate university excellence on a number of dimensions, including
the number of patent applications, license agreements, faculty publications, and student
enrollment statistics. We first assess the university excellence independent of the TTO re-
sources, but then, in a follow-up investigation, look at the relationship between a school’s
excellence classification and the resources it provides for technology transfer. Both these
analyses look at the cross-sectional data, and analyze the differences among universi-
ties. In Chapter 5 we focus on time series analysis to determine the causal relationships
between investment in resources and increased output.

1.4.1 Cross-Sectional Regression Models

In Chapter 3 we build nonlinear models that use various determinants of research outputs
to predict the number of patents, licenses, and invention disclosures. The most important
determinants are: departmental research expenditures, professionals and support staff
working on technology transfer, legal fee expenditures for patents and/or copyrights, and
the faculty quality rating. Using these variables we build models that fit empirical data
to predict the number of patents a university enters in a given year, the number of license

12
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agreements made with industry, and the number of invention disclosures received from
faculty.

We show that only the Engineering, Physical Sciences, and Life Sciences departments
contribute appreciably to the patenting and licensing processes. The results imply that
universities which invest more than others in technology transfer are also more successful
at such transfer. The models also imply diminishing rates of return for research expen-
ditures. Comparing two universities, one with twice the expenditures of the other, we
expect less than 75% more outputs from the larger university.

1.4.2 Data Envelopment Analysis

In Chapter 4 we use Data Envelopment Analysis to evaluate the “success” score of each
university. Choosing from six output measures (the number of patent applications, the
number of license agreements, gross royalties received, faculty publications, graduate
student enrollment, and Ph.D. degrees awarded) each university has the opportunity to
put its “best foot forward” when evaluating its “success” score. After evaluating these
“success” scores we look the relationship between the score and the resources universities
provide for technology transfer.

We reach two main conclusions. We find a strong positive relationship between the
resources provided for technology transfer and the “success” score. Universities that
invest more in technology transfer have a higher “success” score. Secondly, our results
imply that the universities that invest more in technology transfer also derive a higher
fraction of their score than others from royalties, patents, and licenses. This outcome
suggests that universities which invest in technology transfer look stronger in comparison
to others as more emphasis is placed on patents, licenses and royalties. Putting these two
conclusion together, we conclude that universities which invest in technology transfer have
a higher “success” score because of better performance in commercializing university
discoveries.

1.4.3 Time Series Analysis

In Chapter 5 we use time series analysis to gather evidence about the causal relationship
between hiring more people at the TTOs and increases in technology transfer. We design
a survey instrument and collect detailed time series data directly from eleven universities.
From these data we try to determine the causal relationship.

We perform a number of analyses on the data. Some of the analyses do not give hints
about what the causal relationship is, but they confirm our prior findings in Chapters
3 and 4. The evidence we find about the causal relationship suggests that hiring more
people to work on technology transfer will lead to an increase in the number of license
agreements entered with industry.

13



1.4.4 Bringing it all Together

Each of these three analyses on their own explains a “piece of the puzzle”, but none gives
a complete answer to our question. The results from Chapters 3 and 4 work against the
hypothesis that the TTOs hinder the commercialization process of university discoveries;
we find a strong correlation between the investment in technology transfer and the
success in commercializing technologies. These methods do, however, not show which
way the causal relationship is; does the success lead to the investment, or does the
investment lead to success? The time series analysis is aimed at determining the causal
relationship, but it does not explain the underlying dynamics of the commercialization
process. The evidence we find for determining the causal relationship suggests that hiring
more professionals to work on technology transfer will consequently lead to more licenses.

Putting these three pieces together we have a fairly complete understanding of the
dynamics involving university technology transfer offices.

14

B



Chapter 2

Background

In this chapter we describe the background of this work in some detail. We start by
discussing how university discoveries have been utilized in the past, and how universities
have gradually placed more and more emphasis on commercializing university inventions.
We explain recent changes in legislation that have changed the working environment
for technology transfer programs, and we show how the number of patents granted to
American universities has increased in the last 20 years. We discuss the role of technology
transfer offices today and outline the key resources for those offices. By looking at a
hypothetical example we illustrate how a university discovery might be implemented, and
we discuss how the technology transfer specialists are involved in this process. Finally,
we review previous work related to this dissertation.

2.1 Historical Background

2.1.1 The Wisconsin Alumni Research Foundation

The first documented and most celebrated success story in university licensing is from the
university of Wisconsin-Madison. The Wisconsin Alumni Research Foundation (WARF)
was formed in 1925 as a nonprofit independent foundation, organized to administer
patents and licenses resulting from research discoveries brought to it by the University
of Wisconsin faculty members, and to use the income from such licenses to fund further
research at the university.

The story of WARF begins in 1924 when Professor Harry Steenbock [STE24] pub-
lished research demonstrating that vitamin D could be activated by irradiating food. To-
wards the end of the paper Steenbock mentioned that he was in the process of applying
for a patent on the invention on behalf of the University of Wisconsin. This initiative was
not well received by fellow academics, as they thought it improper for a faculty member
to look for financial gains from research done at a university. After initiating the appli-
cation, Steenbock received an offer of $900,000 (approximately $7.6M in 1994 dollars)
from the Quaker Oats Company for exclusive rights to the patent. Professor Steenbock
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rejected the offer and assigned his patent rights to WARF without any arrangement for
personal compensation. To provide other faculty with an incentive, WARF decided to
pay Professor Steenbock 15% of the net income.

2.1.2 The Bayh-Dole Act

Since the twenties, more and more universities have, for one reason or another, taken
steps towards protecting and commercializing faculty innovations. The Bayh-Dole Act,
P.L. 96-517, passed into law in December 1980. This law forms the cornerstone of uni-
versity technology transfer programs today. The Bayh-Dole Act provides the universities
with the right to own the technology derived from federally sponsored research—it gives
universities, nonprofit organizations and small businesses the “right to retain title to in-
ventions arising under federal funding” (p. 224). As a result universities can now protect
intellectual property resulting from research sponsored by federal agencies. The univer-
sity thus holds the property rights, but the faculty usually collects considerable benefit
(between 10% to 70% of the net income).

Prior to the act it was not clear if universities could seek financial gains from research
sponsored by federal agencies. The Bayh-Dole Act goes even further than just granting
the right to the universities, it actually obliges the universities to seek opportunities
to commercialize invented technologies. If federal agencies believe universities are not
sincerely making research outcomes commercially available, they have certain “march-in”
rights. They can, under certain circumstances, march in and directly grant corporations,
or other interested parties, the right to apply technologies that are otherwise protected
by the patent law.

While these “march-in” rights have never been used, there are a few cases where
corporations have requested such action. As reported in the June 27, 1997 issue of the
Chronicle of Higher Education [CHR97], there is a recent and highly publicized case in
the courts. In March 1997 CellPro Inc. asked the federal government to exercise its
“march-in” rights. They want to use a method invented by a Johns Hopkins professor
in the early 1980s. The method identifies and isolates stem cells, the master cells from
which all other cells in the blood and immune system develop. This battle, between
CellPro Inc. on one hand, and Johns Hopkins University on the other, has been ongoing
for many years. It is not until recently that CellPro Inc. asked the NIH to exercise the
“march-in” right. In August 1997 the director of the National Institute of Health, Harold
E. Varmus, rejected CellPro’s request.

2,.1.3 Patents Granted to American Universities in the Last 20
Years

University patenting has grown substantially during the past 20 years. In the years before
1981, fewer than 400 U.S. patents were granted each year to American universities. As
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figure 2-1 shows, this number had risen to more than 1800 in 1995. This exponential
growth has averaged an 11% increase each year since 1975.
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Figure 2-1: Total Patents Granted to U.S. Universities From 1975.

There are many reasons for this growth: Universities have substantially increased the
investment in technology transfer programs; faculty have become more and more aware
of the commercial potential of their research outcomes; industry has realized better and
better the benefits of keeping close working relationships with universities; and, a few
success stories have provided faculty with a further desire to get patents.

2.2 The Role of University Technology Transfer Of-
fices

Most universities have started a technology transfer office in the past ten years. The
objectives of these offices vary among universities, but include some or all of the following:

1. To help put technologies invented at the university to practical use.
To protect the intellectual property generated by research at the university.
To protect the university from research-related law suits.

To increase direct research support from industry.

o e W N

To generate income for the university.
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6. To provide advice and services for faculty.

7. To redistribute the royalty income to faculty and others involved.

In the spirit of the Bayh-Dole Act, most TTOs have the official objective of putting
the technologies invented at their university to use. They explicitly emphasize this goal
in one form or another. Few TTOs explicitly state their primary objective to be to
generate income for the university and faculty. From numerous discussions with TTO
professionals it is, however, clear that they think very much in terms of generated income.

Figure 2-2 is a schematic diagram of the communication channels between faculty
and industry.

Technology
Transfer
Office

Figure 2-2: The Faculty-Industry Interface.

Several aspects of figure 2-2 are important. Observe that the TTO stands between
faculty (the originator of the problem solution) and industry (the potential user of the
. solution). Observe also that there are ways for industry to communicate directly with fac-
ulty. The intensity of these communication channels varies, depending on an institution’s
practices, funding situation, and other external factors.

When analyzing the operations of TTOs, the first step is to dissect the commercial-
ization process. Figure 2-3 illustrates how good ideas are put to practical use.

When a faculty member has an idea that is potentially of commercial value, the first
thing he or she can do is to file an invention disclosure with the technology transfer
office at the university. In the invention disclosure the faculty member describes his or
her invention in general terms. This description needs to be specific enough to help
interested parties to understand what it does, but not too specific since the disclosure
documents are publicly available. The invention disclosure reveals how the research was
funded and identifies any other participants in the research. Here it is important to
identify parties that may claim rights to the invention. Often the disclosure also suggests
who might be interested in applying the technology.

It is important to realize that it is the faculty who file the invention disclosure with
the TTO at their university. If the faculty are not aware of the activity at the TTO, no
invention disclosures will be filed. To increase the number and quality of invention dis-
closures, the staff of the technology transfer offices give seminars for faculty, introducing
the technology transfer staff and processes.
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Figure 2-3: The Commercialization Process.

After the invention is disclosed, there are several ways to protect it. In the center
of figure 2-3, patents, copyrights, and other refer to various alternatives to protect the
intellectual property. The TTO chooses (in cooperation with the faculty) the best way
to protect the invention. The key alternatives include:

Patents. A patent is a grant issued by the United States Patent and Trademark
Office, giving an inventor the right to exclude all others from making, using, or
selling the invention within the United States, for a period of 17 years from the
patent grant. To be patentable, an invention must be new, useful and non-
obvious.

Copyrights. A copyright owner has the exclusive right to reproduce the work,
prepare derivative works, distribute by sale or otherwise, and display or perform
the work publicly. In contrast to a patent which protects the idea, copyright covers
the artistic ezpression in the particular work, but does not protect the idea.

Trade and Service Marks. A trade or service mark is a word, name, symbol or
device (or any combination) adopted by an organization to identify its goods or
services and distinguish them from the goods and services of others.

Mask Works. A mask work is defined as a series of related images representing a
predetermined, three-dimensional pattern of metallic, insulating, or semiconducting
layers of a semiconductor chip product.

Tangible Research Property. The term tangible research property refers to those
research results which are in a tangible form as distinct from intangible (or intel-
lectual) property. Examples of tangible property include integrated circuit chips,
computer software, biological organisms, engineering prototypes, engineering draw-
ings, and other property which can be physically distributed.

19




o Trade Secret. The law of trade secret may be applied to almost any secret which
is used in business and gives the owner of the trade secret a competitive edge over
others.

There are primarily two reasons why it is important to protect the intellectual prop-
erty. Others should not draw unfair financial gains from the invention. The second,
and just as important reason, is that when university researchers invent new techniques,
methods and processes, these most often do not constitute a product that is immediately
marketable. Considerable research and development is needed in order to design a new
product that utilizes the invention. If the party that buys the right to the invention
cannot trust that it will have exclusive rights to use this technology, the incentive of
investing in further research and development is reduced significantly.

When the university TTO has decided how the idea will be protected, it can focus on
its main objective: to promote the available solution and find someone who is interested
in using it. The staff of the TTO gather information on who might be interested in using
the idea, contact these parties, and try to reach an agreement with them.

A license agreement is a contract between licensor (the holder of intellectual property,
here the university and the faculty) and licensee (the party that uses the intellectual
property). This contract describes the property the licensee is getting, how it will be
used, and what the university gets in return (royalties and more). There are two different
types of license agreements. When a company enters an ezclusive license agreement, it
gets exclusive rights to use the invention for its stated purpose. It knows that no one
else can—as long as the license is active—use this invention. For an exclusive license
agreement, it is therefore in the best interest of both parties that the intellectual property
be protected as rigorously as possible. If the company chooses to enter a non-ezclusive
license agreement, the university has the right to license the technology to others that in
some cases are in direct competition with the licensee. :

The royalties which universities receive from licenses vary greatly. In some cases a
large lump sum is paid when the agreement is signed, while in other cases a minor initial
fee is paid, but the bulk of the revenue comes when a product reaches the market and
sales are generated. When technologies are licensed to small firms, universities sometimes
take equity as a form of payment. The benefits universities draw from licensing are not
limited to royalties only; research funding is often provided for further research.

When seeking applications for an invention the TTO identifies parties that have the
greatest use for it. This is a non-trivial task. We can hypothesize a situation where an
established firm in some field is willing to pay a huge sum of money for a new technology.
They do this, not to use the technology, but to prevent others from using it. In the true
spirit of university technology transfer programs, the technology should—in a case like
this—be licensed to someone who uses the idea to increase the public good.

For this and other reasons, licenses often have so-called milestones. When entering
the contract, the stated objective of the licensee is to develop a specific product. If the
product is not developed by, say eight years, the license is automatically cancelled, and
the university is free to license the idea to someone else. These milestones also often
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involve significant payments. Companies that are not using the idea are thus encouraged
to officially cancel the agreement as soon as they stop using the licensed technology.

In accordance with the license agreement, the licensee pays the licensor royalties.
The licensor is in almost all cases the university, not the faculty. The university TTO
redistributes the income from the license. Portions of the revenue are forwarded to the
inventor and the technology transfer program. There are no general rules about how much
the inventor should receive, it all depends on the practices of each university. Many have
installed rules that entitle the faculty to a fixed fraction of the net income. Typically,
between 10% and 50% of the net income is forwarded to the faculty, depending on the
incentive universities want to provide.

2.2.1 Resources of the TTO and Focus

There are primarily two types of resources at the TTO: people and legal fee expenditures.
The staff of the TTO are classified into two categories: people providing professional
services for technology transfer (professionals) and people providing staff support for
technology transfer (support staff). The professionals work directly with outside parties
negotiating license agreements; they educate the faculty of the institution about the
practices of the TTO; and they are responsible for redistributing the royalty income.
The support staff handles other daily routines.

Legal fee expenditures are incurred when applying for a patent. In most cases the
people of the TTO do not have the expertise and resources to administer a patent appli-
cation, so they hire an outside law firm that specializes in providing such services.

Of the TTO resources, the legal fees are thus mainly used to apply for patents, and
the salaried people work on license agreements. A well-run TTO must have the right
mix of legal fee expenditures and employees. If there are too many employees and too
little is spent on legal fees, the employees do not have a product (patent) to sell; if the
balance tips in the other direction, there are too many products (patents) and too few
sales (licenses).

2.2.2 A Hypothetical Example

In this section we discuss a hypothetical example of how a license agreement might be
entered and royalties received. At the end of the section we discuss the role the TTO
played and how that role might have been different.

The time from the start of research until a new product utilizing the new technol-
ogy is in the market is in some instances short (2-3 years), but in other cases much
longer (15-20 years). Many of the new technologies never enter the market, while oth-
ers are huge commercial successes (for example, Hepatitis B vaccine, a human growth
hormone, and the nicotine patch (University of California), Gatorade® (University of
Florida), Cardiolite heart imaging agent (Harvard and MIT), the fax algorithm (Iowa
State), synthetic penicillin and magnetic core memory (MIT), Cohen-Boyer recombinant
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DNA [a process for splicing genes] (University of California and Stanford), CAT scanner
(Stanford), ultraviolet irradiation of vitamin D (University of Wisconsin)).

In our specific case, Professor Jennifer Major at London Institute of Technology (LIT)
applied for a grant in 1982 to do research on the properties of chemical reactions under
high pressure and strong sun light. In September 1983 she was awarded a grant from
the NSF and the following spring she started her research. She worked with two of her
masters students, who both graduated with honors in May 1984.

In August 1984 Professor Major discovered that under certain circumstances she could
accelerate the growth of bacteria considerably. After asking for advice from colleagues at
other universities, she filed an invention disclosure with the technology transfer people
at LIT within two weeks (September 1984). The invention disclosure was the first step in
the long process of protecting her invention. It served as a legal document stating what
she discovered and when. After filing her invention disclosure, the TTO specialists had
one year to file for a patent or protect the idea by other means.

In June 1985 a patent application was filed. Before filing, the technology transfer
people at LIT had hired lawyers to oversee the patent application process. The lawyers
first performed a preliminary search, looking for other patents in the same area. The
purpose of this was to make sure the invention was new, and also to cite other patents
related to the method.

After filing the patent application the technology transfer administrators at LIT
worked with Professor Major on identifying potential users of the invention. They iden-
tified four companies and approached all of them. They offered to enter non-ezclusive
license agreements with each company. With this type of an agreement the firms pay
royalties in return for a permission to use the invention. After lengthy discussions, none
of the companies decided to enter an agreement. They felt it was too risky. In order
to use the invention, substantial research had to be performed, and they either did not
have the capacity or the specialization to do so at this time. This outreach process took
over two years, and it was not until December 1987 that LIT realized they had failed to
license this technology.

Concurrent to these negotiations, the U.S. Patent and Trademark Office was working
on the patent application. They found some patents they believed intersected with
Professors Major’s idea, so the patent application had to be revised. Finally in October
1988 the U.S. Patent and Trademark Office issued two patents to Professor Major and
LIT.!

In April 1988 Professor Major and the technology transfer specialists at LIT decided
to seek applications for the idea with new industry parties. Glasco was a young firm in
the industry. They had grown more than 100% each of the last five years, and analysts
on Wall Street predicted they would soon be the major company in the industry. LIT
decided to go into one-on-one discussions with Glasco about Professor Major’s invention.

't was discovered that a researcher at Pfizer had the rights to a small variation of the idea. It was
thus decided to split the patent into two patents, each one for a special variation of the original idea.
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After only three weeks of negotiations an ezclusive license agreement was signed between
LIT and Glasco (May 1988). By the terms of the agreement, Glasco agreed to pay LIT
$10,000 each year for the next 17 years (unless they decided to cancel the agreement).
Primarily two products were viewed as potential users of the idea, and it was agreed 0.1%
of gross sales for the next 17 years would be paid in royalties. Other products would also
pay 0.1% unless otherwise negotiated.?

Glasco started using Professor Major’s idea almost immediately. They had 15 re-
searchers working on the research and Professor Major visited the Glasco research facili-
ties in VA on two occasions to see what was happening. Although she found these visits
interesting, she also sensed the researchers were not telling her the whole story. It was
clear to her they were making more progress than they were willing to admit. This she
found frustrating.

By September 1991 the two projects Glasco started had both failed, but they an-
nounced that a new product would be in the market in February 1992, SpeedGrow. This
product used Professor Major’s invention and after some initial confusion about royalty
rights, she was excited to see what would happen to SpeedGrow. Under the general
terms of the license, LIT was entitled to 0.1% of gross sales. In February the product
was offered for sale.

It is now September 1997. SpeedGrow has earned LIT over $10,000,000 in net roy-
alties. Professor Major has received over $3,000,000 for her contribution and is retired.
She now spends time with her family in Florida.

This hypothetical example is a success story. It illustrates that the route to success is
often long, and there can be many surprises on the way. Since the beginning of university
licensing fewer than ten licenses have yielded more royalty income than this example.

The rqle the TTO played was to take what they received (an idea in the form of an
invention disclosure) and try to protect and commercialize it. Although this example is
a success story, some questions arise:

e Would it have helped if the TTO had more people working on technology transfer?

— Could the invention have been commercialized sooner?

— Did the invention reach its full potential, or did we only get “the tip of the
iceberg”?

e What would have happened if LIT did not have a TTO?

If the TTO would have had more resources devoted to this invention, it is uncertain
if the technology transfer would have been more or less successful. It is likely that a

2In practice, the terms of an agreement vary greatly. In the cases where the licensed technology is
the main attribute of the product, the royalties can be as high as 20%. In other cases were multiple
licenses are behind a single product the royalties can arbitrarily small.
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license agreement had been signed sooner. By the same token, it might have happened
that because of this extra effort early on, people in the TTO had shifted their attention
to other discoveries when Glasco was ready to enter a license agreement; consequently
no agreement would have been made with Glasco and all this income might have been
lost. Instead an uncertain income from a different company would have been realized.

Had there not been a TTO at LIT, it is uncertain what Professor Major would have
done. Today there are a few alternatives. One can contact some companies directly that
might be interested in using the invention. These firms and their experts are in a good
position to get exclusive rights to the invention at a reduced cost. Another alternative is
to use the services of a company that specializes in commercializing technologies.

2.3 Literature Review

For our specific problem—figuring out the influence of university technology transfer
offices in commercializing university discoveries—surprisingly little work has been done.
No analysis has been published about the average “contribution” of a TTO employee,
or about the causal relationship between hiring a staff member and increase in the TTO
outputs. ,

The Association of University Technology Managers (AUTM) has for the last seven
years published a journal. In last year’s issue Trune [TRU96] develops measures for
assessing the performance of TTOs. This work builds on annual surveys AUTM performs.
Universities are spilt into four categories: Medical Schools (14), Technological Institutes
(6), Universities with Medical Schools (62), and Universities without Medical Schools
- (49). For these four categories, linear regression models are built to predict the university
output variables: total royalties received, licenses generating royalties, active licenses,
licenses executed, invention disclosures received, and grant dollars received. The primary
goal of his study is to give universities a “benchmark” to compare their performance with.

Henderson et al. [HEN95] discuss the role universities play as the source of commercial
technology. They analyze the trends in university patenting from 1965 to 1988. They
show university patenting has grown tremendously in this time period. They claim the
reason for this growth is increased attention universities pay to commercial applications
of new technologies. Looking at patent citations they also conclude that the average
importance of university patents increased up until 1980, but has steadily decreased
since then. Splitting university patents into two groups, winners and losers, they show
that while there is an exponential growth in the number of losers, winners reached an
equilibrium around 1980.

Blumenthal et al. [BLU95] discuss policy issues for academic-industry relationships.
This study focuses on technology transfer in the Life Sciences. They survey all Fortune
500 companies in the fields of agriculture, chemicals and pharmaceuticals; all interna-
tional pharmaceutical companies with sales comparable with U.S. Fortune 500 companies;
and a random sample of non-Fortune 500 companies. They find that 95% of companies
conducting life sciences research in the U.S. had one or more type of relationship with aca-
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demic institutions, providing an estimated $1.5 billion in research support. Agreements
with universities tended to be small and short, implying that most such relationships sup-
ported applied research or development. Over 60% of companies supporting life science
research in universities had realized patents, products and sales from such relationships.
At the same time, companies reported that their relationships with universities often
involved agreements to keep research results secret beyond the time required to file a
patent. Over the last decade, rates of involvement by companies in academic-industry
relationships have increased, but the characteristics of those relationships have remained
remarkably stable. Judging from the benefits realized from these relationships, universi-
ties seem well positioned to compete for industrial research funds in the future. However,
the magnitude of company support for university research is modest compared to federal
support, and companies are unlikely to be able to compensate for sizeable federal cut-
backs. Finally, the authors point out that academic-industry relationships may pose a
greater threat to openness of scientific communication than universities generally admit.

Pressman et al. [PRE95] examine the effectiveness of invention licensing at MIT’s
TLO in achieving one of the major objective in the Bayh-Dole act: to induce investment
by the commercial sector in the development of inventions arising from government-
funded research at universities, and by doing so, to enhance economic development.
Comparing license income and induced investment, they conclude that while MIT re-
ceives substantial financial benefits from research, the induced investment outside MIT
is about 24 times as large. They find that over two thousand jobs have been created
and/or sustained as a direct result of MIT licenses. Over 70% of the investment and
jobs created are associated with start-up companies, while they only account for 35%
of the licenses. They extrapolate these MIT figures, and conclude that pre-production
investment resulting from university licensing is between $3 and $5 billion per year.

Jaffe [JAF89] and Caballero and Jaffe [CAB93] examine the existence of geograph-
ically meditated “spill-overs” from university research to commercial innovation. Two
examples are Silicon Valley near San Jose, California and Route 128, Massachusetts.
They conclude there is a significant impact of proximity to universities—the impact is
strongest in Drugs, and not far behind are Chemicals and Electronics.

Blumenthal et al. [BLUS86)| take a close look at the experience of the pioneer of uni-
versity licensing, the Wisconsin Alumni Research Foundation (WARF). They determine
that in 1940 WARF provided 18.6% of the university of Wisconsin’s research budget. By
1955, that figure had fallen to 11.6%. As research support from other sources, especially
the federal government, increased over the next 25 years, WARF’s contribution steadily
declined as a proportion of the university’s total research effort. In 1985 WARF’s con-
tribution had fallen to 3.6% of the overall expenditures. They urge caution in assessing
the potential financial rewards of university TTOs. From their investigation of WARF
they conclude that TTOs are likely to earn less money from the return on patents than
administrators and faculty members expect. They also suggest that universities should
be prepared to finance and maintain a TTO until earnings, if any, come in. They hy-
pothesize that universities today are unlikely to be able to realize the same return on
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investments that built WARF’s funding capacity and that universities should expect to
be involved in lawsuits resulting from patenting.

Mansfield [MAN91] estimates the extent to which technological innovations in var-
ious industries are based on recent academic research, and the time lags between the
investment in recent academic research projects and the industrial utilization of their
findings. He concludes that about one-tenth of the new products and processes commer-
cialized during 1975-85 in the information processing, electrical equipment, chemicals,
instruments, drugs, metals, and oil industries could not have been developed (without
substantial delay) without recent academic research. The average time lag between the
conclusion of the relevant academic research and the first commercial introduction of the
innovations based on this research was about seven years (and tended to be longer for
large firms than small).

Odza [ODZ96] lists some of the big winners in university licensing. He defines big
winners as licenses that have generated more than $5,000,000 in net income to date, and
lists most of the universities who have any big winners.

To understand the changes that have occurred in the field of university technology
transfer and licensing consult Blumenthal et al. [BLUS86], Caballero and Jaffe [CAB93),
Feiwel [FEI87], David et al. [DAV92], Jaffe et al. [JAF92], Mansfield [MAN91] or Pavitt
[PAVI1].
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Chapter 3

Cross-Sectional Regression Models

This is the first of the three methodologies we use to determine what impact TTOs
have on the licensing process at universities. We build models that aim at predicting the
research output from a university given a set of relevant inputs. The resources universities
commit to technology transfer are imbedded in those models; and from the functional
relationship of how the resources influence the predictions, we draw inferences about the
impact they have.

We first build a conceptual model for the research process leading to licencing activ-
ities. We then quantify the conceptual model and estimate the parameters of the model
from empirical data.

We conclude that there is a positive relationship between investment in technology
transfer and the number of patents and licenses a university gets. We further conclude
that there are diminishing rates of return for research expenditures.

3.1 The Research Process

Since the first universities were formed they have primarily served two purposes. They
have served as an establishment where learned people pass on their knowledge to younger
generations in order to help them lead better lives and ensure that the wisdom of scholars
lives and is enhanced after they pass away. The second purpose is to provide a shelter
for thinkers to work on pending problems in their field and expand the overall universe
of knowledge.

Quantifying the impact a certain piece of university research has in society is difficult.
When Einstein put forward his General Theory of Relativity it was not well received. In
hindsight it is doubtful whether any single piece of research has had greater influence on
our lives today. His theory should be rated as one of the most important contributions
to the expansion of our base of knowledge. This example illustrates that it is not easy
to come up with a method for evaluating the importance and value of research.

Let us start by describing the research that is performed at a university. In return
for receiving shelter, necessary equipment, and money, the researcher trains students and
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performs investigations. The researcher “brainstorms” ideas and works out the necessary
details to solve a problem. In doing this he or she usually interacts with a number of
other people—students, fellow academics, and others—who provide the researcher with
critical feedback on the idea, and help finalize details.

Publish Papers
Give Talks
Money
People 9| Research Ideas File Invention Disclosure
Facilities

Form a Company

Other

Figure 3-1: The University Research Process.

The researcher may deliver a partly or fully developed idea in several different forms.
First of all, the researcher may write a paper explaining the idea. Publishing a paper
is one way to let interested parties in the field know about the finding. Another way
of delivering the idea is to give talks at conferences or in public places. If the idea has
commercial value, the researcher may either start his or her own company or seek ways
to protect and sell the idea. The first step in protecting the idea is to file an invention
disclosure with a Technology Transfer Office or an agency that specializes in protecting
intellectual property. For a detailed discussion about what happens after the invention
disclosure is filed, consult section 2.2.

This dissertation focuses on analyzing the role of TTOs. Of the five ways to deliver
an idea in figure 3-1, the TTO is involved only if an invention disclosure is filed. As
discussed in section 2.2, filing an invention disclosure marks the first step in protecting
the idea. After filing the invention disclosure, a patent application is often filed and the
university tries to sell the idea by entering a license agreement.

3.2 The Model Components

In this section we introduce the building blocks of the cross-sectional model. We start
by building a conceptual model for the number of patents and licenses a university gets.
We introduce the assumptions we make about each component of the model, and then
integrate them all to get an expression for the expected number of patents and licenses.
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3.2.1 Building Blocks

Patents

Solutions to

Ideas —> Problems

Licenses

Figure 3-2: The Basic Building Blocks of Commertialized Research.

Figure 3-2 shows the core building blocks of putting research outcomes to commercial
use. Ideas are born when faculty do research and some of these ideas provide solutions to
practical problems. Solutions that may have commercial value can be protected by filing
a patent application and when selling the right to use an invention the, owner enters a
license agreement.

Ideas

When faculty perform research, they get ideas of how they might solve a particular
problem. Let us define a variable g as number of ideas that may be of commercial value.
We index the universities by ¢ and the departments by j. The number of ideas resulting
from research in department j of university 4 (in one particular year) is g; ;.

Let us define the set of all departments at university ¢ as J (z). The total number of
ideas at university 1 is,

gi = Z)gi,j- (3.1)

JEJ(

Problem Solutions

Each idea may provide a solution to one or more problems. As an example, the wheel
solved many problems. The first and most immediate use was to put it under carriages
for transportation, but since then it has been used in many different situations.

Let us define v; j ; as the number of problems idea g from department j in university
1 solves. The total number of problems solved at university 7 is thus,

9i.i

=), D Ui (32)

jeJ(i) 9=1
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Patents & Licenses

Ultimately, we are interested in patents and licenses. We denote the number of patents
that are granted based on solution v using idea g in department j of university ¢ by
di jg,0- Similarly, the number of license agreements is I; ;. The total number of patents
and licenses is thus,

9i,j Vij,g
dio= 3 > 3 dijge (3.3)
j€J(i) 9=1 v=1
9i,j Vijg

l,‘ = Z Z E li,j,g,v- (34)

J€J(#) 9=1 v=1

3.2.2 Assumptions

A Note on Notation: In general we use the convention for random variables to note the
random variable by capital letters and the observed values by small cap letters. For
example: The random variable D is used for the number of patents. If in a particular
year seven patents are granted, then d = 7. '

Ideas

University departments spend money on research. This expenditure can be viewed as
the starting point of the research. Each dollar spent can be thought of as an attempt to
* generate an idea of how to solve a problem in the field of the department.

We denote the number of ideas that may be of commercial value by G, so G;; is
the number of ideas at university i and department J. We postulate that the number of
ideas that come out of a university department follow a Poisson process. The rate of this
process is a function of two variables. The research expenditures are positively related to
the rate—the more we spend on research, the more ideas we get. The second variable is
the faculty quality rating (see section 3.3.2 for the details of this variable). Other things
even, we anticipate that “good” faculty get more ideas per research dollar than others.

We use T' for the idea rate, so I';; is the idea rate for department j at university 3.
We postulate that the idea rate for department j at university 1 is,

F,',J' = Qj (1 + 6_7'.F,',j) .’L'ﬁj (35)

I,J’
where F;; is the faculty rating of university i and department j, z;; are the research
expenditures, and a, (3, and § are parameters to be estimated from data. The model is
flexible enough to capture both diminishing (B; < 1) and increasing (8; > 1) rates of
return for research expenditures. The model also accounts for the fact that faculty are
not all equally productive. Highly competent faculty can probably perform research—or
research that generates many ideas—more “cost effectively” than other faculty.
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Summing over all departments at the university, we get the university idea rate,

Ti= Y a;(1+6§;F;) . (3.6)
JEJ()

Problem Solutions and Patents & Licenses

In figure 3-2 we showed how ideas lead to problem solutions, and then to patents and
licenses. Now that we have postulated that the number of ideas follows a Poisson process,
we establish that the number of patents and licenses may follow a compound Poisson
process.

The number of problems an idea solves is a random variable that we denote by V.
For each solution to a problem v lets call the number of resulting licenses L, and the
number of resulting patents D,.

We assume that the number of licenses and patents per idea (L, 4, and D; j,.) are
independent of the idea rate. This does not suggest that the total number of licenses
(Li,;) is independent of the number of ideas (G; ;); it merely assumes that for a single
idea the number of patents and licenses resulting from that idea is independent of the
underlying idea rate.

We also assume that the number of problems each idea solves (V; ;,) is independent
of the number of ideas at that department (G; ;). We have thus assumed that,

D;;qv is independent of G;; (3.7)
Lijgv isindependent of G;; (3.8)
Vijg Isindependent of G;; (3.9)

Under these assumptions the number of patents (and licenses) is a compound Poisson
random variable of rate I'; (see equation 3.6) and with compounding determined by the
convolution of D, and V (L, and V).

The primary function of the university TTOs is to take faculty solutions to problems
and to protect and sell the solution by getting patents and enter license agreements. The
number of problems a given idea solves and the number of resulting patents is assumed
independent of the faculty idea rate; this number may however, depend on the resources
available at the TTO. There are two primary resources that may be important: 1) The
number of people a TTO employs (the more people working on technology transfer the
more attention they can give to each invention); 2) the flexibility the TTO has to pay
legal fees. The professionals in the TTO can rarely pursue patent applications themselves
so they hire a firm that specializes in providing such services. If the TTO does not have
the financial resources to pay the necessary fees, it is less able to apply for patents.

We denote these two resource variables as,
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legal fee expenditures for patents and/or copyrights
LF = _ (3.10)
research expenditures

$100,000 x professionals + $50,000 x staff working on T'T
MP = - . (3.11)
research expenditures

The first variable is the ratio of legal fee to research expenditures. This measures the
“force” of legal attention per research activity. A university with large research expendi-
tures clearly needs to pay more than a smaller university in legal fees in order to give the
same legal attention to each research effort. The second variable is the ratio of profes-
sionals and staff (weighted by an approximation of the variable cost of employment), to
research expenditures. This variable is aimed at capturing the technology transfer exper-
tise per research effort. A university with a high M P is thus providing more attention
to each inventor than a university with a low MP. :

We postulate that the mean of the random variable for the number of patents resulting -
from each idea (D, = You¥* D; j4.) is a function of the TTO resources, and that it
has the following form,

i,5,9

E[Dijgl=E I—UZ Di,j.g,v] = (v1+ (sMP. + LF,)"), (3.12)
v=1

where M F; and LF; are the variables defined above, and 7,, 75, and 73 are parameters
to be estimated from data. Equation 3.12 is very flexible, it allows for both a positive
(72 > 0) and negative (v, < 0) impact of increasing the TTO resources. It allows
diminishing and increasing rates of return, and does not restrict the relative importance
of them: If v; = 0 then the people working on technology transfer are not important,
but only the legal fee expenditures; if 3 — oo then the legal fees are not important, but
only the employees of the TTO.

In order for the patents and licenses to be a compound Poisson processes we also need
to assume that the variance be proportional to the mean,

Obiso = ®E[Dijg) =@ (71 + (vsMP: + LF)™), (3.13)

where ® is an unknown parameter. We test this assumption in section 3.2.4.

Bringing it All Together

In figure 3-3 we have put it all together. For each department, j, we have the idea
rate, I'; j, and the number of ideas, G;; (in this case g;; = 7). Each idea, g, yields a
random number of solutions, V; ;, (here v; ;3 = 5), and a solution to a problem, v, yields
a random number of licenses, L;;¢,, and a random number of patents, D;;,, (here
dijsa+lijaa=4).
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Patents

Research Solutions to
Expenditures > Ideas —> Problems

Licenses

Figure 3-3: The Random Variables for the Entire Research Process from Research Ex-
penditures to Patents and Licenses.

The Issue of Time

The process in figure 3-3 is not instantaneous. When research expenditures are incurred
we do not simultaneously get the ideas, solutions to problems, patents, and licenses. It
has been estimated that the last step in the process from the problem solution to license
alone takes.on average seven years.

In the analysis of this chapter we do not make an attempt at capturing this time
lag. We assume that the research expenditures have not changed significantly in the last
few years, and we use the research expenditures in the same year as the patent and/or
licenses was granted to estimate the idea rate. We will, however, assess the issue of time
lags in Chapter 5.

3.2.3 The Expected Number of Patents and Compounding

Under our various assumptions, the expected number of new patents at university i is,

E[D] = E E g‘z’vfp,,,g,] (3.14)

L‘]GJ(S) g=1 v=1

= E E gifE[D .J,g]] (3.15)

GJ(z) g=1

= E|3 gz”: (711 + (vsMPE + LF:')”)] (3.16)

eI (i) 9=1
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= (m+(1MP+LFE)?)E LE gzjl] (3.17)

j€J(i) 9=1
= (n+(GMPA+LE)®) 3 oy (1+6F,) 2 (3.18)
J€J(3)
where,
e E[D;] is the expected number of new patents for university 3.

LF; are the legal fee expenditures divided by the research expenditures, see equation
3.10.

M P, is a measure of the relative man-power of the TTO; defined as $100,000 times
the number of professionals working on technology transfer plus $50,000 times the
number of support staff working on technology transfer, all divided by the research
expenditures, see equation 3.11.

x;; are the annual expenditures on R&D at university i and department j; measured
in million-1994-dollars.

F, ; is the average rating of the faculty at university 7 and department j; on a scale
from -1 (worst) to O (best). We define this variable at the end of section 3.4.3 on
page 3.3.2.

—'y, a, 3,6 are parameters we want to estimate from data.

To calculate the variance of D; under our various assumptions, it is useful to view it
as a random sum of random variables. We have already postulated what the variance
and mean of the number of patents per idea (D; ;,) are (see equations 3.12 and 3.13),
and it only remains to figure out how many ideas (Gi;) we need to sum up. The ideas
follow a Poisson process of rate T ;, see equation 3.5. We arrive at,

by = b, E[Gij]+ E[Dig) 9E., (3.19)
B; ,
= 0bi;e % (L+6F;) 25+ E[Dyjl® o;(1+6,F,;) z4 (3.20)
B,
= F [Diz.j,g] a; (1+6;F )z} (3.21)
0 = > a%,‘,_j (3.22)
JjeJ()
= ) E [Df.j,g] a; (1+6;F, ;)27 . (3.23)
JeJ(i)

Let us define a statistic based on the ratio of the variance to the mean of the number
of patents university ¢ gets per year (D,),

34




2
o,

E[D] (3.24)
Ties) B (D3] a; (14 8,F, ;) a3
Siest) B [Disg) aj (1+6;F:;) 2t

E |D,.2 : |
9 ‘ (3.26)

E[D; ;4]

O
[

(3.25)

Note that F [D,2 j’g] and E [D, j,] are independent of j, thus the last equal sign holds.
If the process is a pure Poisson process, we get one patent for every idea and E [D, ;] =
E [Df j'g] =1, and thus @ = 1. To estimate the amount of compounding in our processes
we have calculated empirical values for the Q-statistic defined above. In Appendix B we
introduce two statistics (Q'* and Q%*) to estimate the compounding for patents, licenses,

and invention disclosures. The results are summarized in table 3.1.

Output Measure Q *-statistic | Q**-statistic |

New U.S. Patent Applications 14 1.6 |
Licenses and Options Executed 1.2 1.2
New Invention Disclosures 1.9 14

Table 3.1: The Poisson Compounding for Patents, Licenses, and Invention Disclosures.

3.2.4 Test of Variance-to-Mean Ratio Assumption

We have assumed that the variance in the number of patents per idea (D, ;,) is pro-
portional to the mean; see equation 3.13. If this assumption holds, the variance in the
number of patents a university gets (D;) should also be proportional to the mean. In
this section we test this.

From the Association of University Technology Managers [AUT96] we have data on
the number of new patent applications by year for 74 universities between 1991 and 1995.
In figure 3-4 we have plotted the variance of the five yearly outcomes against the mean for
each university. Regressing the logarithm of the mean on the logarithm of the variance
we get,

—\2 -
S (die—) ~3& . (3.27)
t
This finding suggests that the variance is almost linear in the mean. The 95%
confidence interval for the exponent (under the ordinary least squares assumptions) is
[0.93;1.44]. This suggests that it is reasonable to assume that the variance is linear in
the mean.
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Figure 3-4: Number of New U.S. Patents Applications; University Variance versus Aver-
age. ’

3.3 Estimation

In this section we estimate the parameters of the model introduced in section 3.2. We first

discuss the estimation procedure and the data we use. We then present the parameter
~ estimates and discuss them briefly; a more detailed discussion of the parameter values
and implications is in section 3.4. Finally, we introduce the methodology we use to
develop confidence intervals and test hypotheses in section 3.3.5.

3.3.1 Objective Function and Parameter Constraints

In equation 3.18 we have an expression for the expected number of patents. The predicted
number of patents is,

M=+ (MP+LE)) Y o (1+8;F,;) 5. (3.28)
jeJ(@)
It is a non-trivial task to estimate the parameters for this nonlinear model. The
easiest penalty function to use is the traditional sum-of-squared-errors,

f(@B,78) = 3° (N (e B,7,6) — di)”. (3.29)

Using this penalty function, let us compare how two different universities affect the
estimation: MIT and the University of South Alabama. In 1994 MIT filed 98 new patent
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applications in the U.S. and the research expenditures were about $360 million, while the
University of South Alabama filed for 1 new patent and the research expenditures were
$9.4 million. The penalty-function of equation 3.29 penalizes us equally for each patent
so if the prediction is 108 patents for MIT and 11 for the University of South Alabama,
both contribute equally to the objective function. It is a much more serious error to
predict the University of South Alabama applies for 11 patents than MIT for 108. We
thus want to weigh our penalty function.

As discussed in section 3.2.2 we assume that the underlying process is a compound
Poisson process. The variance is thus proportional to the mean. With this in mind we
change the objective function to,

(a1 ﬂa Y, 6) — dl)2
Ai (aa .Bv 7 6) .

With this new objective function an over-prediction of 10 patents for MIT is equally
important as a 1.5 patent over-prediction for the University of South Alabama.!

The estimation with the objective function of equation 3.30 can be formulated as the
following mathematical program:

fla,B,7,8) =3 ( (3.30)

B 2
[(71+(73MP='+LF-')"2) > (14685 F )z, -di]

min i I
(71+(yaMP,+LF;)72) EJ. aj(1+6jF.~,j)z‘..';.
subject to: . (3.31)
ay > 0 V]
b, £ 1 V¥
1 2 0

The constraints are:

o The idea rate for all departments is non-negative. We thus impose the constraint
that o > 0.

e We must also ensure that (1+6;;F;;) > 0. The faculty quality rating (F;;) is
between -1 and 0, and we require that § < 1. Note that we have not assumed that
highly rated quality faculty perform as well or better than lower rated faculty. If
we want to impose this restriction, we should also require § > 0.

e From equation 3.28 we have that the average number of patents per idea is propor-
tional to (v, + (y3MP; + LF;)"). If there are no resources for technology transfer
(LF; = MP;, = 0) and v, > 0, this quantity must still be non-negative and we
require vy, > 0.

1(108-98)% _ (2.5-1)2
108 ~ 25
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3.3.2 Data

From the Association of University Technology Managers [AUT96] we have information
on: 1) New patent applications (1991-1995); 2) licenses and options executed (1991-
1995); 3) invention disclosures received (1991-1995); 4) professionals and staff working
on technology transfer (1992-1995); and 5) legal fee expenditures for patents and/or
copyrights (1991-1995). These data are reported by the people working on technology
transfer at the universities.

The National Science Foundation compiles a database each year with the reported
research expenditures of American universities, by university and department [SRS95D).

The National Research Council performed a study of American graduate programs in
1993 [NRC95]. This database has a variable called “scholarly quality of program faculty”.
To estimate this variable they asked faculty to rate faculty in their discipline at other
universities. The respondents should therefore be very well qualified to assess the value of
this variable. We have aggregated this “program quality” measure into one “department
quality” measure.

3.3.3 Results

In order to solve the mathematical program we used a stylized N ewton-Raphson method.
We did not impose the constraints from the start, but did so iteratively. We started with
a unconstrained problem and if any of the parameters was outside the feasible region
we projected it onto the feasible set and re-ran the optimization with the constrained
incorporated.

Each university may represent up to four observations, one for each of the years from
1992 to 1995. While the faculty quality rating is the same, and the research expenditures
do not change much, the resources available for technology change from year to year. It
is thus more appropriate to use each year as a separate data point, than using averages.

The first conclusion is that not all departments contribute appreciably to the patent-
ing process. The departments we used are listed in table 3.2.

Of these departments only Engineering, Physical Sciences, and Life Sciences con-
tribute to increasing the number of patents and licenses.? (Industry experts told the
author that this assessment is accurate, and the fact that the model predicts this behav-
ior increases their comfort with the model.)

When estimating the model parameters from now on, we impose the restrictions that
the Engineering and Physical Sciences departments observe the same returns to scale

?We use a bootstrap methodology (see section 3.3.5) to approximate the confidence intervals for the
model parameters. The p-value estimates for the hypothesis that the nine departments in table 3.2 do
no contribute to the patenting process are approximated to be (from 6,000 simulation runs): 0%, 0%,
48%, 99%, 15%, 0%, 79%, 88%, and 84%.
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Department

Engineering

Physical Sciences
Environmental Sciences
Mathematical Sciences
Computer Sciences

Life Sciences
Psychology

Social Sciences

Other Sciences

Table 3.2: The Departments in the Database.

for research expenditures (Bg,; = Bpyy), and that the impact of the faculty quality
rating is also the same (6gng = Opny). The reason for doing this is that there is a high
degree of multicolinearity in the data, and consequently we may get unrealistic parameter
estimates for those parameters. Imposing these restrictions only reduces the model fit
by a small amount; if we estimate the model parameters of the relaxed model and test
the hypothesis that these parameters values are the same, we accept the hypothesis. For
a full discussion of this issue consult Appendix B.

In table 3.3 we have presented the parameter estimates for the models. We use the
Q' and Q?*-statistics as our measures of fit. We discuss their definition in section 3.3.4.
We discuss the confidence intervals for the parameter estimates in section 3.3.5.

Let us take a quick look at the implications of the parameter estimates.

The 7, parameter determines the impact of the TTO resources. If 7, < 0 then
increasing the resources results in a lower prediction for the outputs, but if v, > 0 then
increasing the resources makes the prediction higher. In general a higher value of 7,
implies higher returns on investment in technology transfer for that output measure.

The 74 parameter determines the relative weight of the man power of the TTO (M F,)
and the legal fee expenditures (LF;). For patent applications the parameter value implies
that the impact of adding one full time professional to the staff working on technology
transfer is the same as increasing the legal expenditures about (0.29 x $100,000 =)
$29,000. If v is low it implies that the legal fee expenditures are more important in
determining the output than staff, but if 7, is high the staff is more important than the
legal fee expenditures. We see that the value of 7, is lowest for patent applications, and
highest for license agreements. This is as expected, the people of the technology transfer
office primarily focus on selling the technologies and thereby entering license agreements,
while the legal fees go primarily towards paying legal fees for patent applications. We
discuss the impact of the TTO resources further in section 3.4.1.

The elasticities for the research expenditures are determined by 3. If 3 < 1 there are
diminishing rates of return, but if 3 > 1 there are increasing rates of return. The best way
to interpret this parameter is to look at what happens to the prediction when we double
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New Licenses Invention
Parameter Patent .
. Executed Disclosures
Applications

QEng 37.6 82.7 28.1
Qphy 24.1 4.12 41.9
OLif 11.3 40.0 7.62
BEng 0.61 0.62 0.67
BPhy 0.61 0.62 0.67
BLis 0.76 0.64 0.79
" 0.014 0.015 0.038
Yo 0.64 1.13 0.46
Y3 0.29 5.64 0.78
1-0Eng 0.29 0.12 0.24
1-6pny 0.29 0.12 0.24
1-b;¢ 0.63 0.00 0.97
" 2Pees — 1 52% 54% 59%
2Pphy — 1 52% 54% 59%
Wir — 1 70% 56% 2%
Q*'*-statistic 1.64 2.27 3.58
Q**-statistic 4.70 7.10 12.9

Table 3.3: Model Parameter Estimates For Patents, Licenses, and Invention Disclosures.

the research expenditures. Doubling the research expenditures we get 27 times as much
output, and 2% — 1 is thus the predicted increase in the output when the expenditures are
doubled. We see that doubling the research expenditures in Engineering and Physical
Sciences, we would get between 50% and 60% more output, but doubling the expenditures
in the Life Sciences the increase is a little higher. In all cases the increase is less than
75%. We discuss this further in section 3.4.2.

The 6 parameters tell us what the impact of the faculty quality rating is on the
predictions. The parameter estimates imply that in Engineering and Physical Sciences
the lowest rated faculty get between 12% and 29% of what the highest rated faculty get.
The impact of the faculty rating in the Life Sciences varies significantly depending on
what we are predicting. This is further discussed in section 3.4.3.

3.3.4 Measure of Fit

We use two measures of fit statistics. The first is based on Q@' in equation B.2. We take
the median across universities of the squared errors normalized by the prediction,

2
Q'*-statistic = meglja.n [()";—d')] . (3.32)
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The other measure is based on Q** in equation B.3. The empirical statistic is defined
as the weighted squared error,

tmictic — 2t = di)?
Q% -statistic = _ET (3.33)

As we discuss in section 3.3.6 there are a few large deviations from the model predic-
tions. While these observations may just represent the stochastic nature of the processes,
it is more likely that something else is creating this diversion. For this reason we focus
on the first measure of fit because it is less sensitive to large deviations.

3.3.5 Sensitivity Analysis

With the model parameters in hand we want to evaluate how robust they are. This is
important as we want to test hypotheses about the parameters. We are, for example,
interested in testing if there are significant economies of scale, both for the research
expenditures and the TTO resources.

For traditional least squares linear regression models we (under some general assump-
tions) have closed form expressions for the confidence intervals of our model parameters.
These expressions provide us with the statistics to evaluate most hypotheses we want to
test.

In our case the nonlinearity of the model forces us to use more sophisticated methods.
We use re-sampling methods to develop confidence intervals for the model parameters.

Re-sampling Methods

In the last few years re-sampling methods have become the technique of choice to develop
confidence sets and to test hypotheses. The computer technology has made it feasible to
use these methods to arrive at numerical answers to previously unsolvable problems.

We work with two re-sampling methods. The Jackknife dates back to Quenouille
[QUE49]. The method was introduced to estimate the bias of an estimator by deleting
one datum each time from the original data set and recalculating the estimator based on
the rest of the data. Let Xj,..., X, be n vectors of data, and T,, = T,, (X3,...,X,) be
an estimator of an unknown parameter 6. The bias of T,, is defined as,

bias (T3,) = E [T,] — 6. (3.34)

Letting T, -1, = 4p-1 (X], e ,Xi—l, X,‘+1, ey Xn) be the g‘iven statistic based on only
n — 1 observations, the Quenouille’s jackknife bias estimator is,

bjack = (n—1) (Tn - Tn) : (3.35)
where T, = n~! ¥%, T,_1;. From this we get the bias-reduced jackknife estimator of 6,
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Tiack = Tn — bjack = nT, — (n— 1) T,,. (3.36)

An estimate of the variance of the estimator has also been developed, see Tukey
[TUK58]. The (delete-1) jackknife variance estimator for T, is,

n-1g 1 2
VIACK = > (Tn—l,i -=>T -1,;) : (3.37)
noa L

Calculating these estimators requires running the estimation procedure n times. For
our problem this is easy as we have already developed efficient procedures to estimate
the model parameters.

With n data points, there are 2" — 1 non-empty subsets. The jackknife utilizes only
n of those but Hartigan [HAR69] discusses methods for using more than these n subsets.
The bootstrap is introduced by Efron [EFR79).

The central idea of the bootstrap is to randomly choose a subset of the observa-
tions and calculate the parameter estimate. Let us draw {Xiyy-- ., X}, b=1,...,B
independently from {X,..., X,}. Now define oy = T (X3 --., X2). The bootstrap
parameter estimator is,

Ly o e
Taoor = 5 2T (X, X33) (3.38)
b=1

The variance can be approximated by,

(B) 1& /(. 1&., ’ ‘
UsooT = E E ( nb E ZTn,b) ' (339)
b=1 b=1

We use the simulated distribution of T3, to make inferences about our estimator.
We test hypotheses and develop confidence intervals using this simulated statistic. For
further discussion about the jackknife and bootstrap consult Shao and Tu [SHA95).

Jackknife and Bootstrap Results

To get the Jackknife estimators, we first estimate the model parameters when the first
data point is missing, we then estimate the model when the second data point is missing,
etc. There are in all 416 observations, so we need to estimate the model parameters 416
times in order to get the Jackknife estimates. In order to get the bootstrap estimates we
randomly choose 416 observations with replacement, and then estimate the model para-
meters for these observations. We repeat this 10,000 times and the detailed distribution
functions for the runs are plotted in figures C-14 to C-24 in Appendix C.

The summary statistics for the Jackknife and bootstrap estimates for the patent
applications model are listed in table 3.4.

In table 3.4 the first two columns have the Jackknife statistics. In the first column
we have the bias-reduced jackknife estimator values (equation 3.36), and in the second
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New
Jackknife Bootstrap Patent
Applications
Parameter | Tiack _y@ack | Tioor med] % yolB): T,
QEng 12.6 42.7 75.87 376 50.0% 148 37.6
OtPhy 12.4 21.8 39.85 241 50.1% 57.3 241
oLif 4.28 9.62 22.5 13.2 41.4% 38.7 11.3
BEng 0.59 0.10 0.62 0.62 44.7% 0.10 0.61
Bphy 0.59 0.10 0.62 0.62 44.7% 0.10 0.61
Bris 0.77 0.07 0.76 0.76  50.7% 0.07 0.76
T 0.017  0.006 0.011 0.011 68.6%  0.005 0.014
Y2 0.58 0.17 0.69 0.65 46.3% 0.17 0.64
Y3 0.28 0.16 0.29 0.27 54.5% 0.16 0.29
1-6Eng 0.24 0.16 0.33 0.28  50.6% 0.18 0.29
1-6phy 0.24 0.16 0.33 0.28 50.6% 0.18 0.29
1-8y¢ 0.61 0.26 0.65 0.61 53.5% 0.26 0.63
2PEng — 1 52% 54%  54% 52%
2Ppny — 1 52% 54%  54% 52%
2Puie — 1 70% 69%  70% , 70%
Q' *-statistic | 2.54 0.30 1.64
Q**-statistic | 4.86 0.67 4.48 4.52 4.70

Table 3.4: Jackknife and Bootstrap Parameter Estimates for the New Patent Applications
Model.

column we have the standard deviation estimates (equation 3.37). In the next four
columns we have the bootstrap statistics. In the first column we have the bootstrap
estimates of the parameters (equation 3.38). The second column (marked “med[]”) has
the median parameter value for the bootstrap runs. The third column (marked “%”)
lists the percentage of the 10,000 runs that resulted in a parameter value lower than
the value estimated on the entire data set. The fourth column relating to the bootstrap
results lists the estimates for the standard deviation (see equation 3.39). Finally, in the
last column of table 3.4 we present the “regular” parameter estimates (7,) from table
3.3.

The re-sampling estimates for a are not good. The reason is that the o's are very
nonlinear in § and rigorously bound away from zero; when a moves upward, it can move a
long distance, but when going down it is rigorously bound away from zero. Consequently
the average of the simulated values is too high.

If we compare the parameter estimates of the Jackknife (Tjacx ), the bootstrap (Tsoor),
and the regular method (T5,), we see that apart from the estimates for o they are very
similar. We also notice that the regular parameter estimates are always between the two
re-sampling method estimates (Tjack > T > Tgoot or Tiack < T < Tsoot)- We use
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the regular parameter estimates as our preferred values.

If we look at the variance estimates for the parameters (vjack and vpoor), We see
that the Jackknife and the bootstrap methods yield very similar values (except for a).
While the Jackknife provides us only with a variance estimate, the bootstrap method
approximates the entire distribution function for the parameter. With the bootstrap we
can thus easily test various hypotheses without assuming that the estimation errors have
a normal distribution. We thus adopt the bootstrap as our preferred method to develop
confidence intervals and test hypotheses.

3.3.6 Data Outliers

As in most regression problems we have observations that deviate much more than most
others from the model predictions. The University of Pennsylvania did, for example,
apply for 40, 50, 54, 107, and 36 new patents in 1991-1995 respectively. The large jump
in 1994 cannot be explained by a huge increase in the research performed or resources
made available for technology transfer. Our models consistently predict about 50 new
patent applications for the period from 1991 to 1995. This one outlying observation
causes our Q?*-statistic to jump from 4.30 to 4.70 (using the parameter estimates of
table 3.3 in both cases.

Another “outlier” is Cornell University. In 1992 and 1993 they applied for 92 and 97
new U.S. patents according to the AUTM data. Data are not available for the other years.
The prediction for Cornell is consistently around 50 new patents each year. Recalculating
the Q?*-statistic when these two observations are also excluded we get 3.92. These three
observations increase the penalty measured by the Q%*-statistic from 3.92 to 4.70 or about
20%.

The patent data we used for the estimation are from the Association of University
Technology Managers [AUT96]. For some of the universities in that database we have the
number of patent grants from a database provided by the U.S. Patent and Trademark
Office [TAF96]. Looking up the number of patents awarded to University of Pennsylvania
and Cornell in the years from 1991 to 1995 we find that University of Pennsylvania was
granted between 18 and 37 patents each year, and Cornell between 35 and 41. The
ratio of patent grants to patent applications at other universities is between 0.8 and 1.0.
This suggests that there is something fishy with these observations for Cornell and the
University of Pennsylvania.

We do not eject these observations from our database, but we should keep in mind
that these “outliers” throw our Q% -statistic of the mark.

3.4 Implications of Model Parameters

In this section we discuss the implications of the parameter estimates of the cross-sectional
regression models. We use the bootstrap method to develop approximate 95% confidence
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intervals for the parameters of the three output models. In each case 10,000 runs were
made to approximate the distribution, and in table 3.5 we have listed the results.

New Licenses Invention
Parameter Pe?,ten't Executed Disclosures
Applications

OEng 37.6 9.5;444 82.7 [0.56;441] | 28.1 10.5; 88
QPhy 24.1 7.9;192 4.12 [0; 60] 41.9 18.9;70
QL 11.3 3.7;102] 40.0 [0.3; 186] 7.62 1.93;33
16E£L 0.61 [0.44;0.81] | 0.62 0.50;0.77 0.67 [0.56;0.81
Bphy 0.61 [0.44;0.81] | 0.62 0.50;0.77] | 0.67 [0.56;0.81
Bris 0.76 [0.60;0.89] | 0.64 [0.57;0.76 0.79 [0.52;0.96

7 0.014  [0,0.023] | 0.015 [0.004;1.94] | 0.038 [0;0.061]

Yo 0.64 [0.46;1.16) [ 1.13  [0.72;1.50] | 0.46 [0.31;0.70

V3 0.29 [0.05;0.66] | 5.64 (2.1;627] | 0.783 [0.26;2.54

1-6Eng 0.29 [0.11;0.78] | 0.12 0.04;0.20 0.24 [0.13;0.42
1-0pny 0.29 [0.11;0.78] | 0.12 0.04;0.20 0.24 [0.13;0.42
1-61¢ 0.63 [0.24;1.25 0 [0;0.17 0.97 [0.28;2.77
2PEng — 1 52% [35%;75%)| | 54%  [41%;71%| | 59% [48%; 75%
ey —1 | 52%  [35%;75%) | 54% [41%;71%] | 59% [48%;75%
2PLir — 1 70% [52%:;85%] | 56% 49%; 10% 72%  [44%;94%
Q" *-statistic | 1.64 2.27 3.58
Q7 statistic | 470 [3.35,5.88] | 7.10 _[5.01,8.82] | 12.9 [7.30,17.3]

Table 3.5: Model Parameters and Confidence Intervals for Patents, Licenses, and Inven-
tion Disclosures. Confidence interval is based on 2.5 and 97.5 percentiles.

3.4.1 The Technology Transfer Office Resources

Lets look closer at the influence of the TTO resources. From equation 3.28 we have that
the influence is multiplicative of the form,

(71 + (vsMP; + LE)™). (3.40)

Comparing the number of new patent applications for a university with a TTO that
has 70% of the median resources to one that has 140% of the median resources (the
median is M P = 0.003236 and LF = 0.002627), we get,

vy + (73 * 1.4 0.0032 + 1.4 + 0.0026)"2
71 + (73 * 0.7 % 0.0032 + 0.7  0.0026) ™

(3.41)

Using the parameter estimates for the three output measures we find that we expect
34% more patents, 44% more licenses, and 25% more invention disclosures from the
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university that invests 140% of the median in technology transfer than the one that only
invests 70% of the median.

]
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Figure 3-5: The Impact of TTO Resources on each of the Three Qutput Measures.

In figure 3-5 we have a continuous plot of the TTO multiplier for all the output
variables discussed above. We first observe that all the functions are increasing—the
more resources available for technology transfer, the higher the predicted number of
outputs. If the hypothesis that the TTOs are hindering the process of commercializing
university discoveries was true, these functions should not be increasing but decreasing.

When comparing the difference in how the TTO resources impact the output mea-
sures, we observe that the impact is smallest on the number of invention disclosures. This
Is as expected; the only role the TTO plays in getting invention disclosures is to educate
the faculty about what these are and encourage them to file. We also see that the impact
on the number of patents is larger but still smaller than the impact on licenses. This
again is consistent with what we expect. The TTO is active in applying for patents but
the primary focus of the TTO is to find applications for invented technologies outside the
universities. A license manifests that the university has successfully entered an agreement
with an outside party about using the invention.

From equation 3.28 we see that v, is the factor that determines the relative importance
of legal fee expenditures and people resources at the TTOs. If 7, is high it gives a large
weight to the professionals and staff. This means that the people working on technology
transfer are much more important for the prediction of the corresponding measure than
legal fees. When 7; is close to zero it means that the people are much less important than
legal fee expenditures in determining the output. When 3 is close to one the balance
is about equal, assuming that the variable cost of hiring one professional is $100,000 the
impact of hiring one more professional for technology transfer when -, ~ 1 is the same
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as if we would not hire the person but increase the legal expenditures about $100,000.

The people of the TTO are much more influential than legal fee expenditures in the
prediction of the number of license agreements (y; = 5.64). This is not surprising because
the primary role of the technology transfer professionals is to look for applications for
university discoveries, and negotiate license agreements. The staff of the TTO does not
play a major role in filing patent applications (y; = 0.29). Instead they hire a legal firm
that specializes in administering the patent prosecution process.

It is interesting to compare the prediction of the nonlinear model in two cases. We
first use the model to make predictions using the current amount of TTO resources and
then make another prediction when we have increased the TTO resources. We have
done this for licenses and patents. In table 3.6 on page 48 we have the difference in the
predictions when we add one professional or increase the legal fee expenditures about
$100,000.

The universities where the prediction of the number of licenses goes up by three or
more from hiring an additional professional to work on technology transfer, are listed in
table 3.6. We see that the greatest increase is at Drexel University. When comparing the
predictions with the current resources and the resources after adding one professional,
the increase is 6.7 licenses (per year). If the number of professionals working on tech-
nology transfer is increased by one at Drexel, notice that we are more than doubling the
current resources. If we add one professional to the resources at MIT or Stanford, the
proportional increase is much smaller, but there is still an increase in the prediction of
license agreements of more than three.

The median increase in the number of licenses (patents) when adding one professional
to the TTO staff is 2.2 (0.6). The median increase when adding $100,000 to the legal
fees is 0.4 (1.9).
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Increase in Increase in Current
Number of Number of
. Resources
Licenses Patents
Add Inc. Add Inc.
o One Legal One Legal Man Legal

University M F M F P Fees

ore ees ore ees ower (1994-M$)

Prof. $100K Prof. $100K

Drexel University 6.7 1.1 1.0 3.4 0.63 0.093
Brigham Young 5.8 1.0 0.7 2.3 3.00 0.137
Carnegie Mellon 5.4 1.0 0.7 2.6 3.00 0.334
Illinois Inst. of Tech. 5.0 0.8 1.1 3.5 0.30 0.036
Stevens 5.0 0.9 0.7 2.3 1.55 0.049
Syracuse 4.8 0.8 0.8 2.7 2.50 0.072
Rice 4.8 0.8 1.0 34 0.50 0.085
Michigan Tech. 4.3 0.7 0.8 2.6 1.50 0.065
Princeton 4.1 0.7 1.0 3.3 1.50 0.189
Northeastern 4.0 0.7 0.6 2.1 0.63 0.250
U. of Delaware 4.0 0.7 0.8 2.8 1.50 0.133
Brown 4.0 0.7 0.9 3.1 1.50 0.094
Illinois State 3.8 0.7 0.4 1.3 2.50 0.000
Brandeis 3.6 0.6 0.7 2.2 1.50 0.039
Arizona State 3.6 0.6 0.6 2.0 2.75 0.413
Louisiana State 3.5 0.6 0.6 2.0 2.00 0.190
NJ Institute of Tech. 3.5 0.6 0.6 1.9 2.00 0.052
U. of Oregon 3.3 0.6 0.8 2.4 1.32 0.033
Ohio University 3.2 0.5 0.7 2.3 0.75 0.079
U. of Illinois, Urbana 3.2 0.6 0.8 2.6 4.63 0.304
MIT 3.2 0.6 0.4 14 14.00 3.033
U. of Utah 3.2 0.6 0.6 2.0 5.00 0.395
Stanford 3.1 0.6 0.4 1.6 14.50 1.847
U. of Tulsa 3.1 0.5 0.9 2.6 0.55 0.000
U. of Central Florida 3.1 0.5 0.7 24 1.13 0.076
Dartmouth 3.0 0.5 0.7 2.3 1.50 0.150
Median of all 130 U. 2.2 0.4 0.6 1.9 2.48 0.216

Table 3.6: Change in Prediction Induced by Increasing Resources. "Man Power" is
defined as professionals plus 0.5 times support staff working on technology transfer.
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3.4.2 Diminishing Rates of Return for Research Expenditures

Our estimates suggest that there are diminishing rates of return. From the confidence
interval estimates in table 3.5 we see that we can in all cases reject the hypothesis that
there are constant returns to scale (3 = 1 is never in the 95% confidence interval). The
economies of scale parameter for research expenditures is usually between 0.6 and 0.8,
implying that a university with twice the research expenditures should expect between
50% and 75% more outputs. Government agencies that award research grants should,
however, be careful in interpreting this finding. Taken out of context, this might suggest
that more funds should be awarded to the smaller institutions at the expense of the larger
ones.

One explanation of the diminishing rates of return is that some ideas are more expen-
sive to elicit than others. In the Physical Sciences for example, small university programs
may not be equipped to do experiments on colliding particles performed with a linear
accelerator. In order to do research in this area the university has to invest in expensive
equipment before it can start doing experiments in the field. The cost of research in the
Physical Sciences, can thus vary widely among universities.

Another possible explanation is that as the departments get larger, faculty projects
tend to be less differentiated. The younger faculty members may gravitate towards the
research priorities of the more experienced faculty.

One hypothesis of why the model parameters always imply diminishing rates of return
is that maybe there are a few small universities that are doing exceptionally well, and
thereby pushing the predictions for small entities upwards. To test this hypothesis we
split the universities into two categories based on aggregate research expenditures in the
three departments. We estimate the model parameters separately on the smaller and
larger universities. We find that in both cases the model parameters imply diminishing
rates of return for research expenditures. We must thus conclude that the diminishing
rates of return are not caused by a few small universities.

3.4.3 The Faculty Quality Rating

Our estimates imply that the faculty quality rating has a significant impact on the pre-
dicted number of licenses, patents, and invention disclosures. The § parameters tell us
what the influence of the faculty quality rating is on the predictions. The highest rated
faculty have F;; = 0 and the lowest F;; = —1. Comparing the influence of the lowest
rated faculty to the highest rated faculty in equation 3.18, we see that the lowest get
(1 — 6) of the output the highest get. From table 3.5 we see that in Engineering and
Physical Sciences the lowest rated faculty get between 12% and 29% of what the high-
est rated faculty receive. The impact of the faculty rating in the Life Sciences varies
significantly depending on what we are predicting.

It is interesting to notice that of the three output measures the faculty rating influ-
ences the number of license agreements the most. This implies that while all faculty file
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invention disclosures and patent applications, highly rated faculty are more successful in
applying their inventions outside the university.

This finding is quite significant; it implies that “good” faculty perform research that
leads to applications outside the university more cost effectively than other faculty. The
models correct for the fact that some universities have more money to spend on research
than others. Taking this finding to its extreme, one can claim that the additional rewards
from hiring “good” faculty outweigh the additional costs.

We should be careful not to read too much into the diminishing rates of returns
and faculty quality importance because there is a strong correlation between these two
variables (about +0.55). If we estimate models where we have set § = 0 , the resulting
B’s are closer to one than the values presented in table 3.5.

3.5 Testing the Model

We test the model in two ways. The patent data we use to estimate the model parameters
do not differentiate by department. In other words, we do not know the number of patents
applications for research in the Life Sciences, Engineering, or Physical Science. When
we calculate the predictions for each university, we can project the number of patent
applications by department. We can thus use the model to approximate the portion of
patents that come from each department. From another source we have classification
data about patents. From these data we estimate the number of patents that are most
likely based on research in the 1) Life Sciences, and 2) Engineering and Physical Sciences.
By comparing this ratio to the ratio predicted by our model, we can test if the model is
estimating the balance between the Life Sciences and the other departments correctly.

The other method we use is to keep a hold-out sample. We estimate the model on
one set of data and use the resulting parameters to make predictions for the remaining
data. We have data for four years from 1992 to 1995. We estimate the model parameters
on data from three years and make predictions for the fourth.

3.5.1 Fraction of Patents in the Life Sciences

We use the data from the U.S. Patent and Trademark Office [TAF96] and split patents
into two categories: 1) patents that are most likely based on research in the Life Sciences,
and 2) patents that are most likely based on research in Engineering or Physical Science.
In figure 3-6 we show how the number of patents in each category has changed since
1975.

The average annual growth in Engineering and Physical Sciences is 11.0% and 11.6%
- in the Life Sciences. The fraction of patents that are most likely based on research in
the Life Sciences varies between 47% and 56%, but the average for all patents granted to
American universities since 1975 is 51%. ,

When we calculate the contribution from each department using equation 3.28 and
the parameter estimates for patents (table 3.5), we get the following;
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Figure 3-6: Patents Granted to American Universities by Research Field.

> (0.014 + (0.288MP; + LF)***) x 37.6 (1 + 0.71F, pog) 2085, = 2473 (3.42)

L]

5~ (0.014 + (0.288MP; + LF)**) x 24.1(1 + 0.71F, pny ) 2351, 1425 (3.43)

1

3 (0.014 +(0.288MP; + LF;)**) x 11.3(1 + 0.37F, i) 207 = 4659 (3.44)

1

We see that the nonlinear model predicts that 29% of all patents result from research
in Engineering, 17% from Physical Sciences, and 54% from Life Sciences.

The difference between 51% and 54% is small and can be explained by ambiguity in
the classification of some patents. This shows that the nonlinear model not only fits the
data quite well, but also predicts the ratio of all patents that result from research in the
Life Sciences quite accurately.

3.5.2 Hold-Out Sample

The model parameters should be robust enough to be consistent over time. In looking
into this issue we estimate the model parameters on three years of data and use the
resulting parameters to predict the number of patents each university applies for in the
forth year. The parameter estimates for each case are listed in table 3.7.

The last five rows of table 3.7 list the measure of fit statistics evaluated on only some
of the data. The bold face statistics are for the data that are not used in the estimation.
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All FY 1993 | FY 1092 | FY 19092 | FY 1992
Parameter Four FY 1994 | FY 1994 | FY 1993 | FY 1993
Years | FY 1995 | FY 1995 | FY 1995 | FY 1994
OEng 37.6 38.1 32.7 26.7 66.0
phy 24.1 185 25.3 223 38.0
L 11.3 8.67 18.8 12.7 11.7
Brng 0.61 0.61 0.70 0.64 0.50
Bphy 0.61 0.61 0.70 0.64 0.50
Bris 0.76 0.79 0.76 0.73 0.76
7 0.014 0.011 0.012 0.016 0.013
Yo 0.64 0.60 0.75 0.63 0.65
Vs 0.29 0.30 0.23 0.26 0.37
1-6Eng 0.29 0.24 0.53 0.39 0.11
1-6phy 0.29 0.24 0.53 0.39 0.11
1-6 063 | 071 063 | 053 | 059
Peee — 1 529, 53% 62% | 56% | 41%
Py — 1 52% 53% 62% 56% 41%
2Lt — 1 70% 73% 69% 66% 69%
Q% / Q™ (all data) | 4.70/1.64 | 4.76/1.60 | 4.87/1.71 | 4.72/1.68 | 4.82/1.51
Q% 7 Q' (1992 data) | 5.33/1.71 | 5.86/1.77 | 5.49/1.93 | 5.14/1.82 | 4.91/1.73
Q% / Q™ (1993 data) | 4.82/1.44 | 4.94/1.39 | 5.42/1.45 | 4.78/1.63 | 4.65/1.27
Q% ] Q™ (1994 data) | 4.92/1.57 | 4.83/1.51 | 5.10/1.71 | 5.05/1.67 | 5.18/1.62
Q% / Q™ (1995 data) | 3.93/1.68 | 3.74/1.61 | 3.70/1.73 | 4.05/1.70 | 4.60/1.58

Table 3.7: Parameter Estimates When Using Data From Three Years at a Time.

When looking at the measure of fit statistics for data from a single year, we see that,
as expected, the Q**-statistics are largest when the corresponding year is not used in the
estimation. From figure C-24 in Appendix C we see that the probability that the overall
Q?*-statistic is greater than 5.65 is 5%. The largest value for the entire data is 4.87.

When looking at the Q'*-statistic (which is not based on a summed penalty but rather
the median error) we see that in none of the four cases is the statistic at a maximum
when that year’s data are not used for the estimation. This is encouraging as it suggests
that the model fit is consistent through time.

We see that all the parameters are fairly stable. The largest changes are in the faculty
quality rating variables for Engineering and Physical Sciences. When excluding the 1993
data the coefficient is 0.53 but when excluding 1995 it is 0.11. When looking at figure
C-22 in Appendix C we see that the probability that this parameter for the full data set
is lower than 0.47 is 11.7% and the probability it is greater than 0.89 is 2.8%, so although
the variation is substantial, we still stay within the 95% confidence interval.
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3.6 Limitations of Cross-Sectional Regression Mod-
els

It is important to realize what the limitations of these models are. We built a conceptual
model and made various assumptions about the processes leading to patent applications
and licenses. The model is limited by how reasonable these assumptions are.

There are two key assumptions. We assume that the number of ideas in each depart-
ment that may lead to patent applications and licenses follows a Poisson process. We
further assume that the rate of this process is a function of the research expenditures
and the average faculty quality rating. This is clearly a very simple model for the idea
process. Other variables, not included in our model, may also influence the rate of this
process.

We also assume that the number of patent and licenses per idea is a random variable
with a mean that depends only on the resources provided for technology transfer. We
postulate that two measures of the TTO resources are relevant: the number of profes-
sionals and staff working on technology transfer, and legal fee expenditures for patents
and/or copyrights. These two measures are clearly imperfect. If one person leaves the
TTO and a new person is hired, the gross number of full-time employees stays unchanged,
but the new person is most likely less experienced than the person who left. We also as-
sume that a staff member contributes one-half of what a professional contributes. There
are clearly other factors about the TTO that are also relevant. Is the director of the
office an enthusiastic person with many personal contacts with faculty and industry? Is
the focus of the office on stimulating technology licensing, or merely to do what has to
be done? Does the university reward the TTO and faculty for successfully transferred
technologies?

We also assume that the variance in the number of patents and licenses per year
is proportional to the mean. We test this assumption on data, and it appears to be a
reasonable assumption.

The model of this chapter are cross-sectional; they predict the number of outputs
from a university in one given year, but are not tailored towards tracking changes over
time. The models do not tell us anything about causal relationships; they can only tell
us how different variables may be dependent upon each other.

We used empirical data from more than 100 universities in the United States to
estimate the parameters of the model. The model fits the “best curve” through the
“center” of the data. The model is thus based on average performances, unlike the
model in Chapter 4 which is based on best practices. '
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3.7 Conclusions from Cross-Sectional Regression Mod-
els

We started this chapter by building a conceptual model for the commercialization process
of university discoveries. We then quantified this model and tested some of our assump-
tions. In these models the number of license agreements and patent applications for each
university is approximated by compound Poisson processes.

We used empirical data to estimate the parameters of our model, and we used re-
sampling methods to approximate the distribution functions for the parameters.

Our first conclusion is that only three departments—Engineering, Physical Sciences
and Life Sciences—contribute significantly to the licensing process. This is not surprising
as we do not expect successful research in all departments to lead to patent applications
and license agreements. This finding is consistent with what industry experts expect.

The resources that are available for technology transfer are imbedded in our models.
By looking at how the predictions vary as we vary the resources, we can draw conclusions
about the apparent impact of providing more or less resources. All of our results show
a positive relationship between the investment in technology transfer and the licensing
activities (measured by patents and/or licenses). This result contradicts the hypothesis
that the people at TTOs hinder the effective utilization of university discoveries. Rather,
universities that commit more resources for technology transfer are also more successful
at such transfer.

Our models suggest that the rewards from adding to the TTO resources vary among
universities. In table 3.6 we listed the change in the predicted number of license agree-
~ ments when comparing the current resource level to the situation when one more profes-
sional has been hired. The greatest expected increase in the number of license agreements
occurs at Drexel University (6.7), but 25 other institutions have an expected increase
higher than 3.0. The median increase for all universities is 2.2 licenses.

Our parameter estimates imply diminishing rates of return for research expenditures.
Comparing the predictions for two universities, one with twice the research expenditures
of the other, we expect 52% more patents, 54% more licenses, and 59% more invention
disclosures in Engineering and Physical Sciences. In the Life Sciences we expect 70%
‘more patents, 56% more licenses, and 72% more invention disclosures from the university
with twice the research expenditures of the other. Our findings also suggest that the
faculty quality rating has a significant association with the expected number of licenses,
patents, and invention disclosures. On a per dollar basis, highly rated faculty perform
research more cost effectively than others. Of the three output measures we consider,
the relationship is strongest for license agreements. This implies that while all faculty
file invention disclosures and get patents, the inventions of highly rated faculty are more
successful commercially.
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Chapter 4

Data Envelopment Analysis

Data Envelopment Analysis is the second of the three methodologies we use to evalu-
ate the influence of university technology transfer offices in commercializing university
research discoveries.

~ In Chapter 3 the influence of the TTO was imbedded into our models. Here our
approach is different. We first develop a performance measure independent of the TTO.
This performance measure not only considers variables related to technology transfer,
it also includes faculty publications and student enrollment statistics. After evaluating
the excellence of the universities, we analyze how it relates to the resources provided for
technology transfer. Do “excellent” universities provide more resources for technology
transfer than others? Are universities that invest more in technology transfer judged
more “excellent” based on their performance in technology transfer, or is it based on
other performance measures?

We conclude that there is a positive correlation between the university excellence and
the resources provided for technology transfer. Furthermore, we show that the reason
for the greater excellence of the universities that provide more resources for technology
transfer is a better performance in commercializing university discoveries.

4.1 Introduction

Data Envelopment Analysis (DEA) was introduced by Charnes et al. [CHAT7S| as a
method for evaluating the efficiency of decision making units (DMUs). Since the method
was first introduced in 1978 substantial work has been done on both extending the theory
and applying it to a wide class of problems. For a summary of recent developments and
applications consult Charnes et al. [CHA94).

This section briefly introduces the DEA methodology. We define the contribution of
output variables; it is a dimension-less measure that aims at showing which outputs are
contributing to the efficiency score of the DMU. We also extend the definition of the
efficiency score of the DMUs on the efficient frontier.
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4.1.1 DEA Background

As in Chapter 3 the universities are indexed by i« = 1,2,...,n. Each university has
input measures denoted by X;., 7 = 1,2,... R, and output measures denoted by Y,
s=12,...,8.

When calculating any kind of an efficiency score, these inputs and outputs need to be
scaled (priced). Lets call the input weights v, and the output weights w,. Using these,
the efficiency score of university i is defined as,

23—1 w,Y
Ef 21 U Xiy

For some efficiency problems there are universally accepted weights for the inputs and
outputs. This is for example the case when both the inputs and outputs are traded in
an open market. Letting the weights equal the prices in the market, the numerator of
equation 4.1 is the aggregate revenue, and the denominator is the cost. The efficiency
score thus measures the return on the production.

In many cases it is difficult to determine the weights (prices). At universities, for
example, what is the relative worth of publishing a paper versus entering a license agree-
ment? Is one paper equally valuable as one license, or is it ten papers for one license.

Data Envelopment Analysis deals with this ambiguity problem by providing each
university with the opportunity to put its “best foot forward.” When determining the
efficiency of a university, DEA chooses the weights that result in the best possible effi-
ciency for that university. For example, if royalties are one of the output variables in the
model, and a university is very successful in generating royalty, this university will do
well if all of its weight (w,) is placed on royalties. By using these weights, the university
may have a higher efficiency as defined in equation 4.1 than all the other universities.

DEA constructs the efficient frontier by a convex combination of the best DMUs.!
As an example, in figure 4-1 on page 58 we have plotted the efficient frontier for a
hypothetical problem with two output variables. A DMU is on the efficient frontier if
and only if e; = 1, and we call the DMUs that are on the frontier efficient.

When the DEA algorithm finds the optimal weights for university :*, it solves the
following mathematical program:

(4.1)

€ =

23—1 wz',s t',s
Zr—l vt‘ t' r

maxe; = (4.2)

subject to:
23—1 wt',a i,8

1 1=1,2,... .
2?:1 Uz',rX'l,f - ’ o ' (4 3)

1A vector 2 is a convex combination of a set of vectors Z; Z;if 7 =Y ;0,Z], where _,; = 1 and
a; > 0 for all ;.
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wey, >0 s=1,2...,8 (4.4)
ver > 0 r=12...R (4.5)

The constraint 4.3 makes sure the scale is right—all the efficiency scores must be
between zero and one. The positivity constraints 4.4 and 4.5 ensure that negative weights
are not given to any of the outputs or inputs.

Observe that if (w;..,v;,.) is an optimal solution to the nonlinear program above,
then (ow;- ., av;-.) is also optimal for 0 < a@ < oo. By constraining the denominator
of 4.2 to equal one, the nonlinear program above can be replaced by a equivalent linear
program. While it is difficult to solve the nonlinear program, it is easy to solve the linear
program.

4.1.2 Output Contribution

When DEA has determined the optimal weights (w; ., v; ) for university ¢, the contribution
of each output measure towards the university’s excellence can be evaluated. This concept
has not been explicitly defined in the literature, but it is very intuitive. Define the
contribution of output measure s for university i as,

wi,a},i,a
=5
23=1 wi,s},z',s

Observe that for each university the contributions sum to one , i.e. 2;9:1 W,s=1.1If
“royalties received” has a 80% contribution, it means that for this university, 80% of its
efficiency score is derived from royalties received. This does not say that if the university
had no royalties, the resulting efficiency score would be only 20% of the current score,
because in the absence of royalties the algorithm would have chosen other weights.

Wi,s = (4.6)

4.1.3 The Extended Efficiency Measure

We have extended the definition of the DEA efficiency for the universities on the efficient
frontier. Using traditional DEA, the efficiency of the DMUs on the efficient frontier
is 100%. This evaluation is based on the performance relative to the best practices,
but when a university is on the efficient frontier, itself is the best practice. It is more
insightful to compare the DMU to all the other DMUs excluding itself. We thus exclude
the case i = ¢* in the constraint 4.3. This does not alter the efficiency score for the
universities that are not on the frontier, but the ones on the frontier have efficiency score
of 100% or higher. An efficiency score of 300% means that if this unit was not included
in the analysis, a hypothetical unit with these outputs would be on the efficient frontier
although it had to use 300% of the inputs our unit uses.
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4.1.4 A Simple DEA Example

To further illustrate these concepts, lets look at a simple example. Suppose there are
only two relevant outputs (licenses and published papers), and assume that all universities
have equal inputs. There are five hypothetical universities in the database, all listed in
table 4.1.

University Licenses Papers

A 31 250
B 25 390
C 52 70
D 35 180
E 5 420

Table 4.1: DEA Example; The Data.

It is not immediately obvious which universities are efficient. Going back to the basis
of DEA we see that university C is efficient—by placing all the weight on licenses, no
other university performs better. University E is similarly efficient by placing all the
weight on papers. The remaining question is, which of the other universities (if any) are
also efficient, and if they are not efficient, what is their efficiency score? Figure 4-1 plots
the two output measures against each other for all five universities.

400

300
z
[
= 200
(=¥

100

0 »
0 10 20 30 40 50
Licenses

Figure 4-1: DEA Example; Data and the Efficient Frontier.

The efficient frontier is a convex combination of the best performing universities.
DEA assumes that any convex combination of the observed points is feasible. Figure 4-1
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shows that by choosing the right weights for licenses and papers, university B is efficient,
but no matter how the weights are, A and D will never be evaluated as efficient. The
reason is that they are dominated by a convex combination of B and C. Table 4.2 shows
the numerical results from the DEA of this example.

Contribution
University Efficiency g;;:;iii ~ Licenses Papers
A 90.0% 90.0% 60% 40%
B 100.0% 122.3% 30% 70%
C 100.0% 148.6% 100% 0%
D 86.7% 86.7% 70% 30%
E 100.0% 107.7% 0% 100%

Table 4.2: DEA Example; The Numerical Results.

The efficiency score of university A is 90%, and 60% of its performance comes from
licenses and 40% from papers. Lets create a hypothetical university A’ that has the
same ratio of outputs as A, but is on the efficient frontier. By blending 65% of B and
35% of C, we get that A’ should have (0.65 x 25 + 0.35 x 52 =) 34.45 licenses and
(0.65 x 390 4 0.35 x 70 =) 278 papers. Since 2= ~ 90% and 22 ~ 90%, the efficiency
of A is 90%. We say that A is dominated by this convex combination of B and C. Figure
4-2 shows where the hypothetical university A’ would be on the two-dimensional outputs
plot. The efficiency score is the length of the dotted line from zero to A divided by the
length of the dotted line from zero to A’.

When calculating the extended efficiency of university B, B is not included in con-
straint 4.3. This means that the efficiency of B is evaluated relative to A, C, D, and E,
but not B itself. The extended efficiency score can thus be higher than 100%. Figure 4-3
plots the hypothetical efficient frontier for the data set when B is not included. In this
hypothetical situation, E and C stay on the efficient frontier, A is now also on it, but D
is not. The intersection of a line from zero to B and this hypothetical efficient frontier
is B’. The length of the dotted line from B’ to B is the amount that B could reduce its
outputs, but still stay on the hypothetical efficient frontier. The extended efficiency score
is defined as the ratio of the length from zero to B to the length from zero to B’.

Letting B’ be 81.8% of B, B’ has (0.818 x 25 =) 20.45 licenses and (0.818 x 390 =)
319 papers. By blending together 59.4% of A and the remaining 40.6% of E, there are
(0.594 x 31+ 0.406 x 5 =) 20. 45 licenses and (0.594 x 250 + 0.406 x 420 =) 319 papers.
This blend of A and E produces 81.8% of what B does, so the extended efficiency of B is
(53 =) 122.3%.

59




E
B
400 - efficient
frontier
300 -k
[ -]
B
8 200 +
Ay
100 + C
0 } } —- } t >
0 10 20 30 40 50

Figure 4-2: DEA Example; The Hypothetical University A’ is a Convex Combination of
B and C.

4.1.5 Variable Returns to Scale

The traditional DEA assumes constant returns to scale; if the inputs are doubled, the
outputs should also double. In this section we illustrate how the method can be changed
in order to account for variable returns to scale.

Norman and Stoker [NOR91] introduce the two most widely accepted methods to
- capture variable returns to scale. The first alternative is usually referred to as input
minimization. It answers the question: “Given the outputs the university has, how much
lower should the inputs be in order for the university to reach the efficient frontier.” The
mathematical program to solve is:

Ef:l wi',sYi‘,s + Ci=

max eio = '}‘2=1 ,U'_.‘rXi. . (4.7)
subject to:
ZS=1 Wis sY; s + Cio .
2 . <1 =12,..., .8
R Vi e Xir - ’ " (48)
wes > 0 s=12,...,8 4.9
Vier 2 0 r=12,...,.R (4.10)

The only change from the original mathematical program is the constant c;. that is
added to the numerator of the efficiency measure 4.7 and the constraint 4.8.

The way to think about this, is that a synthetical output is created and an equal
amount of it given to every university. If the algorithm gives every other university a
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Figure 4-3: DEA Example; The New Hypothetical Efficient Frontier Used to Evaluate
the Extended Efficiency Score of University B.

positive amount, it implies diminishing rates of return. If it subtracts a constant value
from everyone, it implies increasing rates of return.

The other alternative for incorporating variable returns to scale is called output maz-
imization. Output maximization answers the question: “Given the set of inputs, by how
much do the university outputs need to increase for it to reach the efficient frontier.”
The following nonlinear program should be solved:

23—1 W= s z' ]
maxe; = — 4.11
2?:1 Ug» ,rX'z',r - G+ ( )

subject to:

25—1 Wy s 1 ,8

SE - <1 i=1,2,...,n (4.12)
r=1 Yi*rir — .
we, > 0 s=12,...,8 (4.13)
ver 2 0 r=12..,R (4.14)

Here a similar constant as before is used, except it is subtracted from the denominator
of the efficiency ratio and the constraint. For a more detailed discussion of variable returns
to scale consult Norman and Stoker [NOR91].
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4.2 Analysis

In this section we first introduce the variables we use as input and output measures of
our model. We then discuss the data we use in the analysis, and the method we use to
capture diminishing rates of return for research expenditures. Finally, we briefly list the
efficiency scores for some of the universities.

4.2.1 Measures

The output measures for our analysis must meet two criteria. First of all we need a proxy
for each type of excellence; we want to judge universities based on their performance in
1) performing applied research, 2) performing theoretical research, and 3) training new
researchers. Secondly we must use measures that we can gather data on.

We use six output measures for the analysis:

1. Number of new U.S. patent applications, median of 1991-1995.

2. Number of options and license agreements entered, median of 1991-1995.

3. Gross royalties received, median of 1991-1995 (1994 dollars).

4. Number of faculty publications, total 1986-1992.

5. Number of enrolled graduate students, fall 1992.

6. Number of Ph.D. graduates, 1987-1988 academic year to 1991-1992 academic year.

Universities that focus on theoretical work will put most of their weight on faculty
publications. Universities that focus on training new researchers will be compensated by
placing a large weight on the number of enrolled graduate students and awarded Ph.D.
degrees. Finally, universities that emphasize applied research will do well by placing high
weights on the number of patent applications, licenses executed, or royalties received.

These measures are imperfect, but they are a reasonable approximation. When a
researcher works on applied research, the ultimate goal is to use the results. Transferred
technologies represent a fair proxy for the amount and quality of applied research out-
comes. Theoretical work is most often brought to the public by publishing the results in
a journal. Simple publication counts serve as a fair proxy for the volume of theoretical
research findings. Training new researchers is one of the key objectives of universities.
The number of graduate students and Ph.D. degrees awarded is the most tangible mea-
sure of performance in this regard. We have not attempted to evaluate the quality of
any of those outputs; we assume that one publication is just as valuable as another, and
that one patent is just valuable as another.

One of the most important input variables for university research is research expen-
ditures. With money at hand a university is in a strong position to maintain strong
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research programs; it can attract faculty and students of the highest caliber and invest
in necessary equipment. Other input variables are less important and the DEA only
considers this one input measure:

1. Total research expenditures of all departments of table 3.2, median of 1991-1995,
(1994 dollars).

4.2.2 Data

The aggregate research expenditures are published by the National Science Foundation
[SRS95a). These data are compiled each year after collecting the numbers from all Amer-
ican universities.

Data about the number of new patent applications, license agreements, gross royalties,

- and the TTO resources are from the survey the Association of University Technology

Managers has compiled for the last five years [AUT96]. Universities report these numbers
directly to AUTM, and the reliability is limited only by how truthfully the numbers are
reported and how unambiguous the definitions are.

Finally, the number of faculty publications, student enrollment, and Ph.D. graduates
is compiled from the study the National Research Council performed in 1993 [NRC95].

4.2.3 Returns to Scale

The models in Chapter 3 imply that there are diminishing rates of return for research
expenditures—a university that has twice the research expenditures of another, does not
receive twice as many patents or licenses. The DEA should be flexible enough to capture
this behavior; but not too rigid to impose it on our data.

Of the two alternatives for modeling diminishing rates of return, input minimization
is more appropriate for our purpose?. The nonlinear mathematical program for input
minimization is equivalent to the following linear program:

S
maxe; = Zwi.,,)’}.,, + ¢ (4.15)
s=1
subject to: (4.16)
R
> v Xy = 1 (4.17)
r=1
R s
Ev‘i',rxi,f_zw‘i',sx,-!_q' 2 0 i=1,2,...,i‘_ l,i.+1,...,n (4.18)
r=1 s=1

2Qur results are not dependent on using input minimization as opposed to output maximization. We
also performed the analysis using the other method, and while there are some minor differences, the key
results are all the same.
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=1 (4.19)
r=1
wey, > 0 s=12,...,8 (4.20)
ver > 0 r=12..R (4.21)
e > 0 (4.22)

This linear program is easy to solve (and it is actually even easier to solve the dual),
and we used a standard MATLAB®package to do the arithmetic. It has to be solved
122 times—once for each university in the database.

4.2.4 Results

In Appendix D we have the detailed results from the DEA. Of the 122 universities in the
database, 20 are on the efficient frontier. The universities that have a higher efficiency
score than 80%, and the contribution of the output variables, are listed in table 4.3.

The University of California has the largest aggregate number on all the output di-
mensions. Because of the way the DEA algorithm models diminishing rates of return,
the University of California will therefore always be on the efficient frontier (and the
efficiency score infinite). Stanford has been very successful in entering new license agree-
ments. The median of 1991-1995 is 122 licenses (research base of 319 million), while MIT
only entered 71 new license agreements (research base 364 million). Bringham Young
is very effective in graduating Ph.D. students, but also derives some of its score from
executing licenses. University of Akron is a small university that has many graduate
students enrolled and has also filed many patent applications.

Looking at the contribution values, observe that the universities on the efficient fron-
tier that place a high weight on patent applications are: Cal Tech, Northeastern, Uni-
versity of North Carolina in Charlotte, MIT, and Thomas Jefferson. Universities that
place a high weight on licenses executed are: Stanford, Marquette, and Iowa State. Uni-
versities that place a the highest weight on royalties are: Columbia and Michigan State,
but neither derived more than 50% of its performance from this measure. Universities
that perform on publications are: Vanderbilt, UPenn, University of Massachusetts at
Amherst, and Michigan State. Universities that place a high weight on the number of
graduate students are: SUNY, University of Akron, Columbia, and Illinois Institute of
Technology. Finally, universities that derive their performance from graduating Ph.D.’s
are Bringham Young, and University of Chicago.
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Contribution

Extended Patent Lic. Roy. Fac. Grad. Ph.D.

University Efficiency Appl. Exe. Rec. Pub. Stud. Stud.
Enr. Grad.

U. California 00 n/a n/a n/a n/a n/a n/a

Stanford 403% 100%

Brigham Young 332% 23% 7%

U. Akron 219% 30% 70%

Cal. Tech. 173% 100%

MIT 172% 89% 11%

Iowa State 171% 40% 60%

Marquette 148% 17% 83%

U. NC, Charlotte 138% 95% 5%

U. Chicago 136% 15% 26% 59%

U. Penn. 132% 14% 86%

IL Inst. of Tech. 127% 51% 49%

U. Mass., Amh. 124% 79% 6% 15%

Columbia - 122% 49% 51%

SUNY 117% 100%

Northeastern 116% 100%

U. IL, Urbana 112% 15% 40% 36% 9%

Thomas Jefferson 111% 88% 12%

Michigan State 110% 41% 59%

Vanderbilt 104% 10% 90%

U. TX, Houston 98% 3% 97%

Rutgers 97% 3% 5% 70% 22%

U. Florida 91% 2% 7% 14% 74% 4%

Purdue 90% 7% 15% 78%

Arizona State 90% 6% 3% 91%

Washington U. 85% 24% 72% 4%

Syracuse 85% 1% 99%

Northern IL U. 84% 100%

Ohio State 83% 8% 1% 67% 24%

U. NC, Chap. H. 82% 8% 73% 19%

Princeton 82% 100%

U. Alabama 82% 13% 12% 75%

U. WI, Madison 81% 24% 8% 26% 42%

Northwestern 81% 1% 75% 24%

Table 4.3: The Extended Efficiency Scores and Output Contributions for the Universities
with Higher Extended Efficiency Scores than 80%.
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4.3 Implications about TTOs

The efficiency scores in the previous section are only based on the six outputs and the
research expenditures. We have so far not used the resources universities commit to
technology transfer in our analysis.

If the TTOs stimulate the licensing process at universities, we expect universities that
invest more than others in technology transfer to make more license agreements, apply
for more patents, and receive more royalties than others. Consequently, universities
that invest more in technology transfer should, other things even, get a higher efficiency
score and place higher weights on patents, licenses, and royalties. In other words, we
think there should be a positive correlation between the amount of resources universities
invest in technology transfer and the efficiency score, and there should also be a positive
correlation between the TTO resources and the contribution (W) of the three dimensions
related to technology transfer.

In this section we show that this is in fact the case. We do so by showing that we can
reject the following two hypotheses:

1. There is no correlation between the efficiency score and the resources provided for
technology transfer.

2. There is no correlation between the weights universities place on the three TTO
related outputs (licenses, patents, and royalties) and the resources provided for
technology transfer.

We use four measures for the TTO resources:

1. Number of professionals working on technology transfer per million dollars invested
in research.

2. Number of support staff working on technology transfer per million dollars invested
in research.

3. Gross legal fee expenditures for patents and/or copyrights per million dollars in-

vested in research.

4. A weighted average of the above. $100,000x the number of professionals plus
$50,000x the number of support staff plus legal fee expenditures, all divided by
million dollars invested in research.

The last measure is aimed at capturing the variable cost of operating a technology
transfer office. It assumes that the average cost of a professional is $100,000 and the
average cost of employing a staff member is $50,000.

The reason we normalize the resources by the total research expenditures is that we
want to capture how much TTO resources are provided per research activity. One person
at Ohio State can obviously do more per research dollar, than one person at MIT.
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4.3.1 Does a Strong Efficiency Score Correlate with TTO Re-
sources?

Lets test the hypothesis that there is no correlation between the efficiency score and the
resources provided for technology transfer. To test this hypothesis we use the Spearman
Rank Correlation test. For details about the test consult Conover [CON80]. Table 4.4
shows the p-values of the hypothesis for each of the four resource measures.

TTO Resources p-value
Number of Professionals 2.6%

Number of Staff 0.09%
Total Legal Expenditures 0.002%
Weighted Measure 0.002%

Table 4.4: The p-value for a Spearman Rank Correlation Test of the Hypothesis: "TTO
Resources are Independent of the Extended Efficiency Score."

As table 4.4 shows, all the p-values are well below 5%. To further illustrate the
point, we have in table 4.5 split the universities into four groups based on the number
of professionals working on technology transfer and the extended efficiency score. The
cut-off points are at the median (55%) efficiency score, and at 20 professionals working
on technology transfer per billion dollars invested in research.

Number of Professionals Number of Professionals
working on TT < 20 working on TT > 20
per billion spent on research per billion spent on research

Extended
Efficiency < 55% 25 36

Score
Extended
Efficiency > 55% 13 48

Score

Table 4.5: Head Counts for TTO Resources versus Extended Efficiency Score.

We see there is a strong positive relationship between the two variables. Of the
61 universities with extended efficiency above the median, only 13 have fewer than 20
professionals working on technology transfer per billion dollars spent on research, while 25
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of the 61 universities below the median efficiency score do. The p-value for the hypothesis
that the two dimensions are independent is 1.9% using a x*-test.

We can confidently reject the hypothesis that there is no correlation between the re-
sources provided for technology transfer and the efficiency score of the university. This is
consistent with the conclusion from Chapter 3 that the resources are positively correlated
with university performance.

4.3.2 Do the Contributions from the TTO Related Outputs
Correlate with TTO Resources?

The contribution of the TTO related measures is the combined contribution of patent
applications, license agreements executed, and royalties received:

WTTb = WPat + WLic + WRoy, ' (423)

where the contributions are defined as in equation 4.6. If the university is truly excellent
in technology transfer, these add to 100%, but if the university is better in getting faculty
publications, enrolling graduate students, or graduating Ph.D.’s, they add to 0%.

Out of the six output dimensions of the DEA, three are related to technology trans-
fer. For a university at random, we therefore expect that on average about 50% of the
contribution comes from the TTO related outputs, and the rest from the other outputs.

We now want to show that we can reject the hypothesis that the contribution for
the TTO related outputs is independent of the TTO resources. In table 4.6 we have the
p-values for this hypothesis.

TTO Resources p-value
Number of Professionals 4.5%

Number of Staff 0.64%
Total Legal Expenditures 0.37%
Weighted Measure 0.55%

Table 4.6: The p-value for a Spearman Rank Correlation Test of the Hypothesis: "TTO
Resources are independent of the TTO related Output Contributions."

Observe that the p-value is below 5% for all the TTO resource measures. As before we
have also created a 2-by-2 table, splitting the universities into four groups based on the
number of professionals working on technology transfer, and the sum of the contributions.
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Number of Professionals Number of Professionals
working on TT < 20 working on TT > 20
per billion spent on research per billion spent on research
Combined
Contribution < 50% 35 02
Combined
Contribution ~ 50% 3 22

Table 4.7: Head Counts for TTO Resources versus Combined TTO Related Output
Contributions.

The first thing to notice about table 4.7 is that of the 122 universities only 25 derive
more than 50% of their extended efficiency score from patents, licenses and royalties.
Considering that these three measures are positively correlated—a university with many
patents and licenses is also likely to receive large royalties—this is not surprising. Table
4.7 also shows that there is a strong correlation between the combined contribution and
professionals working on technology transfer. The p-value for the hypothesis that the
two are independent is 2.0% using a x3-test.

We can therefore confidently reject the hypothesis that the investment in technology
transfer is independent of the weights universities put on patents, licenses, and royalties.

4.4 Limitations of DEA

There are two major objections to the technique. DEA is very sensitive to outliers. If
there is one freakish observation, the entire analysis may be cast into doubt. Say, for
example, that the output of one DMU was accidentally recorded ten-fold. This may
deem many other DMUs very inefficient, as they cannot compete with this one super
performer.

In an effort to diagnose a problem like this, we extend the method in one way. When
performing the optimization for university i*, = i* is not included in the constraint of
equation 4.3. Intuitively, this means that the efficiency score of the university is evaluated
relative to all other universities, excluding itself. An extended efficiency score of 300%
means that in the absence of this unit, a hypothetical unit with these inputs and outputs
would be on the efficient frontier with as little as one-third of the outputs. If the extended
efficiency scores are much greater than 100%, the data should be verified and the presence
of that single DMU in the analysis should be confirmed. If we accidentally recorded one of
the outputs ten-fold, the extended efficiency might be about 1000%. Since this efficiency
score is so high, we will verify the data and catch the error.

The second objection is that the method does not deal effectively with non-convex
spaces. It assumes that all convex combinations of the DMUs are feasible. Say, for
example, that plants that make nuts and bolts are being analyzed. Lets assume that all
the plants use the same amount of resources, and plant A produces 1,000 nuts and no

69




bolts, and plant B 1,000 bolts but no nuts. For plant C that produces one bolt for every
nut, DEA assumes that it should at least be able to produce 500 pairs, otherwise plant
C is dominated by a 50-50 mix of A and B. In cases where specialization is of great value
this convexity assumption is problematic, but in most cases the assumption is reasonable.

Like the analysis in Chapter 3, the DEA is cross-sectional, we build models that
explain differences among universities, but we cannot use these models to determine
causal relationships. In Chapter 5 we gather evidence about the causal relationship
between investment and success in technology transfer.

The DEA does not quantify the influence of the TTO. We can only say that univer-
sities that invest more have a higher efficiency score, and they draw a higher proportion
of their score from the TTO related measures. We cannot approximate the return from
hiring one more professional to work on technology transfer.

Unlike the cross-sectional models in Chapter 3 that focus on explaining the “average”
performance, DEA compares each university to the “best practices” of similar universities.

4.5 Conclusions from Data Envelopment Analysis

We use Data Envelopment Analysis to evaluate university excellence. Using six output
measures the universities are given the opportunity to put their “best foot forward” in
measuring their excellence. Only after we have evaluated the excellence of the univer-
sities do we look at the resources they provide for technology transfer. The approach is
therefore both methodologically and conceptually different from the approach in Chapter
3.

The results of Chapter 3 suggest there are diminishing rate of returns for research
expenditures. We have therefore chosen a variation of DEA that is flexible enough to
capture such effects without imposing diminishing rates of returns on our results. Another
alternative would be to assume constant rates of return.

An extension to the DEA methodology is introduced. We define the extended effi-
ciency score. This extension does not alter the efficiency score for the universities that
are not on the efficient frontier, but gives an estimate of the degree of excellence of the
universities on the frontier. A contribution measure is also defined and shows for each
university what portion of the overall efficiency score is drawn from each of the outputs.

The first conclusion from the analysis is that there is a strong positive relationship
between the resources that are made available for technology transfer and the extended
efficiency score. This suggests that universities that invest more than others in technology
transfer are also more efficient. As in the results of Chapter 3, this is inconsistent with
the hypothesis that the TTOs are hindering the process of commercializing university
discoveries.

The second conclusion is that universities that employ many people for technology
transfer and spend more on legal fees place higher weights on the TTO related output
measures than others. This shows that when looking across universities, the universities
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that invest more than others in technology transfer are performing better in commercial-
izing technologies.

Putting these two conclusions together, we can say that universities that invest more
than others in technology transfer are more efficient because of their success in commer-
cializing discoveries. On the other hand, we cannot say that these universities are more
efficient because of the investment in technology transfer.

The analyses in both this and Chapter 3 draw inferences from the observed differences
among universities. They do not determine what drives the changes at a single university:
Does the investment lead to success, or does the success lead to the investment? In
Chapter 5 we present two contradictory hypotheses that both give possible explanations
for the results above (see page 73). In order to determine the causal relationship, we look
at what has happened at a few universities in the last ten years. By analyzing the time
series for these universities we shed light on the causal relationships.
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Chapter 5

- Time Series Analysis

In Chapters 3 and 4 we concluded that there is a strong correlation between the resources
universities provide for technology transfer and the success at such transfer. The methods
we used there do not, however, reveal the causal relationships. Are the TTOs driving
the universities toward excellence in achieving patents and licenses, or do universities
with strong performance decide that they should commit vast resources to technology
transfer? In the latter case, these resources may have no stimulatory effect in themselves.

In this chapter we try to answer the question about causality. We first look at
the AUTM data. We only have five years of data from AUTM, and it is impossible
to rigorously reach a conclusion about the causal relationships from such a short time
series. We therefore went out in the field and collected longer time series data directly
from eleven universities. We first analyze the patterns at each of these eleven universities,
and then perform various other analyses on the aggregated data.

Analyzing the universities one by one, we find no consistent patterns—what seems to
be the causal relationship at one university, is contradicted by other universities. When
combining the data some of our analyses do not give any hints about the causal rela-
tionships, but the evidence we find suggests that if a university hires more professionals,
it will consequently enter more license agreements. This implies that professionals are
stimulating the commercialization of university discoveries.

5.1 Introduction

Our results from the analyses in Chapters 3 and 4 suggest there is a strong correlation
between the resources and success in technology transfer. We need to be careful to note
that correlation does not mean causality. George Bernard Shaw provides an excellent
example of this in his book The Doctor’s Dilemma[SHA11):

Comparisons which are really comparisons between two social classes with
different standards of nutrition and education are palmed off as comparisons
between the results of a certain medical treatment and its neglect. Thus it
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is easy to prove that the wearing of tall hats and the carrying of umbrel-
las enlarges the chest, prolongs life, and confers comparative immunity from
disease; for the statistics show that the classes which use these articles are
bigger, healthier, and live longer than the class which never dreams of pos-
sessing such things. It does not take much perspicacity to see that what really
makes this difference is not the tall hat and the umbrella, but the wealth and
nourishment of which they are evidence, and that a gold watch or member-
ship of a club in Pall Mall might be proved in the same way to have the
like sovereign virtues. A university degree, a daily bath, the owning of thirty
pairs of trousers, a knowledge of Wagner’s music, a pew in church, anything,
in short, that implies more means and better nurture than the mass of labors
enjoy, can be statistically palmed off as a magic-spell conferring all sorts of
privileges.

In this chapter we try to answer the question about causality. Two contradicting
hypotheses that both give a possible explanation of the correlation results we got in
Chapters 3 and 4 are:

1. The university technology transfer employees are effective in promoting university
inventions. By hiring people to work on technology transfer (and making funds
available for paying legal fees), a university can substantially increase the commer-
cial success of faculty discoveries.

2. The university technology transfer employees provide service for transferring tech-
nologies. Universities that have had success in licensing inventions to industry have
retrospectively hired people to administer the process. These people primarily focus
on managing the process, but do not stimulate the commercialization of university
discoveries. -

Our primary goal in this chapter is to determine the causal relationship between
professionals and licenses. We know that professionals primarily focus on marketing
university discoveries (and thereby entering licenses agreements). In addition to this
relationship, we also analyze the evidence for the causal relationships between support
staff and licenses, and legal fee expenditures and patent applications.

5.1.1 Overview

In this chapter we assume that all licenses are equally valuable. This is clearly a key
assumption for our analysis, and we discuss this and some of our methodologies in section
5.2. In section 5.3 we introduce the data. The AUTM data does not provide us with long
enough time series and we therefore collected a longer time series from eleven universities.
In section 5.4 we introduce the findings from the data collection and perform some basic
correlation calculations for single universities. In section 5.5 we introduce methods to
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test hypotheses based on data from the eleven universities. We do not merge the data,
but work out statistics for each university, and then combine the statistics. In section
5.6 we present probability models for technology transfer outputs. Based on changes in
TTO inputs we build models for the probability that the outputs go up in the same and
subsequent years. In section 5.7 we build simple regression models to estimate the effect
on licenses from hiring professionals. Finally, we present our conclusions for the time
series analysis in section 5.9.

5.2 Assumptions and Methodologies

In this section we introduce the key assumptions and methodologies we use to reveal
what the causal relationships are between investment and success in university technology
transfer.

We first argue that using license counts is a reasonable way to evaluate how much
technology is transferred. We then discuss a hypothetical time series, and how one can
look for evidence about causal relationships in such data.

5.2.1 Are All Licenses Equal?

We use a license agreement as the unit of measure for technology transfer. But are all
license agreements equal? The impact of license agreements varies significantly. Some do
not have any significant impact—there is no induced research, no development of prod-
ucts using the licensed technology, there are no sales generated by the invention, and
the general public will never realize any benefits from the agreement. Other agreements
are very important—the licensed technology induces a lot of research and product devel-
opment, many products using the technology are put to market, and the lives of many
people are made better in one way or another by products based on this invention. We
must conclude that not all licenses are equal.

Ideally, when measuring how much technology is transferred, we would use a measure
that captures most of the effects mentioned above. The problem is that it is not possible
to get a good and timely estimate of the impact a license agreement has. Technology
transfer specialists may sometimes know that a license will be a success, but in most
cases it is a lottery—the licensed technology may or may not be successfully used. In
most cases it is impossible to determine the success of a licenses until several years after
the agreement is first signed. If we had chosen to do this for our analysis, we could not
use data from the last several years.

As a first approximation, however, we must reluctantly treat all license agreements as
equal. In Appendix F we argue that this first approximation works reasonably well. We
build models that estimate that the average “quality” of licenses has not deteriorated in
the last ten years.

There are two primary resources of the TTOs: salaried personnel and legal fee ex-
penditures. From the results in Chapter 3 and what industry experts tell us, the people
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working at university TTOs primarily focus on marketing inventions and thereby enter-
ing license agreements with industry, while legal fees go primarily towards paying patent
prosecution costs. Our main focus in this chapter is to reveal the causal relationships
between licenses and the staffing of the TTO, but we also analyze briefly the causal re-
lationship between patent applications and legal fee expenditures. In table 5.1 we have
listed all the input and output variables.

Input Variables: e People Providing Professional Services for Technology Transfer
e People Providing Staff Support for Technology Transfer
e Legal Fee Expenditures for Patents and/or Copyrights

Output Variables: e Options and Licenses Executed
e New U.S. Patent Applications

Table 5.1: The Input and Output Variables for Technology Transfer Offices.

5.2.2 Causal Relationships

When changes in one variable cause changes in another, we call the first variable the
independent variable, and the other the dependent variable. Lets suppose we have time
series for two variables: the independent variable 2;, and the dependent variable ;. We
have one measurement for each variable per year. Suppose a change in z causes an
immediate change in z, then a model for z as a function of z may be,

AIt = O3A2t + &t (51)

where ¢, is a random noise component and the A is the one-year differential operator,
Az, = 7y — T4—1. Since the induced change in z is immediate, there is no information
about the current change in z in any of the past changes in 2. There will be a positive
correlation between Az; and Az, but Az;.r and Az; will not be strongly correlated for
T # 0. If, on the other hand, some of the change is immediate, and some of it does not
occur until the following year, we may have a model like,

Azy = 0.2A2 + 0.3Az_1 + €. (5.2)

If this model is accurate, a one unit change in z at time ¢ causes an expected change
of 0.2 units in z at time ¢t and 0.3 unit change at time ¢t + 1. As before, there will be a
positive correlation between Az and Az;. There will also be a positive (and stronger)
correlation between Az;,_; and Az,, but for other time shifts, T ¢ {0, —1}, there should
not be a significant correlation between Az, r and Az;.

If we do not know what the relationship between Az and Az is, one way is to first
look at the correlation between the two. If there is no correlation even when we shift
one variable several time units, we may conclude that Az and Az are independent. If,
on the other hand, there is a strong correlation between Az, and Az, we conclude that
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they are related. In order to assess the causal relationship, we calculate the correlations
when shifting one variable a few years back and a few years forward. If there is a strong
correlation between the two variables when one of them is delayed one or more years,
we infer—all other factors being equal—that the changes in the delayed variable are
caused by the changes in the other variable. The delayed variables is thus the dependent
variable, and the other the independent variable.

5.2.3 Example
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Figure 5-1: Time Series Data for Hypothetical Example.

Suppose we have the time series shown in figure 5-1. There are three variables labelled
 z, y, and z. Variable z is fairly stable from 1984 until 1987. In 1988 there is an increase
from 3.6 up to 5.1, and then again in 1989 from 5.1 to 6.4. From 1989 until 1993 z is
stable between 6 and 7. In 1993 and 1994 there are jumps, first to 8.3 and then to 9.7.
Variable y is stable except for a jump-increase in 1995. The z variable is similarly fairly
stable except for jump-increases in 1988 and 1993.

What is the relationship between z and the other variables? From figure 5-1 we see
that the jump-increases in 2z occur in 1988 and 1993, and there are jump-increases in z in
1988-1989 and 1993-1994. This suggests that there is a positive correlation between Az,
and Az. Looking at the relationship between z and y we see that the only jump-increase
in y is in 1995. We conclude that the observed univariate relationship between y and
is much weaker than that between z and z.

Now that we have reasoned that there is a positive correlation between Az and Az,
what can we say about the causal relationship. From figure 5-1 we see that there is both
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an increase in z in 1988 and 1989, while there is only an increase in z in 1988. This
suggests that an increase in 2z causes an increase in z. Some of the increase in z is in the
same year, but some of it is postponed until the following year. We observe the same
pattern for the increases in 1993-1994. We infer that changes in z may cause changes in
z and that there is some time lag.

So far we have reached our conclusions by visual inspection. In section 5.4 we use
simple correlation measures to evaluate the strength of the relationship between two
variables. The time series of our example goes from 1984 to 1997, and we thus have valid
one-year differential measurements for 1985-1997.

The correlation between the one-year differentials with time shift 7' is the same as
the covariance between Az, and Az divided by the standard deviations of Az; and
Azt.

iy DT (Aviar - Ba) (Am - B2
Corr (A.’L’t+T,AZt) — 13-T 2t-1985 ( t+T ( 2t ) ) (53)

— 2 — 2
& T (A~ D7)’ x /% Tis%es (A2 - Bz)

In the first two columns of table 5.2 we have listed the correlation coefficient between
Az and Az, and the one-tailed p-value for the hypothesis that the correlation is zero.
These p-values assume that Az and Az are normally distributed. For the data we work
with in this chapter the normal assumption is violated. We have thus adopted another
approach to evaluate the correlation between two variables. We use the nonparametric
Spearman Rank Correlation coefficient. In section 5.5 we give the formula for the corre-
lation coefficient and the p-value. In the last two columns of table 5.2 we have listed the
Spearman Rank Correlation Coefficient and the p-value for the hypothesis that the two
variables are not correlated.

Time Spearman
. Corr (AzyyT,Az) | p-value Rank p-value
Shift .
Correlation
T=-2 -0.34 15% -0.25 23%
T=-1 -0.16 31% 0.12 35%
T=0 0.72 0.3% 0.64 1.0%
T=+1 0.62 1.6% 0.51 4.6%
T=+2 -0.34 15% -0.38 12%

Table 5.2: Correlation Between Az and Az for Various Time Shifts.

We find that Az is positively correlated with Az, and Az,,,. This is exactly what
we had reasoned earlier by inspection. We also observe that there is a negative but
insignificant correlation between Az and Az,r for T ¢ {0, —1}.

We also observe that the Spearman Rank Correlation coefficient is close to the tradi-
tional correlation coefficient defined in equation 5.3. '
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Now that we have evidence implying that changes in z cause changes in z, we want to
quantify the relationship between the two variables. We could use regular least squares
regression to estimate the parameters of the model,

Az, = 0.00 + 0.58A2 + 0.52Az_;. (5.4)

The p-values for the two parameters are both below 0.02%. We estimate that 53% of
the impact Az has on Az is immediate, and the remaining 47% is in the following year.

We have used three methods to show that Az is the independent variable and Az
. is the dependent variable. First by inspection of figure 5-1, then by calculating the
correlation coefficient between the two measures with various time shifts, and finally by
building a simple regression model.

Suppose that z represents the number of license agreements a university enters each
fiscal year (measured in 10’s), and z represents the number of people (full-time equiva-
lences) working on technology transfer. If the empirical evidence is as in figure 5-1 we
conclude that of the two hypotheses on page 73, hypothesis 1 —TTOs are pushing univer-
sity discoveries to the marketplace, and they proactively increase the number of license
agreements— is closer to the truth. In this case the number of licenses is the dependent
variable and the number of people is the independent variable.

If, on the other hand, z is the number of people and z the number of agreements
we must conclude that hypothesis 2—TTOs are not pushing new technologies to the
marketplace, but rather institutional reactions to processes that they do not stimulate—
holds. In this case the dependent variable is the number of people working on technology
transfer and the independent variable is the number of licenses.

In sections 5.6 and 5.7 we build models that use the independent variable to predict the
dependent variable. When analyzing evidence in support of hypothesis 1—hiring people
to work on technology transfer leads to increases in licensed technologies— we build
models where we use the number of people to predict the number of licenses. Similarly,
when we build models to test hypothesis 2—the universities respond to increases in the
number of licenses by hiring people—we use the number of licenses to predict the number
of people working on technology transfer.

5.2.4 Long Term Trends

The time series in figure 5-1 are somewhat representative for the time series we work
with in this chapter in that there is an increase in all the measures. If we calculate the
correlation between the absolute values instead of the differentials, we almost always find
a positive correlation between any two variables. The reason is the positive trend—at
the beginning of the time window the variables are close to a minimum, but towards the
end they are usually close to the maximum. In order to correct for this trend, we work
with the one-year differentials in the measures. By doing so we filter out a linear trend
in the data.
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5.2.5 Notation

Throughout this chapter we note the number of people providing professional services for
technology transfer in year ¢ by N,, and support staff by Ns:. Legal fee expenditures for
patents and/or copyrights—as all monetary units in this thesis given in constant 1994
dollars—is denoted by N;;. The number of options and license agreements entered in
year t is denoted by L; and the number of patent applications by D;.

5.3 Data Sources

5.3.1 The AUTM Data

To answer the question about the causal relationship we need time series data. The
Associations of University Technology Managers has collected data since 1991 [AUT96].
These data, while fairly detailed, do not provide us with long enough time series to deter-
mine the causal relationships. We therefore designed a survey instrument and collected
data directly from eleven universities.

From AUTM we have data for fiscal years 1991 to 1995. These data have the ag-
gregate numbers of licenses, patents, invention disclosures, royalties, people working on
technology transfer, legal fee expenditures and reimbursements from corporations, and
research expenditures. Some of the summary statistics are listed in table 5.3 for the 68
universities that have provided data for all five fiscal years.

People People
Providing Providing Licenses New
Fiscal Prof. Staff Legal F?e Legal and U.S.
. Expendit. Fee .
Year Services Support ($M 1994) Reimb Options Patent
for Tech. for Tech. ' Executed Appl.
Transfer Transfer
1991 n/a n/a $26.5 33% 928 1,157
1992 239 197 $30.4 36% 1,225 1,296
1993 255 193 $35.3 46% 1,264 1,478
1994 273 201 $38.4 49% 1,513 1,580
1995 265 215 $43.8 47% 1,549 1,757

Table 5.3: Summary of AUTM Data for FY1991-FY1995.

We see there was about a ten percent increase in the number of people working on
technology transfer from FY1992 to FY1995. This is an underestimate of the overall
increase because universities that have just recently started TTOs are not included in
the numbers. There has been a substantial increase in the legal fee expenditures since
FY1991. In FY1995 the 68 universities spent about $43.8 million on legal fees, while
in FY1991 it was about $26.5 million. This is an average annual increase of 13.4%.
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The legal fee reimbursements have increased from about a third of the total legal fee
expenditures in FY1991 to one-half in FY1995. The number of licenses has increased
on average about 13.7% each year since FY1991, and the number of new U.S. patent
applications has increased about 11.0% each year. The total research expenditures have
on average increased about 3.7% each year (in constant dollars).

These number show that there has been a growth in technology transfer in the last
few years. The numbers only include universities that have participated in the AUTM
survey in all years since FY1991. In the last few years more and more universities have
started a TTO, and the estimates of the technology transfer activities above are thus
surely underestimates. In the first AUTM survey 98 American universities participated,
but for FY1995 this number had risen to 127.

The AUTM data does not provide us with long enough time series to analyze what
is happening at each university. We need a longer time series to determine the causal
relationship between investment and success in technology transfer. We collected data
from eleven universities and in section 5.4 we introduce some of the results from the data
collection.

5.3.2 The Survey Instrument

The goal of the data collection was to gather the necessary data to decide which of the
two hypotheses on page 73 is closer to the truth. For each fiscal year going back to
FY1986, we asked for:

1. The number of professionals and staff working on technology transfer, as well as
the gross legal fee expenditures for patents and/or copyrights.

2. The number of license agreements.
3. The number of new U.S. patent applications.

4. The income profiles for each license executed since the start of fiscal year 1986.

We use the data from items 1 through 3 to build models that assess the causal
relationships between TTO outputs and inputs. The data in item 4 are valuable in
estimating the impact of single licenses. The income profiles are the most tangible proof
of how successful each license is.

It was not easy to collect these data. Many universities do not have electronic data-
bases with this information, and for universities with many licenses, it is a formidable
task to dig up all the required information. Consequently, there are some gaps in the
data for the fourth item for some of the eleven universities.

More data are in most instances better than less, but when collecting the data we
need to be careful not to ask for too much. Asking for too much data, or data that is
difficult to report, will result in lower cooperation from the survey participants. Asking
for too little data we risk not being able to answer the questions we are trying to answer.
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In designing the survey instrument every precaution was made to make it as easy to
understand as possible. Before sending the survey instrument to the participants, it was
tested with several TTO specialists. A copy of the survey and the accompanying cover
letter is in Appendix E.

5.3.3 The Sample Design

In designing the sample we tried to get as close a representation of the university pop-
ulation as possible. In trying to cover the entire spectrum of universities, we considered
the following dimensions:

e Research expenditures; gross research expenditures of all departments.

e Technology transfer resources; $100,000 times the number of people providing pro-
fessional services for technology transfer, plus $50,000 times the number of peo-
ple providing staff support for technology transfer, plus legal fee expenditures for
patents and/or copyrights, all per gross research expenditures.

e Trend in technology transfer resources; the proportional change in technology trans-
fer resources between 1992 and 1995.

e Emphasis on research in Engineering and Physical Sciences; proportion of total
research budget dedicated to these two departments.

¢ Emphasis on research in the Life Sciences; proportion of total research budget
dedicated to Life Sciences research.

In all we have the background information for 130 universities. We ranked the univer-
sities on all these variables, and then tried to make our sample as uniformly distributed as
possible with respect to the dimensions above. In table 5.4 we list the eleven universities
in our sample, and rank them among the full set of universities in the AUTM database.

Ideally the ranks in table 5.4 should average 60.5, and be as evenly distributed between
1 and 130 as possible. In all there is a small bias towards universities that have not
increased the investment in technology transfer, and do not emphasize research in the
Life Sciences (the average ranking in table 5.4 is 68 and 69), but overall the sample is a
good representation of the university population.

We have shown above that the selection bias is small on the dimensions listed, but
there is always some response bias. It is more difficult to get universities that are not
well staffed to respond. This was confirmed in the selection process as we had to contact
many universities that are running small technology transfer programs.
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Rank of Variable over 130 Universities
Trend In Emphasis Emphasis
Tech. on Research
Research Tech. ) on Research
Transfer in Eng. and . .
Expend. Transfer . in the Life
Resources Physical .
Resources ) Sciences
Sciences

Harvard 10 26 28 93 56
MIT 7 13 94 7 121
Ohio State 28 100 122 47 75
Syracuse 103 23 97 25 115
U. of Arkansas 101 35 123 63 54
U. of Missouri 72 71 19 53 59
U. of Notre Dame 108 126 42 3 114
U. of Rhode Island 93 32 58 91 106
U. of Texas MB 88 42 63 123 6

Vanderbilt 48 104 39 80 29
Yale 16 119 68 96 26

Table 5.4: The Surveyed Universities and Their Ranking Among All Universities in the
AUTM Database.

5.3.4 Data Collection Process & Selection Bias

We first chose ten universities that represented an unbiased extract from the population.
A cover letter and the survey was faxed to the directors of the TTOs, or the person
responsible for technology transfer at these institutions. A few days after faxing the
survey, the author followed up with a phone call. This phone call focused on answering
any questions the respondent might have about the survey and evaluate the chances of
getting the data. In the cases where the respondent rejected our request, or it was deter-
mined that the chances of getting the data were slim, a new university was added to the
sample. In no case was the university’s status left indeterminate—if the chance of getting
a complete answer was estimated as being low, the author worked with that university
until they either declined the request or provided the data. In choosing universities to
add to the sample, we tried to keep the sample as unbiased as possible.

In all 42 universities were approached and we have eleven completed surveys. The
reasons for rejecting our request varied; some did simply not have the data available;
some did not have the resources (people) to compile the data; and some were simply
tired of the requests for data they were getting from various sources.

We cannot exclude the possibility that some of the universities rejected our request
because they were concerned with their performance in technology transfer. But, by
continually replacing universities that did not comply with our request with the most
similar representatives, we have tried to minimize the influence of such bias.
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5.4 Survey Results

In this section we introduce the survey results for each of the eleven universities we
collected data from. For each university we list the aggregate statistics about technology
transfer and calculate some basic correlation coefficients. In order to understand the
environment for the universities, we also plot the research expenditures in Engineering,
Physical Sciences, and the Life Sciences since 1980. These are data from the National
Science Foundation [SRS95a].

When comparing the results for the eleven universities we find that there are no
consistent patterns. Evidence we find about causal relationships at one university, is
invariably contradicted by evidence from a few of the other universities. In section 5.4.12
we build a model for how the universities would ”vote” for one of the two hypotheses
on page 73. In section 5.4.13 we summarize our findings from analyzing the universities
in the section. In sections 5.5, 5.6, and 5.7 we use various methods to work with the
aggregated data.

For each university we calculate the rank correlation coefficient of the change in the
number of licenses and 15 output measures (professionals, staff, and legal fee expendi-
tures; each with time shift from -2 to +2 years). Similarly we calculate 15 correlation
coefficients for the change in the number of patent applications. After calculating these
coeflicients, we discuss those that are significantly different from zero at the 95% level.
Since we are testing 30 coefficients, it is quite likely that some insignificant relationships,
will incorrectly be called significant because of the vast number of relationships we test.
When we have 30 correlation estimates between independent variables and use a 95%
confidence interval, the probability we will not call any of the correlation estimates sig-
nificant is only 21%. The probability we will make one error is 34%, two errors 26%, three
errors 13%, and four or more errors 6%. We should thus stay alert that relationships
may be called significant purely by chance.

5.4.1 Harvard University

Figure 5-2 shows that in 1995 Harvard spent about $170 million on research in the Life
Sciences, $30 million in Physical Sciences, and $5 million in Engineering. Looking at the
last 15 years, the research expenditures in the Life Sciences have increased substantially.
This increase was primarily realized in the last ten years.

Table 5.5 lists the aggregate survey results for Harvard University. The number of
people working of technology transfer at Harvard increased steadily from 1986 until 1990.
In this time period people were hired both to provide professional services for technology
transfer and staff support. Since 1990 the number people working on technology transfer
has been stable; about ten people providing professional services for technology transfer,
and seven providing staff support.

Legal fee expenditures have increased substantially in the last ten years. In 1986
less than $330,000 were paid in legal fees, but in both 1995 and 1996 this figure was
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Figure 5-2: Harvard University Research Expenditures Since 1980.

above $2,000,000. This does not suggest that the net legal expenditures at Harvard are
over $2 million because corporations reimburse a substantial part of these expenditures.
Subtracting the reimbursements, the net legal expenditures at Harvard in 1995 and 1996
average about $500,000.

The number of options and licenses executed has increased. From 1987 until 1991
between 35 and 48 agreements were entered each year. In 1992 the number of licenses
suddenly jumps to 89. This year, however, was anomalous because of the 89 agreements,
64 were non-exclusive!. Since 1993 between 55 and 70 agreements have been entered
each year.

The number of new U.S. patent applications has jumped up and down for the past
ten years, but overall there was an increase. We can split the last ten years into two
periods. In the former period, between 1986 and 1992, the number of new U.S. patent
applications was between 25 and 31 (aside from 1987 when only 18 applications were
filed) for an average of 28 patent applications per year. In the latter period, between
1993 and 1996, the number of applications ranged from 41 to 55 for an average of 48.

Licenses & Patents

Looking at the rank correlation between the change in the number of licenses and the
inputs, we find a strong positive correlation with:

In the preceeding year 17 non-exclusive agreements were entered and in the following year that
number was 31. We thus see that the majority of the spike in 1992 is caused by many non-exclusive
agreements.
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. - Legal Fee
Ind1v1'd1.1a1s Indm_d\‘Jals Expenditures Number of New U.S.
- Providing Providing .
. for Patents Licenses Patent
Professional Staff . . ..
. and/or and Options Applications
Services for Support for Copyrights Executed Filed
F TT (FTEs

TT (FTEs) ( ) ($ 1994)
1986 7.0 2.0 329,812 n/a 25
1987 7.5 3.0 419,327 35 18
1988 9.5 3.5 695,642 46 35
1989 10.5 4.0 844,384 36 30
1990 10.5 6.0 1,124,165 48 31
1991 9.0 6.0 1,192,554 38 25
1992 10.0 8.0 1,274,796 89 31
1993 9.0 6.8 1,434,482 69 41
1994 9.5 6.8 1,700,000 61 43
1995 9.5 6.8 2,293,826 55 55
1996 9.5 6.8 2,066,135 57 53

Table 5.5: Harvard University Survey Data.

1. Legal fee expenditures two years earlier (p-value 0.11%).
2. The number of support staff in the same year (p-value 0.9%).

3. The number of professionals two years later (p-value 3.3%).

The second finding is as expected: when Harvard hires more people, it has more
resources to work on license agreements. A possible explanation for the first finding is
that legal fee expenditures are strongly correlated with patent applications. Viewing
patents as the products and licenses as sold products, this suggests that two years after
getting the product (patent), Harvard finds an application for the new technology and
sells it to a corporation (license). It is hard to come up with a reasonable explanation for
the third relationship. One explanation is that Harvard responds to success in licensing
by hiring more professionals two years later. Another likely explanation is that this
significance may just happen by chance alone.

When looking at the rank correlation between the change in the number of patents
and the inputs, we find two significant relationships:

1. There is negative correlation with the legal expenditures in the previous year (p-
value 2.7%).

2. There is positive correlation with the legal fee expenditures in the same year (p-
value 3.2%).
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The second relationship is as expected—we know there are significant costs associated
with filing a patent application. The first relationship is not as intuitive. One explana-
tion is that there is “bounce-back”. If many patent applications are filed, substantial
legal expenditures are also paid. When faced with the legal fee expenditures, the TTO
may decide to file for fewer patents in the following year, and thereby reduces the legal
expenditures. The auto-correlation in the number of patent applications supports this
explanation. The auto-correlation coefficient is -0.48 (p-value 9%).

Conclusions for Harvard University

There has been a substantial increase in the inputs of the TTO at Harvard. The gross
legal fee expenditures have grown six-fold since 1986, and the people resources have
approximately doubled. At the same time the number of license agreements has gone up
approximately 50% and patent applications have doubled. This growth is substantially
faster than the growth in research expenditures in the corresponding years (31%).

The evidence we find in support of the two hypotheses on page 73 is vague. The
only relevant relationship is between licenses and professionals two years later. This evi-
dence supports hypothesis 2—Harvard responds to increased licensing activity by hiring
professionals—but another explanation is that this may just be statistical noise.

5.4.2 Massachusetts Institute of Technology
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Figure 5-3: MIT Research Expenditures Since 1980.

From figure 5-3 we see that in 1995 MIT spent almost $160 million on research in
Engineering, $95 million in Physical Sciences, and $35 million in the Life Sciences. The
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Individuals  Individuals Legal Fee

‘1 1 Expenditures Number of New U.S.
Prov1c'l1ng Providing foI: Patents Licenses Patent
Professional Staff . e
: and/or and Options Applications
Services for Support for Copyrights Executed Filed
TT (FTEs) TT (FTEs) (8 1994)
1986 4.8 3.6 858,048 22 65
1987 6.0 4.4 1,553,064 41 94
1988 6.8 4.4 1,617,772 64 97
1989 6.0 4.8 2,375,200 39 106
1990 6.8 6.0 2,821,700 47 100
1991 84 5.2 2,948,861 47 91
1992 10.4 8.0 3,034,224 53 88
1993 11.2 8.0 3,381,279 73 89
1994 12.0 8.8 3,208,000 86 98
1995 8.4 11.2 2,947,469 ~ 58 93
1996 11.6 8.0 3,206,234 54 72

Table 5.6: MIT Survey Data.

research expenditures in Engineering have increased since the early eighties when about
$120 million was spent on this research. Research expenditures in Physical Sciences
increased quite rapidly from 1982 until 1986. Life Sciences research expenditures have
stayed around $40 million for the last fifteen years.

As table 5.6 shows the number of people working on technology transfer has increased
significantly since 1986. The increase is more than two-fold, and takes place between
1986 and 1994. Since 1994 the number of people working on technology transfer has
been stable.

There has been a steady increase in the legal fee expenditures at MIT’s Technology
Licensing Office. In 1986 about $850,000 were paid in legal fees. This number increased
year-by-year until 1993 when it peaked at over $3.3 million. Since 1993 about three
million have been paid in legal fees each year. Companies that license technologies from
MIT pay a substantial part of these legal fees. The net expenditures for MIT in the last
couple of years are about $1.8 million.

The number of options and license agreements has also increased. In 1986 only 22
agreements were made, but in 1994 this figure was 86. In the last two years we have data
for, the number of license agreements dropped back to about 55.

The number of new U.S. patent applications has fluctuated between 65 and 106 since
1986. There is a peak in 1989, but the two least active years in filing patent applications
are 1986 and 1996. This drop in 1996 catches the eye, but it remains to be seen if this is
a permanent change or just statistical noise.
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Licenses & Patents

Calculating the rank correlation between the change in the number of licenses and the
inputs reveals a positive correlation with the legal expenditures in the previous year
(p-value 3.1%). This is the only significant relationship. We also find a positive cor-
relation between licenses and patents in the previous year (p-value 0.5%). The most
likely explanation for these relationships is that when patents are granted to MIT (pos-
itively correlated with legal fee expenditures), the TTO finds applications for the new
technology and enters a license agreement in the following year.

When calculating the rank correlation coefficients for the patents we find two signifi-
cant relationships:

1. A negative correlation with the number of people providing professional seririces
for technology transfer in the following year (p-value 2.5%).

2. A positive correlation with the number of professionals two years prior to the patent
application (p-value 3.5%).

Although both relationships could well be statistical noise, we can hypothesize reasons
why this might occur. A possible explanation for the first finding is that when filing
many patent applications (and thereby incurring legal fee expenditures), the TTO has
to cut down on personnel (1994) for budgetary reasons. Consequently the number of
professionals in the following year is likely to go down (1995). One way to explain the
second finding is that two years after new people start working on technology transfer,
their work leads to an increase in the number of patent applications.

Conclusions for MIT

The inputs for technology transfer at MIT increased substantially in the last ten years.
The number of people working on technology transfer more than doubled, while legal fee
expenditures almost quadrupled. At the same time, the total research expenditures in
the three departments have not changed appreciably (+2% in the last ten tears).

When looking for correlations between the outputs and the inputs we do not find many
meaningful relationships. Licenses seem to be correlated with the legal expenditures in
the previous year, while patent applications are correlated with professionals working on
technology transfer. A likely explanation for the latter two relationships is that they are
just statistical noise.

5.4.3 Ohio State University

Figure 5-4 shows the research expenditures for Ohio State University. All three de-
partments have increased their research expenditures fairly evenly since 1980. The in-
crease was most rapid in the Life Sciences between 1984 and 1989. In 1995 the Life
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Figure 5-4: Ohio State University Research Expenditures Since 1980.

Sciences research expenditures for the first time reached $120 million, while Engineering
totalled $55 million and Physical Sciences approached $20 million.

We do not have data about the technology transfer activities prior to 1990 at Ohio
State University. In 1990 two professionals were working with two staff members on
technology transfer. A new professional was added in 1991, but in 1993 one departs and
in 1994 the number of professionals working on technology transfer went down to 1.5.
There have always been two staff members working on technology transfer, except in
1994 when only one staff member supported the technology transfer activities.

Legal fee expenditures have jumped up and down since 1990, but there does not seem
to be any long term trend. Each year the expenditures have stayed between $270,000
and $385,000. Subtracting expenditures that companies reimburse, the average net ex-
penditures for the last two years were about $190,000.

The number of options and license agreements entered has fluctuated between 10 and
32 since 1990. Fewest agreements were made in 1990, but over the next two years this
number increased up to 30. Between 1992 and 1995 the annual number of new agreements
was between 20 and 32, but in 1996 only 12 new agreements were made. It is too soon to
tell if this drop in 1996 is only temporary or permanent. Considering how the research
expenditures have increased in the last ten years, we expect the number of licenses to
jump back up in 1997. ,

In 1990 28 new patent applications were filed, but the next four years fewer than 20
applications were filed each year. Starting in 1994 we see a strong increase in the number
of patent applications, starting at 12 and reaching 49 in 1996.

The reason for this recent growth in the number of patent applications is most likely
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Individuals Individuals Legal Fee

. . Expenditures Number of New U.S.
Providing Providing .
. for Patents Licenses Patent
Professional Staff . L
. and/or and Options Applications

Services for Support for Copyrights Executed Filed

TT (FTEs) TT (FTEs) ($ 1994)
1986 n/a n/a n/a n/a n/a
1987 n/a n/a n/a n/a n/a
1988 n/a n/a n/a n/a n/a
1989 n/a n/a n/a n/a n/a
1990 2.0 2.0 328,833 10 28
1991 3.0 2.0 279,708 16 16
1992 3.0 2.0 342,404 30 18
1993 2.0 2.0 296,272 20 12
1994 1.5 1.0 362,028 21 25
1995 1.5 2.0 269,420 32 30
1996 1.5 2.0 384,600 12 49

Table 5.7: Ohio State University Survey Data.

that Ohio State has over the last few years focused on building a portfolio of patents and
marketable technologies. If this hypothesis is true, and the necessary resources are made
available, the next ten years should be exciting. Many more license agreements should
be made, and subsequently we should see an increase in the royalty income.

We also observe that the growth in the research expenditures in the last ten years is
about 70% for the three departments combined. Despite this growth, Ohio State has not
increased their investment in technology transfer.

Conclusions for Ohio State University

We only have seven years of data from Ohio State. The resources did not increase over
those seven years, while the research expenditures have grown 70% in the last ten years.
The number of license agreements has been on the rise aside from a big drop in 1996. The
number of patent applications was steady for the first few years, but has risen significantly
in the last four years.

5.4.4 Syracuse University

Figure 5-5 shows the annual research expenditures for Engineering, Physical Sciences
and Life Sciences at Syracuse University. We see that all programs are rather small.
Engineering jumped up and down from year to year, but stayed between $6 million and
$14 million. Physical Sciences expenditures ranged from $3.5 to $9.5 million, and Life
Sciences between $4.4 and $7.9 million.
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Figure 5-5: Syracuse University Research Expenditures Since 1980.

In table 5.8 we have the aggregate data on technology transfer for the last six years.
Data prior to 1991 are not available. The same number of people have worked on tech-
nology transfer since 1991, two professionals and one staff member.

Legal fee expenditures were at a peek at the beginning of the period when $167,000
was paid. Since then, the expenditures have been much lower, between $72,000 and
$92,000. After subtracting the part that corporations reimburse Syracuse University, the
net expenditures in the last couple of years average about $50,000.

The number of options and licenses peaks has been between zero and three since
1991, except for two years; in 1993 Syracuse made 14 license agreements, and in 1994
they made 8 agreements. This is a substantial difference from the other years. We do
not see any changes in the resources of the TTO that explain these jumps. In 1991
Syracuse University applied for seven new U.S. patents, but since then the number of
patent applications has decreased year by year and in 1996 they only filed one new patent
application.

Conclusions for Syracuse University

Data are only available for six years at Syracuse University. In those six years the number
of people working on technology transfer has not changed, and the legal expenditures were
at a maximum at the beginning of the period. The research expenditures in the three
departments have decreased about 20% in the last ten years. The number of licenses
peaked in 1993 and 1994, but has dropped significantly since then. The number of
patent applications was at a maximum in 1991, but has steadily decreased since then.
This evidence shows that Syracuse is not improving its performance in technology transfer
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Legal Fee

Individuals Individuals Expenditures Number of New U.S.

Prov1d'.1ng Providing for Patents Licenses Patent
Professional Staff . .
. : and/or and Options Applications

e o PPt I Copyrights  Executed Filed

TT (FTEs) ( ) (8 1994)
1986 n/a n/a n/a n/a n/a
1987 n/a n/a n/a n/a - n/a
1988 n/a n/a n/a n/a n/a
1989 n/a n/a n/a n/a n/a
1990 n/a n/a n/a n/a n/a
1991 2.0 1.0 167,003 2 7
1992 2.0 _ 1.0 84,153 3 2
1993 2.0 1.0 91,850 14 3
1994 2.0 1.0 79,644 8 3
1995 2.0 1.0 71,560 1 2
1996 2.0 1.0 84,851 0 1

Table 5.8: Syracuse University Survey Data.

and that the performance in the last two years is well below par.

Due to the limited data, no significant correlation relationships were found between
any of the inputs and outputs.

5.4.5 University of Arkansas

Figure 5-6 shows that in 1995 the University of Arkansas invested $36 million in
Life Sciences research, $10 million in Engineering research, and $3.8 in Physical Sciences
research. There has been a very significant increase in research in the Life Sciences. There
were two jump-increases in the research expenditures, one in 1982 when the increase was
about $12 million. The other increase was $10 million in 1993 (the same year as President
Clinton was inaugurated). Research in Physical Sciences has been between $5 and $10
million, and research in Engineering at about $5 million since 1980.

From table 5.9 we see that no people were working on technology transfer until 1990
when one person was hired to provide professional services for technology transfer and
25% staff support was also provided. These numbers were then fairly stable until 1996
when the full time professional went half-time.

No legal fees were incurred in 1986 and 1987. In 1988 $24,000 were paid for external
legal services, and in the next four years it increased up to $260,000. Since 1992 the legal
fees have fluctuated between $70,000 and $200,000.

No license agreements were entered until 1989 when one agreement was made. Since
then between one and three agreements have been entered each year. Three agreements
were entered in 1992, the same year as the number of people working on technology
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Figure 5-6: University of Arkansas Research Expenditures Since 1980.

transfer was at a maximum.

One patent application was filed in 1986 and none in 1987. The next four years
the number of patent applications surges up to 17 and 15. In 1992 the number of new
U.S. patent applications dropped back to seven, and since then between five and ten
applications have been filed each year.

The research expenditures at the University of Arkansas have grown about approxi-
mately 65% in the last ten years. From the rough estimates about the average investment
in technology transfer in section E.2 they should employ one-and-a-half full-time equiv-
alences professionals, one staff member, and spend about $250.000 on legal fees. From
table 5.9 we see that since 1991 they have invested less than this average, and recently
they have reduced their investment in technology transfer even further.

Licenses & Patents

When analyzing the correlation relationships between inputs and outputs, we find a
triangle:

1. There is a positive correlation between the change in the number of licenses and
the change in legal fees in the same year (p-value 3.7%).

2. There is a positive correlation between the change in the number of licenses and the
change in the number of patent applications in the previous year (p-value 3.3%).

3. There is a positive correlation between the change in legal expenditures and the
number of patent applications in the previous year (p-value 2.5%).
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Individuals Individuals Legal Fee

1 . g Expenditures Number of New U.S.
Providing Providing .
. for Patents Licenses Patent
Professional Staff . ..
. and/or and Options Applications
Services for Support for Copyrights Executed Filed
TT (FTEs) TT (FTEs) (8 1994)
1986 0.00 0.00 0 0 1
1987 0.00 0.00 0 0 0
1988 0.00 0.00 23,980 0 6
1989 0.00 0.00 184,969 1 12
1990 1.00 0.25 176,458 1 17
1991 1.00 0.25 259,744 3 15
1992 1.50 0.25 202,057 3 7
1993 1.00 0.50 131,643 1 8
1994 1.50 0.25 128,480 1 9
1995 1.00 0.25 73,959 2 10
1996 0.50 0.25 142,142 2 5

Table 5.9: University of Arkansas Survey Data.

If the University of Arkansas paid substantial part of the legal fees in the year after
they applied for a patent, it explains the third finding. If we view a patent as the key
to an opportunity to sell an invention, patent applications can lead to licenses in the
following year, hence the second relationship. The third finding is likely caused by the
linkage between the other two.

Conclusions for the University of Arkansas

We found that no people were dedicated to technology transfer until 1990 when one
person was hired along with some staff support. Legal fees increased rapidly from 1988
until 1991, but have tapered of since then. We also find that considering the research
expenditures of the University of Arkansas, they invest less (about 50%) than average in
technology transfer.

We found a positive correlation between the number of patent applications and legal
fees in the following year. This is most likely because some of the legal fees are paid the
year after the application is filed. There is a positive correlation between licenses and
patent applications in the previous year, and consequently between licenses and legal
expenditures in the same year.

5.4.6 TUniversity of Missouri

Figure 5-7 shows the research expenditures for the University of Missouri (all cam-
puses). In 1995 research expenditures were $97 million in the Life Sciences, $26 million
in Engineering, and $15 million in Physical Sciences. Research in the Life Sciences has
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Figure 5-7: University of Missouri Research Expenditures Since 1980.

almost doubled since 1980 when $52 million were invested. Most of this increase was
realized in the last ten years. Research in Engineering and Physical Sciences has also
doubled since 1980.

Table 5.10 shows the aggregate statistics for technology transfer at the University
of Missouri. One professional has been working on technology transfer since 1986. In
1986 1.25 full-time equivalence support staff members worked on technology transfer, but
there were increases in 1988, 1991, and 1996.

Legal expenditures have increased in the last ten years. In 1986 through 1988 they
rise from $82,000 to $100,000. Data are not available for 1989 and 1990, but in 1991
$126,000 was spent on legal fees. Since then there has been an increase, although there
was some drop in 1996.

The number of options and licenses executed has increased substantially in the last
ten years. Data are not available for 1986 and 1987, but in 1988 two agreements were
made. It then increased year-by-year and peaked at 28 in 1995. In 1996 it dropped back
to 15 agreements.

Data are not available on the number of new U.S. patent applications made in 1986
or 1987. From 1988 until 1994 about ten applications were filed each year, but in the
last two years 29 applications were filed each year.

This increase in the number of both licenses and patents in the last eight years is very
significant. We see that the number of patents has tripled, and the number of licenses has
more than tripled. In the last ten years the research expenditures have grown about 65%.
We see that the increase in licensing is much faster than both the increase in research
expenditures and investment in technology transfer. Using the average estimates in
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Individuals  Individuals Legal Fee

1 . Expenditures Number of New U.S.
Providing Providing .
. for Patents Licenses Patent
Professional Staff . . .
. and/or and Options Applications

Services for Support for Copyrights Executed Filed

TT (FTEs) TT (FTEs) (8 1994)
1986 1.00 1.25 82,531 n/a n/a
1987 1.00 1.25 98,735 n/a n/a
1988 1.00 1.60 100,359 2 9
1989 1.00 1.60 n/a 6 - 10
1990 1.00 1.60 n/a 7 13
1991 1.00 2.00 126,136 9 9
1992 1.00 2.00 107,655 12 7
1993 1.00 2.00 209,080 14 12
1994 1.00 2.00 221,144 19 12
1995 1.00 2.00 318,851 28 29
1996 1.00 2.50 215,518 15 29

Table 5.10: University of Missouri Survey Data.

section E.2 as a reference point, a university with the same research expenditures as the
University of Missouri should employ 4 professionals and 2.5 support staff members for
technology transfer, and spend about $700,000 on legal fees.

Conclusions for the University of Missouri

The investment in technology transfer has not grown at the same rate as the research
expenditures in the last ten years. Nevertheless, the number of new license agreements
and patent applications have increased substantially since 1986.

Because the number of professionals has been unchanged since 1986, we have no
chance of calculating the correlation of the variable with any of the others. The number
of license agreements correlates positively with the number of support staff two years
later (p-value 1.7%). This implies that the University of Missouri responds to increases
in the number of licenses agreements by hiring more support staff two years later.

The number of new U.S. patent applications does not correlate with any of the input
measures.

5.4.7 University of Notre Dame

Notre Dame is the only institution included in this time series study that is not in
the AUTM database. Figure 5-8 shows that in 1995 they spent $12 million on research
in Physical Sciences, $5.9 million in Engineering, and $3.3 million in Life Sciences. The
research expenditures have grown in the last 15 years; in 1980 Notre Dame spent $8
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Figure 5-8: University of Notre Dame Research Expenditures Since 1980.

million on research in Physical Sciences, $4.2 million in Engineering, and $2.3 million the
Life Sciences.

Table 5.11 summarizes the aggregate technology transfer measures for Notre Dame.
From 1986 until 1994 there were 0.25 professionals working on technology transfer, but
in 1995 it increased to 0.33. Throughout the period one person dedicated 10% of her
time to provide staff support for technology transfer. No information is available about
legal fee expenditures.

The University of Notre Dame has so far not made any license or option agreements.
Data about patent applications are only available for the last three years, in each year
either four or five new U.S. patent applications were filed.

5.4.8 University of Rhode Island

Figure 5-9 shows the research expenditures by department for the University of Rhode
Island. In 1995 $10.4 million was spent on research in the Life Sciences, $5.5 million in
Engineering, and $1.2 million in Physical Sciences. There was a huge increase in the
expenditures in Life Sciences concentrated from 1985 until 1988. Research expenditures
in Engineering did not grow quite as fast, and the expenditures in Physical Sciences have
been below $2 million since 1980. The increase in the research expenditures in the last
ten years is 35%.

As seen in table 5.12, data on the aggregate technology transfer measures are not
available prior to 1991. Two professionals worked on technology transfer except in 1991
and 1993 when less resources were endowed. Simultaneously one staff member worked on
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Legal Fee

IndiVi.dl.lals Ind1v1_d1.1a1s Expenditures Number of New U.S.
Providing Providing .
. for Patents Licenses Patent
Professional Staff . .
: and/or and Options Applications
Services for Support for Copyrights Executed Filed
TT (FTEs) TT (FTEs) (8 1994)
1986 0.25 0.10 n/a 0 n/a
1987 0.25 0.10 n/a 0 n/a
1988 0.25 0.10 n/a 0 n/a |
1989 0.25 0.10 n/a 0 n/a
1990 0.25 0.10 n/a 0 n/a i
1991 0.25 0.10 n/a 0 n/a
1992 0.25 0.10 n/a 0 n/a
1993 0.25 0.10 n/a 0 n/a
1994 0.25 0.10 n/a 0 5
1995 0.33 0.10 n/a 0 4
1996 0.33 0.10 n/a 0 4
Table 5.11: University of Notre Dame Survey Data.
. .. Legal Fee
Ind1v1.d1.1als Indlw.dl.lals Expenditures Number of New U.S.
Providing Providing .
. for Patents Licenses Patent
Professional Staff - .
. and/or and Options Applications
Services for Support for Copyrights Executed Filed
TT (FTEs) TT (FTEs) (8 1994)
1986 n/a n/a n/a n/a n/a
1987 n/a n/a n/a n/a n/a
1988 n/a n/a n/a n/a n/a
1989 n/a n/a n/a n/a n/a
1990 n/a n/a n/a n/a n/a
1991 1.0 1.0 49,870 n/a 5
1992 2.0 1.0 54,785 1 5
1993 0.8 0.2 40,985 3 3
1994 2.0 1.0 75,000 3 10
1995 2.0 1.0 72,897 9 4
1996 2.0 1.0 70,726 9 6

Table 5.12: University of Rhode Island Survey Data.
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Figure 5-9: University of Rhode Island Research Expenditures Since 1980.

technology transfer except in 1993 when staff support was minimal. Legal expenditures
in 1991 until 1993 ranged from $40,000 to $55,000. From 1994 until 1996 these ranged
from $71,000 to $75,000. Of this figure the net expenses paid by the University of Rhode
Island average $55,000 over the last three years. The difference are expenses corporations
reimbursed the university.

Data about license and options agreements are not available before 1992 when one
agreement was made. Since then there has been a substantial increase, and in 1995 and
1996 nine agreements were made each year.

On average, the University of Rhode Island has applied for 5.5 new U.S. patents in
the last six years. There does not seem to be a long term trend in the number of patents,
but there is a peak in 1994.

Licenses & Patents

When looking for a correlation between the change in the number of license agreements
and the input measures, we find a positive relationship with all three input measures
in the previous year (p-value 4.2% for each). At the same time we find a negative
correlation between patent applications and all three input measures in the previous
year. To complete the triangle, there also is a significant negative correlation between
licenses and patent applications in the same year.
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Conclusions for the University of Rhode Island

The research expenditures have grown fast at the University of Rhode Island, especially in
the Life Sciences. The number of license agreements entered has increased substantially
in the last five years, while the number of patent applications has stayed more or less the
same. When looking at correlation relationships between inputs and outputs, we find a
positive correlation between the change in the number of license agreements and all of
the input measures of the TTO in the previous year. This implies that the people of the
TTO are stimulating the licensing process.

5.4.9 University of Texas Medical Branch at Galveston
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Figure 5-10: University of Texas Medical Branch Research Expenditures Since 1980.

As seen in figure 5-10, the University of Texas Medical Branch only performs research
in the Life Sciences. From 1980 until 1987 the expenditures were stable at $30 million, but
since then there has been a significant increase (about 130%). In 1995 the expenditures
totalled $71 million.

Table 5.13 has the aggregate statistics for technology transfer. We see that between
1986 and 1991 one-half full-time equivalence professional is working on technology trans-
fer. In 1992 this number increased up to one, and then there were increases in 1994, 1995,
and 1996. From 1986 until 1993 one-half full-time equivalence staff members provided
support, but since 1994 one full-time person has provided staff support for technology
transfer.

Legal fee expenditures have increased at the Medical Branch in Galveston. From 1986
until 1989 the legal fee expenditures for patents and/or copyrights were about $120,000.
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Individuals  Individuals Legal Fee

. . Expenditures Number of New U.S.
Prowc'}mg Providing fol: Patents Licenses Patent
Professional Staff ) ..
) and/or and Options Applications
i?;w;e;éor i‘t%)port for Copyrights Executed Filed
(FTEs) (FTEs) ($ 1994)
1986 05 0.5 122,427 n/a 5
1987 0.5 0.5 153,153 n/a 7
1988 0.5 0.5 115,485 n/a 6
1989 0.5 0.5 100,380 n/a 4
1990 0.5 0.5 209,122 n/a 10
1991 0.5 0.5 247,249 2 9
1992 1.0 0.5 215,955 5 7
1993 1.0 0.5 273,976 6 13
1994 1.5 1.0 325,643 3 13
1995 2.5 1.0 207,354 4 14
1996 4.0 1.0 324,570 7 15

Table 5.13: University of Texas Medical Branch Survey Data.

In 1990 there was a large increase up to $210,000. The following four years there were
relatively stable increases in the legal fee expenditures which reached $326,000 in 1994. In
1995 there was a temporary drop. In the last three years, corporations have reimbursed
the University of Texas Medical Branch a substantial fraction of these legal expenditures.
The net expenditures paid by the university average over the past three years about were
$200,000.

Data are not available on options and licenses executed prior to 1991 when two agree-
ments were made. Since then the number of licenses has been higher; between three
and seven. The number of patent applications has increased substantially since 1986.
Between 1986 and 1987 the number of new U.S. patent applications was about six, but
in the last four years it was about 14.

Licenses & Patents

There are no significant rank correlations between licenses and any of the input variables.
For patent applications the legal fee expenditures in the same year comes closest (p-value

5.3%).

Conclusions for the University of Texas Medical Branch

The Medical Branch of the University of Texas at Galveston does not do any research in
Engineering or Physical Sciences, all research is in the Life Sciences. The expenditures
have more than doubled since 1987, and at the same time the investment and success in
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technology transfer have about tripled. When calculating the rank correlation between
the change in the inputs and outputs, we do not find any significant relationships.

5.4.10 Vanderbilt University
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Figure 5-11: Vanderbilt University Research Expenditures Since 1980.

Figure 5-11 shows the research expenditures at Vanderbilt University. In 1995 Van-
derbilt spent $84 million on research in the Life Sciences, $8.7 million in Engineering, and
- §7.3 million in Physical Sciences. The research in the Life Sciences has almost tripled
since 1980 when only $30 million was spent on this research. The expenditures are stable
from 1980 until 1987, but most of the growth is in the last ten years. The research expen-
ditures in Engineering and Physical Sciences are much smaller, but have also increased
substantially. These departments spent only $3.2 million combined on research in 1980,
but in 1995 this figure was at $16.0 million. The net increase for the expenditures in the
three department in the last ten years is about 140%.

Table 5.14 shows the key technology transfer statistics for Vanderbilt University. The
number of professionals working on technology transfer has increased steadily since 1985.
Starting then at 0.8 it increased to 1.0 in 1990. There was another increase in 1993 up to
1.5, but since then there has been a small decline. The first support staff person was not
hired until 1991, and since then one person has provided staff support, except in 1994
when only 0.75 full-time equivalences provided staff support for technology transfer.

Legal fee expenditures have increased substantially since 1986 when they totalled
$62,000. Although the following year showed a small decrease, the expenditures reached
almost $100,000 in 1988 and almost $200,000 in 1990. Subtracting the reimbursements
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Individuals Individuals ExLefzcli:ies Numb
Providing Providing foI: Patents I‘;T er of New U.S.

Professional Staff andor and Oenit'as A Patent

Services for Support for Copyrights Execﬁtlzdns ppll;i(;:(t;ons

TT (FTEs)  TT (FTEs) S 1001
1985 0.80 0.00 29,925 0 9
1986 0.80 0.00 61,637 0 9
1987 0.80 0.00 53,911 2 7
1988 0.80 0.00 97,849 5 8
1989 0.80 0.00 109,743 2 14
1990 1.00 0.00 193,016 4 12
1991 1.00 1.00 155,466 4 13
1992 1.10 1.00 204,915 9 11
1993 1.50 1.00 191,606 15 10
1994 1.30 0.75 263,311 7 10
1995 1.40 1.00 316,190 13 17
1996 1.25 1.00 308,895 14 19

Table 5.14: Vanderbilt University Survey Data.

from industry, the net legal expenditures paid by Vanderbilt average $160,000 for the
last few years.

Licenses & Patents

When calculating the correlation in the change in the number of license agreements and
the TTO input variables we find:

1. A positive correlation with legal fee expenditures two years later (p-value 0.4%).

2. A positive correlation with the number of people providing professional service for
technology transfer in the same year (p-value 0.5%).

3. A negative correlation with professionals in the following year (p-value 4.8%).

The second relationship is as predicted, but the first and third are more difficult to
explain. A likely explanation for the first and third relationships is random noise.

When analyzing the correlation of patent applications and the inputs, we find that
the only relationship is with legal fee expenditures in the previous year (p-value 3.7%).
This could either mean that legal fees are paid early (in advance), or it could also just
be statistical noise.
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Conclusions for Vanderbilt University

The research expenditures at Vanderbilt have grown substantially. Most of the expendi-
tures in the three departments is in the Life Sciences, and these have more than doubled
since 1987. The investment in technology transfer has also increased, but using the aver-
age investment in section E.2 as a reference we find that they invest less than average in
technology transfer (the average implies they should employ three professionals and two
support staff persons, and spend about $500,000 on legal fees).

There has been a substantial growth in the number of license agreements in the past
ten years, but the growth in the number of patent applications is slower than the growth
in research expenditures. We find a positive correlation between the number of people
providing professional services for technology transfer and license agreements in the same
year, but other correlation relationships are likely statistical noise.

5.4.11 Yale University
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Figure 5-12: Yale University Research Expenditures Since 1980.

Figure 5-12 shows the research expenditures at Yale University. In 1995 most of
the research expenditures were in Life Sciences or $185 million, while Physical Science
accounted for $18 million, and Engineering for $7 million. The expenditures in the
Life Sciences have doubled since 1980, while the expenditures in Physical Sciences and
Engineering have grown about approximately 50%.

Table 5.15 shows the key technology transfer statistics for Yale. We see that the
number of professionals working on technology transfer increases in 1984, 1985, and then
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- .. Legal Fee
I;dw%dl.lals Ind1v1'd1'1als Expenditures Number of New U.S.
roviding Providing .
Professional Staff for Patents Llcensgs Pz?ten‘t
. and/or and Options Applications
iﬁlr‘v;‘e;éo; STL;{Jp;r'It\ézr Copyrights Executed Filed
S (FTEs) ($ 1994)

1982 1.0 1.0 n/a 4 11
1983 1.0 1.0 n/a 9 7
1984 2.0 1.0 n/a 10 9
1985 3.0 1.0 n/a 6 14
1986 3.0 1.0 n/a 16 21
1987 3.0 1.0 n/a 15 22
1988 3.0 1.0 n/a 14 27
1989 3.0 1.0 n/a 15 33
1990 3.0 1.0 n/a 27 36
1991 3.0 1.0 n/a 22 50
1992 3.0 1.0 n/a 25 42
1993 3.0 1.0 n/a 20 41
1994 3.0 1.0 n/a 17 62
1995 3.0 1.0 n/a 37 49
1996 6.0 2.0 n/a 29 41

Table 5.15: Yale University Survey Data.
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not until 1996. One person was providing staff support until 1996 when a second person
was added. Data are not available on the legal fee expenditures at Yale.

The number of licenses executed has increased substantially. In 1982 until 1985 the
average number of license agreements is between seven and eight, but in the last four
years the average is about 24. Most of this increase is realized in the period between
1985 and 1990. Overall the number of licenses has more than tripled in the last twelve
years. The number of patent application has even grown faster, approximately five-fold
in the last twelve years. Between 1982 and 1985 the average number of patent application
was between seven and eight, but in the last four years the average was about 48. This
increase is incurred fairly evenly since 1983.

Licenses & Patents

There is a positive rank correlation between the change in number of license agreements
and the change in the number of people providing professional services for technology
transfer in the following year (p-value 4.5%). This is either statistical noise, or the TTO
reacts to success in entering license agreements by hiring more people.

The number of patent applications is negatively correlated with the number of profes-
sionals working on technology transfer in the following year (p-value 2.5%). In the light
of the finding for the licenses this is somewhat surprising, and the most likely explanation
is that this is merely statistical noise.

Conclusions for Yale University

The research expenditures at Yale are much higher in the Life Sciences than both En-
gineering and Physical Sciences. The expenditures in the three department have grown
about 60% in the last twelve years. At the same time there was a fairly even, but faster,
increase in the number of people working on technology transfer. The number of licenses
has grown faster and the number of patent applications fastest. There is some evidence
that Yale responds to success in licensing by hiring more professionals in the following
year.

5.4.12 Voting

In this section we use a direct approach to estimate which of the two hypotheses on page
73 the universities “vote” for.

If hypothesis 1—hiring professionals leads to increased licensing activity—is true,
the correlation between the professionals hired for technology transfer (AN,;) and the
change in the number of licenses in the following year (AL,,;) should be positive. Simi-
larly, if hypothesis 2—universities respond to increased licensing activity by hiring more
professionals—is true, the correlation between the change in the number of licenses (AL,)
and the number of professionals hired the following year (AN,:+1) should be positive.
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For each university we can calculate these correlation coefficients. If the first coeffi-
cient is higher than the second, we say that this university “votes” for hypothesis 1, but
if the second is higher than the first we say that the university “votes” for hypothesis 2.

if Corr (ANps, ALyy) > Corr (AL, ANpsy1) “vote” for hypothesis 1 (5.5)
if Corr (ANp,hALt+1) < Corr (AL ANyty1) “vote” for hypothesis 2.  (5.6)

The analysis above is for the professionals, but we could just as well perform this
analysis for the support staff members, or for legal fee expenditures and patent applica-
tions. In table 5.16 we have presented the results for this analysis.

Individuals Individuals Legal -Fee
<1 g Expenditures

Providing Providing for Patents

Input Variable: Professional Staff
. and/or
Services for Support for Copyrights
TT (FTEs) TT (FTEs) ($ 1994)
New U.S.
c g Number of Licenses Patent
Output Variable: and Options Executed Applications
Filed

Harvard University 1 1 1
MIT 1 2 1
Ohio State University 1 2 1
Syracuse University n/a n/a n/a
University of Arkansas 1 2 1
University of Missouri n/a 1 1
University of Notre Dame n/a n/a n/a
University of Rhode Island 1 1 2
University of Texas, Galveston 1 2 2
Vanderbilt University 1 1 2
Yale University 2 2 n/a
Total: 7-1 4-5 5-3

Table 5.16: Voting Results for Universities..

From table 5.16 we first observe that when looking at the influence of the professionals,
there are seven votes in favor of hypothesis 1, while there is only one vote for hypothesis
2. The probability of getting seven or eight heads when flipping a fair coin eight times is
3.5%. When we look at the results for the staff members and legal fees, we find that the
votes are fairly even between the two hypotheses.

These results lead us to believe that hiring more professionals to work on technology
transfer will lead to more license agreements. For the support staff and legal expenditures,
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we do not get any hints about how the causal relationship between investment and success
in technology transfer is. This discrepancy between professionals and staff is not all that
surprising. The professionals focus on selling university discoveries, and consequently
enter license agreements, while support staff handles other daily routines.

This evidence suggests that of the two hypotheses about the causal relationship be-
tween hiring professionals and entering license agreements on page 73, hypothesis 1—
hiring professionals will lead to increased licensing activity—is closer to the truth.

5.4.13 Conclusions From Analysis of Single Universities

The relationships we have found for inputs and outputs at the eleven universities are of
all kinds. Some of them may be caused by statistical noise, while others may be based
on the causal relationship in the underlying process.

Overall there is no relationship that is consistent throughout, but the most consistent
relationship is the negative auto-correlation in the change in the number of licenses. Seven
of the eleven universities have a negative auto correlation, while the remaining four have
either zero correlation or the data are not available. If there was no auto-correlation,
the probability that all seven correlation coefficient are below zero is 0.8%. This finding
does not tell us anything about the causal relationship at the TTOs, it just confirms that
there is noise in the licensing process—if the number of licenses shoots up, it will most
likely drop down in the following year.

The second most consistent correlation is the positive relationship between the change
in the number of patent applications and legal expenditures. Of the nine universities with
non-zero correlation, all but one have a positive coefficient. The probability that we get
eight or nine heads when flipping a fair coin nine times is 2%. This relationship is as
expected, we know that there is a considerable cost associated with filing and pursuing
a patent application. Since there is no time shift, this finding does not provide us with
any clues about the causal relationship between the two variables.

In section 5.4.12 we used a simple method to assess which of the two hypotheses
about the causal relationship between investment and success in technology transfer, the
eleven universities “vote” for. Our results imply that hiring more professionals will lead
to an increase in the number of licenses (p-value 3.5%). We do not find a corresponding
relationship when instead of hiring professionals we hire support staff personnel. This is
not surprising, because professionals and staff have different roles at TTOs.

In section 5.5 we use other methods to try to identify consistent correlation patterns
in the time series data sets without merging the data.

5.5 Local Rank Test

In section 5.4 we introduced some of the data from our collection effort. We found that
there were no consistent patterns across all universities that determined which of the two
hypotheses we are testing is correct. In this section we use a different methodology—we
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work out statistics for each university, and then draw conclusions from aggregating the
statistics across the universities in our sample.

By aggregating the statistics we may have sufficient evidence to reject hypotheses
collectively when we cannot reject them for single universities. Our results in this section
do not provide us with evidence about the two hypotheses on page 73. '

5.5.1 Methodology

We will work out the correlation between an input and an output variable at individual
universities. In order to draw conclusions from significance statistics, we cannot make
the usual “normal” assumptions. For this reason we work with the ranking of the data
points instead of the underlying values themselves.

Let us define R (X;) as the rank of variable X over i. If X 1 is larger than all the other
X’s, then R(X;) = 1. If there are any ties, we use the average value. This is further
illustrated by the following example:

X; [124[121] 147 121101 [ 179
RX)| 3 (45| 2 45| 6 | 1

Based on the ranking of the variables, the Spearman Rank Correlation Coefficient is
defined in Conover [CONS0] as:

1 R(X) R(Y) - n (282)°

(Z2 R0 - (222)')” (s RO0? - (2))

Let us define a function that is the probability that the rank correlation is below the
observed value when assuming the two variables are independent,

p (5.7)

Fyn(z)=Pr(p<z)+ %Pr (p=1). (5.8)

If the two variables are independent the distribution of F,» (z) will be almost uniform
between zero and one. The only reason why the distribution is not exactly uniform is that
the rank correlation coefficient is discrete. For large values of n the discreteness vanishes,
and in the definition of F),, () we have minimized the disturbance of the discreteness
by adding half the probability that the statistic is exactly at that value.

Lets assume we have M different sets of data (in our case we have one set of data
from each university). Let us further assume that each set consists of n,, observations (in
Our case ., is the number of years we have valid measurements for both X and Y). We
calculate the rank correlations for each data set using equation 5.7. We then calculate
the F, . (z)-statistic for each university. This is not a trivial task. Conover [CONB80]
provides the quantiles for 90%, 95%, 97.5%, 99%, 99.5%, and 99.9%. These quantiles
are not sufficient for our purposes because we need the entire distribution function. We
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therefore calculated the exact probabilities for cases where n < 12; used Monte-Carlo
approximations for 12 < n < 35; and used the approximation provided by Conover
[CON80] when n > 35.

If there is on average a small positive correlation between the variables, we may not
have sufficient data to reject the null-hypothesis of no correlation for any single data set.
If a/2 < F,,(p) < 1— a/2 we cannot reject the hypothesis for that set. But if there is
a small correlation for each set, we may collectively have sufficient evidence to reject
the independence hypothesis. Lets aggregate F,,, () across universities by calculating the
statistic,

- 211:{:1 F, . (pm) - %
T .

12

If the two variables are independent for each data set, each F,, () is (almost) uni-
formly distributed between zero and one. If we also have more than ten sets of data
(M > 10), the distribution of Z is approximately normal with mean zero and variance
one.

As an example, lets suppose we have 12 data sets and say we have F), ,, (p) = 0.8 for all
twelve data sets. We cannot reject the null-hypothesis about no correlation for any single
set of data; if we do, there is a 20% chance of rejecting the hypothesis while it is true.
Plugging into equation 5.9 we find that Z = 3.6. The probability that a normal random
variable with mean zero and variance one is greater than 3.6 is less than 1/6000. We can
therefore very confidently reject the null-hypothesis based on the aggregated statistic.

Z (5.9)

5.5.2 Correlation between Inputs and Outputs

In section 5.4 we discussed the cases where the hypotheses about no correlation between
inputs and outputs can be rejected for single universities. We now have a more powerful
test to reject the hypothesis collectively using the Z-statistic defined in equation 5.9.

Analysis of Absolute Values

If the resources at each university are independent of the patent applications and license
agreements, there should be no relationship between when these variables peak. For each
university we have ranked the resources. For example, at Harvard (see table 5.5) the
legal fee expenditures are at a maximum in 1995, and a minimum in 1986. The patent
applications are similarly at a maximum in 1995, and a minimum in 1987.

When calculating the Z-statistic for our data, we always reject the hypothesis that
there is no correlation between an input and an output with time lag in the inputs from
minus one to plus four years. For licenses we can most confidently reject the hypothesis
for:

1. Support staff in the following year (p-value 0.01%).
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2. Legal expenditures in the previous year (p-value 0.03%).
3. Support staff in the same year (p-value 0.12%).
4. Professionals in the previous year (p-value 0.12%).

The first rejection suggests that TTOs respond to success by hiring more support staff.
One explanation for the second rejection is that many patent applications in the previ-
ous year (strongly correlated with legal fees) provides the TTO with many marketable
products (patents) that they can sell (license agreement). The fourth rejection suggests
that professionals hired increase the number of license agreements in the following year.

Looking at the patent applications, we find the strongest correlation is between patent
applications and:

1. Legal fee expenditures in the same year (p-value 0.03%).
2. Support staff in the following year (p-value 0.12%).
3. Support staff in the same year (p-value 0.18%).

The first and strongest rejection is not surprising. We know that there are substantial
costs associated with a patent application. The largest part of this cost is incurred in
the year the application is filed. The second and third rejections suggest again that staff
is being hired to administer the process.

One should be careful not to put too much faith into the results above. In the past
ten years there was an increase in almost all technology transfer activities, both outputs
and inputs.

There has been a substantial growth in technology transfer at American universities
in the past ten years. Figure 2-1 shows there has been an exponential growth in the
number of patents, and in section E.2 we show that there has been a growth in all
the TTO measures for the universities in our sample. This global growth carries into
the correlation statistics here—the outputs and inputs are usually at a minimum at the
start of the time window, and at a maximum towards the end. These correlation results
may be more of a manifest of this fact, rather than telling us something about causal
relationships at the TTOs.

Analysis of One-Year Differentials

Instead of focusing our analysis on the absolute numbers, it may be more appropriate to
use the differentials. If a university hires one more professional to work on technology
transfer this year, does it correlate with an increase in the number of license agreements?
We denote the change in the number of license agreements by AL, = L; — L,_;; the
change in the number of patent applications by AD; = D, — D,_,; the change in the legal
fee expenditures by AN;; = N;; — Nj;-1; and the change in the number of professionals
and support staff by ANp,t = Np,t - Np,t—l and ANa't = N,‘t - Na,t—l-
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When calculating the Z-statistics we find that for patent applications the only signifi-
cant relationship is the positive correlation between the increase in legal fee expenditures
and patent applications in the same year (p-value 0.3%). None of the other correlation
coefficients is significantly different from zero. We find that the correlation we found us-
ing the absolute values above between patent applications and support staff is no longer
present, and we must attribute the previous finding to the overall growth in the field in
the last ten years.

When looking at the changes in the number of licenses executed we do not find
any significant relationship with any of the input measures. The correlation we found
when analyzing the absolute measures with the changes in the support staff, is close to
or slightly below zero. Of the four most significant relationships we identified for the
~ absolute values, we find that the strongest correlation in the corresponding differential
measures is the positive correlation between the number of professionals working on
technology transfer and the number of licenses agreements in the following year. The
p-value for the hypothesis of no correlation is 22% and we cannot reject it.

When looking at the changes in the number of licenses executed we find that the
change in the number of licenses executed is negatively correlated with the change in the
previous year, i.e. we can reject the hypothesis that AL, is independent of AL;_; (p-
value 0.5%). This implies convergence to the mean—if the number of license agreements
entered increases, it will most decrease the following year.

5.5.3 AUTM Data

When performing the same analysis on the AUTM data we find that the hypotheses for
the absolute values cannot be rejected as uniformly as before. This is understandable
because although we have more than 100 universities in the AUTM database, we have
at most five years of data for each one. The only significant relationship for licenses is
with legal fee expenditures in the current, past, and following years. For patents the only
significant relationship is with legal fee expenditures in the same year. Performing the
analysis on the one-year differentials, we do not find any significant relationships; what
comes closest is the positive relationship between the change in patent applications and
legal fee expenditures (p-value of 8.9%). We do however find a significant convergence
to the mean for both patents (p-value 0.002%), and licenses (p-value 0.2%).

5.5.4 Conclusions

We have shown that when working out some statistics for single universities and then
aggregating the results, we can reject the hypothesis that there is no correlation between
outputs and inputs for various time shifts. This finding can mostly be attributed to the
overall growth that has taken place in the field of university technology transfer in the
last ten years. This finding, in itself, does not help us to determine the causal relationship
we are trying to uncover.
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In order to filter out the effects from the global growth we have seen in the past
ten years, we analyze the data looking at the one-year differentials in the outputs and
inputs. We find that there is a strong positive correlation between the change in legal
fee expenditures and patent applications in the same year—if the number of patents
increases the legal fee expenditures most likely increase also. This is not surprising as we
know that there is a substantial cost associated with each patent application.

When testing these findings on the AUTM data we find that it confirms the positive
relationship between legal fees and patent applications in the same year. This database
is, however, limited by at most five observations for each university, and although there
are over 100 universities we do not find the strong relationship for the absolute values we
find in the longer time series.

For both license agreements and patent applications, we find strong evidence of con-
vergence to the mean—if the number of licenses (patents) increased last year, it will most
likely decrease this year.

5.6 Probability Models

In this section we build probability models that predict how the number of licenses is
influenced by changes in the number of people working on technology transfer, and vice
versa. Based on the data from our collection effort, we estimate the probability of events
that help us answer questions such as: “What is the difference in the probability we will
enter more license agreements this year than last, if we hire one more professional now?
Do we realize all the benefits from hiring this employee in the first year, or are there
further improvements in the second year of employment?”

Our results in this section hint that for professionals, hypothesis 1—hiring profes-
sionals will lead to more license agreements—is true. The results also suggest that for
support staff, hypothesis 2—universities respond to success in licensing by hiring more
support staff—is true.

5.6.1 Staffing and Licenses: Hypothesis 1

If hypothesis 1—hiring more people to work on technology transfer will lead to more
licenses—is true, we should think of the number of people as the independent variable,
and the number of licenses as the dependent variable.

As before we let Ny,; be the number of professionals working on technology transfer,
N, be the number of people providing staff support for technology transfer, and Ny
be the legal fee expenditures in year ¢. Further, L; is the number of options and license
agreements entered in year ¢, and D; is the number of new U.S. patent applications.
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No Time Shift

We first look at the relationship between staffing and licensing in the same year. Lets
start by looking at the changes we expect in the number of licenses from increasing
(decreasing) the number of professionals working on technology transfer.

In an effort to only capture appreciable changes in the number of licenses and patents,
we will for the purposes of this section adopt the convention that if the number of licenses
or patents goes up or down by one, we say there is no change. As a result, approximately
one-third of all our observations have no (one or less) change in the number of licenses
or patents.

In all we have 92 observations from the eleven universities we surveyed. Of those 92
observations, the number of licenses dropped by two or more in 22 cases and in 36 cases
the number of licenses went up by at least two licenses. We use these counts to estimate
the following probabilities:

P(AL <-2) = % ~ 24% (5.10)
4

P(AL|<1) = 3_2 ~ 37% (5.11)

P(AL >2) = % ~ 39%. (5.12)

In the calculations above we considered all observations, independent of what changes
there were in the number of professionals working on technology transfer. Let us now look
at how the change in the number of people providing professional services for technology
transfer influences these probability estimates.

Of the 92 observations, in 12 cases the number of professionals went down, in 53 cases
it stayed unchanged, and in 27 cases the number of professionals increased. Observe that
we have not set a limit on how much the number of professionals has to decrease in order
to get into the “decrease” category; any change is sufficient. In some cases the change in
the number of professionals is small—a person working three-quarters of a full work day,
may have changed to a half-time work load, resulting in a drop of 0.25—while in other
cases the change may be substantial. The average drop for the 12 observations was 1.0
full-time equivalences, and the average increase for the 27 observations was 1.1 full-time
equivalences.

For the 27 observations where the number of professionals went up, in 14 cases the
number of licenses went up by at least two, and in 6 cases the number of licenses went
down by at least two licenses. From these numbers we can estimate the following prob-
abilities:

P(AL < -2|AN, > 0) = % ~ 22%  (5.13)
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T

P(IAL| < 1]AN,; >0) = o ~26% (5.14)
1
P(AL 2 2|AN,, >0) = o ~52%. (5.15)

From these estimates, we see that the probability that the number of licenses went up
is higher if the number of professionals went up, P (AL; > 2|AN,; >0) > P (AL > 2).
We can ask the question if the differences in the probabilities when conditioning on the
number of professionals are significant. One way to do this is to calculate the probability
that out of 27 observations we get 14 successes when the probability of success is 39%.
We find that the probability of getting 14 or more successes is about 12%.% If we were
to hypothesize that these probabilities were the same, we could thus not reject that
hypothesis based on this evidence.

Of the 92 observations, in 53 cases the number of professionals stayed unchanged.
In 9 cases the number of licenses also went down (by at least two licenses), but in 21
case the number of licenses went up (by at least two licenses). From these numbers we
estimate the probabilities:

P(AL < —2]AN,; =0) = % ~ 17% (5.16)
23

P(ALI S 11AN, =0) = 2 = 43% (5.17)

P(AL, > 2|AN,, =0) = % ~ 40%.  18)

Finally, in 12 of the 92 observations, the number of professionals went down. In seven
of these 12 the number of licenses also went down, but in only one case the number of
licenses went up. We arrive at the following probability estimates:

P(AL < —-2|AN,; <0) = 1—72 ~ 59% (5.19)
4

P(ALI S 1]AN, <0) = == 3% (5.20)

P(AL, > 2|AN,, <0) = % ~ 8%. (5.21)

In this section, we adopt a compact way of expressing all these probability estimates.

27 i 27-4
2y ()3 x 7 = 0124256,
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AL < -2 |ALJ<1 AL, >2 N

P(AL) = 2% 37% 39% 92
P(AL;|AN,; <0) =  59% 33% 8% 12 (5.22)
P(AL|AN,;=0) = 1% 43% 40% 53
P(AL|AN,; >0) =  22% 26% 52% 27

The first row of numbers in equation 5.22 shows the probability estimates for all the
observations (see equations 5.10 to 5.12). In the last column in equation 5.22 we show
how many observations there were in all for these probability estimates. The second row
in equation 5.22 lists the probability estimates when the number of professionals went
down (see equations 5.19 and 5.21). The third and fourth rows show the probability
estimates for the cases where the number of professionals stayed unchanged and went up.

Now that we have calculated all the conditional probability estimates, we can test if
the differences in the probability estimates are statistically significant. Using a traditional
x2-test we find that the p-value for the hypothesis that changes in the number of licenses
are independent of the change in the number of professionals is 1.3%. We thus reject the
hypothesis that the differences in the probability estimates in equation 5.22 are due to
chance alone. We must conclude that by adding to the number of professionals working
on technology transfer, the probability that the number of licenses goes up improves
significantly.

 If we calculate the average change in the number of licenses, we find that for all 92
observations there was an average increase of 1.3 licenses. For the 12 observations where
the number of professionals went down, the average change in the number of licenses was
-8.1. For the 53 observations where the number of professionals stayed unchanged, the
average number of licenses went up by 1.5, and for the 27 observations where the number
of professionals went up the average increase in the number of license agreements was
5.2. We conclude that not only do the chances of getting more licenses improve when
more people are hired to work on technology transfer, but the expected increase is also
quite substantial.

If we analyze how the number of people providing staff support affects the chances
of getting more licenses, we find the same pattern as for professionals. If the number of
people providing staff support went down, there was only a 14% chance of entering more
license agreements in the same year (the average decrease in the number of agreements
was 4.1), if the number of support staff was unchanged the probability of entering more
license agreement was 38% (the average number of agreements went up by 1.5), and if
the number of support staff increased, the probability is 50% (the average number of
agreements went up by 2.5). These differences in the probabilities are, however, not
significant (p-value 9.4%).

We have found that if the number of people working on technology transfer increased,
the probability the university entered more licenses in the same year agreements is higher.
Comparing a university that increased the number of professionals working on technology
transfer, to one that kept that number unchanged, we find that the probability of entering
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more license agreements is 52% instead of 40%.

These findings do not tell us about the causal relationships in technology transfer,
they only show that there is a positive correlation between the variables. This confirms
our results from Chapters 3 and 4.

Time Shift of One Year

We have shown that there is a positive correlation between the number of people working
on technology transfer and the number of license agreements that the university enters.
But what happens the year after both these measures increase? Does the number of
licenses drop down to the level it was at before adding this person to the staff, does it
stay unchanged, or is there an additional increase in the second year after hiring the
person?

If the employees of the TTOs are really stimulating the commercialization process,
adding to the staff should not only increase the number of license agreements entered in
the same year, but also in the following years. Lets look at the universities that kept the
number of professionals working on technology transfer unchanged, but increased, kept
it unchanged, or decreased it in the previous year. If there is time lag between when
professionals are hired and when they start fully contributing to the licensing activities
of the TTO, we should find that in the second year of employment there is a further
increase in the number of licenses (on top of the increase in the first year).

AL < -2 |AL|<1 AL,>2 N

P(AL{|AN,, =0) = 19% 40% 42% 48
P(AL|AN,;_y <0,AN,; =0) = 0% 0% 100% 2 (5.23)
P(AL|AN,;_y =0,AN,y =0) =  21% 5%  34% 38
P (ALt |ANP,¢_1 >0, ANp,g = 0) = 12% 25% 63% 8

Using a traditional x2-test to test for statistical differences in these probability esti-
mates we find that the p-value is 28%. These estimates do thus not constitute conclusive
evidence, but they provide us with hints about the causal relationship.

- We see first of all that there are only two observations where the number of profes-
sionals decreased and then stayed unchanged the following year. We will thus focus our
comparisons on the universities that did not change and those that increased the number
of professionals. We find that for those that increased the number of professionals the
probability of an additional increase in the number of license agreements in the second
year is 63% for an average increase of 4.9 licenses; while the probability is about 34% for
the ones that kept the number of professionals unchanged for an average increase of only
0.4 licenses. This suggests that there may be an additional improvement in the second
year of employment, in addition to the already realized improvement in the first year.
The impact of hiring a new professional may not only be immediate, there may be some
time lag and in the second year there may be an additional improvement.
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Performing this analysis for the third year—look at universities that changed the
number of professionals working on technology transfer, but then kept it unchanged for
the next two years—we do not find any appreciable difference in the change in the number
of licenses. This suggests that when adding to the number of professionals, there is an
improvement in the first year. There also seems to be an improvement in the second year
on top of the improvement of the first year, but the improvements stop there. By the end
of the second year, the new professional has become a fully effective member of the TTO,
and the evidence does not suggest there is an additional improvement (or degeneration)
in the third year.

Carrying this analysis out for the support staff, we find some evidence of time lag.

Universities that added to the support staff are estimated to have a 64% chance of

increasing the number of licenses in the second year (average increase was 3.2 licenses),

~ while the universities that kept the number of staff unchanged are estimated to have

only a 35% chance (for an average increase of 1.3 licenses). These differences in the
probabilities are not statistically significant (p-value 26%).

Conclusion

Lets illustrate our findings by comparing two scenarios. Suppose we have two universities,
university A increased the number of professionals working on technology transfer by one
at the start of fiscal year 1996 by hiring a new full-time person. For the rest of fiscal years
1996 and 1997 they did not make any changes to the staffing of the office. At university
B there were no changes in the staffing of the TTO in fiscal years 1996 or 1997.

If we look at the number of license agreements these two universities entered in fiscal
year 1996, we find that university A has a 52% chance of entering more licenses than in
the previous year, while university B has only a 38% chance of doing so. Our analysis
suggests that university A should expect to enter about five more license agreements in
FY1996 than FY1995, while university B should only expect to increase the number of
license agreements by one or two.

Lets now look at fiscal year 1997. In FY1997, neither university changes their staffing
of the TTO, but we see that the new person that university A hired at the beginning of
FY1996 will make a difference. Our results suggest that university A has a 63% chance
of entering more license agreements in FY1997 than in FY1996, while university B has
only a 38% chance of entering more license agreements than it did in FY1996. We see

that not only does university A have a higher probability, but it has a higher probability

to even exceed the level it reached in FY1996.

The difference in the probabilities for the first year (1996) is statistically significant,
but the difference in the second year is not statistically significant for the limited data
we have to make those estimates.

We collect further evidence about this time lag in section 5.7.
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5.6.2 Stafﬁng and Licenses: Hypothesis 2

If hypothesis 2—universities respond to increased number of licenses by hiring more peo-
ple to work on technology transfer—is true, it is more appropriate to think of the number
of licenses as the independent variable, and the number of people as the dependent vari-
able.

No Time Shift

Similar to the analysis for hypothesis 1, we first calculate how the change in the number
of licenses influences the probability that the university changes the number of people
working on technology transfer in the same year. We arrive at the following probability -
estimates:

P(AN,,) = 13% 58% 29% 92
P(ANp:|AL, < -2) =  32% 41% 7% 22 (5.24)
P(AN,[|AL| <1) =  12% 68% 20% 34
P(AN,:|AL >2) = 3% 58% 39% 36

The estimated probability matrix of equation 5.24 is just the “transpose” of the
probability matrix in equation 5.22. The p-value is of course the same, 1.3%, for the
hypothesis that the change in the number of professionals working on technology transfer
is independent of the change in the number of license agreements.

From equation 5.24 we see that if the number of licenses went up by two or more, our
estimates imply that the probability the university increased the number of professionals
working on technology transfer is 39%. If the number of licenses did not go up by two or
more, the probability the university hires more professionals is smaller. Performing the
same kind of analysis for the number of support staff we find similar, but not statistically

“significant, differences in the probability estimates.

Time Shift of One Year

Lets now look for evidence that the change in the number of licenses influences the
probability estimates of the change in the number of professionals in the following year.
We arrive at the following probability estimates:

ANPJ <0 ANp,g =0 ANp,t >0 N

P (AN, |AL; = 0) = 13% 63% 23% 30
P(AN,:|AL-1 < 2,]AL;)<1) =  25% 25% 50% 4 | (5.25)
P(AN, ||AL_1| < 1,|AL| <1) =  13% 81% 6% 16
P(ANp;|ALiy > 2,]AL|<1) =  10% 50% 40% 10
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The p-value for the hypothesis that these estimates are independent of the change
in the number of licenses is 14%, using a traditional x2-test. Taking the probability
estimates at face value, these results imply that universities respond to an increase or a
decrease in the number of licenses by hiring more professionals. If the number of licenses
went up last year, the average number of professionals goes up by 0.42, if the number
of licenses did not change the average number of professionals goes up by 0.01, and if
the number of licenses went down, the average number of professionals goes up by 0.25.
We should keep in mind that the differences between these estimates are not statistically
significant.

If we look at how the change in the number of licences influences the number of
staff working on technology transfer in the following year, we find statistically significant
differences in the probability estimates:

AN,; <0 AN,;=0 AN,;>0 N

P(AN,:|AL: =0) = 10% 80% 10% 30
P(AN; i |ALi_y <2,]AL<1) = 50% 50% 0% 4 (5.26)
P(AN ¢ ||ALi1| < 1,|AL| <1) = 0% 94% 6% 16
P(AN4|ALi_; > 2,|AL| <1) = 10% 70% 20% 10

Using a x2-test to test the hypothesis that these estimates are independent of the
change in the number of licenses, the p-value is 3.2%. The average change in the number
of support staff when the number of licences decreased in the previous year was -0.31,
+0.02 if the number of licenses stayed unchanged, and +0.10 if the number of licenses
went up.

This evidence supports implies that for support staff, hypothesis 2—universities re-
spond to increased licensing activity by hiring support staff.

Conclusion

We get different evidence for professionals and staff. Looking at the professionals, we
find a statistically significant difference within the same year—universities that enter
more licenses agreements, also hire more professionals to work on technology transfer
than others. Looking at what happens to the number of professionals in the following
year, our results are not statistically significant, but suggest that universities where the
number of licenses went either up or down, hire more professionals to work on technology
transfer in the following year. Taken at face value, this implies that universities that are
either doing better or slipping respond by hiring more professionals.

When we look at how the changes in the number of licenses influences the probability
estimates for the change in support staff we find a different pattern. Changes within the
same year are not statistically significant, but the results hint that universities that enter
more licenses also hire more people to provide staff support for technology transfer than
others. Looking at the influence in the second year, we find a significant relationship. We
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find that universities where the number of licenses went down are more likely to reduce
the number of support staff in the following year (40.04) than others, and similarly that
universities that entered more licenses agreements respond by hiring more support staff
(+0.30 full-time equivalences). This evidence supports hypothesis 2 for support staff—
universities respond to changes in licensing by changing the number of people providing
staff support in the same direction. We collect further evidence about this in section 5.7.

5.6.3 Patents and Legal Fee Expenditures

We want to understand the relationship between legal fee expenditures and patent ap-
plications. If we look at how the legal fee expenditures affect the number of patent
applications we find the following: :

AD, < -2 |ADj|<1 AD;22 N

P(ADy) =  31% 34% 3% 74
P(AD;|AN;, < -850K) =  40% 40% 20% 10 (5.27)
P(AD,||AN,| < $50K) =  28% 50% 2% 32
P(AD,|AN, > $50K) =  31% 16% 53% 32

We see that when the legal fee expenditures are increased about at least $50,000 the
probability of filing for more patents goes from 20% to over 50%. When we look at the
influence the legal fees have on the number of patent applications in the following year,
we find that the two variables are essentially independent. This is as expected—the legal
fee expenditures are usually incurred after the application is filed. Instead of working
with the probability matrix above, it is more appropriate to work with a matrix that
targets answering the question: “If we file more patent applications, will we also need to
pay more in legal fees in the same year?” The probability matrix for this question is:

ANy < —$50K |ANy| < $50K ANy > $50K N

P(AN:) = 14% 43% 43% 74
P(AN;;|AD; < -2) = 17% 39% 43% 23
P(AN ||AD| <1) = 16% 64% 20% 25
P(AN;;|AD; >2) = 8% 27% 65% 26
(5.28)

The p-value for the hypothesis that the probability estimates do not depend on how
the number of patents changes is 2.4%, using a traditional x>-test. We see that if the
number of patent applications went up by at least two, the probability the legal fees
increased by at least $50,000 is 65%. If the number of patent applications went down
or stayed unchanged these probabilities are 43% and 20% respectively. Looking at how
the number of patents applications influences the legal fees in the following years, our
estimates imply that these two variables are essentially independent.
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5.6.4 AUTM Data

Performing the analysis above on the AUTM data we find the same hints, but none of
the relationships between staffing of the TTO and licenses is statistically significant. The
only statistically significant relationship is between the number of patent applications and
the legal fee expenditures in the same year (p-value 0.004%). This finding only confirms
that legal fee expenditures correlate with patent applications.

5.6.5 Conclusions

For the relationship between the number of professionals and licenses agreements, we
find that the changes in the number of licenses is positively correlated with the change
in the number of professionals working on technology transfer in the same year (p-value
1.3%). This finding confirms our findings from Chapters 3 and 4, but does not provide
any hints about the causal relationship. When we look for evidence in support of the
two hypotheses on page 73 we find some evidence in support of hypothesis 1—hiring
more professionals to work on technology transfer will lead to increases in the number of
license agreements. We find that by hiring a person to provide professional services for
technology transfer the university not only increases its chances of entering more license
agreements in the same year, but it also increases the chances of exceeding the already
increased number in the second year (p-value 28%). This suggests there may be some
delay in realizing all the rewards from adding a professional.

When we look at the relationship between the number of support staff and licenses
agreements, we also find there is a positive correlation between the variables in the
same year, but the relationship is not statistically significant (p-value 9.4%). When we
investigate the evidence in support of the two hypotheses about the causal relationship
between support staff and licenses, we find some insignificant evidence in support of
hypothesis 1—hiring support staff leads to increases in licensing—(p-value 26%), but
we find statistically significant (p-value 3.2%) evidence in support of hypothesis 2—
universities respond to increases in the number of licenses by hiring more people to
provide staff support for technology transfer. '

Looking at the relationship between legal fee expenditures and patent applications,
we find there is a strong correlation within the same year; universities that increase the
number of patent applications, also end up paying a higher bill for legal fees in the same
year (p-value for our data 2.4% and for AUTM data 0.004%). We do, however, not find
evidence of time lags between patent applications and legal fee expenditures.

stays, goes, is increases decreases add hire does do

5.7 Regression of Merged Time Series Data

In this section we merge the data set from the eleven universities and build regression
models to further quantify the time lag we observed in section 5.6.
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For the causal relationship between professionals and licenses we find evidence sup-
porting hypothesis 1—hiring professionals will lead to an increase in the number of li-
censes. We build models that estimate the expected increase in the number of licenses
resulting from hiring a professional to work on technology transfer. For support staff, we
find significant evidence supporting hypothesis 2—universities respond to an increase in
the number of licenses by hiring more support staff.

5.7.1 Staffing and Licenses: Hypothesis 1

As discussed in the previous sections, if hypothesis 1—increasing the number of profes-
sionals working on technology transfer will lead to increased number of licenses—holds,
we should think of the number of licenses as the dependent variable.

One-Year Differentials

We build simple models to predict the number of licenses as a function of the resources.
We focus on modeling the differentials in these variables, because as we mentioned
earlier there has been an global increase in all the measures over the past ten years and
we want to minimize the effect this has on our parameters.

The change in the number of licenses is,

ALt = Lg - Lt—l- (529)

The first model we estimate is a simple model that focuses exclusively on the resources
in the same year,

ALt = ﬁo + apANp,t + Q,AN,,¢ + QIAM': (530)
= —0.14+6.4AN,, +4.2AN,, — 5.8AN,. (5.31)

The p-value for the constant is 45% and for the legal fee expenditures AN, it is 18%.
This is consistent with our results from Chapter 3—when looking at the resources in the
same year, the number of licenses is primarily determined by the number of professionals
and support staff working on technology transfer, not by legal expenditures. Setting the
legal expenditures coefficient to zero, we arrive at the estimates,

AL, = 0.05 + 4.4AN,, + 3.3AN,,. (5.32)

The p-values for the parameters of equation 5.32 are 48%, 0.01%, and 1.1% respec-
tively. We see that there is some change in the estimates for the parameters going from
equation 5.31 to equation 5.32. One reason why the difference is as large as we see is
that we do not have the legal fee expenditures data for some observations. Consequently
the estimates in equation 5.31 are based 75 observations, while the estimates in equation
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5.32 are based on 92 observations.?

Our ultimate goal is to determine which of the two hypotheses about the causal
relationship between technology transfer resources and commercialized technologies is
true. To do so we must have time lags, and we therefore estimate a model based on the
resources in the current and past year:

AL, = Bo+ 0apoANp:+0ap1ANy, 1 + (5.33)
s 0AN s + s 1 ANy 1 + a1 0AN; s + @11 AN
= —0.44+6.0AN,; — 1.0AN,; 1+ (5.34)

4.1AN,: + 0.8AN, ;1 — 11.6AN;: + 7.4AN; ;3.

The estimates in equation 5.32 are based on 68 observations. The p-values for the co-
efficients are greater than 5% except for AN, and AN, ;. Setting the legal fee parameters
(p-values 6.7% and 15%) to zero we arrive at,

AL, = —0.04 + 4.1AN,, — 0.8AN,,_; + 34AN,, + 0.1AN,; ;. (5.35)

The p-values are 49% for the constant, 30% for AN, ;_;, and 47% for AN, ;. Setting
these coefficients to zero we end with the same result as in equation 5.32. This suggests
that the change in the number of license agreements entered by year is primarily driven
by the resources in that same year.

Taking the parameter estimates of equation 5.35 at face value, adding one professional
to the staff working on technology transfer will increase the expected number of licenses
in the same year by 4.1 (p-value 0.05%), but will decrease the change in the following
year by about 0.8 licenses (p-value 30%). This expected decrease in the second year is on
top of the increase in the first year, so the net effect on the expected number of licenses
in the second year after adding the person is +3.3 licenses.

Looking at more than a one year delay we do not obtain any further insights.

Two-Year Differentials

Lets say that we are at the start of fiscal year 1998. Suppose we are contemplating if
we should: 1) hire one more professional (or support staff person) now, 2) hire one more
professional (or support staff person) in twelve months (at the start of FY1999), or 3)
not add anyone for the next 24 months. We are interested in understanding what effect
these three alternatives have on the expected number of license agreements we will enter
in fiscal year 1999 (note that FY1999 does not start until 12 months from now). To
answer this question, we want to estimate how the number of licenses will be different in
FY1999 compared to FY1997. We define the operator for the two-year differentials as,

31f we calculate the estimates for equation 5.32 only on the 75 observations used for estimating the
parameter values for equation 5.31 we arrive at AL; = —0.44 + 6.1AN,: + 4.1AN, ;.
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AL, =L;— Lis. (5.36)

To answer our question, we want to estimate the following model:

Ath = ,BO + ap,OAsz,t + ap,lANp,t_l + a,'oAzN,,t + as,]_ANalt—l- (537)

Of the model parameters, a, ¢ will give us the estimated increase in the number of
license agreements we will enter in FY1999 if we add one more professional to the staff
in 12 months (option 2 above), a;,; is the estimated additional increase if we add a
professional now, and a,0 and a,; are the estimated increases from adding a support
staff person. The effect of adding one professional now is thus a,o+a;, 1 (option 1 above).
Estimating the model parameters above we get,

A’L; = 0.9 + 2.1A%N,, + 3.4AN,,_; + 2.6A%N,; + 0.1AN, ;_;. (5.38)

The p-values for the model parameters are 25%, 8.2%, 6.2%, 9.9%, and 48%. Taking
the parameter estimates of equation 5.38 at face value, we find that adding one profes-
sional now, we expect the number of licenses in FY1999 to go up by (2.1+3.4 =) 5.5, but
if we wait until the start of FY1999 and add a professional then, the expected increase is
only 2.1. By adding the professional now instead of at the start of FY1999 we increase
the expected number of licenses in FY1999 by 3.4. The new person will have a greater
impact in the second year of employment than the first. This suggests that when we
add new people to provide professional services for technology transfer they do not con-
tribute fully from the first day. It takes time for them to get the necessary training, get
acquainted with the practices of the technology transfer office, etc. In the first year the
contribution to the increase in the number of license agreements is only 40% (= 2.1/5.5)
of the contribution in the second year.

If, instead of adding a professional, we were thinking of adding one person to the
support staff, the parameter estimates in equation 5.38 show that adding a support staff
person now will increase the number of license agreements in FY1999 by 2.6, but adding
the person at the beginning of FY1999 will increase the expected number of license
agreements about 2.7. The p-value for the AN,,_; parameter is 46%. If we re-estimate
the model parameters after setting a,,; = 0, the new estimates for adding to the number
of professionals are unchanged, but adding to the staff either now or at the beginning of
FY1999 will increase the number of license agreements by 2.7:

A%Ly = 0.9 + 2.1A%N, 4 + 3.4AN, -1 + 2.7A%N, ,. (5.39)

The p-values for these three parameter estimates are 24%, 7.9%, 6.1%, and 6.8%
respectively.
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5.7.2 Staffing and Licenses: Hypothesis 2

As discussed in previous sections we should think of the number of professionals and staff
as the dependent variable if hypothesis 2—universities respond to increased number of
licenses by hiring more people—is true.

One-Year Differentials

We first estimate the parameters of simple models for the change in the number of
professionals and staff.

ANp't = ﬂO + aLALg + aDADt (540)
= 0.19 + 0.030AL, — 0.012AD,. (5.41)

The p-values for the parameters are 2.3%, 0.05%, and 17%. Once again this confirms
that professionals working on technology transfer primarily focus on license agreements.
Estimating a corresponding model for the change in the number of support staff, we find
exactly the same pattern. The p-values are 9.5%, 4.6%, and 11%. This shows that the
staff also primarily contribute to the licenses processes, but the relationship is not as
strong as for the professionals.

To quantify time lags, we estimate the parameters of the following models:

ANyt = Bo+aroAL +ar AL (5.42)
= 0.18 +0.022AL, — 0.014AL,_,. (5.43)

The p-values for the estimates are 2.1%, 0.9%, and 6.5%. The negative coefficient
for AL;_, works against hypothesis 2—universities (do not) respond an increase in the
number of licenses by hiring more professionals. The p-value is greater than 5%, so this
does not provide statistically significant evidence.

Estimating the same coefficients for the change in the number of support staff, we
find:

AN, =0.11+0.016AL; + 0.009AL,_;. (5.44)

The p-values for these estimates are 9.0%, 3.0%, and 14%. We observe that the co-
efficient for AL,_, is positive, suggesting hypothesis 2—universities respond to increases
in the number of license by hiring support staff— may be true for the support staff, but
the estimate is not statistically significant.

If we look at longer time delays, we do not find any relationships for the number of
professionals, but for the number of support staff we find,
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ANsy = Bo+apoAL + o ALy +ap AL (5.45)
= 0.04 + 0.026AL, + 0.023AL;_, + 0.026AL,_,. (5.48)

The p-values for these parameters are 33%, 0.3%, 1.1%, and 0.4%.* This evidence
implies that universities respond to increases in the number of licenses by hiring more
support staff. While some of the increase in personnel is in the same year, these parameter
estimates suggest that there are similar increases in the following two years.

Two-Year Differentials

Just as in the analysis for hypothesis 1, we estimate the parameters of the models for the
two-year differentials.

A2Np,t = ﬂo + QL'oAth + aL'lALt_l . (547)
= 0.23+0.031A%L, — 0.005AL,_; | (5.48)
A?N,; = 0.25+0.015A%L, + 0.007AL,_, (5.49)

The p-values for the professionals model are 1.9%, 0.3%, and 34%. As before the a Lo
parameter estimates the total influence of a change in the number of licenses in second
year of the two year period, but oy, ; evaluates the incremental influence if the increase
in the number of licenses is in the first of the two years. The net effect of an increase in
the first year is thus ap g+ ay ;. As with the one-year differentials the negative coefficient
for AL;_, works against hypothesis 2—universities do not) respond to an increase in the
number of licenses by hiring professionals—for the professionals.

The p-values for the support staff model are 0.2%, 3.6%, and 23%. The positive coef-
ficient for AL,_; implies hypothesis 2—universities respond to increases in the number of
licenses by hiring more support staff—may be true, but the estimate is not statistically
significant.

“The R2-statistic for the estimates in equation 5.46 is much higher that the R2-statistic for equation
5.44 (0.16 vs. 0.05). A part of the reason is that the estimates of the latter model are based on 70
observations, while the former is based on 81 observations. If we estimate the model parameters of the
former model, but only use the 70 observations, we arrive at,

AN,. =0.11+0.021AL; + 0.012AL,_,.
The p-values for these estimates are 10%, 1.6%, and 10% respectively. The R2-statistic is still low at

0.07, so we must conclude that there is significant “information” in the data about how many support
staff members are added two years after the change in license agreements.
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5.7.3 Patents and Legal Fee Expenditures

The results of Chapter 3 and throughout this chapter we have seen that of all the inputs,
patent applications are most strongly correlated with legal fee expenditures. We find
that people employed for technology transfer purposes are much less important when
predicting the number of patent applications. To further illustrate the point, lets estimate
the model:

ADt = ﬂo + apANp't + a_gANa't + a[A.Nl’t (5.50)
= 0.12—- L1AN,; + 1.6AN,, + 17AN,,[$M)] (5.51)

The p-values for the four parameter estimates are 44%, 13%, 6.3%, and 0.02%. This
shows that, as expected, the patent applications are primarily driven by legal fee expen-
ditures.

Looking for evidence of hypothesis 1 for legal fee expenditures we estimate the para-
meters of a model that predicts the number of patents based on legal fee expenditures in
the current and previous years. Our results are not statistically significant, but the hints
we get work against hypothesis 1 for legal fee expenditures and patent applications.

To investigate the evidence for hypothesis 2 for the relationship between legal fee
expenditures and patent applications, we build models that predict the legal fee expendi-
tures based on patent applications. But first, we estimate the parameters of the model,

AN['t = ﬂo + aLALt + QDADt (552)
= §55,000 — $200 AL, + $9,000 AD:;. (5.53)

The p-values for these parameter estimates are 0.6%, 45%, and 0.1%. This confirms
that the legal fee expenditures depend on patents but not licenses.

There is also no inherent capacity in the system—there is a fairly fixed cost associated
with each patent application. Instead of modelling the change in legal fees, we model
the gross legal fee expenditures.

We want to estimate a model like the following:

Ny =apeDi+ap1Di_1+apaDy_2+aps3D;,_3+ apsD, 4+ apsD;_s (5.54)

If all the legal fees are paid in the same year as the application is filed, ap o will be
large and the other parameters will be small. If the legal fees are paid in the first two
years, app and ap,; will be large, but the other parameters will be small.

When estimating the parameters of equation 5.54, we find there is a strong auto-
correlation in the legal fee expenditures—a university that pays much in legal fees, will
most likely do so in the following years. The reason is simply that large universities apply

128




for many patents and pay large legal fees. The sum of the parameters in equation 5.54 is
invariably between $30,000 and $34,000, implying that on average it costs about $32,000
to file for a patent.

In table 5.17 we have estimated five single parameter models for the legal fee expen-
ditures:

Model R*-statistic
Nt = $27,000D; 0.832
M,t = $29, OOODt_l 0.888
N = $31,000D;_, 0.914
Nip = $33,000D;_3 0.910
Nis = $34,000D;_4 0.886

Table 5.17: Single Parameter Models for Legal Fee Expenditures.

We see that all years provide a fairly good estimate for the gross legal fee expenditures.
These models consistently suggest that it costs on average between $27,000 and $34,000
to file a patent application.

5.7.4 Legal Fee Expenditure Models Based on AUTM Data

Estimating the parameters for a model like that of equation 5.54 based on the AUTM
data we arrive at,

Ny, = $15,000D, + $10,000D,_; + $6,000D;_j. (5.55)

The p-values for these parameters are all small, but because of the multicolinearity
these p-values are too low. These parameter estimates imply that the total cost of a
single patent is about $31,000.

5.7.5 Conclusions

For the relationship between people providing professional services for technology transfer
and license agreements, we find no evidence in support of hypothesis 2—universities (do
not) respond to an increase in the number of licenses by hiring more professionals. We find
some evidence in support of hypothesis 1—hiring more professionals will lead to increases
in the number of licenses. When we estimate models for the two-year differentials we find
evidence that is not quite statistically significant (p-values 6% and 8%), but it provides
us with clues. Equation 5.39 implies that when adding a new professional to the staff
of the TTO, there will be an expected increase about 5.5 licenses per year, in two years
time. About 40% of the increase in licensing rate is estimated to occur in the first year,
but the remaining 60% in the second year. We find no evidence of time lags in excess of
this.
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When we analyze the one-year differentials, our parameter estimates suggest that
hiring one more professionals, the expected number of licenses in the same year will
increase by 4.1 but in the following year 0.8 of that growth is returned (p-value 30%).
While the p-value is quite high, taken at face value this contradicts our finding from
analyzing the two-year differentials. Because of the high p-value we should not draw any
conclusions from this finding,.

When we analyze the causal relationship between support staff and licenses, we find
" no evidence in support of hypothesis 1—hiring more support staff (will not) lead to
an increase in the number of license agreements. When investigating the evidence for
hypothesis 2—universities respond to an increase in the number of licenses by hiring
more support staff—we find consistent (and some significant) clues that the hypothesis
may be true. Looking at both the one-year and two-year differentials we find there is a
~ time lag—if the number of licenses goes up, the university will respond by hiring more
people to provide staff support for technology transfer activities. Some of the resulting
increases in the number of staff are in the same year, some are in the following year, and
as the estimates in equation 5.46 imply some of the increase is as late as two years later.
This finding is consistent with our findings in section 5.6.

Our results confirm that the primary resource determining the number of patent
applications is legal fee expenditures, and that the primary determinant of legal fee
expenditures is patent applications. This is consistent with what industry experts say.
Our results also hint that there is a time lag in the legal fees—a university that files
a patent application in 1997, should expect to incur some legal expenses related to the
application in that same year, but also in the following two years. On average the
expenditures for a patent application total $32,000. This estimate for the aggregate legal
expenditures for a single patent application is similar to what industry experts have
suggested.

5.8 Limitations of the Time Series Analysis

In this chapter we first discuss how we can approximate how much technology is trans-
ferred from each university. We must reluctantly make the assumption that all licenses
are equal. If we do not make this assumption, we could not use data on licenses executed
in the last few years, because it is in most cases impossible to determine how successful
a new license will be. We argue that this assumption is reasonable by analyzing income
profiles for licenses.

The data we use for this analysis are not perfect. We only have the full-time equiv-
alences for the number of people providing professional services and staff support for
technology transfer. So, for example, if five people were providing professional services
for technology transfer in 1995 and 1996, it does not necessarily mean that there were no
changes in personnel; one person might have left and another one hired in his/her place.
Furthermore, in our analysis we assumes that all professionals are the same and that all
support staff are the same. It is, however, clear that some people are more energetic and
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productive than others. In other words, our proxy variable for the effectiveness of the
TTO employees—their numbers—is necessarily somewhat crude.

While we get some insights into the causal relationship between investment and suc-
cess in technology transfer from the time series analysis, this analysis does not provide us
with models that explain cross-sectional differences: Why is one university more success-
ful than another? The analyses in Chapters 3 and 4 addresses this issue more directly.

The analysis in this chapter attributes all changes (except a linear long term trend)
to the changes in the resources committed to technology transfer. In the cross-sectional
analysis in Chapter 3 we show that licensing activity also depends on research expen-
ditures and faculty quality. While it is unlikely that the faculty quality has changed
significantly in the last ten years, the research expenditures have changed at some of the
universities in our sample. When we introduce the data for the universities in section
5.4 we therefore also plot how the research expenditures have changed since 1980. We
discuss how this may explain the changes in the “rate” of transferred technologies, but
we do not use this “research expenditures” variable in the numerical time series analyses.

In Chapter 3 we found that the relationship between research expenditures and li-
censing is concave—universities that spend twice as much do not get twice the number of
patents and licenses. The aggregate increase in research expenditures for the universities
in our database is 40% in the last ten years. Our models in this chapter filter out a
linear long term trend, but aside from that we assume that the variations in the research
expenditures over time are secondary compared to the variations in the TTO resources.

It is unlikely that these secondary variations in the research expenditures influence our
findings.

5.9 Conclusions from Time Series Analysis

The main goal of the time series analysis is to determine the causal relationship between
adding professionals to work on technology transfer and increases in transferred tech-
nologies. On page 73 we introduce two hypotheses about how the causal relationships
might be.

We went out in the field and collected detailed data from eleven universities. This was
necessary because the available data do not provide long enough time series to analyze
causal relationships.

We use a variety of methods to collect evidence about the causal relationships. We
first analyze patterns at single universities, we then develop statistics for each university
and aggregate these statistics across universities, and finally we merge the data for the
eleven universities into one database and build simple regression and probability models
for the relationship between inputs and outputs from technology transfer.

The first, and most important, causal relationship is between licenses and people
providing professional services for technology transfer. Of the two hypotheses on page 73
we do not find any evidence for hypothesis 2—universities (do not) respond to increases
in the number of licenses by hiring more professionals. On the other hand, we find many
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clues for hypothesis 1—adding to the number of professionals working on technology
transfer will lead to increased number of license agreements. The strongest evidence we
find is from the analysis in section 5.4.12 where we develop a “voting” rule. We find that
of the two hypotheses, the data from seven of eight universities imply that hypothesis 1
is closer to the truth (p-value 3.5%). Both the probability and regression models provide
further evidence in support of this hypothesis, but we do not find any single clue that is
statistically significant. It is the weight of the accumulated evidence that suggests the
direction of causality rather than any particular piece of evidence.

Our best estimate of the delay in realizing the full benefits of hiring a professional
to work on technology transfer suggests that in the first year the new staff member
contributes about 40% of what he/she contributes in the second year (see equation 5.39).
We do not find any evidence of longer time lags than this. Our estimates suggest that the
expected increase in the number of licenses realized from adding one full-time professional
to the staff is between three and six licenses (see equations 5.32 and 5.39).

The second causal relationship we analyze is between licenses and people providing
staff support for technology transfer. We do not find evidence in support of hypothesis
1—hiring more support staff (will not) lead to an increase in the number of licenses—but
we find some significant relationships that support hypothesis 2—universities respond to
an increase in the number of licenses by hiring more staff support. In section 5.7 we
show that the number of staff hired is dependent on the change in the total number of
licenses in the last three years (see equation 5.46). The parameters of this model all have
p-values of 1% or less. In section 5.6 we also show that the number of licenses changes
the probability the university will increase or decrease the number of support staff the
following year (see equation 5.26). The p-value for this finding is 3.2%.

The third and last causal relationship is between legal fee expenditures and patent
applications. We do not find evidence in support of hypothesis 1 for patent applications.
There is some evidence for hypothesis 2—if a university files patent applications, they
will need to pay legal fees. Our estimates suggest that the universities pay legal fees after
the application is filed (see table 5.17). Analyzing the AUTM data we also collect more
clues in support of hypothesis 2 (see equation 5.55). The regression models imply that
the average cost of a patent application is about $31,000. This estimate is a little higher
than what industry experts have suggested ($25,000), but this difference can partly be
explained by maintenance fees.

132




Chapter 6

Summary and Final Remarks

This research focused on analyzing the influence of technology transfer offices in com-
mercializing discoveries made at American universities. Prior work in this area has been
limited to simple statistics based on the data from the Association of University Tech-
nology Managers. We built more sophisticated models that evaluate the influence of the
technology transfer office and other variables. Instead of only looking at the aggregate
research expenditures, we looked at expenditures by department and concluded that not
all departments contribute to the commercialization process. We introduced a variable
for the quality rating of faculty, and conclude that highly rated faculty perform research
more cost effectively than others. We also collected detailed time series data directly from
eleven universities to assess the causal relationships between investment and success in
technology transfer.

There are clearly limits to what we can expect from aggregate analyses of university
technology transfer offices. Although the data we used are more detailed than prior
analyses have used, there are imperfections. We assumed that the effectiveness of the
people of the technology transfer offices is captured by the raw numbers of professionals
and support staff; but some people are more productive than others. We assumed that the
“rate” of technology transfer can be approximated by the number of licenses and patents;
but it is clear that some licenses and patents are more valuable than others. We did not
consider the historical background and philosophy of universities; some universities pride
themselves in successfully commercialized inventions, while others are more concerned
with awards and other “non” technology transfer measures.

When we started our work on this topic, the most immediate goal was to gather
evidence to determine if the university technology transfer offices were hindering the
commercialization of university research discoveries. Early on we found evidence implying
that this was indeed not the case—there seems to be a positive correlation between the
resources and success in technology transfer at American universities.

We refined the main question to incorporate the causal relationships between the re-
sources and outcomes: Do universities first commit resources and then realize increases
in technology transfer, or does the success lead to an increase in the resources? In order
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to answer this question we collected detailed time series data directly from eleven uni-
versities. Analyzing these data we find evidence suggesting that some resources precede
the outcomes—universities first decide to increase the number of professionals working
on technology transfer, and consequently enter more license agreements with industry.

The analytical work of this thesis consists of three major parts. None of these analyses
provides a complete answer to our question on their own, it is not until we integrate
the results from the three analyses that we get a clear picture of how the dynamics of
university technology transfer offices may be.

The Three Analyses

In Chapter 3 we built cross-sectional regression models that use the most important de-
terminants of research outputs to predict the number of licenses and patents. Our results
imply that the most important determinants are: departmental research expenditures,
professionals and support staff working on technology transfer, legal fee expenditures for
patents and/or copyrights, and the faculty quality rating. Using these variables we built
models that fit empirical data to predict the number of patents a university enters in
a given year, the number of license agreements made with industry, and the number of
invention disclosures received from faculty. We estimated the parameters of the model
on empirical data. The parameter estimates imply that there is a strong positive correla-
tion between the resources universities commit to technology transfer and the number of
licenses and patents universities get; universities that invest more (per research activity)
in technology transfer enter more licenses agreements and apply for more patents. Our
parameter estimates also imply diminishing rates of return for research expenditures and
that highly rated faculty perform research (that results in licenses and patents) more
cost effectively than other faculty.

In Chapter 4 we used Data Envelopment Analysis to calculate an “excellence” score
for universities. This excellence score is based on six output measures, the number of:
1) patent applications, 2) license agreements, 3) royalties received (dollars), 4) faculty
publications, 5) enrolled graduate students, and 6) awarded Ph.D. degrees. We considered
one input measure, the total research expenditures, and we used a variation of the method
that is flexible enough to capture diminishing rates of return for research expenditures.
After calculating the “excellence” score for the universities, we looked at how these scores
correlate with the resources universities commit to technology transfer. As in Chapter
3, our results imply there is a positive correlation between the investment in technology
transfer and university excellence. Our results also suggest that universities that invest
in technology transfer derive a higher fraction of their score from the output measures
related to technology transfer. In other words, the universities that invest in technology
transfer tend to emphasize technology transfer related activities when they put their best
foot forward.

The result from the analyses in Chapters 3 and 4 imply that there is a positive
correlation between investment and success in technology transfer. However, they cannot
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determine the causal relationships between the investment and the success. In Chapter
5 we used time series analysis to gather evidence about the causal relationships. For
this analysis it was necessary to collect longer time series data. We went out in the field
and gathered detailed information from eleven universities. We used several methods to
analyze these data. Most of the methods we employed did not provide us with statistically
significant findings, but from the weight of the combined evidence we can make inferences.
When we looked at the causal relationship between professionals that work on technology
transfer and license agreements, our analysis suggests that hiring more professionals will
lead to more license agreements. This finding is encouraging for university technology
transfer specialists, because it supports the hypothesis that professionals are actively
stimulating the commercialization process of university discoveries. Our results also
suggest that universities respond to a change in the number of licenses by a change in
the same direction in the number of support staff. Again, this result is intuitive; the
support staff members provide more general services, and if the work load goes up or
down it is reasonable that the university makes a corresponding change in the number of
support staff.

The variable cost of employing one person to provide professional services for technol-
ogy transfer is about $100,000. The expected increase in revenue for the university from
one license agreement is about $34,000. We see that if a new professional can increase the
number of licenses by about three per year, hiring a professional is a good investment for
the university. Our results in Chapter 5 suggest that a university should expect between
three and six additional licenses (per year) for each professional (our median estimate
for this increase based on the analysis in Chapter 3 is somewhat lower at 2.2, but these
models are cross-sectional and not designed to capture changes over time). This suggests
that all things being equal, it is a good investment to hire more professionals to work on
technology transfer. '

Integrating the Results from the Three Analyses

The general conclusions of the analyses in this thesis are:

e Only three departments—Engineering, Physical Science, and the Life Sciences—
contribute appreciably to the patenting process. This finding is consistent with
what industry experts have suggested.

e Faculty that are highly rated by faculty colleagues at other universities perform
research that results in licenses and patents more cost effectively than others. This
suggests that the rewards from hiring “good” faculty outweigh the additional cost.

e There are diminishing rates of return for research expenditures. Universities that
spend twice as much on research as others, do not, on average, produce twice as
many licenses and patents. Our estimates imply that a university with twice the
research expenditures produces on average about 60% more.
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Our conclusions relating directly to technology transfer offices are:

e Universities that hire people to provide professional services for technology transfer
should expect an increase in the number of license agreements. Some part of this
increase should be realized in the first year the new person is employed, but in the
second year the new person should contribute fully to the licensing activities of the
TTO. The expected increase in the number of license agreements from hiring the
new person is between three and six licenses per year (after the first year).

e If the number of licenses increases by three or more as a result from hiring one
more professional, our results about the increased revenue for the university imply
that hiring a professional to work on technology transfer is a good investment.

e Universities respond to changes in the number of licenses by similar changes in the
number of people providing staff support for technology transfer; our results imply
that if the number of licenses goes up the number of support staff will also go up,
and if the number of licenses goes down the number of support staff also goes down.
If the number of licenses agreements goes down by one per year, our results imply
that the number of support staff goes down by 0.07 full-time equivalences.

e Universities that invest more in technology transfer derive a higher fraction of their
“excellence” from technology transfer; in other words, they are more successful in
technology transfer than other activities.

e The hypothesis that initiated this thesis work was about the negative impact of
university technology transfer offices for the pharmaceuticals industry. Looking
across all industries our results suggest that there is a positive correlation between
the investment and success in technology transfer. The results in section C.4 suggest
that the influence of the TTO is essentially the same at universities that perform
most of their research in the Life Sciences and those that perform most of their
research in Engineering and Physical Sciences. Pharmaceutical companies get most
of their licenses from research in the Life Sciences and we conclude that TTOs are
just as effective for the pharmaceuticals industry as any other industry that utilizes
university research discoveries.

Open Topics

Our analyses focused on analyzing patterns that appear at many universities. We have
not performed a detailed case study of single technology transfer programs. A different
approach to answering our initial question would be to closely analyze the practices at
a single technology transfer program. Case study analyses have been performed for the
MIT licensing office and some other TTOs, but these studies have not specifically targeted
the question if these offices are stimulating or hindering the commercialization process.
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It would be interesting to perform a detailed case study of a few university TTOs.
The results of such a study may confirm or contradict the results of this thesis. This case
study should collect evidence about the stimulatory effect of the TTOs. The researcher
should work directly with a few universities. He/she should gather evidence about the
historical background of the TTO: Does it have a long successful track record? How is
the budget of the office determined? What are the other “variables” in the environment
of the TTO that matter? The researcher should collect information about the perception
faculty have about the TTO: Do they know what the TTO does? Do they hold a favorable
opinion about the staff of the TTO? How have their experiences with the TTO been?
The study should also analyze how the inner dynamics of the TTO are: Is the director
of the TTO an enthusiastic person with many corporate contacts? Does the director
push the office towards sustained excellence in technology transfer? Are the licensing
managers of the TTOs the key people? What are the (stated and unstated) objectives
of the office? How is the performance of the office and its employees evaluates in relation
to these objectives? Is there any evidence that corporations have decided not to license
a technology from a university because of the bureaucratic obstacles, and consequently,
the invention not been utilized by anyone else?

Final Remarks

We used data from various sources to build models for the influence of university technol-
ogy transfer offices in the commercialization process of universities discoveries. Contra-
dicting the hypothesis that initiated our interest in this work, our conclusions imply that
technology transfer offices are stimulating and not hindering the process. The weight of
our evidence implies that investment in university technology transfer programs is a good
investment: It is good for the university, because it may yield a positive return on the
investment. It is good for industry, because it can take further advantage of university
research outcomes. And finally, the investment is good for society as a whole, because
contrary to what President Lyndon Johnson was concerned about in 1966, discoveries
are not being locked up in the laboratory (see page 9).
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Appendix A

University Performance

In this appendix we list the performance of each university relative to the predictions
of the cross-sectional model in Chapter 3. In tables A.1 to A.4 we have listed the
performance of all the universities in the database relative to the models. The “Model”
column refers to the median prediction using the model parameters from table 3.5, and
“Real” reefers to the true median number of licenses, patents, and invention disclosures
in 1992-1995.

In tables A.1 to A.4 the universities are ordered by the normalized performance—in
entering license agreements—relative to the model (see equation 3.30),

Real — Model

Al
Model (A1)
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New

University Licenses Patent Invention
Executed . Disclosures

: Applications

Model Real | Model Real | Model Real
Marquette 1.1 6.0 14 4.0 4.9 6.0
Stanford 83.0 125.0( 76.2 61.5 | 233.0 171.0
Cornell 40.0 66.0 | 51.6 94.5 | 167.9 1715
U. of Miami 11.7  25.0 | 109 5.0 33.8 23.0
Iowa State 63.6 93.0 | 77.0 50.0 151.0 141.0
U. of Mass, Amherst 6.7 16.0 5.7 4.0 26.2 105
U. of Illinois, Urbana 299 485 | 22.7 18.0 { 103.3 62.0
Washington U. 26.3 435 | 26.2 23.0 75.3  24.0
U. of Utah 26.0 38.0 { 205 24.5 64.3 129.0
U. of Alabama, Birm. 169 245 | 164 24.5 49.1 78.0
U. of Maryland, C. Park | 30.1 39.5 | 26.1 200 | 1188 725
Texas A&M 25.1 330 | 299 24.0 | 101.2 76.0
U. of Missouri System 11.5 165 | 15.6 12.0 51.9  57.0
Harvard 45.2  55.0 | 50.5 39.5 | 147.2 104.0
Wright State 0.3 1.0 1.6 0.0 5.5 3.0
U. of Minnesota 37.7 46.0 | 43.3 31.5 127.4 1425
Indiana U. 143 19.0 | 17.1 18.5 70.2  63.0
Montana State 3.3 5.5 5.5 3.0 21.8 11.0
U. of Kentucky 10.6  14.0 13.2 18.0 38.6 44.0
SUNY 29.1 345 | 39.7 33.0 | 129.2 155.0
Purdue 329 38.0 [ 30.2 24.0 | 100.7 116.0
Ohio State 21.8 255 | 24.6 21.5 83.9 62.0
Washington State 11.5 140 | 11.7 9.5 376  29.5
U. of Georgia 13.2 150 { 20.2 9.5 59.2 325
U. of Oregon 4.5 5.5 5.4 5.0 24.7 145
Med. Coll. of Ohio 2.0 2.5 3.2 4.0 8.6 7.0
Wayne State 9.0 10.0 | 17.2 10.5 484  32.0
Baylor College 216 230 | 218 16.5 55.4  79.5
Thomas Jefferson 14.8 15.5 13.9 33.5 32.2 53.0
Brandeis 7.6 8.0 5.0 4.0 193 130
Virginia Tech 16.5 17.0 | 13.0 23.0 52.0 78.0
North Dakota State 1.9 2.0 6.8 1.0 20.5 6.0

Table A.1: University Performance Relative to Model. First Quartile.

142




New

) . Licenses Invention
University Executed Pe.Lten.t Disclosures
Applications

Model Real | Model Real | Model Real
Marshall 0.0 0.0 0.2 0.0 0.7 1.5
U. of TX Hith Sci Ctr, 9.5 9.5 13.5 8.5 329 220
San Diego State 0.6 0.5 2.5 1.0 10.0 3.5
U. of South Florida 8.2 8.0 10.7 10.0 31.1  25.0
Hahnemann 7.3 7.0 4.1 6.0 123 16.0
Vanderbilt 14.0 135 | 15.7 10.5 46.9 385
Northeastern 5.4 5.0 10.8 17.0 26.2  32.0
North Carolina State 304 29.5| 31.8 33.5 909 80.5
Boston U. 9.8 9.0 20.1 27.0 57.7 60.5
Brigham Young 169 15.5 8.2 5.5 23.5 19.0
U. of Dayton 7.0 6.0 6.0 3.5 176 215
U. of Florida 275 255 | 328 22.0 876 795
Ohio U. 5.4 4.5 5.5 6.0 16.3 175
Florida State 2.7 2.0 13.4 10.5 63.7 18.0
U. of Maine 2.1 1.5 1.7 0.0 5.5 3.0
Miami U. 0.2 0.0 0.4 1.0 1.3 6.0
Columbia 376 345 | 43.5 38.0 | 120.2 95.5
U. of Denver 0.3 0.0 1.9 1.0 6.8 7.0
Emory 10.7 9.0 16.7 11.5 480 35.0
Michigan State 15,1 13.0 | 22.1 17.0 734 79.0
Florida Atlantic 3.6 2.5 2.5 2.0 6.5 6.0
Tufts 8.8 7.0 10.3 7.5 31.5 345
California State 0.4 0.0 0.6 0.0 1.9 2.0
Kansas State 122 100 | 14.8 14.0 426 28.0
Duke 296 26.0 | 31.9 41.5 88.2 92.0
U. of South Alabama 1.3 0.5 2.6 0.5 7.7 1.5
Rice 5.6 4.0 8.0 2.0 28.8 2.0
Dartmouth 10.4 8.0 10.9 4.0 319 11.0
U. of NC/Chapel Hill 177 145 | 17.6 21.5 58.8 76.5
Tulane 8.2 6.0 11.1 7.5 334 21.0
U. of NC/Charlotte 3.5 2.0 3.2 4.0 6.7 13.0
U. of TX Med. Branch | 6.6 4.5 9.8 4.5 253 155
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New

University Licenses Patent Invention
Executed L. Disclosures
Applications

Model Real | Model Real | Model Real
Auburn U. 6.1 4.0 8.8 5.0 29.2 17.0
Northern Illinois U. 0.9 0.0 24 2.5 9.6 7.0
Mississippi State 4.6 2.5 6.1 5.0 205 17.5
Hunter College 1.0 0.0 1.3 0.0 7.7 0.0
Georgia Tech. 274 22.0| 24.3 32.5 84.6 118.0
New York Med. C. 34 1.5 3.0 1.0 104 5.5
U. of Akron 10.4 7.0 11.9 14.5 33.3 27.0
Illinois Inst. of Tech. 2.8 1.0 3.8 5.0 10.8 11.0
U. of Pittsburgh 13.0 9.0 23.9 17.0 72.0 34.0
U. of Tennessee 143 100 | 199 10.0 60.1 77.0
Med. Univ. of SC 4.4 2.0 5.4 3.0 17.5 9.0
U. of Cincinnati 114 7.5 12.7 10.5 39.8 47.0
New Mexico State 7.3 4.0 7.7 4.0 25.4 15.0
U. of New Hampshire 1.5 0.0 1.5 1.0 5.6 6.0
Wake Forest 8.7 5.0 8.7 6.5 26.3 20.0
U. of Iowa 19.0 135 | 224 16.5 70.2 585
U.of TX SW Med. Ctr. | 16.7 11.5| 224 16.5 473 445
U. of Alabama in Hunts. 3.5 1.0 4.0 2.0 16.2 9.0
Princeton 16.5 11.0| 14.6 12.5 64.0 59.5
U. of Central Florida 4.3 1.5 3.8 7.5 134 29.0
U. of Tulsa 2.1 0.0 1.7 0.0 5.7 1.0
Johns Hopkins 58.5 47.0| 60.3 48.0 | 227.0 182.0
U. of Arizona 189 1201} 20.9 11.0 102.2 835
U. of Hawaii 9.4 4.5 12.4 9.0 53.5 16.5
U. of Maryland, Balt. 11.7 6.0 10.5 11.0 35.1 51.0
U. of TX Houston 11.3 5.5 11.7 4.0 28.7 22.5
U. of Nebraska-Lincoln 7.8 3.0 12.6 12.0 40.3 27.0
Temple 11.3 5.5 12.1 10.0 30.1  26.0
Cal. Tech. 234 15.0| 31.9 52.5 128.3 304.0
Rutgers 26.5 17.5 | 29.0 29.5 87.3 64.5
U. of Arkansas, Fayett. 5.6 1.5 8.9 6.5 28.5 22.0
Oregon State 108 5.0 | 12.6 8.5 37.5  21.5

Table A.3: University Performance Relative to Model. Third Quartile.
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New

. Licenses Invention
University Executed Apgﬁzea?itons Disclosures
Model Real | Model Real | Model Real
U. of Virginia 16.1 9.0 17.5 12.5 98.1 39.0
Drexel 8.1 3.0 8.3 2.0 21.8 8.5
Yale 23.8 15.0 23.7 23.5 784 835
U. of California 157.7 135.0 | 166.1 176.5 | 541.5 542.0
U. of Connecticut 12.5 6.0 15.0 10.5 44.3 36.0
U. of Mass, Med. Ctr. 8.4 3.0 8.1 4.0 23.9 24.5
MIT 90.1 72.5 94.8 91.0 | 322.5 281.0
U. of Pennsylvania 39.3 275 | 48.2 52.0 132.1 119.0
Illinois State 3.6 0.0 1.1 0.0 3.7 4.0
Georgetown 10.1 4.0 14.7 9.0 40.2 37.0
Michigan Technol. U. 8.8 3.0 6.5 2.0 18.9 17.0
Clemson 9.1 3.0 11.6 9.5 36.9  30.0
U. of Rochester 18.1 9.5 21.0 12.0 68.0 39.5
U. of Southern CA 20.7 11.0 22.6 22.5 68.5 60.5
Brown 11.1 4.0 9.4 5.0 35.5 19.0
Arizona State 12.6 5.0 19.1 8.0 57.4  24.0
U. of Illinois at Chi. 14.2 6.0 14.4 7.0 484  35.0
Syracuse 13.6 5.5 8.8 2.5 30.5 12.0
U. of Colorado 24.3 13.5 24.4 22.5 89.9 77.0
Colorado State 11.5 4.0 12.1 6.5 41.3 34.0
Case Western 22.6 12.0 16.8 9.0 58.1 39.0
Carnegie Mellon 27.2 155 | 220 11.0 62.7 73.0
U. of Kansas 18.9 8.0 12.9 7.0 48.2 51.0
Northwestern 20.5 9.0 23.3 18.5 71.8 45.0
U. of Delaware 13.4 4.0 11.5 4.0 39.0 14.0
Stevens 8.9 1.0 4.9 3.0 134 6.0
New Jersey Inst. of Tech. 9.6 1.0 4.8 6.0 13.6 23.0
Penn State 34.4 18.0 | 28.5 32.0 106.8 112.5
U. of Chicago 24.2 10.0 | 275 18.5 100.3 56.0
U. of South Carolina 8.6 0.0 7.6 3.0 30.6 12.5
U. of Wisconsin-Madison | 53.0 29.5 65.2 54.0 185.8 137.0
U. of Michigan 55.0 285 | 51.6 44.5 160.7 108.0
U. of Washington 63.3 345 | 45.0 32.5 137.2 1475

Table A.4: University Performance Relative to Model. Fourth Quartile.
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Appendix B
The CDF for the ()-statistics

In this Appendix we analyze the empirical evidence we have to figure out how much
compounding there is in the patenting and licensing processes.
The empirical value of @ is,

2%

0D,
Q== (B.1)
2%

where 0% is an unbiased estimator of the variance and D; is the mean. We aggregate
this statistic across universities in two ways. First of all, we use the median, that is,

2%
Q" = median la_”] . (B.2)
i D;
Secondly, we sum the numerator and the denominator over all universities to get,
2%
2% __ Zi 9D,
Q D, (B.3)

From [TAF96] we have the number of patents that have been granted to US universi-
ties since 1975. Figure 2-1 plots the total number of patents awarded to U.S. universities.
We see that the number of patents granted has been steadily increasing for the last two
decades. We can therefore not assume that this is a stationary process over time. For
each university we need to correct for this exponential growth.

We use five simple models that show how the expected value changes over time. The
models are:

1. Constant rate; A;; = D;.
2. Perfect seasonal; \;; = s; x 3;, where s; are the same for all universities.
3. Linear; A;; = a; + B, X t, where ; and (3, are university specific constants.

4. Exponential; \;; = a; x (%, where a; and 3, are university specific constants.
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5. Best of the above; A, ; is the best of the four models above (picked for each university
based on the squared errors).

For each university we used least squares estimation to get estimates for the parame-
ters in the above models for ).

For the constant rate and perfect seasonal we lose one degree of freedom in estimating
the mean and the unbiased estimate for each university’s variance is,

UZD*i,g = niz (di,t - Ai,t)z ) (B4)
iy

where n; is the number of observations for university i. For the linear and exponential
adjustment methods we lose two degrees of freedom and the estimate for the variance is,

0%, = —— 3" (s~ M), (B:5)
' n; — 2 t
- Q"*-Model for D;

Time Horizon Variable 1 2 3 4 5
1991-1995 New Patent Applications 2.07 [ 2.00 | 1.18 | 1.10 | 1.08
1991-1995 New Invention Disclosures 2131161142151 1]1.32
1991-1995 Licenses and Options Executed | 2.08 [ 1.57 | 1.21 | 0.92 | 0.80
1991-1995 New Patents 1.18 { 1.14 | 0.95 | 1.03 | 0.94
1990-1995 New Patents 1491 1.28 | 1.06 | 1.09 | 1.05
1989-1995 New Patents 1401136 1.12|1.15| 1.08
1988-1995 New Patents 1.8511.4111.24]11.221|1.18
1987-1995 New Patents 2.06 | 1.56 [ 1.29 [ 1.30 | 1.24
1986-1995 New Patents 223 11591129136 1.20
1985-1995 New Patents 2.54 | 1.58 [ 1.34 | 1.36 | 1.27
1984-1995 New Patents 2791161134 |1.42(1.27
1983-1995 New Patents 3.01 164137140 1.29
1982-1995 New Patents 3241165 1.42]1.431.32
1981-1995 New Patents 3.50 { 1.65 | 1.43 | 1.43 | 1.32
1980-1995 New Patents 3.821.69)149|1.41 | 1.33
1979-1995 New Patents 406 | 168|150 142 1.33
1978-1995 New Patents 421175155142 1.34
1977-1995 New Patents 4371181161 1.43(1.35
1976-1995 New Patents 451 188|161 1.44(1.41
1975-1995 New Patents 464 1192|165 1.45] 1.39

Table B.1: Q'*-statistic values; Data Source: The first three variables are from [AUT96],
but the rest from [TAF96] .
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Q**-Model for D;;,

Time Horizon | Variable! 1 2 [ 3 4 5
1991-1995 | New Patent Applications 3.83 [2.52]1.64 1.60 | 1.56
1991-1995 New Invention Disclosures 298 | 2.5811.3811.35]1.26
1991-1995 Licenses and Options Executed | 2.89 | 2.32 | 1.26 | 1.22 | 1.12
1991-1995 New Patents 2.87 |1 2.13|0.76 | 0.66 | 0.63
1990-1995 New Patents 3.48 | 2.36 | 0.97 | 0.83 | 0.78
1989-1995 New Patents 3.62 | 244 1.2411.01] 0.96
1988-1995 New Patents 4.55 | 2.5211.56 | 1.37 | 1.25
1987-1995 New Patents 5.12 | 2591721152137
1986-1995 New Patents 5.86 | 2.56 | 1.86 | 1.67 | 1.48
1985-1995 New Patents 6.67 { 2591195 | 1.77 | 1.56
1984-1995 New Patents 7.30 | 2.64 | 2.02 | 1.82 | 1.58
1983-1995 New Patents 7.95 | 2721212190 | 1.65
1982-1995 New Patents 8.48 | 2.802.25 (1.97 | 1.73
1981-1995 New Patents 8.86 | 2.96 | 241 2.03|1.84
1980-1995 New Patents 9.59 | 3.14 1245 2.06 | 1.90
1979-1995 New Patents 10.41 | 3.27 | 249 | 2.10 | 1.93
1978-1995 New Patents 10.72 | 3.40 | 2.62 | 2.11 | 1.99
1977-1995 New Patents 10.98 | 3.47 | 2.78 | 2.13 | 2.02
1976-1995 New Patents 11.17 | 3.65 | 2.97 | 2.17 | 2.08
1975-1995 New Patents 11.43 | 3.78 | 3.09 | 2.18 | 2.11

Table B.2: @Q**-statistic values; Data Source: The first three variables are from [AUT96],

but the rest from [TAF96).
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In tables B.1 and B.2 we have calculated the Q'* and @Q**-statistics for the empirical
data. The five columns correspond to the five ways of correcting for the trend: 1) con-
stant, 2) perfect seasonal, 3) linear, 4) exponential, and 5) best of the previous methods
selected for each university.
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Figure B-1: The Simulated Cummulative Distribution Function for the Q*-statistic.

In order to get a theoretical benchmark, we used Monte Carlo simulations to simulate
the Q'* and Q**-statistics when the underlying random variable is a true Poisson random
variable with linear trend. We used the trend estimated from the variable “New U.S.
Patent Applications”. Figures B-1 and B-2 show the approximations for the distribution
functions after more than 370,000 runs.

The simulated Q'*-statistic has almost exactly a normal distribution with mean 0.79

and standard deviation of 0.11. Similarly, the Q**-statistic is close to being N (1.00, 0.152).

The accurate medians for the statistics are 0.7855 and 0.9873 respectively.

The first three variables are from the AUTM database [AUT96] and thus represent the
data we use for the regression models later on. The New Patents variable from 1975-1994
is from the U.S. Patent and Trademark Office database [TAF96].

For new patent applications the empirical value for the exponentially adjusted Q*-
statistic is 1.10. From the Monte Carlo simulation we have that for a pure Poisson process
this value should be close to 0.78. By equation B.1 this suggests that the compounding is
1.10/0.78 ~ 1.4. Using the results from the Q**-statistic in a similar manner the estimate
for the compounding is 1.60/1.00 = 1.6.

Table B.3 summarizes the results from evaluating the compounding for our processes
using both the Q!* and Q**-statistics.
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Figure B-2: The Simulated Cummulative Distribution Function for the Q?*-statistic.

Output Measure | @"*-statistic | Q**-statistic
New U.S. Patent Applications 14 1.6
Licenses and Options Executed 1.2 1.2

New Invention Disclosures 1.9 14

Table B.3: The Poisson Compounding for Patents, Licenses, and Invention Disclosures.
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Appendix C

‘The CDF for the Bootstrap
Simulated Parameters

In this Appendix we test hypotheses that the Engineering and Physical Science depart-
ments have the same parameter values for returns to scale for 1) research expenditures
(BEng = Bpny) and for 2) the faculty quality rating (8gng = Sppy).

C.1 Distribution Functions for Fully Relaxed Para-
meter Estimates

In figures C-1 to C-13 we have the bootstrap simulated distribution functions for the
model parameters of the full model. These results are based on the bootstrap technique
introduced in section 3.3.5.
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Figure C-1: The Bootstrap Simulated CDF for: agng.
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Figure C-2: The Bootstrap Simulated CDF for: app,.
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Figure C-3: The Bootstrap Simulated CDF for: arf.
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Figure C-4: The Bootstrap Simulated CDF for: Bg,,-
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Figure C-5: The Bootstrap Simulated CDF for: Spy,,.
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Figure C-6: The Bootstrap Simulated CDF for: 8.
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Figure C-7: The Bootstrap Simulated CDF for: =, .
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Figure C-8: The Bootstrap Simulated CDF for: ~,.
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Figure C-9: The Bootstrap Simulated CDF for: ~,.
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Figure C-10: The Bootstrap Simulated CDF for: 6gn,.
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Figure C-11: The Bootstrap Simulated CDF for: épp,.
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Figure C-12: The Bootstrap Simulated CDF for: 6L;;.
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Figure C-13: The Bootstrap Simulated CDF for: Q% -statistic.
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C.2 Hypotheses

One concern with the parameters of the fully relaxed model, is that the correlation be-
tween the Engineering and Physical Sciences elasticities (g, and Bpyy) is very strong—
the correlation coefficient is -0.64. This may be due to over-fitting. Universities with
large Engineering programs are also likely to have large Physical Sciences programs.
Likewise, universities with no or small Engineering programs are likely to have no or
small programs in the Physical Sciences. When estimating the model parameters the ob-
jective function can be lowered by reducing the number of patents derived from Physical
Sciences research and increasing the number derived from Engineering research (or vice
versa) in order to get a better fit to some peculiarities in the data. To circumvent this
problem one might want to impose the restriction that both departments experience the
same efficiencies of scale.

C.2.1 Hypothesis 1: Engineering and Physical Sciences have
the same Economies of Scale Parameter

The first hypothesis we want to test is if the Engineering and Physical Sciences depart-
ments experience the same economies of scale for research expenditures, fg,, = Bphy-
From figures C-4 and C-5 we see that there is a great overlap of the probability density
functions. It is however not appropriate to use these cumulative distribution functions
to test the hypothesis because as we discussed earlier the two parameter estimates are
not independent.

If the hypothesis was true and we had the joint distribution function for the two
parameters, the probability that B, > Bpy, should be about 50% and the probability
that Bg,, < Bpy, should also be about 50%. We would reject the null hypothesis (Beng =
Bpry) in favor of the alternate (g,, # Bpy,) if either of these probabilities is less than
2.5%.

The bootstrap simulations provide us with an approximation of the joint distrib-
ution function. Of the 10,000 simulations 2,703 have Bg,, > Bpny While the other
7,297 have Bg,, < Bpp,- The p-value for the hypothesis is therefore approximately
©2,703/10,000 ~ 27% and we accept the hypothesis that the Engineering and Physical
Sciences departments have the same economies of scale parameter, BEng = Bpny-

C.2.2 Hypothesis 2: The Faculty Quality Coefficient is the
Same for Engineering and Physical Sciences

The second hypothesis has to do with the impact of faculty quality. We want to test
the hypothesis that the coefficient for the faculty quality is the same for Engineering and
Physical Sciences, dgng = Ophy. Using the same methodology as above we find that of
the 10,000 simulations égn; < Ophy in 3,947 cases. We can therefore not reject the null
hypothesis that the impact of the faculty quality in the two departments is the same.

159




C.2.3 Hypothesis 3: Engineering and Physical Sciences have
the same Economies of Scale Parameter and the same
Faculty Quality Coefficient

We now want to test the hypothesis that both parameter sets are equal; the Economies
of scale parameters are the same and the influence of the faculty quality rating is the
same. To test this hypothesis we look at a 2-by-2 table showing in how many cases:
1) Beng > Bpry and 8gng > bphy, 2) Bpng < Bpry and bgng > bpny, 3) Beng > Bpyy and
6Eng < 5phy, and 4) ﬁEng < ﬁPhy and 6Eng < 6phy.

Using a hypothesis test with a 5% chance of incorrectly rejecting the null hypothesis
we accept the null hypothesis if the probability mass in each of these four boxes is greater
than 1.25%.

OEng > Ophy | 6Eng < Ophy
BEng > Bphy 2,461 242
BEng < Bphy 3,592 3,705

Table C.1: Counts for Hypothesis 3.

From table C.1 we see that we have the fewest occurrences of fBg,, > fBpy, and
OEng < 8pny, but it is still 2.4% of all cases. We therefore accept the hypothesis that both
sets of parameters are the same.

We have shown that with these data we cannot reject the hypothesis that the Engi-
neering and Physical Sciences departments both have: 1) the same economies of scale for
research expenditures, and 2) the same coefficient for the faculty quality.

The primary purpose of the nonlinear model is to determine the correlation of re-
sources provided for technology transfer and patents and licenses. We therefore reesti-
mate our model parameters imposing the constraints we have accepted in our hypothesis
testing.
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C.3 The New Model Parameters

In figures C-14 to C-24 we have the bootstrap approximation for the parameter distrib-
utions of the restricted model. We will use these results in Chapter 3.

100%
90%
80% e

70% /

60% /

50%

40% /

30%

20%

10%
0%

Probability

\\‘\

0 50 100 150 200 250 300 350 400

Figure C-14: The Bootstrap Simulated CDF for New Model: agn,.
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Figure C-15: The Bootstrap Simulated CDF for New Model: ap,.
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Figure C-16: The Bootstrap Simulated CDF for New Model: ay;y.

162




Probability

Figure C-17: The Bootstrap Simulated CDF for New Model: Gg,, = Bpsy-
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Figure C-18: The Bootstrap Simulated CDF for New Model: 3, ;.
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Figure C-19: The Bootstrap Simulated CDF for New Model: +,.
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Figure C-20: The Bootstrap Simulated CDF for New Model: v,.
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Figure C-21: The Bootstrap Simulated CDF for New Model: 7.
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Figure C-22: The Bootstrap Simulated CDF for New Model: 6gng = 6pny.
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Figure C-23: The Bootstrap Simulated CDF for New Model: §,;.
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Figure C-24: The Bootstrap Simulated CDF for New Model: Q2*-statistic.
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C.4 Impact of the TTO in the Life Sciences

In this section we try to answer the question if the influence of the TTOs is the same for
all research. More specifically: Is the TTO especially effective in the Life Sciences, or is
it less effective when working with discoveries in the Life Sciences?

We split the universities in our database into two groups, 1) universities that spend
more than 70% of their research money in the Life Sciences and 2) universities that spend
less than 70% on the Life Sciences. Using this split, one-half of the universities in our
database fall into each category.

We have reestimated the parameters related to the TTO on each of these two data
sets. The TTO multipliers are plotted in figure C-25 for patent applications and in figure
C-26 for licenses.
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Figure C-25: The Impact of TTO Resources on Patent Applications for Universities that
Focus on Life Sciences Research and Others.

We see that the difference in the multiplier is very small. For patent applications,
the influence of the TTO is a little higher in the Life Sciences, but for license agreements
the influence of the TTO is a little lower. If we were to hypothesize that there is no
difference for the two data sets, it is doubtful if we can reject that hypothesis.

We conclude that the influence of the TTO is the same in the Life Sciences— where
a substantial proportion of licenses concern new pharmaceutical products—and in the
other Sciences. Our evidence suggests that university TTOs are just as effective for the
pharmaceuticals industry as any other industry.
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Figure C-26: The Impact of TTO Resources on License Agreements for Universities that
Focus on Life Sciences Research and Others.
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Appendix D
Data Envelopment Analysis

I table 4.3 in Chapter 4 we list the extended efficiency scores and the output contributions
for universities with efficiency scores above 80%. In tables D.1 through D.4 we have listed
these statistics for all universities in our database.
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Contribution

. Extended Patent Lic. Roy. Fac. Grad. Ph.D.

University Efficiency Appl Exe Rec Pub Stud. Stud.
’ ) ' ’ Enr. Grad.

U. California 00 n/a n/a n/a n/a n/a n/a
Stanford 403% 100%
Brigham Young 332% 23% 7%
U. Akron 219% 30% 70%
Cal. Tech. 173% 100%
MIT 172% 89% 11%
Iowa State 171% - 40% 60%
Marquette 148% 17% 83%
U. NC, Charlotte 138% 95% 5%
U. Chicago 136% 15% 26% 59%
U. Penn. 132% 14% 86%
IL Inst. of Tech. 127% 51% 49%
U. Mass., Amh. 124% 79% 6% 15%
Columbia 122% 49% 51%
SUNY 117% 100%
Northeastern 116% 100%
U. IL, Urbana 112% 15% 40% 36% 9%
Thomas Jeff. 111% 88% 12%
Michigan State 110% 41% 59%
Vanderbilt 104% 10% 90%
U. TX, Houston 98% 3% 97%
Rutgers 97% 3% 5% 70% 22%
U. Florida 91% 2% 7% 14% 74% 4%
Purdue 90% 7% 15% 78%
Arizona State 90% 6% 3% 91%
Washington U. 85% 24% 72% 4%
Syracuse 85% 1% 99%
Northern IL U. 84% 100%
Ohio State 83% 8% 1% 67% 24%
U. NC, Chap, . 82% 8% 3% 19%

Table D.1: The Extended Efficiency Scores and Output Contributions for American
Universities: First Quartile.
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Contribution

L Extended Patent Lic. Roy. Fac. Grad. Ph.D.

University Efficiency Appl Exo Rec Pub Stud. Stud.
’ ) ’ ’ Enr. Grad.

Princeton 82% 100%
U. Alabama 82% 13% 12% 75%
U. W1, Madison 81% 24% 8% 26% 42%
Northwestern 81% 1% 75% 24%
NC State 78% 16% 12% 70% 2%
U. Oregon 78% 90% 10%
U. Utah 7% 17% 25% 56% 2%
U. Denver 76% 11% 57% 32%
Rice 5% 49% 51%
U. Virginia 74% ™% 12% 58% 23%
Penn State 73% 67% 33%
Harvard 71% 22% 3% 56% 19%
Duke 70% 24% 8% 53% 15%
Indiana 69% 21% 79%
U. Rochester 69% 6% 14% 80% 0%
Brown 68% 3% 2% 49% 46%
Brandeis 68% 9% 91%
U. Minnesota 67% 19% 63% 18%
U. MD, College 66% 30% 70%
U. Washington 65% 6% 15% 63% 17%
U. Iowa 63% 12% 6% 62% 20%
Ohio University 63% 9% 91%
Drexel 63% 1% 99%
Washington St. 61% 5% 17% 78%
Yale 61% 15% 2% 4% 62% 18%
U. Michigan 60% 20% 5% 34% 39% 2%
U. South Car. 59% 90% 10%
Boston U. 59% 45% 5% 50%
Tulane 58% 65% 35%
U. Delaware 57% 3% 97%
U. Kentucky 55% 15% 5% ™% 71% 2%

Table D.2: The Extended Efficiency Scores and Output Contributions for American
Universities: Second Quartile.
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Contribution

University Exte.nded Patent Lic. Roy. Fac. (S;:l‘:g l;,lclulg
Efficiency Appl. Exe. Rec. Pub. Enr. Grad.

U. South CA 55% 27% - 13%

Clemson U. 55% 15% 85%

U. Cincinnati 54% 9% 44% 47%

New York Med. 53% 100%

Medical C. OH 53% 9% 91%

Baylor C. 53% 11% 4% 8% 7%

Florida State 52% 5% 2% 49% 44%

U. TX SW Med. 51% 15% 4% 8% 73%

U. Nebraska 51% 100%

Wayne State 51% 20% 59% 21%

Oregon State 50% ™% 2% 91%

Hahnemann U. 49% 32% 35% 33%

U. Colorado 49% 13% 2% 4% 61% 20%

Georgia Tech. 49% 43% 9% 48%

Emory U. 49% 8% 9% 83%

Temple 45% 5% 54% 41%

U. Mass. Med. 44% 2% 98%

Virginia Tech 42% 28% 11% 39% 3% 19%

OR Health Sci. 39% 48% 52%

Texas A&M 38% 20% 63% 17%

U. Pittsburgh 38% 15% 3% 2% 56% 25%

U. Tennessee 38% 7% 5% 6% 82%

Stevens 3% 45% 25% 30%

U. IL, Chicago 37% 9% 88% 3%

U. Kansas 37% 18% 4% 51% 27%

U. Hawaii 3% 1% 99%

U. Connecticut 35% 2% 98%

U. TX Med. Br. 35% 1% 99%

Florida Atlantic 35% 45% 44% 8% 4%

U. Arizona 35% 10% ™% 64% 19%

Table D.3: The Extended Efficiency Scores and Output Contributions for American
Universities: Third Quartile.
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Contribution

) ) Extended Patent Lic. Roy. Fac. Grad. Ph.D.
University Efficiency Appl Exe Rec Pub. Stud. Stud.
) ’ ) Enr. Grad.
Carnegie Mellon 35% 6% 10% 12% 72%
U. Georgia 34% 5% 8% 7% 80%
Case Western 33% 10% 5% 5% 80%
Tufts 32% 9% 91%
Georgetown U. 31% 2% 98%
Auburn U. 30% 1% 9%
U. Rhode Island 30% 16% 83% 1%
Dartmouth 28% ' 12% 88%
Montana State 27% 3% 97%
U. Tulsa 27% 44% 28% 28%
Colorado State 27% 3% 97% '
U. Miami 26% 40% 60%
U. MD, Baltim. 26% 2% 3% 95%
U. AL, Hun. 26% 100%
U. TX Hilth., SA 26% 12% 88%
NJ Inst. of Tech. 24% 98% 2%
U. NH 23% 100%
U. Central FL 22% 94% 6%
U. Maine 21% 100%
U. AR, Fayet. 19% 8% 92%
Johns Hopkins 18% 24% 14% 49% 13%
Michigan Tech. 18% 69% 14% 17%
U. South Florida 16% 10% 90%
ND State 15% 39% 54% 7%
Wake Forest 14% 38% 27% 35%
U. Dayton 14% 37% 35% 28% 0%
New Mexico St. 10% 11% 89%
Mississippi St. 8.7% 52% 31% 8% - 9%
U. South AL 6.0% 30% 32% 38%
Wright State 4.3% 93% %
San Diego State 2.6% 100%

Table D.4: The Extended Efficiency Scores and Output Contributions for American
Universities: Fourth Quartile.
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Appendix E

Data Collection

E.1 Cover Letter and Survey Instrument

On the following four pages we have a copy of the cover letter and survey instrument
that was sent to the universities we collected data from.
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Ami G. Hauksson, agh@mit.edu
Massachusetts Institute of Technology
77 Massachusetts Avenue, E40-130
Cambridge, MA 02139
TEL: (617) 253 6185
FAX: (617) 258 9214

Mr. Larry R. Steranka

Director, Technology Transfer

Vanderbilt University

405 Kirkland Hall

Nashville, TN 37240

TEL: (615) 343 2430

FAX: (615) 343 0488
Cambridge, March 27, 1997

Dear Mr. Steranka;

I am working on my Ph.D. dissertation in Operations Research here at MIT. The research focuses on
analyzing University Technology Transfer with special emphasis on the important role Technology
Transfer Offices play.

My preliminary results suggest there is a strong relationship between the resources provided for
Technology Transfer Offices and university performance with respect to licensing activities. These results
might prove very interesting for universities pondering whether to increase resources made available for
Technology Transfer. While I find these preliminary findings very exciting, I need to tighten some of my

arguments.

I am hoping you can help me with providing some data that is very important for addressing some of
those issues. So far my research is based on the data that AUTM collects annually and some additional
details from the NSF and NRC. While this data is very rich, it does not tell about the order of things; does
the increase in resources precede the success in Technology Transfer, or vice versa. In order analyze this
issue, I have selected 12 universities that will be specially illuminating for further analysis.

While I have tried to minimize the amount of information I need, the request is not small. I am therefore
more than willing to come to Nashville to help collecting the data. I will make the results from my
analysis accessible to you as early as I can. Later, all data, analysis, and results will be made publicly
available.

The survey consists of two sets of data. The first set is very similar to a part of what you report each year
to AUTM, the only diiference being that we will look at years before 1991. The other set aims at
understanding the revenue stream from a sample of licenses you have executed since 1986. I have put in
the numbers I have from the AUTM surveys. Please feel free to make corrections to these numbers as
necessary.

I will be following up on this letter with a phone call. Ilook forward to speaking to you, and hope we will
be working together soon.

Sincerely Yours,

Ami G. Hauksson
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1. For each fiscal year, starting in FY1986, please provide the following information
(note that all of the variables are defined in exactly the same way as in the AUTM surveys)
(please DO NOT include licenses and patents resulting from sponsored research):
B How many individuals employed at your institution provide professional services for
Technology Transfer? (Full-Time Equivalents)

B How many individuals employed at your institution provide staff support for Technology
Transfer? (Full-Time Equivalents)
B  How much did your institution spend in external legal fees for patents and/or copyrights?
B How many licenses/options did your institution execute in each fiscal year?
B How many new U.S. patent applications did your institution file each fiscal year?
Individuals
. Individuals
provnd_mg providing staff Leg:?l Fee Number of
professional support for Expenditures for Li /Options New U.S. Patent
services for Te::noology Patents and/or Executed Applications Filed
Technology Transfer (FTEs) Copyrights '
Transfer (FTEs)
FY1986
FY1987
FY1988
FY1989
FY1990
FY1991
FY1992
FY1993
FY1994
FY1995
FY1996

2. All licenses your institution has executed since 01/01 1986, please list for each license the

following information:
a) The effective date of the license.
b) The income for each license by fiscal year, since execution.
¢) Termination date for the license.

B Please include all licenses, also those that did not yield any income.

B Include license issue fees, payments under options, annual minimums, running royalties, termination
payments, the amount of equity received when cashed-in, and software end user license fees. Do not
include research funding, legal fee reimbursements, valuation of equity when not cashed-in, or
trademark licensing royalties from university insignia.

B If this data can be provided in electronic format, that would be most useful.

B If it is easier for you to report for each license the amounts received by date, that would even be more
useful.
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3. When did fiscal year 1997 start:

4. What is the stated objective of the office of Technology Transfer at your institution?
(PLEASE RANK THE FOLLOWING IN TERMS OF IMPORTANCE)

Provide service for faculty.

Generate support for sponsored research.

Push the technologies invented at the university to the marketplace.

Generate income for the university.

Other (PLEASE SPECIFY: )

5. To whom does the office of Technology Transfer report?

6. How is the decision about increases (decreases) in the staffing of the Technology
Transfer Office made?

7. How is the decision about legal fee expenditures for Technology Transfer made?

Please direct all questions to:

Arni G. Hauksson, agh@mit.edu
Massachusetts Institute of Technology
77 Massachusetts Avenue, E40-130
Cambridge, MA 02139

TEL: (617) 253 6185

FAX: (617) 258 9214
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E.2 Aggregate Measures for Survey Respondents

900 T T T
800 +{ —#— Engineering

700 - —@— Physical Sciences
600 4| —#— Life Sciences

|||

Research Expenditures ($M 1994)
5
3

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Figure E-1: Aggregate Research Expenditures Since 1980.

In figure E-1 we show how the aggregate research expenditures have changed for the
eleven universities in our sample. We see that the increase in the research expenditures
since 1986 in the Life Sciences is about 45%, in Engineering the increase is 22%, and in
Physical Sciences there is a 3% decrease in the research expenditures.

In table E.1 we list a conservative approximation of how the inputs and outputs
from technology transfer have increased since 1986 for the eleven universities in our
sample. This approximation is conservative because in the cases where the data were
not available, we use the data in the closest available year. So, for example, for Syracuse
university (see table 5.8 on page 92) we assume that between 1986 and 1990 the number
of professionals was constant at 2.0, staff members at 1.0, legal fees at $167,003, licenses
at 2, and patents at 7.

The results from table E.1 imply that from 1986 until 1996 the legal fee expenditures
have more than tripled, number of people providing staff support has more than dou-
bled, and the number of professionals has grown by 80%. The growth in the resources
for technology transfer has thus been substantially faster than the growth in research
expenditures.

The results from table E.1 also imply that the number of licenses has almost tripled,
and the number of patents approximately doubled. We also observe that the number of
licenses takes a big jump in 1992 (mostly caused by a jump in licensing at Harvard), and
that there is a small decrease in the last two years.

These results show that there has been an overall growth in technology transfer in
the last ten years, beyond what we expect from increased research activity.
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Individuals  Individuals Legal Fee

1 . Expenditures Number of New U.S.
Providing Providing .
. for Patents Licenses Patent
Professional Staff . L.
. and/or and Options Applications
Services for Support for Copyrights Executed Filed
TT (FTEs) TT (FTEs) ($ 1994)
1986 20.4 12.5 2,000,162 78 170
1987 22.1 14.3 2,823,896 104 187
1988 25.9 15.1 3,196,794 142 215
1989 27.1 16.0 4,286,517 105 235
1990 29.1 19.5 5,196,303 138 249
1991 30.2 20.1 5,426,591 137 217
1992 35.3 249 5,520,943 219 208
1993 32.8 23.1 6,051,173 230 229
1994 35.6 23.7 6,363,250 236 264
1995 32.6 274 6,571,526 224 308
1996 36.7 24.7 6,803,671 195 - 295

Table E.1: Aggregate Survey Data Approximation.

We see that in 1996, these eleven universities paid about 6.8 million in legal fees, while
at the same time the total research expenditures for the three departments were about
1.3 billion. This suggests that the ratio of research expenditures in the three departments
to the legal fee expenditures is about 200:1. Similarly we have on average $35 million
in research expenditures per professional working on technology transfer, and about $50
* million in research expenditures per support staff member. Assuming that the variable
cost for each professional is $100,000, $50,000 for each staff member, and about 50%
of the legal fee expenditures are reimbursed by corporations, we find that the ratio of
research expenditures in the three department to the investment the universities make in
technology transfer is about 160:1. So on average the universities invest $1 in technology
transfer for every $160 spent on research in these three departments
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Appendix F

License Income Profiles

F.1 License Quality

Our results imply that hiring additional professionals to work on technology transfer,
leads to an increase in the number of license agreements. This is a very significant
finding because it implies that the TTOs are stimulating the process of commercializing
university discoveries.

We use license agreements as our unit of measure. But not all license agreements
are equally important. Some are of no value—a firm may decide to enter a license
agreement, but may then choose never to use the licensed technology, and as a result
there is no benefit for the university, or the common good. Other license agreements are
very important. They may lead to new products or treatments of illnesses that would
otherwise not have been possible.

In the light of our finding that hiring more professionals to work on technology transfer
may lead to an increase in the expected number of license agreements, we want to answer
the question: “The new additional agreements that are entered as a result of hiring an
extra person, are they as valuable as other agreements, or are they basically worthless?”

We build a scoring function for licenses. This scoring function is aimed at evaluating
the importance of each license—if a license is worthless we want the score to be close to
zero, but if the license is very important we want the score to be high. After building this
scoring function we approximate the average worth of recent licenses. We build regression
models that approximate the scoring function, but use limited data.

By looking at how the average score has changed over the years we can tell if the
recent surge in the number of transferred technologies was at the expense of the quality
of the average license, or not.

F.1.1 Scoring Function for Licenses

When evaluating the importance of a license we ideally look at each license and evaluate
its importance based on the follow up research that was done, the investment that was
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made in developing commercial products using the licensed technology, and then look at
how these products increase the well-being of the general public. This approach would
eliminate license agreements from the last several years, because we don’t know the
impact they will have. We must find a reasonable way to evaluate the importance of a
license.

The only data that are available at most universities is income data. In the data
collection we asked for the income profiles of single licenses, and in table F.1 we show
the universities that were able to comply with this request. We see that in all we have
information about 1,850 licenses from seven universities.

Licenses .
. Licenses
N with at least .
University . with any
eight years .
. income data
of income data
Harvard University 24 633
MIT 149 704
Syracuse University 0 15
University of Arkansas 1 14
University of Missouri 11 85
Vanderbilt University 13 98
Yale University 72 301
Total: 270 1,850

Table F.1: The Number of License Agreements Where Income Data are Available.

Using the income data, we have several alternatives for evaluating the importance of a
license. One way is to use the net present value of the aggregate income. While this does
intuitively make sense, it does not focus on the aspect we are primarily concerned with:
the overall influence of the license. While it is better to have more income than less,
income in the latter years is a stronger indication that the licensed technology is being
used than income in the earlier years. A license that generates great income for a couple
of years, and then nothing after the third year from execution, is most likely of limited
use. The technology was most likely promising when the industrial party entered the
agreement (thus the high income in the first two years), but the technology then turned
out to be of little value and the license agreement basically “died”. Another example is
when a moderate income is realized in the first four years, but then a significant income
is realized after that. In this case, the licensed technology may have been an unknown
quantity when it was licensed to the company. The licensee performed some research
for four years, and then found great use for the invention and subsequently generated
substantial sales.

This shows that in terms of the license importance, income in the latter years is a
stronger indication of success than income in the earlier years. Consequently, we weigh
income in the latter years higher than income in the earlier years.
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The more the income, the stronger the signal about the importance of a license. But
is $20,000 income twice as valuable in terms of assessing the importance of a licenses
as $10,000? Most likely not. Most license agreements involve both minimum fees and
portion of profits from sales. The minimums are quite often in the range from $1,000
to $20,000. These minimums serve the purpose of generating some income for the uni-
versity, and more importantly give the industrial party an incentive to cancel the license
agreement if the licensed technology is not being used. In building the scoring function,
we have chosen to take the square root of the dollar income in each year. This means
that a license that has twice the income of another gets a (v/2 — 1 =) 41% higher score.
Intuitively this seems to strike the right balance between differing dollar amounts.

Ideally, we look at the income for the first twenty years after execution, and then
calculate the score of the license. This is however not feasible because it eliminates all
the licenses executed in the last twenty years from the calculation. We use the first eight
years after license execution to evaluate the score of a license. Of the 1,850 licenses, we
have eight years of data for 270 licenses as listed in table F.1.

Calling R;, the revenue in the ¢-th year for license ¢, the scoring function we use is,

S; = min [1,1{2;\/2\/12_“] . (F.1)

We multiply the income factor by v/¢ in order to weigh the income in the latter years
more. Income in the fourth year is thus twice as important as income in the first year.

We limit the score of licenses above by 1. The reason for doing this is that when a
license has reached some status of quality, the income beyond that is primarily determined
by factors that are not controllable or predictable. The TTO employees do not play a role
in securing that a license becomes a huge success beyond some point, and the success can
to some extent be attributed to luck. We have chosen the constant K such that licenses
generating $5,000 every year scores exactly one.!

In figure F-1 we have the cumulative distribution function for the 270 licenses. We
see that of the 270 licenses, about 16% score a perfect one, while 27% score a zero.

F.1.2 Approximations of Scoring Function

To evaluate the score of a license we need the first eight years of income data. For license
agreements entered in the last eight years, we do not have the full eight years of data
and we need to develop a method for forecasting what the score will be. In this section
we introduce models that approximate the scoring function, based on limited data.

The models we use are of the type,

1K = = 8.67296 x 10~4.

1
S VivEo®

=1
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Figure F-1: CDF For License Scoreing Function.

S; = min [1, zi:at\/R:] . - (F.2)

In addition to the models of equation F.2 we also tested models where we did not
fix the exponent for the income at 0.5, but estimated the best fitting parameter for that
too. While these models gave a better fit, the improvement was very small and we chose
to focus our analysis on the models of equation F.2.

The approximation model estimates are:

= min|[1,0.112\/R;, (F.3)

= min [1,0.080\/R;1 +0.130,/R; ] (F.4)
= min [1,0.057,/R;; +0.085,/R2 + 0.101y/R; 5] (F.5)
= min [1,0.036y/R;; +0.046\/R; 2 +0.092,/R 5 + 0.117, [Ria]  (F6)

The sum of the squared errors for these four models are 30.4, 18.2, 12.5, and 7.8
respectively. We see there is a fast decline in the sum of the squared errors—the fit of
the model using two years of data is almost twice as good as the model that only uses
one year of data. We will use the second model (equation F.4) to approximate the score
for the licenses.

When we look at how the average score has varied since 1986, we find that the average
has not decreased. For the five universities which we have data on more than 20 licenses,

N N n N
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._F(‘iscal Year | Harvard MIT U. Missouri Vanderbilt Yale |
1986 n/a 0.31 n/a n/a 0.16
1987 n/a 0.35 0.05 n/a 0.22
1988 n/a 0.36 0.22 0.41 0.24
1989 0.13 0.48 0.06 0.15 0.26
1990 0.17 0.38 0.11 0.12 0.38
1991 0.16 0.40 0.25 0.19 0.27
1992 0.16 0.41 0.11 0.44 0.24
1993 0.16 0.41 0.21 0.23 0.43
1994 0.21 0.43 0.18 0.32 0.39

Table F.2: The Average License Score Approximation.

we have listed the average approximation in table F.2, and in figures F-2 to F-6 we have
plotted the approximation for all four models of equations F.3 through F.6. Notice that
when we use a model that uses the income for the first two years after license execution,
we do not have the averages for fiscal years 1995 or 1996.

We see that at Harvard the license score is close to 0.16 until it jumps up to 0.21
in 1994. At MIT the average score is increasing until 1989, and it then settles at about
0.40. At the University of Missouri and Vanderbilt there is a lot of variation in the
average score, but we do not see a downwards trend. There is an upwards trend at Yale
University, but there are also large jumps up and down. When we use the other models
in equations F.3 through F.6 to approximate the average license scores, we see the same
patterns as above for the five universities.

F.1.3 Conclusion

In this section we first argued that the only feasible way to determine the importance
of licenses is to use income data. Based on income data from seven universities we built
a scoring function for licenses. The goal of this scoring function is to replicate as well
as possible the importance of a license. The importance of a licenses is determined by
how much further research is induced by the licensed technology; how much product
development and marketing is induced; and most importantly, by the increase in the
well-being of the general public. It is not an easy task to determine the importance
of a license, but we argue that our scoring function does as good a job as possible at
capturing these effects. In order to predict the score of licenses where we do not have
the full eight required years of data, we build an approximation for the scoring function.
This approximation uses only information about the income in the first two years after
license execution to predict the importance of the license. Based on this approximation
we show that the average importance of a license has not deteriorated in the last ten
years. ,
The primary goal of this section is to show that using license counts is a reason-

185




0.50

|
0.45 —O—1st -
0.40 2nd ||
0.35 ®—3rd 1]
o =0O=4th
£ 0.30
(3]
 0.25
[}]) .
& /P-‘
£ 0.20 .
z g
0.15
t
0.10
0.05
0.00

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Figure F-2: Harvard University: Average Approximation of License Score. -

able way to measure how much technology is transferred from a university. Ideally, we
analyze the impact of each licenses, and from its success determine the effectiveness of
the licensing activities. It is, however, not possible to go into this level of detail, and
the best we can do is to use license counts. We can, however, check to see if the license
- agreements that were executed in recent years have on average the same “potential” as
license agreements executed many years ago when the TTOs did not seek applications
for university inventions as aggressively as today.

We do not find evidence of deterioration in the average license quality. We find, on
the contrary, that if there is any change in the average license quality in the last few
years, the average license executed today has a higher potential than the average license
executed in the late eighties. We must conclude that using license counts is a reasonable
way to measure how much technology is transferred from a university.
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F.2 Net Present Value Estimate of a Licenses

Lets work out a rough estimate for how valuable a license is. In the data collection we
undertook, we asked universities to provide detailed information on license income. Table
F.3 has the average income by year and net present value using a 10% discount rate.

Net Present
Value of
Year ?J:;Iang: Number. of Revenue Strea.r.n
(1994-dollars) Observations Upto ar’lltfie::cludmg

(1994-dollars)
First Year $13,400 1,427 $12,800
Second Year $9,200 1,280 $20,800
Third Year $9,400 1,076 $28,200
Fourth Year $6,400 880 $32,800
Fifth Year $20,600 687 $46,200
Sixth Year $7,000 533 $50,400
Seventh Year $6,100 394 $53,600
Eighth Year $11,300 270 $59,100
Nineth Year $32,200 174 $73,500
Tenth Year $2,700 93 $74,600
Eleventh Year $3,100 42 $75,700
Twelveth Year $1,100 19 $76,000

Table F.3: Average License Income by Year and Net Present Value.

We find that the net present value of the income in the first ten years is about $75,000.
This does not suggest that ten years after entering a license agreement, we should expect
in most cases to have received about $75,000 in royalty income. There is a very large
variation in the license income, and as an example about one-third of the licenses do not
yield any income in the first ten years.

Often a license is based on a patented technology, so lets also factor in the patenting
cost. The number of patent applications American universities have filed in the last four
years is a little higher than the number of license agreements, and in Chapter 5 we found
that the average cost of a patent is about $31,000. Usually the licensee reimburses some
of cost of the patent prosecution. The average reimbursement was about 50% in 1995.
So the total patenting cost per licenses is close to $18,000.

In a survey of university technology transfer offices it is reported that the average
salary of a licensing manager at a mid-size university is $49,000. Lets assume that after
incorporating other indirect costs, the total variable cost of employing one professional
is $100,000.

The present value of the expected license income is about $75,000. For each license,
we have approximated the associated patenting cost for the university at $18,000. The
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expected net income for a license is thus about $57,000. Lets assume the inventor gets
40% of this income (this is a generous estimate for the inventor), and the university
the rest. The expected increase in university income from one license is thus about
$34,000. These estimates imply that if a new professional can increase the number of
license agreements by at least three per year, it is a good investment for the university
to hire that professional.

Our results from Chapter 5 imply that, other things being equal, a university should
expect at least three more licenses as a result of hiring a professional. Our results from
Chapter 3 suggest that on average we get 2.2 more licenses for each professional, but
this estimate is based on cross-sectional analysis, and consequently not as reliable as the
estimate from Chapter 5.

A= 17
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