
On Approximating Projection Games

by

Pasin Manurangsi

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

February 2015

c©Copyright by Pasin Manurangsi, 2015. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic copies of this thesis document

in whole and in part in any medium now known or hereafter created.

Author:
Department of Electrical Engineering and Computer Science

January 29, 2015

Certified by:
Prof. Dana Moshkovitz

ITT Career Development Professor in Computer Technology
Thesis Supervisor

January 29, 2015

Accepted by:
Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee
January 29, 2015

On Approximating Projection Games

by

Pasin Manurangsi

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2015 in Partial Fulfillment of the Requirements for

the Degree of Master of Engineering in Electrical Engineering and Computer
Science

Abstract

The projection games problem (also known as LABEL COVER) is a problem of great
significance in the field of hardness of approximation since almost all NP-hardness
of approximation results known today are derived from the NP-hardness of approx-
imation of projection games. Hence, it is important to determine the exact approxi-
mation ratio at which projection games become NP-hard to approximate. The goal
of this thesis is to make progress towards this problem.

First and foremost, we present a polynomial-time approximation algorithm for
satisfiable projection games, which achieves an approximation ratio that is better
than that of the previously best known algorithm.

On the hardness of approximation side, while we do not have any improved NP-
hardness result of approximating LABEL COVER, we show a polynomial integrality
gap for polynomially many rounds of the Lasserre SDP relaxation for projection
games. This result indicates that LABEL COVER might indeed be hard to approxi-
mate to within some polynomial factor.

In addition, we explore special cases of projection games where the underlying
graphs belong to certain families of graphs. For planar graphs, we present both a
subexponential-time exact algorithm and a polynomial-time approximation scheme
(PTAS) for projection games. We also prove that these algorithms have tight run-
ning times. For dense graphs, we present a subexponential-time approximation
algorithm for LABEL COVER. Moreover, if the graph is a sufficiently dense random
graph, we show that projection games are easy to approximate to within any poly-
nomial ratio.

Thesis Supervisor: Prof. Dana Moshkovitz
Title: ITT Career Development Professor in Computer Technology

Acknowledgments

I would like to thank my thesis advisor, Prof. Dana Moshkovitz, for her tremen-
dous support and guidance throughout the completion of this thesis project and my
previous UROP project. As my first ever research advisor, she not only guided me
through the world of academia, but also spent a lot of time teaching me many fun-
damental theoretical knowledge; in fact, it was her who introduced me to approxi-
mation algorithms, hardness of approximation, and the projection games problem.
Without the opportunity and support she has given, I would not have been able
to even start doing any research in theoretical computer science. Her passion for
the field of computer science and her commitment to research has also inspired me
greatly. I could not have wished for a better research advisor for my Master’s the-
sis.

Secondly, I would like to express my heartfelt gratitude towards Prof. Eden
Chlamtac (Ben Gurion University) and Dr. Aravindan Vijayaraghavan (New York
University); their collaborations and many discussions have significantly influenced
this thesis.

I am also sincerely grateful to Bank of Thailand for their financial support for my
undergraduate and Master’s studies.

In addition, I am very thankful for all my friends who have always be with me
during both joyful and rough periods. Without their help, my time at MIT would
have been much less enjoyable and, at times, much less tolerable as well.

Lastly but importantly, I would like to thank my parents—Vichien and Vanpen—
for their unfading love, understanding, and encouragement throughout my entire
life.

Contents

1 Introduction 11
1.1 Projection Games and the PCP Theorem 11
1.2 Previous Work on Approximating Projection Games 14
1.3 LP, SDP, and their Hierarchies . 15
1.4 Thesis Organization . 17

2 Notations 19

3 Polynomial-Time Approximation Algorithm 21
3.1 Conventions . 22
3.2 The Algorithm . 23

3.2.1 Satisfy One Neighbor Algorithm. 24
3.2.2 Greedy Assignment Algorithm. 25
3.2.3 Know Your Neighbors’ Neighbors Algorithm 27
3.2.4 Divide and Conquer Algorithm. 31
3.2.5 Proof of the Main Theorem . 35

4 Lasserre Gaps for Projection Games 37
4.1 Conventions . 39
4.2 Lasserre SDP for Projection Games . 40
4.3 Integrality Gap for Random MAX K-CSP Lasserre SDP from [Tul09]

and [BCV+12] . 41
4.4 Integrality Gaps for Projection Games Lasserre SDP 46

4.4.1 Reduction from MAX K-CSP to Projection Games 46
4.4.2 Vector Completeness . 48
4.4.3 Soundness . 53
4.4.4 Proofs of the Two Main Theorems 56

4.5 Note on DENSEST k-SUBGRAPH . 59

5 Projection Games on Planar Graph 61
5.1 Solving Projection Games on Planar Graphs 63

5.1.1 Exact Algorithm for Projection Games on Planar Graphs . . . 63

7

CONTENTS

5.1.2 Exact Algorithm Running Time Lower Bound for Projection
Games on Planar Graphs . 65

5.2 Approximating Projection Games on Planar Graphs 68
5.2.1 PTAS for Projection Games on Planar Graphs 69
5.2.2 PTAS Running Time Lower Bound for Projection Games on

Planar Graphs . 75

6 Projection Games on Dense Graphs 81
6.1 Subexponential-Time Algorithm for Projection Games on Dense Graphs 82
6.2 Polynomial-Time Algorithm for Dense Random Graphs 86

6.2.1 Approximation Algorithm for FREEGAME 86
6.2.2 Reduction from Projection Games on Dense Random Graphs

to FREEGAME . 91

7 Future Work 97

A Appendix 107
A.1 Polynomial-time Approximation Algorithms for Projection Games for

Nonuniform Preimage Sizes . 107
A.1.1 Satisfy One Neighbor Algorithm. 112
A.1.2 Greedy Assignment Algorithm. 112
A.1.3 Know Your Neighbors Algorithm 114
A.1.4 Know Your Neighbors’ Neighbors Algorithm 114
A.1.5 Divide and Conquer Algorithm. 117
A.1.6 Proof of the Main Theorem . 124

A.2 Improved Lasserre Gap for DENSEST k-SUBGRAPH 125
A.2.1 DENSEST k-SUBGRAPH and Reduction in [BCV+12] 127
A.2.2 Soundness . 128
A.2.3 Proof of the Main Theorem . 132

A.3 GRID TILING Running Time Lower Bound 135
A.3.1 CLIQUE . 135
A.3.2 Proof of Lemma 5.1 . 136

8

CONTENTS

9

CONTENTS

10

1 Introduction

For many NP-hard optimization problems, we can find efficient approximation al-

gorithms. Those are algorithms that produce an outcome, which is within some

ratio, called “the approximation ratio” 1 of the optimal solution. For many such

problems, the approximation algorithms known today are the best ones can hope

for, i.e., approximating these problems to better ratios is NP-hard. However, for

other problems, including the projection games problem that we introduce next, the

best known approximation algorithm has an approximation ratio that is not known

to be tight. Thus, it is natural to try to find better approximation algorithms and

better hardness of approximation results for such problems in order to bridge the

gap between the two sides.

1.1 Projection Games and the PCP Theorem

The projection games problem (also known as LABEL COVER) is a combinatorial op-

timization problem defined as follows.

1To avoid confusion, we define approximation ratio to be greater than one for the purpose of this
thesis. In other words, an algorithm for a maximization problem has approximation ratio α > 1 if
and only if, for every input, the value of the solution output by the algorithm is at least 1/α of the
value of the optimal solution.

11

1. INTRODUCTION

Projection Games

INPUT: A bipartite graph G = (A, B, E), two finite sets of labels (aka alpha-

bets) ΣA, ΣB, and, for each edge e = (a, b) ∈ E, a “projection” πe : ΣA → ΣB.

GOAL: Find an assignment to the vertices ϕA : A → ΣA and ϕB : B → ΣB

that maximizes the number of edges e = (a, b) that are “satisfied”, i.e.,

πe(ϕA(a)) = ϕB(b).

An instance is said to be “satisfiable” or “feasible” or have “perfect completeness”

if there exists an assignment that satisfies all edges. An instance is said to be “δ-

nearly satisfiable” or “δ-nearly feasible” if there exists an assignment that satisfies

(1− δ) fraction of the edges. Moreover, we use n to denote |A|+ |B|, the number of

vertices in G, and k to denote |ΣA|, the size of the alphabets.

LABEL COVER has gained much significance for approximation algorithms be-

cause of the following PCP Theorem, establishing that it is NP-hard, given a satisfi-

able projection game instance, to satisfy even an ε fraction of the edges:

Theorem 1.1 (Strong PCP Theorem). For every ñ and ε = ε(ñ), there is k = k(ε) and

n = n(ñ, ε), such that deciding SAT on inputs of size ñ can be reduced to finding, given

a satisfiable projection game on a graph of n vertices and alphabets of size k, an assignment

that satisfies more than an ε fraction of the edges.

This theorem is the starting point of the extremely successful long-code based

framework for achieving hardness of approximation results [BGS98, Hås01], as well

as of other optimal hardness of approximation results, e.g., for SET-COVER [LY94,

Fei98, Mos12, DS13]. In fact, almost all NP-hardness of approximation results known

today are based on the PCP theorem.

12

1. INTRODUCTION

The aforementioned PCP theorem is essentially the hardness of approximation

of LABEL COVER. There are several proofs of the strong PCP theorem that yield

different parameters in Theorem 1.1 and, thus, different hardness of approximation

results for projection games.

In one such proof, the parallel repetition theorem [Raz98], applied on the basic

PCP Theorem [BFL91, BFLS91, AS98, ALM+98], shows a reduction from exact SAT

on input size ñ to LABEL COVER on input size ñO(log 1/ε). This translates to the fol-

lowing hardness of approximation for projection games: for any 0 < δ < 1, there is

no polynomial-time 2log1−δ(nk)-approximation algorithm for projection games unless

NP 6⊆ DTIME(npolylog(n)).

A different proof, based on PCP composition, has smaller blow up but larger al-

phabet size [MR10, DS13]. Specifically, it shows a reduction from exact SAT with

input size ñ to LABEL COVER with input size ñ1+o(1)poly(1/ε) and alphabet size

exp(1/ε). The corresponding hardness of approximation for projection games can

be stated as followed: for any γ > 0, there is no polynomial-time logγ(nk)-approximation

for projection games unless P = NP.

Moreover, although not proven, it is believed that a stronger proof of the PCP the-

orem with almost linear number of vertices and alphabets of sizes poly(1/ε). The

conjecture, formalized in [Mos12], can be stated as follows.

Conjecture 1.1 (The Projection Games Conjecture). For every ñ and ε = ε(ñ), decid-

ing SAT on inputs of size ñ can be reduced to finding, given a satisfiable projection game

on graph G of ñ1+o(1)poly(1/ε) vertices and alphabets of size (ε)O(1), an assignment that

satisfies more than an ε fraction of the edges.

13

1. INTRODUCTION

To compare the conjecture to known hardness of approximation LABEL COVER

results stated above, the Projection Game Conjecture implies that, for some constant

c > 0, there is no polynomial-time O((nk)c)-approximation algorithm for projection

games unless P = NP.

It was shown in [Mos12] that, assuming the PGC, one can prove a stronger hard-

ness of approximation result for the CLOSEST-VECTOR-PROBLEM. Moreover, [Mos12]

suggested that many more hardness of approximation results could be proved based

on the conjecture.

Since finding algorithms for projection games can help determine whether the

PGC holds, it is therefore not only a natural pursuit in combinatorial optimization,

but also a way to advance our understanding of the main paradigm for settling the

approximability of optimization problems.

1.2 Previous Work on Approximating Projection Games

Even though great amount of effort has been put into understanding the hardness

of approximation of the projection games problem, the approximation algorithms

aspect of this problem has not been researched as much.

Prior to the author’s joint work with his thesis supervisor in 2013 ([MM13]), only

two papers had explicitly gave approximation algorithms for LABEL COVER. First,

in 2007, Peleg presented a simple polynomial-time O((nk)1/2)-approximation algo-

rithm for projection games [Pel07]. The approximation ratio was then improved

in [CHK09] to O((nk)1/3). In [MM13], we managed to improved this further to

O((nk)1/4), which still remains the best known polynomial-time approximation al-

gorithm for projection games. Our algorithm will be described in full details later

on in this thesis.

14

1. INTRODUCTION

1.3 LP, SDP, and their Hierarchies

Linear programs are convex optimization problems that can be stated in the follow-

ing form:

maximize
n

∑
i=1

cixi

subject to
n

∑
i=1

aijxi ≥ bj ∀j ∈ {1, . . . , m},

xi ≥ 0 ∀i ∈ {1, . . . , n}.

Another form of convex optimization program, called Semidefinite program (SDP),

concerns solving the following type of optimization problem:

maximize
n

∑
i,j=1

cijxij

subject to
n

∑
i,j=1

aijkxij ≥ bk ∀k ∈ {1, . . . , n},

xij = xji ∀i, j ∈ {1, . . . , n},

(xij) is positive semidefinite.

Recall that a real matrix X ∈ Rn×n is positive semidefinite if and only if vTXv is

positive for every real vector v ∈ Rn. Instead of viewing semidefinite program

as the above optimization problem, it is sometimes written in an equivalent form,

called vector program, which is presented below.

maximize
n

∑
i,j=1

cij(vi · vj)

15

1. INTRODUCTION

subject to
n

∑
i,j=1

aijk(vi · vj) ≥ bk ∀k ∈ {1, . . . , n},

vi · vi = 1 ∀i ∈ {1, . . . , n},

vi ∈ Rn ∀i ∈ {1, . . . , n}.

Both linear programming and semidefinite programming have been very use-

ful in finding approximation algorithms for combinatorial optimization problems.

They are used typically by rewriting a problem in terms of a linear program with xi

representing each natural variable in the problem or a vector program where each

vi represents each variable. Then, we solve the linear program or the vector pro-

gram, which are known to be solvable in polynomial time in n. Since normally, for

combinatorial optimization problems, we want each variable to be in a discrete set,

the last step is often to perform rounding of each xi or vi to be a value in the set. LP

and SDP techniques yield many results in approximation algorithms, such as algo-

rithms for VERTEX-COVER, MAX-CUT, MAX-2SAT and the unique games problem

on expanders [GW95, AKK+08].

A more recent technique, called LP and SDP hierarchies, has been developed

on top of linear programming and semidefinite programming. The main idea of

the technique is that, by adding more variables and constraints, one can capture

the original combinatorial problem more precisely. Using this method, one can ob-

tain a hierarchy of semidefinite or linear programs from the simplest one to the

strengthened ones. There are several systematic methods, such as the ones invented

by Lovász and Schrijver [LS91], Sherali and Adams [SA90], and Lasserre [Las01a,

Las01b], to add constraints and variables. Each of the method produces different

hierarchies.

Among the hierarchies studied so far, the Lasserre hierarchy is known to be the

16

1. INTRODUCTION

strongest one [Lau03]. It has yielded positive results in finding approximation algo-

rithms for some problems. The most relevant such result is from [BRS11], in which

the Lasserre hierarchy was used to find an approximation algorithm for the unique

games problem, a problem closely related to LABEL COVER. Hence, it is essential to

ask whether the Lasserre hierarchy can be used to give better approximation ratio

for LABEL COVER, or even refute the Projection Games Conjecture.

1.4 Thesis Organization

Excluding this chapter, this thesis contains five chapters; while Chapter 2 only lists

notations to be used throughout the thesis, each of the next four presents new results

regarding approximating projection games and discusses how these results fit in the

big picture.

First, in Chapter 3, we present a polynomial-time O((nk)1/4)-approximation al-

gorithm for LABEL COVER, which is the best known polynomial-time approxima-

tion algorithm for projection games. The result is extracted from [MM13].

Second, in Chapter 4, we show negative results for using Lasserre SDP hierarchy

to approximate the projection games problem. More specifically, we present LA-

BEL COVER instances such that, even after polynomial rounds of the Lasserre SDP

hierarchy, the integrality gaps of these instances remain polynomial. Note that the

precise definition of integrality gap and its importance are explained at the begin-

ning of Chapter 4.

Next, in Chapter 5, we present a polynomial-time approximation scheme (PTAS)

for LABEL COVER on planar graphs. We then prove that this is the best PTAS one can

hope for, i.e., no PTAS with substantially smaller running time exists. In addition,

17

1. INTRODUCTION

we present a kO(
√

n)-time exact algorithm for projection games on planar graphs and

prove also that this running time is tight.

In Chapter 6, we give a subexponential-time approximation algorithm for pro-

jection games on dense graphs. We also show that, if the underlying graph is a suf-

ficiently dense random graph, then there exists a polynomial-time approximation

algorithm that achieves any polynomial approximation ratio.

Finally, in the last chapter, we suggest how to improve upon our work and put

forward some new directions for future work.

18

2 Notations

We define the following notations to be used throughout this thesis:

• Let nA = |A| denote the number of vertices in A and nB = |B| denote the

number of vertices in B. Let n denote the number of vertices in the whole

graph, i.e., n = nA + nB.

• Let k denote the alphabets size, i.e., k = |ΣA|. Note that we assume without

loss of generality throughout this thesis that |ΣA| ≥ |ΣB|.

• Let N denote nk.

• Let V denote A ∪ B, the set of all vertices in G.

• Let dv denote the degree of a vertex v ∈ V.

• For a vertex u, we use Γ(u) to denote set of vertices that are neighbors of u in

G. Similarly, for a set of vertex U, we use Γ(U) to denote the set of vertices that

are neighbors of at least one vertex in U.

• For each vertex u, define Γ2(u) to be Γ(Γ(u)). This is the set of neighbors of

neighbors of u.

19

2. NOTATIONS

20

3 Polynomial-Time Approximation Al-

gorithm

In 2009, Charikar, Hajiaghayi and Karloff presented a polynomial-time O((nk)1/3)-

approximation algorithm for LABEL COVER on graphs with n vertices and alpha-

bets of size k [CHK09]. This improved on Peleg’s O((nk)1/2)-approximation algo-

rithm [Pel07]. We show a polynomial-time algorithm that achieves a better approx-

imation ratio for satisfiable projection games:

Theorem 3.1. There exists a polynomial-time O(N1/4)-approximation algorithm for satis-

fiable projection games.

The result and all the proofs are extracted from [MM13]. Note here that our al-

gorithm works in a more limited setting of projection games as both Peleg’s and the

CHK algorithms worked even for arbitrary constraints on the edges (not necessary

functions) and possibly unsatisfiable instances.

While our result does not settle whether the Projection Games Conjecture is true,

it does limit the kind of parameters we can expect for the PGC. More specifically, if

the PGC is proved one day, our result would be useful to determine the best param-

21

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

eter for the number of vertices and the size of the alphabets one could get for the

PGC.

3.1 Conventions

We define the following additional notations to be used in this chapter.

• Let σOPT
v be the assignment to v in an assignment to vertices that satisfies all

the edges. In short, we will sometimes refer to this as “the optimal assign-

ment”. This is guaranteed to exist from our assumption that the instances

considered are satisfiable.

• For any edge e = (a, b), we define pe to be |π−1(σOPT
b)|. In other words, pe is

the number of assignments to a that satisfy the edge e given that b is assigned

σOPT
b , the optimal assignment. Define p to be the average of pe over all e; that

is p = ∑e∈E pe
|E| .

• For each set of vertices S, define E(S) to be the set of edges of G with at least

one endpoint in S, i.e., E(S) = {(u, v) ∈ E | u ∈ S or v ∈ S}.

• For each a ∈ A, let h(a) denote |E(Γ2(a))|. Let hmax = maxa∈Ah(a).

Moreover, for simplicity of the proof, we make the following assumptions in this

chapter:

• G is connected. This assumption can be made without loss of generality, as, if

G is not connected, we can always perform any algorithm presented below on

each of its connected components and get an equally good or a better approx-

imation ratio.

• For every e ∈ E and every σb ∈ ΣB, the number of preimages in π−1
e (σb) is the

same. In particular, pe = p for all e ∈ E.

We defer the treatment of graphs with general number of preimages to Appendix A.1.

22

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

3.2 The Algorithm

In this section, we present an improved polynomial-time approximation algorithm

for projection games and prove Theorem 3.1.

To prove the theorem, we proceed to describe four polynomial-time approxima-

tion algorithms. In the end, by using the best of these four, we are able to produce

a polynomial-time O
(
(nA|ΣA|)1/4)-approximation algorithm as desired. Next, we

will list the algorithms along with its rough descriptions (see also illustrations in

Figure 3.1 below); detailed description and analysis of each algorithm will follow

later in this section:

1. Satisfy one neighbor – |E|/nB-approximation. Assign each vertex in A an

arbitrary assignment. Each vertex in B is then assigned to satisfy one of its

neighboring edges. This algorithm satisfies at least nB edges.

2. Greedy assignment – |ΣA|/p-approximation. Each vertex in B is assigned an

assignment σb ∈ ΣB that has the largest number of preimages across neigh-

boring edges ∑a∈Γ(b) |π−1
(a,b)(σb)|. Each vertex in A is then assigned so that it

satisfies as many edges as possible. This algorithm works well when ΣB as-

signments have many preimages.

3. Know your neighbors’ neighbors – |E|p/hmax-approximation. For a vertex

a0 ∈ A, we go over all possible assignments to it. For each assignment, we

assign its neighbors Γ(a0) accordingly. Then, for each node in Γ2(a0), we keep

only the assignments that satisfy all the edges between it and vertices in Γ(a0).

When a0 is assigned the optimal assignment, the number of choices for each

node in Γ2(a0) is reduced to at most p possibilities. In this way, we can satisfy

23

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

1/p fraction of the edges that touch Γ2(a0). This satisfies many edges when

there exists a0 ∈ A such that Γ2(a0) spans many edges.

4. Divide and Conquer – O(nAnBhmax/|E|2)-approximation. For every a ∈ A

we can fully satisfy Γ(a) ∪ Γ2(a) efficiently, and give up on satisfying other

edges that touch Γ2(a). Repeating this process, we can satisfy Ω(|E|2/(nAnBhmax))

fraction of the edges. This is large when Γ2(a) does not span many edges for

all a ∈ A.

The smallest of the four approximation factors is at most as large as their geometric

mean, i.e.,

O

(
4

√
|E|
nB
· |ΣA|

p
· |E|p

hmax
· nAnBhmax

|E|2

)
= O((nA|ΣA|)1/4).

All the details of each algorithm are described below.

3.2.1 Satisfy One Neighbor Algorithm.

We will present a simple algorithm that gives |E|nB
approximation ratio.

Lemma 3.1. For satisfiable instances of projection games, an assignment that satisfies at

least nB edges can be found in polynomial time, which gives the approximation ratio of |E|nB
.

Proof. For each node a ∈ A, pick one σa ∈ ΣA and assign it to a. Then, for each

b ∈ B, pick one neighbor a of b and assign ϕ(b) = πe(σa) for b. This guarantees that

at least nB edges are satisfied.

24

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

(1) (2)

(3) (4)

Figure 3.1: An Overview of The Algorithms in One Figure. Four algorithms
are used to prove Theorem 3.1: (1) In satisfy one neighbor algorithm, each vertex
in B is assigned to satisfy one of its neighboring edges. (2) In greedy assignment
algorithm, each vertex in B is assigned with an assignment with largest number of
preimages. (3) In know your neighbors’ neighbors algorithm, for a vertex a0, choices
for each node in Γ2(a0) are reduced to at most O(p) possibilities so O

(
1
p

)
fraction of

edges that touch Γ2(a0) are satisfied. (4) In divide and conquer algorithm, the vertices
are seperated to subsets, each of which is a subset of Γ(a) ∪ Γ2(a), and each subset
is solved separately.

3.2.2 Greedy Assignment Algorithm.

The idea for this algorithm is that if there are many assignments in ΣA that satisfy

each edge, then one satisfies many edges by guessing assignments at random. The

25

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

algorithm below is the deterministic version of this algorithm.

Lemma 3.2. There exists a polynomial-time |ΣA|
p -approximation algorithm for satisfiable

instances of projection games.

Proof. The algorithm works as follows:

1. For each b, assign it σ∗b that maximizes ∑a∈Γ(b) |π−1
(a,b)(σb)|.

2. For each a, assign it σ∗a that maximizes the number of edges satisfied, |{b ∈

Γ(a) | π(a,b)(σa) = σ∗b }|.

Let e∗ be the number of edges that get satisfied by this algorithm. We have

e∗ = ∑
a∈A
|{b ∈ Γ(a) | π(a,b)(σ

∗
a) = σ∗b }|.

By the second step, for each a ∈ A, the number of edges satisfied is at least an

average of the number of edges satisfy over all assignments in ΣA. This can be

written as follows.

e∗ ≥ ∑
a∈A

∑σa∈ΣA
|{b ∈ Γ(a) | π(a,b)(σa) = σ∗b }|

|ΣA|

= ∑
a∈A

∑b∈Γ(a) |π−1
(a,b)(σ

∗
b)|

|ΣA|

=
1
|ΣA| ∑

a∈A
∑

b∈Γ(a)
|π−1

(a,b)(σ
∗
b)|

=
1
|ΣA| ∑

b∈B
∑

a∈Γ(b)
|π−1

(a,b)(σ
∗
b)|.

Moreover, from the first step, we can conclude that, for each b, ∑a∈Γ(b) |π−1
(a,b)(σ

∗
b)| ≥

∑a∈Γ(b) |π−1
(a,b)(σ

OPT
b)|. As a result, we can conclude that

e∗ ≥ 1
|ΣA| ∑

b∈B
∑

a∈Γ(b)
|π−1

(a,b)(σ
OPT
b)|

26

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

=
1
|ΣA| ∑

e∈E
pe

=
|E|p
|ΣA|

Hence, this algorithm satisfies at least p
|ΣA|

fraction of the edges. Thus, this is a

polynomial-time |ΣA|
p -approximation algorithm for satisfiable instances of projection

games, which concludes our proof.

3.2.3 Know Your Neighbors’ Neighbors Algorithm

The next algorithm shows that if the neighbors of neighbors of a vertex a0 ∈ A

expand, then one can satisfy many of the (many!) edges that touch the neighbors of

a0’s neighbors.

Lemma 3.3. For each a0 ∈ A, there exists a polynomial-time O
(
|E|p
h(a0)

)
-approximation

algorithm for satisfiable instances of projection games.

Proof. To prove Lemma 3.3, we want to find an algorithm that satisfies at least

Ω
(

h(a0)
p

)
edges for each a0 ∈ A.

The algorithm works as follows:

1. Iterate over all assignments σa0 ∈ ΣA to a0:

(a) Assign σb = π(a0,b)(σa0) to b for all b ∈ Γ(a0).

(b) For each a ∈ A, find the set of plausible assignments to a, i.e., Sa = {σa ∈

ΣA | ∀b ∈ Γ(a) ∩ Γ(a0), π(a,b)(σa) = σb}. If for any a, the set Sa is empty,

then we proceed to the next assignment without executing the following

steps.

27

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

(c) For all b ∈ B, pick an assignment σ∗b for b that maximizes the average

number of satisfied edges over all assignments in Sa to vertices a in Γ(b)∩

Γ2(a0), i.e., maximizes ∑a∈Γ(b)∩Γ2(a0) |π
−1
(a,b)(σb) ∩ Sa|.

(d) For each vertex a ∈ A, pick an assignment σ∗a ∈ Sa that maximizes the

number of satisfied edges, |{b ∈ Γ(a) | π(a,b)(σa) = σ∗b }|.

2. Pick an assignment {σ∗a }a∈A, {σ∗b }b∈B from the previous step that satisfies the

most edges.

We will prove that this algorithm indeed satisfies at least h(a)
p edges.

Let e∗ be the number of edges satisfied by the algorithm. We have

e∗ = ∑
a∈A
|{b ∈ Γ(a) | π(a,b)(σ

∗
a) = σ∗b }|.

Since in step 1, we try every possible σa0 ∈ ΣA, we must have tried σa0 = σOPT
a0

.

This means that the assignment to a0 is the optimal assignment. As a result, the

assignments to every node in Γ(a0) is the optimal assignment; that is σb = σOPT
b

for all b ∈ Γ(a0). Note that when the optimal assignment is assigned to a0, we have

σOPT
a ∈ Sa for all a ∈ A. This means that the algorithm proceeds until the end. Thus,

the solution this algorithm gives satisfies at least as many edges as when σv = σOPT
v

for all v ∈ {a0} ∪ Γ(a0). From now on, we will consider only this case.

Since for each a ∈ A, the assignment σ∗a is chosen to maximize the number of

edges satisfied, we can conclude that the number of edges satisfied by selecting σ∗a

is at least the average of the number of edges satisfied over all σa ∈ Sa.

As a result, we can conclude that

e∗ ≥ ∑
a∈A

∑σa∈Sa |{b ∈ Γ(a) | π(a,b)(σa) = σ∗b }|
|Sa|

28

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

= ∑
a∈A

∑σa∈Sa ∑b∈Γ(a) 1π(a,b)(σa)=σ∗b

|Sa|

= ∑
a∈A

∑b∈Γ(a) ∑σa∈Sa 1π(a,b)(σa)=σ∗b

|Sa|

= ∑
a∈A

∑b∈Γ(a) |π−1
(a,b)(σ

∗
b) ∩ Sa|

|Sa|

= ∑
b∈B

∑
a∈Γ(b)

|π−1
(a,b)(σ

∗
b) ∩ Sa|
|Sa|

≥ ∑
b∈B

∑
a∈Γ(b)∩Γ2(a0)

|π−1
(a,b)(σ

∗
b) ∩ Sa|
|Sa|

Now, for each a ∈ Γ2(a0), consider Sa. From the definition of Sa, we have

Sa = {σa ∈ ΣA | ∀b ∈ Γ(a) ∩ Γ(a0), π(a,b)(σa) = σb} =
⋂

b∈Γ(a)∩Γ(a0)

π−1
(a,b)(σb).

As a result, we can conclude that

|Sa| ≤ min
b∈Γ(a)∩Γ(a0)

{|π−1
(a,b)(σb)|}

= min
b∈Γ(a)∩Γ(a0)

{|π−1
(a,b)(σ

OPT
b)|}

= min
b∈Γ(a)∩Γ(a0)

{p(a,b)}.

Note that since a ∈ Γ2(a0), we have Γ(a) ∩ Γ(a0) 6= ∅. Since we assume for

simplicity that pe = p for all e ∈ E, we can conclude that |Sa| ≤ p.

This implies that

e∗ ≥ 1
p ∑

b∈B
∑

a∈Γ(b)∩Γ2(a0)

|π−1
(a,b)(σ

∗
b) ∩ Sa|.

29

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

Since we pick the assignment σ∗b that maximizes ∑a∈Γ(b)∩Γ2(a0) |π
−1
(a,b)(σ

∗
b)∩ Sa| for

each b ∈ B, we can conclude that

e∗ ≥ 1
p ∑

b∈B
∑

a∈Γ(b)∩Γ2(a0)

|π−1
(a,b)(σ

∗
b) ∩ Sa|

≥ 1
p ∑

b∈B
∑

a∈Γ(b)∩Γ2(a0)

|π−1
(a,b)(σ

OPT
b) ∩ Sa|.

Since the optimal assignment satisfies every edge, we can conclude that σOPT
a ∈

π−1
(a,b)(σ

OPT
b) and σOPT

a ∈ Sa, for all b ∈ B and a ∈ Γ(b) ∩ Γ2(a0). This implies that

e∗ ≥ 1
p ∑

b∈B
∑

a∈Γ(b)∩Γ2(a0)

|π−1
(a,b)(σ

OPT
b) ∩ Sa|

≥ 1
p ∑

b∈B
∑

a∈Γ(b)∩Γ2(a0)

1.

The last term can be written as

1
p ∑

b∈B
∑

a∈Γ(b)∩Γ2(a0)

1 =
1
p ∑

a∈Γ2(a0)
∑

b∈Γ(a)
1

=
1
p
(h(a0))

=
h(a0)

p
.

As a result, we can conclude that this algorithm gives an assignment that satisfies

at least h(a0)
p edges out of all the |E| edges. Hence, this is a polynomial-time O

(
|E|p
h(a0)

)
approximation algorithm as desired.

30

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

3.2.4 Divide and Conquer Algorithm.

We will present an algorithm that separates the graph into disjoint subgraphs for

which we can find the optimal assignments in polynomial time. We shall show

below that, if h(a) is small for all a ∈ A, then we are able to find such subgraphs

that contain most of the graph’s edges.

Lemma 3.4. There exists a polynomial-time O
(

nAnBhmax
|E|2

)
-approximation algorithm for

satisfiable instances of projection games.

Proof. To prove Lemma 3.4, we will describe an algorithm that gives an assignment

that satisfies Ω
(

|E|3
nAnBhmax

)
edges.

We use P to represent the collection of subgraphs we find. The family P consists

of disjoint sets of vertices. Let VP be
⋃

P∈P P.

For any set S of vertices, define GS to be the graph induced on S with respect to

G. Moreover, define ES to be the set of edges of GS. We also define EP =
⋃

P∈P EP.

The algorithm works as follows.

1. Set P ← ∅.

2. While there exists a vertex a ∈ A such that |E(Γ(a)∪Γ2(a))−VP | ≥
1
4
|E|2

nAnB
:

(a) Set P ← P ∪ {(Γ2(a) ∪ Γ(a))−VP}.

3. For each P ∈ P , find in time poly(|ΣA|, |P|) an assignment to the vertices in P

that satisfies all the edges spanned by P.

We will divide the proof into two parts. First, we will show that when we cannot

find a vertex a in step 2,
∣∣∣E(A∪B)−VP

∣∣∣ ≤ |E|2 . Second, we will show that the resulting

assignment from this algorithm satisfies Ω
(

|E|3
nAnBhmax

)
edges.

31

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

We will start by showing that if no vertex a in step 2 exists, then
∣∣∣E(A∪B)−VP

∣∣∣ ≤
|E|
2 .

Suppose that we cannot find a vertex a in step 2. In other words, |E(Γ(a)∪Γ2(a))−VP | <
1
4
|E|2

nAnB
for all a ∈ A.

Consider ∑a∈A |E(Γ(a)∪Γ2(a))−VP |. Since |E(Γ(a)∪Γ2(a))−VP | <
1
4
|E|2

nAnB
for all a ∈ A,

we have the following inequality.

|E|2
4nB
≥ ∑

a∈A
|E(Γ(a)∪Γ2(a))−VP |.

Let Np(v) = Γ(v)− VP and Np
2 (v) = Γ2(v)− VP . Similary, define Np(S) for a

subset S ⊆ A ∪ B. It is easy to see that Np
2 (v) ⊇ Np(Np(v)). This implies that, for

all a ∈ A, we have |E(Np(a)∪Np
2 (a))| ≥ |E(Np(a)∪Np(Np(a)))|. Moreover, it is not hard to

see that, for all a ∈ A−VP , we have |E(Np(a)∪Np(Np(a)))| = ∑b∈Np(a) |Np(b)|.

Thus, we can derive the following:

∑
a∈A
|E(Γ(a)∪Γ2(a))−VP | = ∑

a∈A
|E(Np(a)∪Np

2 (a))|

≥ ∑
a∈A−VP

|E(Np(a)∪Np
2 (a))|

≥ ∑
a∈A−VP

∑
b∈Np(a)

|Np(b)|

= ∑
b∈B−VP

∑
a∈Np(b)

|Np(b)|

= ∑
b∈B−VP

|Np(b)|2.

32

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

From Jensen’s inequality, we have

∑
a∈A
|E(Γ(a)∪Γ2(a))−VP | ≥

1
|B−VP |

(
∑

b∈B−VP

|Np(b)|
)2

=
1

|B−VP |

∣∣∣E(A∪B)−VP

∣∣∣2
≥ 1

nB

∣∣∣E(A∪B)−VP

∣∣∣2 .

Since |E|
2

4nB
≥ ∑a∈A |E(Γ(a)∪Γ2(a))−VP | and ∑a∈A |E(Γ(a)∪Γ2(a))−VP | ≥

1
nB

∣∣∣E(A∪B)−VP

∣∣∣2,

we can conclude that

|E|
2
≥
∣∣∣E(A∪B)−VP

∣∣∣
which concludes the first part of the proof.

Next, we will show that the assignment the algorithm finds satisfies at least

Ω
(

|E|3
nAnBhmax

)
edges. Since we showed that |E|2 ≥

∣∣∣E(A∪B)−VP

∣∣∣ when the algorithm

terminates, it is enough to prove that |EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣). Note

that the algorithm guarantees to satisfy all the edges in EP .

We will prove this by using induction to show that at any point in the algorithm,

|EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣).

Base Case. At the beginning, we have |EP | = 0 = |E|2
4nAnBhmax

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣),

which satisfies the inequality.

Inductive Step. The only step in the algorithm where any term in the inequality

changes is step 2a. LetPold andPnew be the setP before and after step 2a is executed,

respectively. Let a be the vertex selected from step 2. Suppose that Pold satisfies the

inequality.

33

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

From the condition in step 2, we have |E(Γ(a)∪Γ2(a))−VPold
| ≥ 1

4
|E|2

nAnB
. Since |EPnew | =

|EPold |+ |E(Γ(a)∪Γ2(a))−VPold
|, we have

|EPnew | ≥ |EPold |+
1
4
|E|2

nAnB
.

Now, consider
(
|E| − |E(A∪B)−VPnew

|
)
−
(
|E| − |E(A∪B)−VPold

|
)

. We have

(
|E| − |E(A∪B)−VPnew

|
)
−
(
|E| − |E(A∪B)−VPold

|
)
= |E(A∪B)−VPold

| − |E(A∪B)−VPnew
|

Since VPnew = VPold ∪ (Γ2(a) ∪ Γ(a)), we can conclude that

(
(A ∪ B)−VPold

)
⊆ ((A ∪ B)−VPnew) ∪ (Γ2(a) ∪ Γ(a)) .

Thus, we can also derive

E(A∪B)−VPold
⊆ E((A∪B)−VPnew)∪(Γ2(a)∪Γ(a))

= E(A∪B)−VPnew
∪ {(a′, b′) ∈ E | a′ ∈ Γ2(a) or b′ ∈ Γ(a)}.

From the definition of N and N2, for any (a′, b′) ∈ E, if b′ ∈ Γ(a) then a′ ∈ Γ2(a).

Thus, we have {(a′, b′) ∈ E | a′ ∈ Γ2(a) or b′ ∈ Γ(a)} = {(a′, b′) ∈ E | a′ ∈ Γ2(a)} =

E(Γ2(a)). The cardinality of the last term was defined to be h(a). Hence, we can

conclude that

|E(A∪B)−VPold
| ≤ |E(A∪B)−VPnew

∪ {(a′, b′) ∈ E | a′ ∈ Γ2(a) or b′ ∈ Γ(a)}|

≤ |E(A∪B)−VPnew
|+ |{(a′, b′) ∈ E | a′ ∈ Γ2(a) or b′ ∈ Γ(a)}|

34

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

= |E(A∪B)−VPnew
|+ |{(a′, b′) ∈ E | a′ ∈ Γ2(a)}|

= |E(A∪B)−VPnew
|+ |E(Γ2(a))|

= |E(A∪B)−VPnew
|+ h(a)

≤ |E(A∪B)−VPnew
|+ hmax.

This implies that
(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣) increases by at most hmax.

Hence, since
(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣) increases by at most hmax and |EP | increases by

at least 1
4
|E|2

nAnB
and from the inductive hypothesis, we can conclude that

|EPnew | ≥
|E|2

4nAnBhmax

(
|E| −

∣∣∣E(A∪B)−VPnew

∣∣∣) .

Thus, the inductive step is true and the inequality holds at any point during the

execution of the algorithm.

When the algorithm terminates, since |EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣) and
|E|
2 ≥

∣∣∣E(A∪B)−VP

∣∣∣, we can conclude that |EP | ≥ |E|3
8nAnBhmax

. Since the algorithm

guarantees to satisfy every edge in EP , we can conclude that the algorithm gives

O(nAnBhmax
|E|2) approximation ratio, which concludes our proof of Lemma 3.4.

3.2.5 Proof of the Main Theorem

Finally, we give a simple proof of the main theorem.

Proof of Theorem 3.1. Using Lemma 3.3 with a0 that maximizes the value of h(a0),

i.e., h(a0) = hmax, we can conclude that there exists a polynomial-time O
(
|E|p
hmax

)
-

approximation algorithm for satisfiable instances of projection games.

35

3. POLYNOMIAL-TIME APPROXIMATION ALGORITHM

Moreover, from Lemmas 3.1, 3.2 and 3.4, there exists a polynomial-time |E|nB
-approximation

algorithm, a polynomial-time |ΣA|
p -approximation algorithm and a polynomial time

O
(

nAnBhmax
|E|2

)
-approximation algorithm for satisfiable instances of projection games.

By picking the best out of these four algorithms, we can get an approximation

ratio of O
(

min
(
|E|p
hmax

, |ΣA|
p , |E|nB

, nAnBhmax
|E|2

))
.

Since the minimum is at most the value of the geometric mean, we deduce that

the approximation ratio is

O

(
4

√
|E|p
hmax

· |ΣA|
p
· |E|

nB
· nAnBhmax

|E|2

)
= O

(
4
√

nA|ΣA|
)

.

This concludes the proof of Theorem 3.1.

36

4 Lasserre Gaps for Projection Games

Before we proceed to describe our results, we need to first describe the definition of

integrality gap and its significance in approximation algorithms.

For a linear program or a semidefinite program that concerns a maximization

problem, an integrality gap is defined to be the ratio of the value of the fractional (or

vector) solution obtained from the program and the value of the optimal solution

of the combinatorial optimization problem that the program tries to capture1. The

integrality gap reflects the approximation ratio one can get from an approximation

algorithm based on the program; simple approximation algorithms based on the

program is not able to achieve an approximation ratio smaller than the integrality

gap. Thus, a lower bound on integrality gap can be viewed as a lower bound on

approximation ratio achievable by straightforward approximation algorithms based

on the program.

In this chapter, we will show a couple of lower bounds on the integrality gap

of a natural relaxation of projection games in the Lasserre Hierarchy as described

below.

First, we show a lower bound of N1/8−ε on the integrality gap of NΩ(ε) rounds of

the Lasserre SDP hierarchy of projection games, which can be stated as follows.

1To avoid confusion, we only refer to integrality gaps that are larger than one in this thesis.

37

4. LASSERRE GAPS FOR PROJECTION GAMES

Theorem 4.1. For every constant 0 < ε < 1/8, there exists a projection game instance on

a graph of n vertices and alphabets of size k such that the integrality gap of (nk)Ω(ε) rounds

of the Lasserre SDP hierarchy on this instance is at least (nk)1/8−ε.

Second, we show that, even after N1−ε rounds of the Lasserre SDP hierarchy,

there is still a polynomial lower bound of NΩ(ε) on the integrality gap as stated for-

mally below.

Theorem 4.2. For every constant ε > 0, there exists a projection game instance on a graph

of n vertices and alphabets of size k such that the integrality gap of (nk)1−ε rounds of the

Lasserre SDP hierarchy on this instance is at least (nk)Ω(ε).

Since the r-th round of the Lasserre hierarchy can be solved in time NO(r), our

results show that the Lasserre SDP hierarchy cannot be used to refute the Projec-

tion Games Conjecture. Given that many best approximation algorithms known

today, including our O(N1/4)-approximation algorithm presented in Chapter 3, can

be formulated as LP or SDP hierarchies with sub-polynomial number of rounds, our

results strongly suggest that the PGC is indeed true.

In addition, it is worth noting that, since the best known algorithm achieves an

approximation ratio of O(N1/4) but the integrality gap from Theorem 4.1 is N1/8−ε,

our result is not yet tight. Preferably, we would like the approximation ratio and the

gap to match. For more discussion, please refer to Chapter 7

On the other hand, the gap from Theorem 4.2 does, in some sense, match with

our simple subexponential-time algorithm from Chapter 6. More specifically, if we

plug in ε← 1/Nε in Theorem 6.1, we obtain the following corollary.

38

4. LASSERRE GAPS FOR PROJECTION GAMES

Corollary 4.1. For every constant ε > 0, there exists an exp(O(N1−ε))-time Nε-approximation

algorithm for satisfiable projection games.

It is not hard to see that the algorithm in Theorem 6.1 can be described based on

LP or SDP hierarchy. Since the gap in Theorem 4.2 rules out the possibility of such

algorithm that achieves NΩ(ε) approximation ratio and runs in exp(O(N1−ε)) time,

the above corollary cannot be much improved except perhaps the approximation

ratio from Nε to NO(ε) where the multiplicative constant in the exponent is smaller

than one.

To prove the two main theorems in this chapter, we reduce from a lower bound

of random MAX K-CSP proved in [Tul09]. The reduction and proof follow very

closely from those in [BCV+12], in which similar lower bound results for DENSEST

k-SUBGRAPH were shown. In fact, the only main different of our proof and their

proof is that we are able to prove a stronger soundness result, which ultimately

leads to a better exponent in Theorem 4.1 of value 1/8− ε compared to 2/53− ε

in [BCV+12] 2. Due to this similarity, this chapter will stick closely to the organiza-

tion of [BCV+12].

4.1 Conventions

In this chapter, we will assume without loss of generality that ΣA = ΣB = [k].

Moreover, when we refer to an edge (u, v) from E, it is always assumed that u ∈ A

and v ∈ B.

In addition, we define the following notations to be used in this chapter:

22/53 = 0.03773 . . .

39

4. LASSERRE GAPS FOR PROJECTION GAMES

• For each subset S ⊆ A ∪ B, we will view α ∈ [k]S as a mapping from S to [k].

This represents an assignment to vertices in S.

• For each S′ ⊆ S ⊆ A ∪ B and α ∈ [k]S, let α(S′) ∈ [k]S
′

denotes the restriction

of α onto S′.

• For each S1, S2 ⊆ A ∪ B, α1 ∈ [k]S1 and α2 ∈ [k]S2 , if α1(S1 ∩ S2) = α2(S1 ∩ S2),

then define α1 ◦ α2 by

α1 ◦ α2(j) =

α1(j) if j ∈ S1,

α2(j) otherwise,

for every j ∈ S1 ∪ S2. In other words, this is the assignment induced by both

α1 and α2.

4.2 Lasserre SDP for Projection Games

In this section, we will write out the Lasserre SDP for projection games after r

rounds. For compactness of this thesis, we will not describe the full procedure to

create semidefinite programs for the Lasserre hierarchy. The reader can refer to

many surveys on the topic out there, such as Rothvoß’s note [Rot13], for the precise

definition of the Lasserre hierarchy and its basic properties.

In the r-th round of the Lasserre SDP, for each S ⊆ A ∪ B with S ≤ |r| and

α ∈ [k]S, a vector U(S,α) induces a probability distribution over [k]S in the sense that

we want ||U(S,α)||2 to represent the probability that the assignment α is chosen for

S. The Lasserre SDP for projection games after r rounds is shown below.

40

4. LASSERRE GAPS FOR PROJECTION GAMES

Lasserre SDP for Projection Games

maximize ∑
(u,v)∈E

∑
σ∈[k]
||U({u,v},{u→σ,v→π(u,v)(σ)})||

2

subjects to

||U(∅,∅)|| = 1〈
U(S1,α1)

, U(S1,α1)

〉
= 0 ∀S1, S2, α1, α2 s.t. α1(S1) 6= α2(S2)〈

U(S1,α1)
, U(S2,α2)

〉
=
〈

U(S3,α3), U(S4,α4)

〉
∀S1, S2, S3, S4, α1, α2, α3, α4 s.t. α1 ◦ α2 = α3 ◦ α4〈

U(S1,α1)
, U(S1,α1)

〉
≥ 0 ∀S1, S2, α1, α2

∑
σ∈[k]
||U({v},σ)||2 = 1 ∀v ∈ A ∪ B

Note here that, since we are considering Lasserre SDP after r rounds, all sets

S1, S2, S3, S4 included in the constraints are only those of size at most r. Note also

that we use {u → σ, v → π(u,v)(σ)} to represents the map from {u, v} to [k] where

u is mapped to σ and v is mapped to π(u,v)(σ)}. Similar notations later on in this

chapter are also defined in similar manners.

4.3 Integrality Gap for Random MAX K-CSP Lasserre

SDP from [Tul09] and [BCV+12]

One of the main ingredients for our proof is the lower bound on integrality gap of

the Lasserre SDP of random MAX K-CSP instances, which we will reduce from. Tul-

siani proved a version of the result in [Tul09] before it was generalized by Bhaskara

et al. in [BCV+12]. We will use the [BCV+12] version of the result for our proof.

41

4. LASSERRE GAPS FOR PROJECTION GAMES

Before we state their result, we will first review the definition of the MAX K-CSP

problem:

MAX K-CSPq

INPUT: An instance Φ of MAX K-CSPq consisting of

• a set of n variables {x1, . . . , xn}, and

• a set of constraints {C1, . . . , Cm} where each Ci is a mapping from [q]Ti

to {0, 1} for some ordered tuple Ti of K distinct variables.

GOAL: find an assignment ϕ : {x1, . . . , xn} → [q] that maximizes the num-

ber of constraints Ci’s that are satisfied, i.e. Ci(ϕ|Ti) = 1 where ϕ|Ti is a re-

striction of ϕ to Ti. In other words, find an assignment ϕ : {x1, . . . , xn} → [q]

that maximizes ∑i∈[m] Ci(ϕ|Ti).

From now on, we will only consider q’s that are prime numbers. Note, however,

that, when we pick q later on in the chapter, we will not bother to check whether q is

prime. Since we can always pick a prime number between q/2 and q, it is not hard

to see that our assumption does not asymptotically affect the integrality gap and the

number of rounds.

Similar to the Lasserre SDP for the projection games problem, the Lasserre SDP

for the MAX K-CSPq after r rounds of the hierarchy can be written as follows.

Lasserre SDP for MAX K-CSPq

maximize ∑
i∈[m]

∑
α∈[q]Ti

Ci(α)||V(Ti,α)||
2

subjects to

42

4. LASSERRE GAPS FOR PROJECTION GAMES

||V(∅,∅)|| = 1〈
V(S1,α1)

, V(S1,α1)

〉
= 0 ∀S1, S2, α1, α2 s.t. α1(S1) 6= α2(S2)〈

V(S1,α1)
, V(S2,α2)

〉
=
〈

V(S3,α3), V(S4,α4)

〉
∀S1, S2, S3, S4, α1, α2, α3, α4 s.t. α1 ◦ α2 = α3 ◦ α4〈

V(S1,α1)
, V(S1,α1)

〉
≥ 0 ∀S1, S2, α1, α2

∑
j∈[q]
||V({i},j)||2 = 1 ∀i ∈ [n]

Note here that, if we consider r rounds of the Lasserre hierarchy, all sets S1, S2, S3, S4

included in the constraints are only those of size at most r.

Now, we will define a random instance of the MAX K-CSP(C).

Random MAX K-CSP(C)

Let C ⊆ FK
q be a set of codewords of any linear code of length K. A random

MAX K-CSP(C) instance over n variables x1, . . . , xn and m constraints is a

set of constraints {C1, . . . , Cm} where each constraint Ci is independently

sampled as follows:

• Randomly select a subset Ti = {xi1 , . . . , xiK} ⊆ {x1, . . . , xn} uniformly

among all the subsets of size K.

• Randomly pick (b(i)1 , . . . , b(i)K) ∈ FK
q uniformly.

• The constraint Ci : [q]Ti → {0, 1} is defined as

Ci(α) =

1 if (α(xi1) + b(i)1 , . . . , α(xiK) + b(i)K) ∈ C,

0 otherwise,

43

4. LASSERRE GAPS FOR PROJECTION GAMES

for all α ∈ [q]Ti

In [Tul09], Tulsiani presented a Lasserre gap for random instances of the MAX

K-CSP. More specifically, the result can be broken down into two parts: the vec-

tor completeness and the soundness. For the purpose of this thesis, we will only

use their theorem for vector completeness, i.e., there exists a vector solution for the

Lasserre SDP after some large number of rounds with perfect value. In [Tul09], the

below lemma is proved for constant K, which is extended to work for superconstant

K in [BCV+12]. It can be stated as follows 3.

Lemma 4.1 ([BCV+12]). Let C be a dual code of any linear code of distance at least D ≥ 3.

For every n, K, β, η > 0 such that

• n is large enough,

• 10 ≤ K ≤ n1/2,

• η ≤ 1/(108(βKD)2/(D−2)),

• nν−1 ≤ 1/(108(βKD+0.75)2/(D−2)) for some ν > 0,

with probability 1 − o(1), there exists a perfect solution to the ηn/16-th round Lasserre

SDP for a random MAX K-CSP instance over n variables and m = βn constraints. More

specifically, there exists V(S,α) for every S ⊆ {x1, . . . , xn} of size at most ηn/16 and α ∈

[q]S such that

• ∑i∈[m] ∑α∈[q]Ti Ci(α)||V(Ti,α)||
2 = m,

• ||V(∅,∅)|| = 1,

3The lemma stated here is almost a direct quote from Theorem 4.2 in [BCV+12]. The
only difference is that, in Theorem 4.2 in [BCV+12], η is required to be between nν−1 and
1/(108(βKD+0.75)2/(D−2)). However, it is easy to see from the proof of the theorem that it is enough
for η to be at most 1/(108(βKD)2/(D−2)).

44

4. LASSERRE GAPS FOR PROJECTION GAMES

•
〈

V(S1,α1)
, V(S1,α1)

〉
= 0 ∀S1, S2, α1, α2 s.t. α1(S1) 6= α2(S2),

•
〈

V(S1,α1)
, V(S2,α2)

〉
=
〈

V(S3,α3), V(S4,α4)

〉
∀S1, S2, S3, S4, α1, α2, α3, α4 s.t. α1 ◦ α2 =

α3 ◦ α4,

•
〈

V(S1,α1)
, V(S1,α1)

〉
≥ 0 ∀S1, S2, α1, α2,

• ∑j∈[q] ||V({i},j)||2 = 1 ∀i ∈ [n]

The code C we are going to use later is the dual code of a generalized BCH code,

which gives the set of parameters as stated in the following lemma. The lemma

differs slightly from Lemma 4.6 in [BCV+12], where the block length of the code is

q2 − 1.

Lemma 4.2. ([BCV+12]) For each integer D ≥ 3 and a prime number q ≥ D, there exists a

q-ary linear code with block length K = q− 1, dimension K−D+ 1 and distance at least D.

Again, we will follow the construction of the code from [BCV+12] as follows.

Proof. Let γ be a primitive root modulo q. Let the set of code words C be the set

{(c0, . . . , cq−2) ∈ F
q−1
q | c(1) = c(γ) = · · · = c(γD−2) = 0} where c denote the

polynomial c(x) = c0 + c1x + · · ·+ cq−2xq−2.

To argue about the distance of the code, consider any codeword (c0, . . . , cq−2) that

contains at most D− 1 non-zero entries. Suppose that these entires are i1, . . . , iD−1.

45

4. LASSERRE GAPS FOR PROJECTION GAMES

From the definition of C, ci1 , . . . , ciD−1 must satisfies the following condition.

1 1 · · · 1

γi1 γi2 · · · γiD−1

...
...

γi1(D−2) γi2(D−2) · · · γiD−1(D−2)

ci1

ci2
...

ciD−1

=

0

0
...

0

Since the matrix on the left is the transpose of a Vandermonde matrix, it is invert-

ible, which means that c0, . . . , cq−2 are all equal to zero. As a result, we can conclude

that the distance of the code is at least D.

Moreover, note that, each condition can be written as a linear equation in Fq. This

means that our code has dimension at least K− (D− 1) as desired.

Observe that, since we will choose C to be the dual of this code, C will be a code

with block length K and dimension D− 1. Note also that we will ultimately pick D

to be some small constant less than 10.

4.4 Integrality Gaps for Projection Games Lasserre SDP

We devote this section to prove our two main theorems.

4.4.1 Reduction from MAX K-CSP to Projection Games

In this subsection, we present the reduction from MAX K-CSP to the projection

games problem. Again, this is very similar to the reduction from MAX K-CSP to

DENSEST k-SUBGRAPH in [BCV+12].

46

4. LASSERRE GAPS FOR PROJECTION GAMES

Given a random MAX K-CSP(C) instance Φ = {C1, . . . , Cm}, we create a pro-

jection game instance P = (A, B, E, ΣA, ΣB, {πe}e∈E) as follows:

• We create a vertex in A for each constraint Ci , i.e., A = {C1, . . . , Cm}.

• We create a vertex in B for each variable xj, i.e., B = {x1, . . . , xn}.

• For each vertex Ci ∈ A and xj ∈ B, we create an edge between them if and

only if xj ∈ Ti, i.e., E =
⋃

i∈[m]{(Ci, xj) | xj ∈ Ti}.

• Let ΣA be a set of size equals to the number of codewords in C (ΣA = [|C|]).

For each Ci ∈ A, we will view each element of ΣA as an assignment α ∈

[q]Ti such that Ci(α) = 1.

• Due to our convention here, we set ΣB to be ΣA. Note however that there

π−1
e (σ) is empty for all σ /∈ [q] for every edge e ∈ E.

• For each edge (Ci, xj), we define π(Ci,xj)
: ΣA → ΣB by π(Ci,xj)

(α) = α(xj).

Figure 4.1 illustrates an example of the reduction.

Observe that |A| = m = βn and |B| = n and |ΣA| = |C|. As a result, N =

(|A|+ |B|)ΣA = Θ(βn|C|).

To prove that this reduction gives us a Lasserre SDP gap, we need to show two

things: the vector completeness, i.e., the instance P admits a perfect solution for

Lasserre SDP, and the soundness, i.e., the optimal assignment for P satisfies not

many edges. We will proceed to prove these in the following two subsections.

47

4. LASSERRE GAPS FOR PROJECTION GAMES

Figure 4.1: An Example of the Reduction from MAX K-CSP(C) to LABEL COVER.
The original MAX K-CSP(C) instance is shown on the left and the resulting pro-
jection game is shown on the right. Note that, in the projection game illustration,
circles represent vertices of the underlying graph whereas squares represent alpha-
bet symbols. Each connecting line means that the corresponding projection maps
the alphabet symbol on the left to the one on the right.

4.4.2 Vector Completeness

In this subsection, we will show that if the initial MAX K-CSP(C) instance Φ admits

a perfect vector solution to the Lasserre SDP for MAX K-CSPq, then the projection

game instance P also admits a perfect vector solution (with the value mK) to the

Lasserre SDP for projection games. However, the number of rounds of the later re-

laxation is K times smaller than that of the former. This can be stated formally as

follows.

Lemma 4.3. If the MAX K-CSP(C) instance Φ admits a perfect vector solution to the r-th

round Lasserre SDP relaxation for MAX K-CSPq, then the projection game instance P ob-

tained from the reduction in Subsection 4.4.1 admits a perfect vector solution for the r/K-th

round Lasserre SDP relaxation for projection games.

48

4. LASSERRE GAPS FOR PROJECTION GAMES

Proof. Suppose that the MAX K-CSP(C) instance Φ admits a perfect vector solution

to the r-th round Lasserre SDP relaxation. This means that there exists V(S,α) for

every S ⊆ {x1, . . . , xK} of size at most t and α ∈ [q]S such that

• ∑i∈[m] ∑α∈[q]Ti Ci(α)||V(Ti,α)||
2 = m,

• ||V(∅,∅)|| = 1,

•
〈

V(S1,α1)
, V(S1,α1)

〉
= 0 ∀S1, S2, α1, α2 s.t. α1(S1) 6= α2(S2),

•
〈

V(S1,α1)
, V(S2,α2)

〉
=
〈

V(S3,α3), V(S4,α4)

〉
∀S1, S2, S3, S4, α1, α2, α3, α4 s.t. α1 ◦ α2 =

α3 ◦ α4,

•
〈

V(S1,α1)
, V(S1,α1)

〉
≥ 0 ∀S1, S2, α1, α2,

• ∑j∈[q] ||V({i},j)||2 = 1 ∀i ∈ [n],

Note that all the sets S1, S2, S3, S4 above are limited only to ones with size at most

r.

We will define the vector solution for r/K-th round Lasserre SDP for projection

games as follows. Consider each subset S ⊆ A ∪ B of size at most r/K and each

α ∈ [|C|]S. Suppose that S ∩ A = {Ci1 , Ci2 , . . . , Cia1
} and S ∩ B = {xj1 , xj2 , · · · , xjb1

}.

First of all, if at least one of α(xj1), . . . , α(xjb1
) is not in [q], then we define U(S,α)

to be zero. Note that, as mentioned earlier, we treat ΣB as [q], which is why we let

every set corresponding to an assignment outside of this range to be zero. It is also

obvious to check that when we are dealing with this kind of “invalid” assignments,

every condition in the Lasserre SDP for projection games hold. From now on, we

will only consider the case where α(xj1), . . . , α(xjb1
) ∈ [q].

49

4. LASSERRE GAPS FOR PROJECTION GAMES

We view each α(Cip) as an assignment to all the variables in Tip for all p ∈ [a1].

Now, define a vector solution for projection games Lasserre SDP as follows:

U(S,α) =

V(
Ti1
∪···∪Tia1

∪{xj1
,...,xjb1

},α(Ci1
)◦···◦α(Cia1

)◦α({xj1
,...,xjb1

})
) if α(Ti1), . . . , α(Tia1

),

α({xj1 , . . . , xjb1
})

are consistent,

0 otherwise,

where “consistent” here means that no two assignments assign different values to

the same variable.

Note that since |S| ≤ r/K, we know that |Ti1 ∪ · · · ∪ Tia1
∪ {xj1 , . . . , xjb1

}| ≤ r,

which means that the definition above is valid.

We will now show that each condition in the Lasserre SDP for projection games

is satisfied.

• First, we have ||U(∅,∅)|| = ||V(∅,∅)|| = 1 as desired.

• For every S1, S2, α1, α2 such that α1(S1 ∩ S2) 6= α2(S1 ∩ S2), if U(S1,α1)
= 0

or U(S2,α2) = 0, then
〈

U(S1,α1)
, U(S2,α2)

〉
= 0. Otherwise, if U(S1,α1)

6= 0 and

U(S2,α2) 6= 0, we have U(S1,α1)
= V(S′1,α′1)

and U(S2,α2) = V(S′2,α′2)
for some

S′1, S′2, α′1, α′2. Moreover, since α1(S1 ∩ S2) 6= α2(S1 ∩ S2), we also have α′1(S
′
1 ∩

S′2) 6= α′2(S
′
1 ∩ S′2). This implies that

〈
U(S1,α1)

, U(S2,α2)

〉
= 0 as desired.

• Consider any S1, S2, S3, S4, α1, α2, α3, α4 such that α1 ◦ α2 = α3 ◦ α4. It is ob-

vious that, if α1 ◦ α2 = α3 ◦ α4 is not consistent (i.e. assignments to con-

straints and to variables try to set different values to the same variable), then〈
U(S1,α1)

, U(S2,α2)

〉
= 0 =

〈
U(S3,α3), U(S4,α4)

〉
. On the other hand, if α1 ◦ α2 =

50

4. LASSERRE GAPS FOR PROJECTION GAMES

α3 ◦ α4 is consistent, then let α be the corresponding assignment to the vari-

ables and S be the set of all variables involved in S1, S2, S3, S4. It is obvious to

see that
〈

U(S1,α1)
, U(S2,α2)

〉
= ||V(S,α)||2 =

〈
U(S3,α3), U(S4,α4)

〉
.

• For every S1, S2, α1, α2, if U(S1,α1)
= 0 or U(S2,α2) = 0, then

〈
U(S1,α1)

, U(S2,α2)

〉
=

0. Otherwise, if U(S1,α1)
6= 0 and U(S2,α2) 6= 0, we have U(S1,α1)

= V(S′1,α′1)
and

U(S2,α2) = V(S′2,α′2)
for some S′1, S′2, α′1, α′2, which implies that

〈
U(S1,α1)

, U(S2,α2)

〉
≥

0 as desired.

• For each xi ∈ B, we have

∑
σ∈[k]
||U({xi},σ)||

2 = ∑
j∈[q]
||V({xi},j)||

2 = 1

as desired.

For each Ci ∈ A, first observe that, since ∑i∈[m] ∑α∈[q]Ti Ci(α)||V(Ti,α)||
2 = m

and ∑α∈[q]Ti Ci(α)||V(Ti,α)||
2 ≤ 1, we can conclude that ∑α∈[q]Ti Ci(α)||V(Ti,α)||

2 =

1 for every i ∈ [m]. As a result, we have

∑
σ∈[k]
||U({Ci},σ)||

2 = ∑
α∈[q]Ti

s.t. Ci(α)=1

||V(Ti,α)||
2 = ∑

α∈[q]Ti

Ci(α)||V(Ti,α)||
2 = 1.

As a result, we have ∑σ∈[k] ||U(v,σ)||2 = 1 for every v ∈ A ∪ B.

Lastly, we will show that the solution is perfect, i.e. the value of the solution is

mK. We can write the value of the solution as

∑
(u,v)∈E

∑
σ∈[|C|]

||U({u,v},{u→σ,v→π(u,v)(σ)})||
2 = ∑

(Ci,xj)∈E
∑

α∈[q]Ti
s.t. Ci(α)=1

||U({Ci,xj},{Ci→α,xj→α(xj)})||
2

51

4. LASSERRE GAPS FOR PROJECTION GAMES

= ∑
i∈[m]

∑
α∈[q]Ti

s.t. Ci(α)=1

∑
xj∈Ti

||U({Ci,xj},{Ci→α,xj→α(xj)})||
2

= ∑
i∈[m]

∑
α∈[q]Ti

s.t. Ci(α)=1

∑
xj∈Ti

||V(Ti,α)||
2

= K ∑
i∈[m]

∑
α∈[q]Ti

s.t. Ci(α)=1

||V(Ti,α)||
2

= K ∑
i∈[m]

∑
α∈[q]Ti

Ci(α)||V(Ti,α)||
2

= Km.

Thus, the defined solution is a perfect solution for the projection games Lasserre

SDP as desired.

By combining Lemma 4.1 and Lemma 4.3 directly, we get the following lemma.

Lemma 4.4. Let C be a dual code of any linear code of distance at least D ≥ 3. For every

n, K, β, η > 0 such that

• n is large enough,

• 10 ≤ K ≤ n1/2,

• η ≤ 1/(108(βKD)2/(D−2)),

• nν−1 ≤ 1/(108(βKD+0.75)2/(D−2)) for some ν > 0,

with probability 1− o(1), there exists a perfect solution to the ηn/(16K)-th round Lasserre

SDP for a projection games instance created by the procedure described in Subsection 4.4.1

from a random MAX K-CSP(C) over n variables and m = βn constraints.

52

4. LASSERRE GAPS FOR PROJECTION GAMES

4.4.3 Soundness

Now, we will show that, if the number of constraints m = βn is not too small, then,

with high probability, only O(ln q/q) fraction of the edges in the projection game

instance can be satisfied. Note that O(ln q/q) is almost the best one can hope for

since it is easy to see that one can always satisfy at least 1/q fraction of edges. The

soundness result can be formally stated as follows.

Lemma 4.5. Let 0 < ρ < 1 be any constant. If q ≥ K ≥ q/2, q ≥ 10000/ρ, |C| ≤ q10

and β ≥ 100q1+ρ/K, then the optimal solution of the projection game instance produced by

the reduction in Subsection 4.4.1 satisfies at most 1500mK ln q/(qρ) edges with probability

1− o(1).

Proof. Let Υ = d1/ρe and let M = q1/Υ.

To prove this lemma, consider each assignment ϕB : B → [q]. We will prove

that, with probability at least 1− exp(−mK ln q/(qM)), there exists no assignment

ϕA : A→ [|C|] that, together with ϕB, satisfies more than 1500mK ln q/(qρ) edges.

To show this, consider each vertex Ci in A. For each l = 0, . . . , Υ− 1, define Xl
i

as an indicator variable whether there exists σa ∈ ΣA such that assigning σa to Ci

satisfies more than 500KMl ln q/q edges touching the vertex. In other words, Xl
i = 0

if and only if, for each codeword c = (c1, . . . , cK) ∈ C, (c1− b(i)1 , . . . , cK − b(i)K) agrees

with (ϕB(xi1), . . . , ϕB(xiK)) on at most 500KMl ln q/q coordinates.

We will now prove an upper bound on the probability that Xl
i = 1. Consider each

codeword c ∈ C. For each j ∈ [K], b(i)j is randomly selected from Fq, which implies

53

4. LASSERRE GAPS FOR PROJECTION GAMES

that the probability that cj − b(i)j = ϕB(xij) is 1/q. By Chernoff bound, we have

Pr

 ∑
j∈[K]

1
cj−b(i)j =ϕB(xij

)
> 500KMl ln q/q

≤
(

e(K/q)
(500KMl ln q/q)

)500KMl ln q/q

< exp(−500KMl ln q/q).

Hence, we can conclude that

Pr[Xl
i = 1] = Pr

∃c ∈ C, ∑
j∈[K]

1
cj−b(i)j =ϕB(xij

)
> 500KMl ln q/q

(Union bound) ≤ ∑

c∈C
Pr

 ∑
j∈[K]

1
cj−b(i)j =ϕB(xij

)
> 500KMl ln q/q

≤ ∑

c∈C
exp(−500KMl ln q/q)

(Since |C| ≤ q10) ≤ q10 · exp(−500KMl ln q/q)

(Since q ≥ K ≥ q/2 and q ≥ 10000/ρ) ≤ exp(−400KMl ln q/q).

Now, observe that, from definition of Xl
i , we can conclude that, if l is the maxi-

mum value of l such that Ml
i = 1, then at most 500KMl+1 ln q/q edges touching Ci

that are satisfied. In other words, the number of edges touching Ci that is satisfied

is at most

max{500K ln q/q, max
l=0,...,Υ−1

{Xl
i 500KMl+1 ln q/q}}.

As a result, for each ϕB, the maximum number of satisfied edges is at most

∑
i∈[m]

max{500K ln q/q, max
l=0,...,Υ−1

{Xl
i 500KRl+1 ln q/q}}

54

4. LASSERRE GAPS FOR PROJECTION GAMES

≤ ∑
i∈[m]

(
500K ln q/q +

Υ−1

∑
l=0

Xl
i 500KMl+1 ln q/q

)

= 500mK ln q/q +
Υ−1

∑
l=0

(500KMl+1 ln q/q) · |{i ∈ [m] | Xl
i = 1}|

Since each Ci is sampled independently of each other, we can again use Chernoff

bound to arrive at the following inequality.

Pr[|{i ∈ [m] | Xl
i = 1}| > m/Ml+1] ≤

(
e(m · exp(−400KMl ln q/q))

m/Ml+1

)m/Ml+1

= (Ml+1 · e · exp(−400KMl ln q/q))m/Ml+1

(Since K ≥ q/2 and q ≥ 10000/ρ) ≤ (exp(−300KMl ln q/q))m/Ml+1

= exp(−300mK ln q/(qM)).

From this and the union bound, we can conclude that, with probability at least

1 − Υ exp(−300mK ln q/(qM)) ≥ 1 − exp(−mK ln q/(qM)), we have |{i ∈ [m] |

Xl
i = 1}| ≤ m/Ml+1 for all l = 0, . . . , Υ− 1.

Observe that, if |{i ∈ [m] | Xl
i = 1}| ≤ m/Ml+1 for all l = 0, . . . , Υ− 1, then we

have

500mK ln q/q +
Υ−1

∑
l=0

(500KMl+1 ln q/q) · |{i ∈ [m] | Xl
i = 1}|

≤ 500mK ln q/q +
Υ−1

∑
l=0

(500KMl+1 ln q/q) · (m/Ml+1)

= 500mK ln q/q +
Υ−1

∑
l=0

(500mK ln q/q)

= (500mK ln q/q)(Υ + 1)

≤ 1500mK ln q/(qρ).

55

4. LASSERRE GAPS FOR PROJECTION GAMES

This means that the maximum number of edges satisfied for ϕB is at most 1500mK ln q/(qρ).

There are q|B| = qn possible different ϕB’s. Using the union bound, we can con-

clude that the probability that every assignment to the vertices satisfies at most

1500mK ln q/(qρ) edges is at least

1− qn exp(−mK ln q/(qM)) = 1− exp(n ln q− nβK ln q/(qM))

(Since β ≥ 100(qM)

K
) ≤ 1− exp(n ln q− 100n ln q)

= 1− o(1),

which completes our proof for the lemma.

4.4.4 Proofs of the Two Main Theorems

Before we proceed to prove Theorem 4.1 and Theorem 4.2, we will start by com-

bining the vector completeness result and the soundness result to get the following

theorem that we will use as a basis to prove the two main theorems.

Theorem 4.3. Let 0 < ρ < 1 be any constant. For all n, q large enough such that q ≤ n10

and for each integer 3 ≤ D ≤ 10, there exists a projection game instance of at most n1+100ρ

vertices and alphabets of size qD−1 that demonstrates a gap of value Ω(q1−o(1)) for Lasserre

SDP after Ω(n/(q(2D+2ρ)/(D−2)+1)) rounds of the hierarchy.

Proof. Let C be the dual code of the code from Lemma 4.2 with 3 ≤ D ≤ 10.

We now have K = q − 1 and |C| = qD−1. Pick β to be 100q1+ρ/K and η to be

1/(108(βKD)2/(D−2)).

The instance we will use is just the instance created by the reduction present in

Subsection 4.4.1 from a random MAX K-CSP(C) instance.

56

4. LASSERRE GAPS FOR PROJECTION GAMES

Let R = ηn/(16K). We know from Lemma 4.4 that, after R rounds of the hier-

archy, there still exists a complete solution (of value mK) to the Lasserre SDP of the

instance. At the same time, we also know from Lemma 4.5 that, with probability

1− o(1), every assignment can satisfy at most 1500mK ln q/(qρ) edges. This means

that, after R rounds, we have a gap ratio of mK/(1500mK ln q/(qρ)) = Ω(q/ ln q) =

Ω(q1−o(1)) as desired.

Moreover, R can be written as

R = ηn/(16K)

=
1

108(βKD)2/(D−2)
· n

16K

= Ω
(

1
(βKD)2/(D−2)

· n
K

)
(Since β = 100q1+ρ/K) = Ω

(
1

(q1+ρKD−1)2/(D−2)
· n

K

)
(Since K = q− 1) = Ω

(
1

(qD+ρ)2/(D−2)
· n

q

)
= Ω

(
n

q(2D+2ρ)/(D−2)+1

)
.

Lastly, note that the number of vertices is m+ n = (β+ 1)n ≤ (400qρ)n = n1+100ρ

and the alphabets are of size |C| = qD−1.

Now, we are ready to prove the two main theorems by choosing the right N, q, D

for Theorem 4.3.

Proof of Theorem 4.1. Recall that N is defined to be the number of vertices times the

alphabets size for a projection game instance. This means that N = n1+100ρqD−1. We

can rewrite the number of rounds R of Lasserre SDP relaxation from Theorem 4.3 as

R = Ω
(

n
q(2D+2ρ)/(D−2)+1

)
57

4. LASSERRE GAPS FOR PROJECTION GAMES

= Ω
(

n1+100ρqD−1

n100ρq(2D+2ρ)/(D−2)+D

)
= Ω

(
N

N100ρq2D/(D−2)+D+2ρ/(D−2)

)

We select D = 4 to minimize 2D/(D− 2) + D, which implies that

R = Ω
(

N
N100ρq8+ρ

)
.

By pick q to be N1/8−ε/2, we get the gap of Ω(N1/8−ε/2−o(1)) ≥ N1/8−ε if N is big

enough. Furthermore, by picking ρ to be ε/1000, we have

R = Ω
(

N
Nε/10N(1/8−ε/2)(8+ε/1000)

)
= Ω

(
Nε/4

)

This is NΩ(ε) when N is big enough, which completes the proof of this theorem.

Lastly, the proof of Theorem 4.2 can be seen below.

Proof of Theorem 4.2. Using Theorem 4.3 with D = 3, the alphabets size is equal to

qD−1 = q2. In addition, by picking ρ = ε/1000 we have N = n1+ε/10q2. Moreover,

we can rewrite the number of rounds R of Lasserre SDP relaxation from Theorem 4.3

as

R = Ω
(

n
q(2D+2ρ)/(D−2)+1

)
= Ω

(
n

q9+2ρ

)
58

4. LASSERRE GAPS FOR PROJECTION GAMES

= Ω

(
n1+ε/10q2

nε/10q11+ε/500

)

= Ω
(

N
Nε/10q11+ε/500

)

Select q to be Nε/40. The number of rounds is now Ω(N1−ε/2), which is larger

than N1−ε when N is big enough. Moreover, the gap is Ω(q1−o(1)) = Ω(Nε/40−o(1)) =

NΩ(ε), which concludes our proof.

4.5 Note on DENSEST k-SUBGRAPH

It is not hard to see that the technique that we use in Lemma 4.5, where we con-

sider finer boundaries for “poorly satisfied” predicates instead of categorizing every

predicate into two categories as [BCV+12] did, can be extended to work for DENS-

EST k-SUBGRAPH as well. This leads to a better exponent of 1/14 − ε after nΩ(ε)

rounds of the Lasserre relaxation of DENSEST k-SUBGRAPH instead of that of 2/53−

ε in [BCV+12]. For a full proof of this result, please refer to Appendix A.2.

59

4. LASSERRE GAPS FOR PROJECTION GAMES

60

5 Projection Games on Planar Graph

As the strong PCP Theorem (Theorem 1.1) shows, LABEL COVER is NP-hard to ap-

proximate even to within subconstant ε fraction. Does LABEL COVER remain as hard

when we consider special kinds of graphs?

In recent years there has been much interest in optimization problems over planar

graphs. These are graphs that can be embedded in the plane without edges crossing

each other. Many optimization problems have very efficient algorithms on planar

graphs.

We show that any projection game where the underlying graph G is planar is

easy to approximate by providing the following PTAS:

Theorem 5.1. There is a polynomial time approximation scheme for projection games on

planar graphs that runs in time NO(1/ε).

The PTAS works via Baker’s approach [Bak94] of approximating the graph by

a graph with constant tree-width. Note here that the PTAS presented here is a bit

different from our PTAS presented ealier in our paper ([MM13]) but the key idea is

still the same; in [MM13], we used a high-level framework from [Kle05], which only

yields PTAS for satisfiable instances of projection games on planar graph. Here,

61

5. PROJECTION GAMES ON PLANAR GRAPH

however, we use the traditional Baker’s approach, which works for nonsatisfiable

instances as well.

We also show that this is the best running time we can get for a PTAS assuming

the exponential time hypothesis (ETH) as stated below. The main idea of the proof

is a reduction from GRID TILING problem introduced by Marx [Mar07, Mar12].

Theorem 5.2. If ETH holds, then there is no PTAS for projection games on planar graphs

running in time 2O(1/ε)γ
NO(1/ε)1−δ

for any constants γ, δ > 0.

In addition, we give a subexponential-time exact algorithm for deciding whether

a projection game on planar graph is satisfiable using divide-and-conquer technique

based on a planar separator theorem of Lipton and Tarjan [LT79] and prove a run-

ning time lower bound that matches the running time of the algorithm. These results

are stated below.

Theorem 5.3. There exists an kO(
√

n)-time algorithm for deciding whether a projection

game on planar graph with n vertices and alphabets of size k is satisfiable.1

Theorem 5.4. If there exists an algorithm that can decide whether a projection game on

planar graph with n vertices and alphabets of size k is satisfiable and runs in time f (n)ko(
√

n)

for some function f , then ETH fails.

1The algorithm can easily be modified to returns the exact value of the game as well.

62

5. PROJECTION GAMES ON PLANAR GRAPH

5.1 Solving Projection Games on Planar Graphs

In this section, we present an exact algorithm for projection games on planar graphs

that runs in kO(
√

n) time and prove a tight lower bound for the running time.

5.1.1 Exact Algorithm for Projection Games on Planar Graphs

We will now give a subexponential-time exact algorithm for projection games on

planar graphs based on a divide-and-conquer approach and prove Theorem 5.3.

Proof of Theorem 5.3. The algorithm is simple. Given the graph G = (V, E), we first

find a subset S of vertices of size O(
√
|V|) that V − S = V1 ∪ V2 where V1 ∩ V2 =

∅, there are no edges between V1 and V2, and |V1|, |V2| ≤ 2
3 |V|. Due to a planar

separator theorem, this subset can be found in linear time [LT79].

We then enumerate through all the possible assignments of S. For each assign-

ment, we solve the problem for V1 and V2 separately, i.e., whether there exists an

assignment of V1 that satisfies every edges within V1 ∪ S and similarly for V2.

A pseudocode for the procedure can be found below. Note that SOLVE takes in

three inputs: V′, the concerned subset of vertices, φ : V → ΣA ∪ ΣB ∪ {Null}, the

partial assignment so far, and G, the original graph. It returns True if and only if

there is an assignment on V′ that satisfies every edge within V′ and between V′

and vertices assigned in φ. Finally, SOLVE (V, ∅, G = (V, E)) tells us whether the

projection game instance is satisfiable.

63

5. PROJECTION GAMES ON PLANAR GRAPH

SOLVE (V′, φ, G = (V, E))

1 S← a mentioned separator for the graph induced by V′

2 V1, V2 ← sets of vertices S separates V′ into.

3 for each assignment φ′ of all elements of S

4 agree← True

5 for each v ∈ S

6 φ(v)← φ′(v)

7 for each (u, v) ∈ E

8 if φ(u), φ(v) 6= Null and π(u,v)(φ(u)) 6= φ(v)

9 agree← False

10 if agree is True and SOLVE (V1, φ, G), SOLVE (V2, φ, G) are True

11 return True

12 return False

Suppose that m is the size of V′ and n is the size of V. It is not hard to see that the

running time T(m) of this algorithm satisfies the following recurrence relation:

T(m) = poly(n)k|S|(T(|V1|) + T(|V2|))

= poly(n)kO(
√

m)(T(|V1|) + T(|V2|))

Since |V1| + |V2| < V′ and |V1|, |V2| ≤ 2m
3 , from the master theorem, we can

conclude that T(n) = O((poly(n)O(log n))kO(
√

n)). This is the running time of SOLVE

(V, NULL, G = (V, E)), which gives us the answer whether the original projection

game is satisfiable. Note that NULL represents the empty partial assignment.

For projection games, if k = 1, then they can be solved trivially, which means that

we can assume that k ≥ 2. This assumption implies that poly(n)O(log n) = O(k
√

n).

Hence, we can conclude that T(n) = kO(
√

n) as desired.

64

5. PROJECTION GAMES ON PLANAR GRAPH

5.1.2 Exact Algorithm Running Time Lower Bound for Projection

Games on Planar Graphs

In this section, we will present a reduction from GRID TILING defined in [Mar07,

Mar12] to projection games on planar graph. Then, we use a running time lower

bound mentioned in [Mar12] to derive Theorem 5.4.

We will start by stating the definition of GRID TILING and its running time lower

bound from [Mar12].

GRID TILING (Decision)

The GRID TILING problem (decision version), which we will reduce from, can be

defined as follows.

GRID TILING (Decision)

INPUT: Positive integers k̃, ñ and sets Si,j ⊆ [ñ]× [ñ] for each i, j = 1, . . . , k̃.

GOAL: Determine whether we can select si,j ∈ Si,j for every i, j = 1 . . . , k̃

such that, for each i, (si,j)1’s are equal for all j = 1, . . . , k̃, and, for each j,

(si,j)2’s are equal for all i = 1, . . . , k̃.

Note here that (si,j)1 represents the value in the first coordinate of si,j. Similar

notations in this section are defined in similar manners.

By reduction from CLIQUE, Marx proved the following lemma [Mar07]. The ex-

tracted proof can be found in Appendix A.32.

2The reduction is shown in this thesis because, even though the lemma is stated explicitly in
[Mar12] where Marx attributed the proof to [Mar07], the complete proof cannot be found in [Mar07].

65

5. PROJECTION GAMES ON PLANAR GRAPH

Lemma 5.1 ([Mar07]). If there exists an algorithm that solves GRID TILING in g(k̃)ño(k̃)

for any function g, then ETH fails.

Reduction from GRID TILING (Decision) to Planar Projection Games

We will now prove Theorem 5.4 by giving a reduction from GRID TILING as fol-

lows.

Proof. In order to prove the theorem, due to Lemma 5.1 it is enough to show a

polynomial-time reduction from a GRID TILING instance to a projection game in-

stance on planar graph where the alphabets are of size O(ñ2) and the number of

vertices n is O(k̃2).

The projection game instance can be defined as follows:

• Let A be a set containing k̃2 vertices; let us call the vertices ai,j for all i, j ∈ [k̃].

• Let B be a set containing 2k̃2 − 2k̃ vertices; let us call the vertices bi+0.5,j for all

i ∈ [k̃− 1], j = [k̃] and bi,j+0.5 for all i ∈ [k̃], j = [k̃− 1].

• Let E be {(ax,y, bz,t) ∈ A× B | |x− z|+ |y− t| = 0.5}.

• Let ΣA be [ñ]× [ñ].

• Let ΣB be [ñ] ∪ {�,�}.

• The projections πe’s where e = (ax,y, bz,t) can be defined as follows.

πe(s) =

s1 if s ∈ Sx,y and x = z,

s2 if s ∈ Sx,y and y = t,

� if s /∈ Sx,y, x ≤ z and y ≤ t,

� if s /∈ Sx,y, x ≥ z and y ≥ t,

for all (ax,y, bz,t) ∈ E and for all s ∈ ΣA.

66

5. PROJECTION GAMES ON PLANAR GRAPH

For an illustration of the reduction, please refer to Figure 5.1 below.

Figure 5.1: An Example of the Reduction from GRID TILING to LABEL COVER.
The original GRID TILING instance is shown on the left and the resulting projection
game is shown on the right. This reduction is used both in the proof of Theorem 5.4
and Theorem 5.2. Note that, in the projection game illustration, circles represent
vertices of the underlying graph whereas squares represent alphabet symbols. The
shaded circles are the vertices in B and the white circles are the vertices in A. Each
connecting line between two alphabet symbols means that the corresponding pro-
jection maps the alphabet symbol from a vertex in A to the alphabet symbol from a
vertex in B.

First, note that (A ∪ B, E) is planar since, if we place ax,y on the plane at (x, y)

for all ax,y ∈ A and place bz,t at (z, t) for all bz,t ∈ B, then we can see that no edges

intersect each other.

Next, we will show that the defined projection game is satisfiable if and only if

the original GRID TILING instance is a yes instance.

(⇒) Suppose that the projection game is satisfiable. Let ϕA : A → ΣA and ϕB :

B → ΣB be the assignments that satisfy every edge. First, consider bi+0.5,j ∈ B for

any i ∈ [k̃− 1], j ∈ [k̃].

Observe that π−1
(ai,j,bi+0.5,j)

(�) = ∅ and π−1
(ai+1,j,bi+0.5,j)

(�) = ∅. This implies that

67

5. PROJECTION GAMES ON PLANAR GRAPH

ϕB(bi+0.5,j) 6= �,�. From this, along with the definition of π(ai,j,bi+0.5,j)
, we can con-

clude that ϕA(ai,j) ∈ Si,j and ϕA(ai,j)2 = ϕB(bi+0.5,j). Similarly, we have ϕA(ai+1,j) ∈

Si+1,j and ϕA(ai+1,j)2 = ϕB(bi+0.5,j).

Thus, we can conclude that ϕA(ai,j) ∈ Si,j for every i, j ∈ [k̃] and that, for each

i ∈ [k̃], ϕA(ai,j)2’s are equal for every j ∈ [k̃].

Similarly, we also have, for each j ∈ [k̃], ϕA(ai,j)1’s are equal for every i ∈ [k̃].

As a result, by assigning si,j = ϕA(ai,j), we know that the GRID TILING instance

is a yes instance.

(⇐) Suppose that the GRID TILING instance is a yes instance, i.e., there exists

si,j ∈ Si,j for all i, j ∈ [k̃] such that, for each i, (si,j)1’s are equal for all j ∈ [k̃], and, for

each j, (si,j)2’s are equal for all i ∈ [k̃].

By simply picking ϕA(ai,j) = si,j for every ai,j ∈ A, ϕB(bi+0.5,j) = (s1,j)2 for every

bi+0.5,j ∈ B and, ϕB(bi,j+0.5) = (si,1)1 for every bi,j+0.5 ∈ B, we can conclude that the

projection game is satisfiable.

As a result, if there is an algorithm that decides whether the projection game

is satisfiable in time f (n)ko(
√

n), then we can also decide on GRID TILING in time

f (3k̃2 − 3k̃)(ñ2)
o
(√

3k̃2−3k̃
)
+ poly(ñ, k̃), which contradicts Lemma 5.1. (Note here

that poly(ñ, k̃) term comes from the time using in the reduction process.) Thus, our

proof for Theorem 5.4 is complete.

5.2 Approximating Projection Games on Planar Graphs

In this section, we provide a PTAS for projection games on planar graphs and prove

the matching running time lower bound for it.

68

5. PROJECTION GAMES ON PLANAR GRAPH

5.2.1 PTAS for Projection Games on Planar Graphs

We use the standard Baker’s technique for finding PTAS for problems on planar

graphs [Bak94] to construct one for instances of the projection games problem. In

this subsection, we will sometimes borrow terminologies from [Kle05], which presents

a subsequent work on the approach.

Although not realized in the original paper by Baker, the technique relies on the

concept of treewidth, which we will review the definition in the next subsection.

In this perspective, Baker’s technique constructs an algorithm based on two main

steps:

1. Thinning Step: Given a graph G = (V, E), partition E into subsets S1, . . . , Sh

such that, for each i, we obtain a graph with bounded treewidth when all edges

in Si are deleted from the original graph.

2. Dynamic Programming Step: For each i = 1, . . . , h, use dynamic program-

ming to solve the problem on (V, E− Si), which has bounded treewidth. Then,

output the best solution among these h solutions.

Tree Decomposition and Treewidth

Before we proceed to the algorithm, we first define tree decomposition. A tree decom-

position of a graph G = (V, E) is a collection of subsets {B1, B2, . . . , Bn} and a tree T

whose nodes are Bi such that

1. V = B1 ∪ B2 ∪ · · · ∪ Bn.

2. For each edge (u, v) ∈ E, there exists Bi such that u, v ∈ Bi.

3. For each Bi, Bj, if they have an element v in common. Then v is in every subset

along the path in T from Bi to Bj.

69

5. PROJECTION GAMES ON PLANAR GRAPH

The width of a tree decomposition ({B1, B2, . . . , Bn}, T) is the largest size of B1, . . . , Bn

minus one. The treewidth of a graph G is the minimum width across all possible tree

decompositions.

Thinning

Even though a planar graph itself does not necessarily have a bounded treewidth,

it is possible to delete a “small” set of edges from the graph to obtain a graph with

bounded treewidth; by “small”, we do not refer to the size, but refer to the change

in optimal solution for the input LABEL COVER instance after we delete the edges

from the set.

To achieve this, we partition E into h sets such that, when deleting all edges from

each set, the treewidth is bounded linearly on h. Later on, we will show that, for

at least one of the sets, deleting all the edges from it affects the optimal solution of

projection games by at most a factor of 1− 1/h.

Baker implicitly proved the following partitioning lemma in her paper [Bak94].

For a more explicit formulation, please see [Epp00]. 3

Lemma 5.2 ([Bak94]). For any planar graph G = (V, E) and integer h, there is a O(h(|V|+

|E|))-time algorithm returns an edge-sets S1, . . . , Sh and, for each i = 1, . . . , h, a tree de-

compositions of Hi of (V, E− Si) having width at most O(h).

Next, we will show that, for at least one of the Si’s, removing all the edges from

Si affects the optimal solution by at most a factor of 1− 1/h:

3In both [Bak94] and [Epp00], the vertices, not edges, are partitioned. However, it is obvious that
the lemma works for edges as well.

70

5. PROJECTION GAMES ON PLANAR GRAPH

Lemma 5.3. For any projection games instance on graph G = (V, E) and any partition

(S1, . . . , Sh) of E, there exists i ∈ {1, . . . , h} such that the projection game instance resulted

from removing all the edges in Si has the optimal solution that is within 1− 1/h factor of

the optimal of the original instance.

Proof. Suppose that Esat is the set of all the edges satisfied by the optimal assignment

φOPT of the original instance. From the pigeonhole principle, there exists at least one

i ∈ {1, . . . , h} such that |Si ∩ Esat| ≤ |Esat|/h. Since φOPT still satisfies all the edges in

E− (Si ∩ E) in the projection game instance induced by (V, E− Si), we can conclude

that the optimal assignment to this instance satisfies at least (1− 1/h)|Esat| edges,

which concludes the proof of this lemma.

For the purpose of our algorithm, we select h = 1 + 1
ε , which ensures that the

treewidth of (V, E− Si) is at most O(h) = O(1/ε) for each i = 1, . . . , h. Moreover,

from the above lemma, we can conclude that, for at least one such i, the optimal

solution of the projection game instance induced on (V, E− Si) satisfies at least 1−

1/h = 1/(1+ ε) times as many edges satisfied by the optimal solution of the original

instance.

Dynamic Programming

In this section, we will present a dynamic programming algorithm that solves the

projection game problem in a bounded treewidth bipartite graph G′ = (A′, B′, E′),

given its tree decomposition ({B1, . . . , Bn}, T) with a bounded width w.

The algorithm works as follows. We use depth-first search to traverse the tree

T. Then, at each node Bi, we solve the problem concerning only the subtree of T

starting at Bi.

71

5. PROJECTION GAMES ON PLANAR GRAPH

At Bi, we consider all possible assignments φ : Bi → (ΣA ∪ ΣB) of Bi. For each

assignment φ and for each edge (u, v) ∈ E′ such that both u, v are in Bi, we check

whether the condition π(u,v)(φ(u)) = φ(v) is satisfied or not. If not, we conclude

that this assignment does not satisfy all the edges. Otherwise, we check that the

assignment φ works for each subtree of T starting at each child Bj of Bi in T; this

result was memoized when the algorithm solved the problem at Bj.

Our algorithm will fill in a two-dimensional array a so that a[Bi][φ] is true if and

only if an assignment φ is possible considered only a subtree rooted at Bi. A pseu-

docode for the algorithm is shown below.

DYNAMIC-PROGRAMMING (Bi)

1 for each children Bj of Bi in T

2 DYNAMIC-PROGRAMMING(Bj)

3 for each assignment φ of all elements of Bi

4 a[Bi][φ]← True

5 for each edge (u, v) ∈ E′

6 if u, v ∈ Bi and π(u,v)(φ(u)) 6= φ(v)

7 a[Bi][φ]← False

8 for each children Bj of Bi in T

9 agree← False

10 for each assignment φ′ of Bj

11 if a[Bj][φ
′] is True and φ(x) = φ′(x) for all x ∈ Bi ∩ Bj

12 agree← True

13 if agree is False

14 a[Bi][φ]← False

We start by calling the function with the root of T as an input.

72

5. PROJECTION GAMES ON PLANAR GRAPH

To analyze the runtime of the algorithm, first observe that there are (|ΣA| +

|ΣB|)|Bi| possible assignments for Bi. Since the width of this tree decomposition

is at most w, we can conclude that |Bi| ≤ w + 1. Thus, for each Bi, there are at most

(|ΣA|+ |ΣB|)w+1 assignments for it.

For each assignment φ, we check all the edges in the original graph whether

π(u,v)(φ(u)) = φ(v) or not. There are |E′| such edges to check.

Moreover, for each edge (Bi, Bj) in T, we need to check whether the assignment

in Bi agrees with any feasible assignment in Bj or not. This means that we perform

at most (|ΣA|+ |ΣB|)2w+2 of these checks. In addition, in each check, we check that

assignments for Bi and Bj agrees for all vertices in Bi ∩ Bj or not. This takes at most

O(|Bi|+ |Bj|) = O(w + 1) = O(w) time.

As a result, the overall runtime for this algorithm is O(n|E′|(|ΣA|+ |ΣB|)w+1 +

nw(|ΣA|+ |ΣB|)2w+2).

Please note that, once DYNAMIC-PROGRAMMING finishes, we can similarly use

depth-first search one more time to find an assignment φ that satisfies the whole

graph. The pseudo-code for doing this is shown below. φ is first initiated to be null.

Then the procedure ANSWER is run on the root of T. After the program finishes, φ

will get filled with an assignment that satisfies all the edges in E′.

73

5. PROJECTION GAMES ON PLANAR GRAPH

ANSWER (Bi)

1 for each assignment φ′ of all elements of Bi

2 if a[Bi][φ
′] is True

3 agree← True

4 for each v ∈ Bi

5 if φ(v) 6= Null and φ(v) 6= φ′(v)

6 agree← False

7 if agree is True

8 for each v ∈ Bi

9 φ(v)← φ′(v)

10 for each children Bj of Bi in T

11 ANSWER(Bj)

It is easy to see that the ANSWER procedure runs in O(nw(|ΣA|+ |ΣB|)w+1) time

which is asymptotically smaller than the runtime of the DYNAMIC-PROGRAMMING

procedure.

Summary

We use the dynamic programming algorithm presented above to solve the projec-

tion game instance induced by the graph Gi = (V, E− Si) for each i = 1, . . . , h. We

then output the solution that satisfies most edges among all i’s. As shown earlier,

since we select h to be 1 + 1
ε , at least one of the solution found on Gi’s satisfies at

least 1
1+ε times as many edges as the optimal solution to the original instance, which

means that our algorithm is indeed an (1 + ε)-approximation algorithm.

Moreover, since we use the dynamic programming algorithm h times, the run-

ning time of the algorithm is O(h(n|E′|(|ΣA|+ |ΣB|)w+1 + nw(|ΣA|+ |ΣB|)2w+2)) =

(nk)O(w+h+5) = (nk)O(h) = (nk)O(1/ε).

74

5. PROJECTION GAMES ON PLANAR GRAPH

This gives us polynomial-time approximation scheme for satisfiable instances of

the projection game problem as desired.

5.2.2 PTAS Running Time Lower Bound for Projection Games on

Planar Graphs

We devote this subsection to prove Theorem 5.2. This theorem means that the PTAS

presented previously is the best we can do.

The proof is again a reduction from GRID TILING problem. However, in this

section, we will use an optimization version of the problem instead of the decision

one defined earlier.

GRID TILING (Optimization)

The GRID TILING problem (optimization version) can be defined as follows.

GRID TILING (optimization)

INPUT: Positive integers k̃, ñ and sets Si,j ⊆ [ñ]× [ñ] for each i, j = 1, . . . , k̃.

GOAL: Select si,j ∈ Si,j ∪ {F} for every i, j = 1 . . . , k̃ such that

• for every i ∈ [k̃], j ∈ [k̃ − 1], if si,j, si,j+1 6= F, then (si,j)1 = (si,j+1)1,

and,

• for every i ∈ [k̃− 1], j ∈ [k̃], if si,j, si+1,j 6=F, then (si,j)2 = (si+1,j)2

that maximizes the number of (i, j) ∈ [k̃]× [k̃] such that si,j 6=F.

75

5. PROJECTION GAMES ON PLANAR GRAPH

Note here that the decision version mentioned above is just to decide whether

the answer to the optimization problem is k̃2.

In [Mar07], a running time lower bound for approximating the optimization ver-

sion of GRID TILING is shown by a reduction from 3SAT. We extract the result from

Lemma 2.1 in [Mar07] below.

Lemma 5.4 ([Mar07]). Let k̃ be any positive integer. There is a reduction from an instance

Φ of 3SAT having m clauses to an instance of GRID TILING with ñ = 3dm/k̃e such that

• If Φ is satisfiable, then the optimum of GRID TILING is k̃2 (i.e. a yes instance in the

decision version),

• For every 1 > α > 0, if Φ is not α-satisfiable (i.e. no assignments satisfies at least αm

clauses), then the optimum of GRID TILING is at most k̃2 − k̃(1− α)/2 + 1,

and the reduction runs in polynomial time of the size of the GRID TILING instance.

Reduction from GRID TILING (Optimization) to Planar Projection Games

In this subsection, we will show a reduction from 3SAT to a projection game on

planar graph. This is the key in proving the running time lower bound for PTAS for

projection games on planar graphs.

Lemma 5.5. Let k̃ be any positive integer. There is a reduction from an instance Φ of 3SAT

having m clauses to a projection game on planar graph with n = 3k̃2− 2k̃ vertices, 4k̃2− 4k̃

edges, and alphabets of size k = 32dm/k̃e, such that

• If Φ is satisfiable, then the projection game can be fully satisfied,

• For every 1 > α > 0, if Φ is not α-satisfiable, then at most 4k̃2− 4k̃− 1
2

(
k̃(1− α)/2− 1

)
edges of the projection game can be satisfied,

76

5. PROJECTION GAMES ON PLANAR GRAPH

and the reduction runs in polynomial time of the size of the projection game.

Proof. The reduction proceeds as follows. Starting from a 3SAT formula Φ having m

clauses, we use the reduction procedure in Lemma 5.4 to reduce it to a GRID TILING

instance. We then reduce the GRID TILING instance into a planar projection game

instance the exact same way as we did in the proof of Theorem 5.4 in Section 5.1.2. It

is clear that the reduction takes polynomial time in the size of the projection game.

Observe that, from Lemma 5.4, if Φ is satisfiable, then the GRID TILING instance

is a yes instance. As a result, from the proof of Theorem 5.4, we can also conclude

that the projection game instance must be satisfiable.

Next, we will show that, if Φ is not α-satisfiable, then the optimum of the pro-

jection game is at most 4k̃2 − 4k̃ − 1
2

(
k̃(1− α)/2− 1

)
by contrapositive. Suppose

that there is an assignment ϕ : A → ΣA and ϕ : B → ΣB that satisfies more than

4k̃2 − 4k̃− 1
2

(
k̃(1− α)/2− 1

)
edges.

In other words, less than 1
2

(
k̃(1− α)/2− 1

)
edges are not satisfied. Now, we will

create a solution to GRID TILING instance as follows:

si,j =

ϕA(ai,j) if all edges touching Γ(ai,j) are satisfied,

F otherwise.

for every i, j ∈ [k̃]. Note here that Γ(ai,j) is a set containing all the neighboring

vertices of ai,j.

To see that this is indeed a solution to the GRID TILING instance, consider any i, j

such that si,j 6= F. If i ≤ k̃− 1, from the definition of si,j, we can conclude that the

edges (ai,j, bi+0.5,j) and (ai+1,j, bi+0.5,j) are satisfied. This implies that ϕA(ai,j) ∈ Si,j

and (ϕA(ai,j))2 = (ϕA(ai+1,j))2. In other words, si,j and si+1,j will not contradict

77

5. PROJECTION GAMES ON PLANAR GRAPH

each other in GRID TILING. Similarly, we can also conclude that si,j does not contra-

dict with si−1,j, si,j+1, si,j−1. Thus, the defined solution is a valid solution for GRID

TILING.

Next, since each unsatisfying edge can touch Γ(ai,j) for at most two pairs of i, j ∈

[k̃], we can conclude that the number ofF’s in a solution to GRID TILING is at most

2 times the number of unsatisfied edges in the projection game. Thus, the solution

to GRID TILING has less than k̃(1− α)/2− 1F’s. In other words, the optimum of

GRID TILING instance is more than k̃2 − k̃(1− α)/2 + 1. Thus, by Lemma 5.4, we

can conclude that Φ is α-satisfiable, which completes our proof.

Lower Bound on PTAS Running Time for Planar Projection Games

First, note the following lemma concerning lower bound on running time of an

algorithm distinguishing a satisfiable 3SAT instance and a not α-satisfiable 3SAT

instance. The lemma, stated explicitly as Lemma 2.2 in [Mar07], is derived by com-

bining the Sparsification Lemma from [IPZ01] and the PCP from [Din07].

Lemma 5.6. There is a constant 1 > α > 0 such that, if ETH holds, then there is no

algorithm that can distinguish between a satisfiable 3SAT instance and a not α-satisfiable

3SAT instance in time 2O(m1−β) for any constant β > 0.

Finally, we will use this lemma to prove Theorem 5.2. The proof idea is essentially

the same as that of Theorem 2.3 from [Mar07].

Proof of Theorem 5.2. Suppose for the sake of contradiction that there is a PTAS for

planar projection games of n vertices and alphabets size k running in time 2O(1/ε)γ
(nk)O(1/ε)1−δ

for some constants γ, δ > 0.

78

5. PROJECTION GAMES ON PLANAR GRAPH

Let Φ be any 3SAT formula with m clauses. Using Lemma 5.5 with k̃ = dm1/(2γ+1)e.

Set ε to be (1− α)/(32k̃)− 1/(16k̃2) = Θ(1/k̃). From our choice of ε, we have

(1− ε)
(

4k̃2 − 4k̃
)
> (1 + ε)

(
4k̃2 − 4k̃− 1

2
(
k̃(1− α)/2− 1

))
.

In other words, by approximating the projection game instance resulted from Lemma 5.5

up to ε factor, we can also distinguish whether the 3SAT is satisfiable or not α-

satisfiable. The running time of this is

2O(1/ε)γ
(nk)O(1/ε)1−δ

= 2O(k̃)γ
(
(3k̃2 − 2k̃)32dm/k̃e

)O(k̃)1−δ

= exp(O(k̃)γ + (O(log k̃) + O(m/k)) ·O(k̃)1−δ)

= exp(O(m
γ

1+2γ) + (O(log m) + O(m
2γ

1+2γ)) ·O(m)
1−δ

1+2γ)

= exp(O(m
γ

1+2γ) + O(m
2γ

1+2γ) ·O(m)
1−δ

1+2γ)

= exp(O(m
1+2γ−δ

1+2γ)),

which, from Lemma 5.6, implies that ETH fails.

79

5. PROJECTION GAMES ON PLANAR GRAPH

80

6 Projection Games on Dense Graphs

In order to prove the Projection Games Conjecture, an interesting question is what

kind of projection games we should reduce SAT to. In this section, we make progress

towards answering this question by showing that the average degree of the underly-

ing graph of such projection games instances cannot be too large. More specifically,

we give an subexponential time algorithm for projection games when the degree is

large, as stated in the following theorem.

Theorem 6.1. For every 1/2 ≥ ε ≥ 0, there exists a kO
(

nAnB
|E|ε

)
poly(n)-time algorithm

for satisfiable projection games that always outputs an assignment that satisfies at least ε

fraction of the edges.

Note that |E|/nA and |E|/nB are average degrees of vertices in A and B re-

spectively. Recall that, if the PGC is true, then we can reduce a SAT instance of

size ñ to approximating a satisfiable instance of projection games with nA, nB =

ñ1+o(1)poly(1/ε) and k = poly(1/ε) to within ε factor. Thus, assuming the exponen-

tial time hypothesis, this theorem tells us that the family of instances that SAT can

be reduced to must have average degree on both sides of at most O(no(1)poly(1/ε)).

Moreover, from Theorem 3.1 and a similar result for A, we can also deduce that the

average degrees of both sides must be at least 1/ε.

81

6. PROJECTION GAMES ON DENSE GRAPHS

In addition to the above result, we also show that satisfiable projection games

on sufficiently dense random graphs are easy to approximate, which is formulated

formally as follows.

Theorem 6.2. For every constant ε > 0, there exists a polynomial-time approximation al-

gorithm for satisfiable projection games on random bipartite graph G = G(n/2, n/2, p)1

for any p ≥ 10
√

log n/n that gives an assignment that satisfies at least Ω(1/kε) fraction

of the edges with probability 1− o(1).

In other words, the theorem says that, in polynomial time, we can approximate

satisfiable projection games on random bipartite graph with expected degree at

least Ω(
√

n log n) to within any polynomial ratio. Note here that, while there are

works in subsampling lemmas for LABEL COVER and other similar problems (e.g.,

see [AdlVKK03, BHHS11, DKR12]) which can approximate projection games on

dense graphs, these lemmas require the degree to be at least linear with respect to n

whereas our result only requires the degree to be at least Ω̃(
√

n).

6.1 Subexponential-Time Algorithm for Projection Games

on Dense Graphs

We devote this section to the proof of Theorem 6.1. The key idea is that, if we can

find a subset T ⊆ A such that Γ(T) touches ε fraction of the edges, then we can

enumerate through all the possible assignments in T. For each assignment of T,

1Note that the graph G(n/2, n/2, p) is defined in Erdős-Rényi fashion, i.e., the graph contains
n/2 vertices on each side and, for each pair of a vertex on the left and a vertex on the right, an edge
between them is included with probability p independently from every other edge.

82

6. PROJECTION GAMES ON DENSE GRAPHS

we assign Γ(T) with the corresponding assignment. Finally, using choices reduc-

tion technique similar to that in Lemma 3.3, we can satisfy all the edges touching

Γ(T).

First, we will start by giving an algorithm that finds such subset T as stated for-

mally in the lemma below.

Lemma 6.1. For every 1/2 ≥ ε ≥ 0, there is a polynomial time algorithm that, on any

graph G, produce a subset T of size O
(

nAnB
|E|ε

)
such that at least ε fraction of edges touch

Γ(T).

Proof. The algorithm to find T can be described as follows.

1. Start with T ← ∅, E′ = E.

2. While E′ contains more than 1− ε fraction of the edges, do the following:

(a) Let Γ′(v) denote the set of neighbors of vertex v corresponding to the

graph G = (V, E′) and let E′(Γ′(v)) be the set of all edges in E′ with

at least one endpoint in Γ′(v). Find a vertex a∗ ∈ A with maximum

|E′(Γ′(a∗))|.

(b) Set T ← T ∪ {a} and E′ ← E′(Γ′(a∗)).

3. Output T.

It is obvious from the algorithm that the set T output from the algorithm satisfies

the desired property that at least ε fraction of edges touches Γ(T). Thus, we only

need to show that T is of size O
(

nAnB
|E|ε

)
. To show this, it is enough to show that at

each step |E′(Γ′(a∗))| of the selected a∗ is at least |E|2
4nAnB

.

Since we select a∗ to maximize |E′(Γ′(a∗))|, we can conclude that

|E′(Γ′(a∗))| ≥ 1
nA

∑
a∈A
|E′(Γ′(a∗))|.

83

6. PROJECTION GAMES ON DENSE GRAPHS

We can further bound the right hand side as follows:

∑
a∈A
|E′(Γ′(a∗))| = ∑

a∈A
∑

b∈Γ′(a)
|Γ′(b)|

= ∑
b∈B

∑
a∈Γ′(b)

|Γ′(b)|

= ∑
b∈B
|Γ′(b)|2

(Jensen’s inequality) ≥ 1
nB

(
∑
b∈B
|Γ′(b)|

)2

=
1

nB
|E′|2

(|E′| ≥ (1− ε)|E| ≥ |E|/2) ≥ |E|
2

4nB
.

As a result, we can conclude that

|E′(Γ′(a∗))| ≥ |E|2
4nAnB

as desired.

Finally, since |E′(Γ′(a∗))| at each step is at least |E|2
4nAnB

, we can conclude that E′ is

reduced by at least the same amount. Hence, the number of iterations of the loop is

O
(

nAnB
|E|ε

)
, which means that T is of size at most O

(
nAnB
|E|ε

)
as desired.

Now, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. The algorithm proceeds as follows.

1. Run the algorithm from Lemma 6.1 on graph G to get a subset T.

2. Enumerate through all possible assignments φT : T → ΣA of all the vertices in

T. For each assignment φT, run the following steps:

84

6. PROJECTION GAMES ON DENSE GRAPHS

(a) For each b ∈ Γ(T), check whether π(a,b)(φT(a))’s are equal for every

a ∈ Γ(b) ∩ T. If not, skip the current φT and proceed to the next one.

Otherwise, assign σ∗b = π(a,b)(φT(a)) to b.

(b) For each a ∈ Γ2(T), find the set Sa of all possible assignments to a, i.e.,

Sa = {σa ∈ ΣA | ∀b ∈ Γ(a) ∩ Γ(T), π(a,b)(σa) = σb}. If Sa = ∅, skip

the current φT and proceed to the next one. Otherwise, pick σ∗a to be any

member of Sa and assign σ∗a to a.

3. Among all assignments produced from the previous step, pick the one that

satisfies maximum number of edges.

First, observe that the running time of the algorithm is O
(

k|T|poly(n, k)
)

=

kO
(

nAnB
|E|ε

)
poly(n).

To see that this algorithm produces an assignment that satisfies at least ε fraction

of the edges, first observe that, from step 3, we can conclude that the output assign-

ment satisfies at least as many edges as the assignment produced from step 2 when

φT = φOPT
T is the optimal assignment, i.e., φOPT

T (a) = σOPT
a for every a ∈ T.

Now, observe also that, if φT = φOPT
T is the optimal assignment, then σ∗b = σOPT

b

in step 2a for every b ∈ Γ(T). Thus, it is obvious that σOPT
a ∈ Sa in step 2b for every

a ∈ Γ2(T). Hence, the algorithm does not skip φOPT
T .

Moreover, it is obvious from definition of Sa that, when we assign σ∗a ∈ Sa, we

satisfy all edges from a to its neighbors in Γ(T). As a result, we can conclude that,

when φT = φOPT
T , the assignment from step 2 satisfies all the edges that touch Γ(T).

From Lemma 6.1, the number of such edges is at least ε|E|, which completes our

proof.

85

6. PROJECTION GAMES ON DENSE GRAPHS

6.2 Polynomial-Time Algorithm for Dense Random Graphs

The focus of this section is to prove Theorem 6.2. The key idea of the proof is that

we will reduce the problem of approximating projection games on dense random

graphs to approximating a different problem called FREEGAME defined below:

FREEGAME

INPUT: Sets A, B, a finite set of labels (aka alphabets) Σ, and, for each edge

(a, b) ∈ A× B, a predicate Ca,b : Σ× Σ→ {0, 1}.

GOAL: Find an assignment to the vertices ϕ : A ∪ B → Σ that maximizes

the number of edges e = (a, b) that are “satisfied”, i.e., Ca,b(ϕ(a), ϕ(b)) = 1.

Note that FREEGAME can be viewed as MAX 2-CSP on complete bipartite graph.

Similar to projection games, we call an instance of FREEGAME “satisfiable” if

there is an assignment that satisfies every edge. For such instance, we define σOPT
v

in a similar fashion to that of projection games, i.e., σOPT
v is the assignment to vertex

v ∈ A ∪ B in an assignment that satisfies every edge. Moreover, let n denote the

number of vertices, |A|+ |B|, and let k denote the size of the alphabets Σ.

First, we will show an approximation algorithm for FREEGAME. Then, we will

show the reduction from projection games on random graphs to FREEGAME and,

thereby, complete the proof of Theorem 6.2.

6.2.1 Approximation Algorithm for FREEGAME

Approximation algorithms for FREEGAME and lower bound on their running times

have been studied in [AIM14]. However, the algorithm given in the paper does

86

6. PROJECTION GAMES ON DENSE GRAPHS

not run in polynomial time and it focuses on small additive error, which is not our

main interest2. As a result, we present a new algorithm to approximate satisfiable

FREEGAME instances, formally stated in the lemma below.

Lemma 6.2. For every positive integer i > 0, there exists an O
(
(nk)2i)-time algorithm

that, for any satisfiable FREEGAME instance, produces an assignment that satisfy at least

1/k1/i fraction of the edges.

Proof. We will prove the lemma by induction.

Let P(i) represent the following statement: there exists an O
(
(nk)2i)-time algo-

rithm APPROX-FREEGAMEi(A, B, Σ, {C(a,b)}(a,b)∈A×B, {Sb}b∈B) that takes in a satisfi-

able FREEGAME instance (A, B, Σ, {C(a,b)}(a,b)∈A×B) and a reduced alphabets set Sb

for every b ∈ B such that, if σOPT
b ∈ Sb for every b ∈ B, then the algorithm outputs

an assignment that satisfies at least 1
|B|

(
∑b∈B

1
|Sb|1/i

)
fraction of edges.

Note that P(i) implies the lemma by setting Sb = Σ for every b ∈ B.

Base Case. The algorithm APPROX-FREEGAME1(A, B, Σ, {C(a,b)}(a,b)∈A×B, {Sb}b∈B)

is a greedy algorithm that works as follows:

1. For each a ∈ A, assign it to any σ∗a ∈ Σ such that, for every b ∈ B, {σb ∈ Σ |

C(a,b)(σ
∗
a , σb) = 1} is not an empty set. If no such σ∗a exists for some a ∈ A,

abort the algorithm.

2. For each b ∈ B, assign it to σ∗b ∈ Sb that maximizes the number of edges

satisfied, i.e., maximizes ∑a∈A C(a,b)(σ
∗
a , σb).

2Note that, if we are interested in subexponential-time algorithms, we can use the approximation
algorithm from [AIM14] instead of our algorithm in Lemma 6.2 in the proof of Theorem 6.2. Doing so
gives an (nk)O(log n)-time O(1)-approximation algorithm for projection games on sufficiently dense
random graphs.

87

6. PROJECTION GAMES ON DENSE GRAPHS

It is obvious that the algorithm runs in O(n2k2) time as desired.

Now, we will show that, if σOPT
b ∈ Sb for every b ∈ B, then the algorithm gives

an assignment that satisfies at least 1
|B|

(
∑b∈B

1
|Sb|

)
fraction of edges.

First of all, observe that, if σOPT
b ∈ Sb for every b ∈ B, then the algorithm does not

abort since σ∗a = σOPT
a is a valid choice for step 1. Moreover, from our choice of σ∗b ,

the number of satisfied edges by the output assignment can be bounded as follows.

∑
b∈B

∑
a∈A

C(a,b)(σ
∗
a , σ∗b) ≥ ∑

b∈B

1
|Sb| ∑

σb∈Sb

(
∑

a∈A
C(a,b)(σ

∗
a , σb)

)

= ∑
b∈B

1
|Sb| ∑

a∈A

(
∑

σb∈Sb

C(a,b)(σ
∗
a , σb)

)

(From our choice of σ∗a) ≥ ∑
b∈B

1
|Sb| ∑

a∈A
1

= ∑
b∈B

1
|Sb|
|A|

= |A| ∑
b∈B

1
|Sb|

.

Thus, we can conclude that the algorithm outputs an assignment that satisfies at

least 1
|B|

(
∑b∈B

1
|Sb|

)
fraction of edges. As a result, P(1) is true.

Inductive Step. Let j be any positive integer. Suppose that P(j) holds.

We will now describe APPROX-FREEGAMEj+1 based on APPROX-FREEGAMEj as

follows.

1. Define R to be 1
|B|

(
∑b∈B

1
|Sb|1/(j+1)

)
, our target fraction of edges we want to

satisfy.

2. For each a ∈ A, check whether there exists any σ′a ∈ Σ such that ∑b∈B
∑σb∈Sb

C(a,b)(σ
′
a,σb)

|Sb|
≥

R|B|. If there exists such σ′a for every a ∈ A, then execute the following greedy

algorithm.

88

6. PROJECTION GAMES ON DENSE GRAPHS

(a) For every a ∈ A, assign the aforementioned σ′a to a.

(b) For each b ∈ B, assign it σ∗b ∈ Sb that maximizes the number of edges

satisfied, i.e., ∑a∈A C(a,b)(σ
′
a, σb).

3. Otherwise, if there does not exists such σ′a for some a ∈ A, then we run the

following steps instead.

(a) Let a0 ∈ A be a vertex that σ′a0
does not exist. For each σa0 ∈ Σ, execute

the following steps.

i. For each b ∈ B, set S′b to be the set of alphabet symbols in Sb that sat-

isfy (a0, b) when we assign σa0 to a0, i.e., S′b = {σb ∈ Sb | C(a0,b)(σa0 , σb) =

1}.

ii. Call APPROX-FREEGAMEj(A, B, Σ, {C(a,b)}(a,b)∈A×B, {S′b}b∈B).

(b) Output an assignment from the APPROX-FREEGAMEj calls in the previ-

ous step that satisfies maximum number of edges.

Since every step except the APPROX-FREEGAMEj(A, B, Σ, {C(a,b)}(a,b)∈A×B, {Sb}b∈B)

calls takes O((nk)2) time and we call APPROX-FREEGAMEj only k times, we can con-

clude that the running time of APPROX-FREEGAMEj+1 is O((nk)2j+2) as desired.

The only thing left to show is that the assignment output from the algorithm in-

deed satisfies at least R = 1
|B|

(
∑b∈B

1
|Sb|1/(j+1)

)
fraction of the edges. We will consider

two cases.

First, if there exists σ′a for every a ∈ A, then the greedy algorithm is executed. In

this case, the number of satisfied edges is

∑
b∈B

∑
a∈A

C(a,b)(σ
′
a, σ∗b) ≥ ∑

b∈B

1
|Sb| ∑

σb∈Sb

(
∑

a∈A
C(a,b)(σ

′
a, σb)

)

89

6. PROJECTION GAMES ON DENSE GRAPHS

= ∑
a∈A

∑
b∈B

1
|Sb|

(
∑

σb∈Sb

C(a,b)(σ
′
a, σb)

)

(From the definition of σ′a) ≥ ∑
a∈A

R|B|

= R|A||B|.

Thus, the output assignment satisfies at least R fraction of the edges as desired.

In the second case, there does not exists σ′a for some a ∈ A. From step 3b,

we can conclude that the output assignment satisfies as many edges as the output

assignment from APPROX-FREEGAMEj(A, B, Σ, {C(a,b)}(a,b)∈A×B, {S′b}b∈B) call when

σa0 = σOPT
a0

.

Observe that, when σa0 = σOPT
a0

, then σOPT
b remains in S′b for every b ∈ B. As a re-

sult, from the inductive hypothesis, APPROX-FREEGAMEj(A, B, Σ, {C(a,b)}(a,b)∈A×B, {S′b}b∈B)

outputs an assignment that satisfies at least R′ = 1
|B|

(
∑b∈B

1
|S′b|1/j

)
fraction of edges.

Moreover, we can derive the following inequalities:

(R′)j

(
1
|B| ∑

b∈B

∑σb∈Sb
C(a0,b)(σ

OPT
a0

, σb)

|Sb|

)
=

(
1
|B|

(
∑
b∈B

1
|S′b|1/j

))j(
1
|B| ∑

b∈B

|S′b|
|Sb|

)

=
1
|B|j+1

(
∑
b∈B

1
|S′b|1/j

)j(
∑
b∈B

|S′b|
|Sb|

)

(From definition of S′b) =
1
|B|j+1

(
∑
b∈B

1
|S′b|1/j

)j(
∑
b∈B

|S′b|
|Sb|

)

(From Hölder’s inequality) ≥ 1
|B|j+1

(
∑
b∈B

1
|S′b|1/(j+1)

)j+1

= Rj+1.

Since there does not exists σ′a0
, we can conclude that 1

|B| ∑b∈B
∑σb∈Sb

C(a0,b)(σ
OPT
a0

,σb)

|Sb|
≤

R. Hence, we can conclude that R′ ≥ R. In other words, the assignment output from

90

6. PROJECTION GAMES ON DENSE GRAPHS

the algorithm satisfies at least R fraction of the edges.

Thus, we can conclude that P(j + 1) is true. As a result, P(i) is true for every

positive integer i, which completes the proof for Lemma 6.2.

6.2.2 Reduction from Projection Games on Dense Random Graphs

to FREEGAME

In this subsection, we will show the reduction from projection games on dense ran-

dom graphs to FREEGAME. We then use this reduction together with the approxi-

mation algorithm for FREEGAME presented above to prove Theorem 6.2.

Before we give the reduction, we will state a couple of lemmas regarding the

standard properties of random graphs. We will not give full proofs for the lemmas

since they are trivial via standard Chernoff bounds.

Lemma 6.3. When p ≥ 10
√

log n/n, with probability 1 − o(1), every vertex in G =

G(n/2, n/2, p) has degree between np/10 and 10np.

Lemma 6.4. In G = G(n/2, n/2, p) with p ≥ 10
√

log n/n, with probability 1− o(1),

every pair of vertices a, a′ on the left has at least np2/10 common neighbors.

Now, we will give the reduction from projection games on dense random graphs

to FREEGAME, which can be stated formally as follows.

Lemma 6.5. With probability 1− o(1), there exists a polynomial-time reduction from a sat-

isfiable projection game instance (A, B, E, ΣA, ΣB, {πe}e∈E) where G = (A, B, E) is sam-

91

6. PROJECTION GAMES ON DENSE GRAPHS

pled according to G(n/2, n/2, p) to a satisfiable FREEGAME instance (A′, B′, Σ, {C(a,b)}(a,b)∈A′×B′)

such that

1. |A′|, |B′| ≤ |A| and |Σ| ≤ |ΣA|, and

2. For any 1 ≥ ε ≥ 0, given an assignment ϕ : A′ ∪ B′ → Σ that satisfies ε fraction

of edges of the FREEGAME instance, one can determine an assignment ϕA : A →

ΣA, ϕB : B → ΣB for the projection game instance that satisfies Ω(ε) fraction of

edges in polynomial time.

Proof. The reduction from a projection game instance (A, B, E, ΣA, ΣB, {πe}e∈E) to a

FREEGAME instance (A′, B′, Σ, {C(a,b)}(a,b)∈A′×B′) proceeds as follows.

1. Partition A into two sets A1, A2 of equal sizes. Then, set A′ ← A1 and B′ ← A2.

2. Let Σ be ΣA.

3. For each a1 ∈ A1, a2 ∈ A2, σa1 , σa2 ∈ ΣA, let C(a1,a2)(σa1 , σa2) to be one if and

only if these two assignments do not assign any b ∈ Γ(a1) ∩ Γ(a2) to different

assignments. In other words, C(a1,a2)(σa1 , σa2) = 1 if and only if π(a1,b)(σa1) =

π(a2,b)(σa2) for every b ∈ Γ(a1) ∩ Γ(a2).

It is obvious that the reduction runs in polynomial time and that the first con-

dition holds. Moreover, observe that the resulting FREEGAME is satisfiable by as-

signing the corresponding optimal assignment from the original projection games

instance to each vertex of the FREEGAME instance. Thus, it is enough for us to prove

that, with probability 1− o(1), the second condition is indeed true.

To show this, we present a simple algorithm that, given an assignment ϕ : A′ ∪

B′ → Σ that satisfies ε fraction of edges of the FREEGAME instance, output an as-

signment ϕA : A → ΣA, ϕB : B → ΣB for the projection game instance that satisfies

Ω(ε) fraction of edges. The algorithm works greedily as follows.

92

6. PROJECTION GAMES ON DENSE GRAPHS

1. For each a ∈ A, let ϕA(a)← ϕ(a).

2. For each b ∈ B, pick ϕB(b) = σ∗b to be the assignment to b that satisfies maxi-

mum number of edges, i.e., maximize |{a ∈ Γ(b) | π(a,b)(ϕA(a)) = σb}|.

Trivially, the algorithm runs in polynomial time. Thus, we only need to prove

that, with probability 1− o(1), the produced assignment satisfies at least Ω(ε) frac-

tion of edges of the projection game. To prove this, we will assume the properties

from Lemma 6.3 and Lemma 6.4, which holds with probability 1− o(1).

The number of satisfied edges can be rearranged as follows.

∑
b∈B

∑
a∈Γ(b)

1π(a,b)(ϕA(a))=ϕB(b)

= ∑
b∈B

∑
a∈Γ(b)

1π(a,b)(ϕ(a))=σ∗b

= ∑
b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ(a))=σ∗b

 db

= ∑

b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ(a))=σ∗b

 ∑
σb∈ΣB

∑
a∈Γ(b)

1π(a,b)(ϕ(a))=σb

= ∑

b∈B

 1
db

∑
σb∈ΣB

 ∑
a∈Γ(b)

1π(a,b)(ϕ(a))=σ∗b

 ∑
a∈Γ(b)

1π(a,b)(ϕ(a))=σb

(From the choice of σ∗b) ≥ ∑

b∈B

 1
db

∑
σb∈ΣB

 ∑
a∈Γ(b)

1π(a,b)(ϕ(a))=σb

2

= ∑
b∈B

 1
db

∑
σb∈ΣB

∑
a,a′∈Γ(b)

1π(a,b)(ϕ(a))=σb
1π(a′ ,b)(ϕ(a′))=σb

= ∑

b∈B

 1
db

∑
a,a′∈Γ(b)

∑
σb∈ΣB

1π(a,b)(ϕ(a))=σb
1π(a′ ,b)(ϕ(a′))=σb

Observe that ∑σb∈ΣB

1π(a,b)(ϕ(a))=σb
1π(a′ ,b)(ϕ(a′))=σb

= 1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′)). Thus,

93

6. PROJECTION GAMES ON DENSE GRAPHS

the number of satisfied edges is at least

∑
b∈B

 1
db

∑
a,a′∈Γ(b)

1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′))

 .

Moreover, from Lemma 6.3, db ≤ 10np for every b ∈ B with probability 1− o(1).

This implies that, with probability 1− o(1), the output assignment satisfied at least

1
10np ∑

b∈B
∑

a,a′∈Γ(b)
1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′))

edges.

We can further reorganize this quantity as follows.

1
10np ∑

b∈B
∑

a,a′∈Γ(b)
1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′)) ≥

1
10np ∑

b∈B
∑

(a,a′)∈A′×B′
s.t. a,a′∈Γ(b)

1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′))

=
1

10np ∑
(a,a′)∈A′×B′

∑
b∈Γ(a)∩Γ(a′)

1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′)).

Now, observe that, from its definition, if C(a,a′)(ϕ(a), ϕ(a′)) is one, then 1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′))

is also one for every b ∈ Γ(a) ∩ Γ(a′). Thus, we have

1
10np ∑

(a,a′)∈A′×B′
∑

b∈Γ(a)∩Γ(a′)
1π(a,b)(ϕ(a))=π(a′ ,b)(ϕ(a′))

≥ 1
10np ∑

(a,a′)∈A′×B′
∑

b∈Γ(a)∩Γ(a′)
C(a,a′)(ϕ(a), ϕ(a′))

=
1

10np ∑
(a,a′)∈A′×B′

|Γ(a) ∩ Γ(a′)|C(a,a′)(ϕ(a), ϕ(a′)).

From Lemma 6.4, with probability 1 − o(1), |Γ(a) ∩ Γ(a′)| ≥ np2/10 for every

(a, a′) ∈ A′ × B′. Hence, we can conclude that the above expression is, with proba-

94

6. PROJECTION GAMES ON DENSE GRAPHS

bility 1− o(1), at least

1
10np ∑

(a,a′)∈A′×B′

np2

10
C(a,a′)(ϕ(a), ϕ(a′)) =

p
100 ∑

(a,a′)∈A′×B′
C(a,a′)(ϕ(a), ϕ(a′)).

Next, note that ∑(a,a′)∈A′×B′ C(a,a′)(ϕ(a), ϕ(a′)) is the number of edges satisfied

by ϕ in the FREEGAME instance, which is at least ε|A′||B′| = εn2/16. Thus, we have

p
100 ∑

(a,a′)∈A′×B′
C(a,a′)(ϕ(a), ϕ(a′)) ≥ εn2p

1600
.

Finally, again from Lemma 6.3, the total number of edges is at most 5n2p with

probability 1− o(1). As a result, with probability 1− o(1), the algorithm outputs

an assignment that satisfies at least ε
8000 = Ω(ε) fraction of edges of the projection

game instance, which concludes the proof of this lemma.

Finally, we give a proof for Theorem 6.2 below.

Proof of Theorem 6.2. The proof is simple. First, we use the reduction from Lemma 6.5

to transform a projection game instance on dense graph to a FREEGAME instance.

Since the approximation ratio deteriorates by only constant factor with probability

1− o(1) in the reduction, we can use the approximation algorithm from Lemma 6.2

with i = d1/εe, which gives us an assignment that satisfies at least O(1/kε) fraction

of the edges as desired.

95

6. PROJECTION GAMES ON DENSE GRAPHS

96

7 Future Work

Even though our work presented in this thesis has helped us gain more insight into

approximating projection games, the work is far from finished. The biggest question

remained is whether the PGC holds. Even though we are able to achieve polynomial

lower bounds on integrality gap for the Lasserre SDP after polynomial rounds, it

is unlikely that the results can be easily translated to NP-hardness results. New

techniques must be introduced in order to prove or disprove the Projection Games

Conjecture.

A seemingly easier question is how hard LABEL COVER is under the computa-

tional model defined based on the Lasserre hierarchy. As shown in Chapter 4, after

NΩ(ε) rounds, the integrality gap still remains N1/8−ε. However, our approximation

algorithm only achieves an approximation ratio of O(N1/4) in polynomial time. Ide-

ally, we would like these the two ratios to match. In order to do so, we need to find

a better polynomial-time approximation algorithm, or a better lower bound for the

integrality gap, or both.

On the approximation algorithm front, Prof. Eden Chlamtac, Dr. Aravindan Vi-

jayaraghavan, the author’s advisor and the author are exploring an approach based

on counting constant-size witnesses. A similar approach yielded an approximation

algorithm for the DENSEST k-SUBGRAPH [BCC+10], and thus we hope to get a better

and simpler approximation algorithm for projection games as well.

97

7. FUTURE WORK

On the integrality gap side, an interesting and most obvious direction is to try to

tighten up the analysis of the completeness. More specifically, it may be possible to

tighten up Lemma 4.5 from [BCV+12]. It is also worth noting that the analysis for

LABEL COVER instance does not need the set of variables to be random and, with

some additional analysis, this likely applies for DENSEST k-SUBGRAPH as well. This

means that, given K, n, β, s, it is enough for us to give explicit construction for the

sets S1, . . . , Sβn ⊆ [n], each of size K, such that the intersection of every s different

sets contain more than (K − D/2)s elements. Can we find such sets with s that is

significantly larger than ηn specified in Lemma 4.4?

Finally, another interesting question is whether there is a deeper connection be-

tween LABEL COVER and DENSEST k-SUBGRAPH. At a glance, these two problem

seems very similar, if we consider the label-extended graph of a projection games in-

stance where each node is a tuple of an original vertex in G together with an assign-

ment to that vertex and each edge is a “satisfied” relation, then projection games’

goal is to find the densest n-subgraph with an additional constraint that each vertex

in the subgraph must correspond to different vertex in G. Regarding the connec-

tion between the two problems, it was shown in [CHK09] that an approximation

algorithm for a variant of LABEL COVER where the constraints are not limited to

projections can be turned to an approximation algorithm for DENSEST k-SUBGRAPH

with asymptotically as good approximation ratio. Moreover, as seen in Chapter 4,

the technique to create an integrality gap in the Lasserre hierarchy translates from

DENSEST k-SUBGRAPH to LABEL COVER. Furthermore, as discussed above, it does

seem that a technique that is used for approximating DENSEST k-SUBGRAPH may be

useful for approximating LABEL COVER too. All this evidence leads to the question

of whether we can find a deeper relationship between the two problems, such as a

PGC-hardness result for DENSEST k-SUBGRAPH.

98

Bibliography

[AAM+11] N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein.

Inapproximability of densest κ-subgraph from average-case hardness.

Manuscript, 2011.

[AdlVKK03] N. Alon, W. F. de la Vega, R. Kannan, and M. Karpinski. Random sam-

pling and approximation of max-csps. J. Comput. Syst. Sci., 67(2):212–

243, September 2003.

[AHI02] Y. Asahiro, R. Hassin, and K. Iwama. Complexity of finding dense

subgraphs. Discrete Appl. Math., 121(1-3):15–26, September 2002.

[AIM14] S. Aaronson, R. Impagliazzo, and D. Moshkovitz. AM with multiple

Merlins. In Computational Complexity (CCC), 2014 IEEE 29th Conference

on, pages 44–55, June 2014.

[AKK+08] S. Arora, S. A. Khot, A. Kolla, D. Steurer, M. Tulsiani, and N. Vishnoi.

Unique games on expanding constraint graphs are easy: extended ab-

stract. In Proc. 40th ACM Symp. on Theory of Computing, pages 21–28,

2008.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof

verification and the hardness of approximation problems. Journal of

the ACM, 45(3):501–555, 1998.

99

BIBLIOGRAPHY

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: a new charac-

terization of NP. Journal of the ACM, 45(1):70–122, 1998.

[Bak94] B. S. Baker. Approximation algorithms for NP-complete problems on

planar graphs. J. ACM, 41(1):153–180, January 1994.

[BCC+10] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaragha-

van. Detecting high log-densities: An O(n1/4) approximation for

densest k-subgraph. In Proceedings of the Forty-second ACM Symposium

on Theory of Computing, STOC ’10, pages 201–210, New York, NY, USA,

2010. ACM.

[BCV+12] A. Bhaskara, M. Charikar, A. Vijayaraghavan, V. Guruswami, and

Y. Zhou. Polynomial integrality gaps for strong SDP relaxations of

densest k-subgraph. In Proceedings of the Twenty-third Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’12, pages 388–405.

SIAM, 2012.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time

has two-prover interactive protocols. Computational Complexity, 1:3–40,

1991.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking compu-

tations in polylogarithmic time. In Proc. 23rd ACM Symp. on Theory of

Computing, pages 21–32, 1991.

[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and

nonapproximability—towards tight results. SIAM Journal on Comput-

ing, 27(3):804–915, 1998.

[BHHS11] B. Barak, M. Hardt, T. Holenstein, and D. Steurer. Subsampling math-

ematical relaxations and average-case complexity. In Proceedings of the

100

BIBLIOGRAPHY

Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’11, pages 512–531. SIAM, 2011.

[BRS11] B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite pro-

gramming hierarchies via global correlation. In Proceedings of the 2011

IEEE 52Nd Annual Symposium on Foundations of Computer Science, FOCS

’11, pages 472–481, Washington, DC, USA, 2011. IEEE Computer Soci-

ety.

[CHK09] M. Charikar, M.T. Hajiaghayi, and H. Karloff. Improved approxima-

tion algorithms for label cover problems. In In ESA, pages 23–34.

Springer, 2009.

[CHKX06] J. Chen, X. Huang, I.A. Kanj, and G. Xia. Strong computational lower

bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–

1367, December 2006.

[Din07] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM,

54(3):12, 2007.

[DKR12] M. Dinitz, G. Kortsarz, and R. Raz. Label cover instances with large

girth and the hardness of approximating basic k-spanner. In Artur

Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, ed-

itors, Automata, Languages, and Programming, volume 7391 of Lecture

Notes in Computer Science, pages 290–301. Springer Berlin Heidelberg,

2012.

[DS13] I. Dinur and D. Steurer. Analytical approach to parallel repetition.

Technical Report 1305.1979, arXiv, 2013.

[Epp00] D. Eppstein. Diameter and treewidth in minor-closed graph families.

Algorithmica, 27(3):275–291, 2000.

101

BIBLIOGRAPHY

[Fei98] U. Feige. A threshold of ln n for approximating set cover. Journal of the

ACM, 45(4):634–652, 1998.

[Fei02] U. Feige. Relations between average case complexity and approxima-

tion complexity. In Proceedings of the Thiry-fourth Annual ACM Sympo-

sium on Theory of Computing, STOC ’02, pages 534–543, New York, NY,

USA, 2002. ACM.

[FL01] U. Feige and M. Langberg. Approximation algorithms for maximiza-

tion problems arising in graph partitioning. J. Algorithms, 41(2):174–

211, November 2001.

[FPK01] U. Feige, D. Peleg, and G. Kortsarz. The dense k -subgraph problem.

Algorithmica, 29(3):410–421, 2001.

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algo-

rithms for maximum cut and satisfiability problems using semidefi-

nite programming. J. ACM, 42(6):1115–1145, November 1995.

[Hås01] J. Håstad. Some optimal inapproximability results. Journal of the ACM,

48(4):798–859, 2001.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association, 58(301):13–30,

March 1963.

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, December

2001.

[Kho04] S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph

and bipartite clique. In Proceedings of the 45th Annual IEEE Symposium

102

BIBLIOGRAPHY

on Foundations of Computer Science, FOCS ’04, pages 136–145, Washing-

ton, DC, USA, 2004. IEEE Computer Society.

[Kle05] P. N. Klein. A linear-time approximation scheme for TSP for planar

weighted graphs. In In Proceedings, 46th IEEE Symposium on Founda-

tions of Computer Science, pages 146–155, 2005.

[Las01a] J. B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 pro-

grams. In Proceedings of the 8th International IPCO Conference on Integer

Programming and Combinatorial Optimization, pages 293–303, London,

UK, UK, 2001. Springer-Verlag.

[Las01b] J. B. Lasserre. Global optimization with polynomials and the problem

of moments. SIAM Journal on Optimization, 11:796–817, 2001.

[Lau03] M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver,

and Lasserre relaxations for 0–1 programming. Math. Oper. Res.,

28(3):470–496, July 2003.

[LS91] L. Lovsz and A. Schrijver. Cones of matrices and set-functions and 0-1

optimization. SIAM Journal on Optimization, 1:166–190, 1991.

[LT79] R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 36(2):177–189, 1979.

[LY94] C. Lund and M. Yannakakis. On the hardness of approximating mini-

mization problems. Journal of the ACM, 41(5):960–981, September 1994.

[Mar07] D. Marx. On the optimality of planar and geometric approximation

schemes. In Foundations of Computer Science, 2007. FOCS ’07. 48th An-

nual IEEE Symposium on, pages 338–348, Oct 2007.

103

BIBLIOGRAPHY

[Mar12] D. Marx. A tight lower bound for planar multiway cut with fixed

number of terminals. In Proceedings of the 39th International Colloquium

Conference on Automata, Languages, and Programming - Volume Part I,

ICALP’12, pages 677–688, Berlin, Heidelberg, 2012. Springer-Verlag.

[MM13] P. Manurangsi and D. Moshkovitz. Improved approximation algo-

rithms for projection games. In Algorithms ESA 2013, volume 8125 of

Lecture Notes in Computer Science, pages 683–694. Springer Berlin Hei-

delberg, 2013.

[Mos12] D. Moshkovitz. The projection games conjecture and the NP-hardness

of ln n-approximating set-cover. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques - 15th Interna-

tional Workshop, APPROX 2012, volume 7408, pages 276–287, 2012.

[MR10] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error.

Journal of the ACM, 57(5), 2010.

[Pel07] D. Peleg. Approximation algorithms for the label-cover max and red-

blue set cover problems. J. of Discrete Algorithms, 5(1):55–64, March

2007.

[Raz98] R. Raz. A parallel repetition theorem. In SIAM Journal on Computing,

volume 27, pages 763–803, 1998.

[Rot13] T. Rothvoß. The Lasserre hierarchy in approximation algorithms. Lec-

ture Notes for the MAPSP 2013 Tutorial, 2013.

[RS10] P. Raghavendra and D. Steurer. Graph expansion and the unique

games conjecture. In Proceedings of the Forty-second ACM Symposium on

Theory of Computing, STOC ’10, pages 755–764, New York, NY, USA,

2010. ACM.

104

BIBLIOGRAPHY

[SA90] H.D. Sherali and W.P. Adams. A hierarchy of relaxation between the

continuous and convex hull representations. SIAM J. Discret. Math.,

3(3):411–430, May 1990.

[SW98] A. Srivastav and K. Wolf. Finding dense subgraphs with semidefinite

programming. In Proceedings of the International Workshop on Approx-

imation Algorithms for Combinatorial Optimization, APPROX ’98, pages

181–191, London, UK, UK, 1998. Springer-Verlag.

[Tul09] M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In

Proceedings of the Forty-first Annual ACM Symposium on Theory of Com-

puting, STOC ’09, pages 303–312, New York, NY, USA, 2009. ACM.

105

BIBLIOGRAPHY

106

A Appendix

A.1 Polynomial-time Approximation Algorithms for Pro-

jection Games for Nonuniform Preimage Sizes

In this section, we will describe a polynomial time O((nA|ΣA|)
1
4)-approximation al-

gorithm for satisfiable projection games, including those with nonuniform preimage

sizes.

It is not hard to see that, if the pe’s are not all equal, then “know your neighbors’

neighbors” algorithm does not necessarily end up with at least hmax/p fraction of

satisfied edges anymore. The reason is that, for a vertex a with large |Γ2(a)| and any

assignment σa ∈ ΣA to the vertex, the number of preimages in π−1
e (π(a,b)(σa)) might

be large for each neighbor b of a and each edge e that has an endpoint b. We solve

this issue, by instead of using all the edges for the algorithm, only using “good”

edges whose preimage sizes for the optimal assignments are at most a particular

value. However, this definition of “good” does not only depend on an edge but also

on the assignment to the edge’s endpoint in B, which means that we need to have

some extra definitions to address the generalization of h and p as follows.

107

APPENDIX A. APPENDIX

σmax
b for each b ∈ B, denotes σb ∈ Σb that maximizes the value of

∑a∈Γ(b) |π−1
(a,b)(σb)|.

pmax
e for each edge e = (a, b), denotes

∣∣π−1
e (σmax

b)
∣∣, the size of the

preimage of e if b is assigned σmax
b .

pmax denotes the average of pmax
e over all e ∈ E, i.e. 1

|E| ∑e∈E pmax
e .

We will use 2pmax as a thershold for determining “good” edges

as we shall see below.

E(S) for each set of vertices S, denotes the set of edges with at least

one endpoint in S, i.e. {(u, v) ∈ E | u ∈ S or v ∈ S}.

Emax
N denotes the maximum number of edges coming out of Γ(a) for

all a ∈ A, i.e., maxa∈A{|E(Γ(a))|}.

E′ denotes the set of all edges e ∈ E such that pe ≤ 2pmax, i.e.,

E′ = {e ∈ E | pe ≤ 2pmax}.

G′ denotes a subgraph of G with its edges being E′.

E′(S) for each set of vertices S, denotes the set of all edges in E′ with

at least one endpoint in S, i.e., {(u, v) ∈ E′ | u ∈ S or v ∈ S}.

E′S for each set of vertices S, denotes the set of edges with both

endpoints in S, i.e. E′S = {(a, b) ∈ E′ | a ∈ S and b ∈ S}.

Γ′(u) for each vertex u, denotes the set of vertices that are neighbors of

u in the graph G′.

Γ′(U) for each set of vertices U, denotes the set of vertices that are

neighbors of at least one vertex in U in the graph G′.

Γ′2(u) for each vertex u, denotes Γ′(Γ′(u)), the set of neighbors of

neighbors of u in G′.

Σ∗A(a) for each a ∈ A, denotes the set of all assignments σa to a that, for

every b ∈ B, there exists an assignment σb such that, if a is assigned σa,

108

APPENDIX A. APPENDIX

b is assigned σb and all a’s neighbors are assigned according to a, then

there are still possible assignments left for all vertices in Γ2(a) ∩ Γ(b),

i.e., {σa ∈ ΣA | for each b ∈ B, there is σb ∈ ΣB such that, for all

a′ ∈ Γ2(a) ∩ Γ(b),
(⋂

b′∈Γ(a′)∩Γ(a) π−1
(a′,b′)(π(a,b′)(σa))

)
∩ π−1

(a′,b)(σb) 6= ∅}.

Note that σOPT
a ∈ Σ∗A(a). In other words, if we replace ΣA with Σ∗A(a)

for each a ∈ A, then the resulting instance is still satisfiable.

Γ∗(a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes {b ∈ Γ(a) | |π−1
(a′,b)(π(a,b)(σa))|

≤ 2pmax for some a′ ∈ Γ(b)}. Provided that we assign σa to a, this set

contains all the neighbors of a with at least one good edge as we

discussed above. Note that π(a,b)(σa) is the assignment to b

corresponding to the assignment of a.

Γ∗2(a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes all the neighbors of neighbors

of a with at least one good edge with another endpoint in Γ(a) when a

is assigned σa, i.e.,
⋃

b∈Γ∗(a,σa){a
′ ∈ Γ(b) | |π−1

(a′,b)(π(a,b)(σa))| ≤ 2pmax}.

h∗(a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes |E(Γ∗2(a, σa))|. In other words,

h∗(a, σa) represents how well Γ∗2(a, σa) spans the graph G.

E∗(a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes {(a′, b) ∈ E | b ∈ Γ∗(a, σa),

a′ ∈ Γ∗2(a, σa) and |π−1
(a′,b)(π(a,b)(σa))| ≤ 2pmax}. When a is assigned σa,

this is the set of all good edges with one endpoint in Γ(a).

h∗max denotes maxa∈A,σa∈Σ∗A(a) h∗(a, σa).

From the definitions above, we can derive two very useful observations as stated

below.

Observation A.1. |E′| ≥ |E|2

Proof. Suppose for the sake of contradiction that |E′| < |E|
2 . From the definition of

E′, this means that, for more than |E|2 edges e, we have pe > 2pmax. As a result, we

109

APPENDIX A. APPENDIX

can conclude that

|E|pmax < ∑
e∈E

pe

= ∑
b∈B

∑
a∈Γ(b)

p(a,b)

= ∑
b∈B

∑
a∈Γ(b)

|π−1
(a,b)(σ

OPT
b)|

≤ ∑
b∈B

∑
a∈Γ(b)

|π−1
(a,b)(σ

max
b)|

= |E|pmax.

This is a contradiction. Hence, |E′| ≥ |E|2 .

Observation A.2. If σa = σOPT
a , then Γ∗(a, σa) = Γ′(a), Γ∗2(a, σa) = Γ′2(a) and E∗(a, σa) =

E′(Γ′(a)).

This observation is obvious since, when pluging in σOPT
a , each pair of definitions

of Γ∗(a, σa) and Γ′(a), Γ∗2(a, σa) and Γ′2(a), and E∗(a, σa) and E′(Γ′(a)) becomes the

same.

Note also that from its definition, G′ is the graph with good edges when the opti-

mal assignments are assigned to B. Unfortunately, we do not know the optimal as-

signments to B and, thus, do not know how to find G′ in polynomial time. However,

directly from the definitions above, σmax
b , pmax

e , pmax, Emax
N , Σ∗A(a), Γ∗(a, σa), Γ∗2(a, σa),

h∗(a, σa) and h∗max can be computed in polynomial time. These notations will be

used in the upcoming algorithms. Other defined notations we do not know how to

compute in polynomial time and will only be used in the analyses.

For the nonuniform preimage sizes case, we use five algorithms as opposed to

four algorithms used in uniform case. We will proceed to describe those five al-

110

APPENDIX A. APPENDIX

gorithms. In the end, by using the best of these five, we are able to produce a

polynomial-time O
(
(nA|ΣA|)1/4)-approximation algorithm as desired.

Now, we will list the algorithms along with their rough descriptions; detailed

description and analysis of each algorithm will follow later on:

1. Satisfy one neighbor – |E|/nB-approximation. Assign each vertex in A an

arbitrary assignment. Each vertex in B is then assigned to satisfy one of its

neighboring edges. This algorithm satisfies at least nB edges.

2. Greedy assignment – |ΣA|/pmax-approximation. Each vertex in B is assigned

an assignment σb ∈ ΣB that has the largest number of preimages across neigh-

boring edges ∑a∈Γ(b) |π−1
(a,b)(σb)|. Each vertex in A is then assigned so that it

satisfies as many edges as possible. This algorithm works well when ΣB as-

signments have many preimages.

3. Know your neighbors – |E|/Emax
N -approximation. For a vertex a0 ∈ A, pick an

element of Σ∗A(a0) and assign it to a0. Assign its neighbors Γ(a0) accordingly.

Then, for each node in Γ2(a0), we find one assignment that satisfies all the

edges between it and vertices in Γ(a0).

4. Know your neighbors’ neighbors – |E|pmax/h∗max-approximation. For a ver-

tex a0 ∈ A, we go over all possible assignments in Σ∗A(a) to it. For each as-

signment, we assign its neighbors Γ(a0) accordingly. Then, for each node in

Γ2(a0), we keep only the assignments that satisfy all the edges between it and

vertices in Γ(a0).

When a0 is assigned the optimal assignment, the number of choices for each

node in Γ∗2(a0) is reduced to at most 2pmax possibilities. In this way, we can

satisfy 1/2pmax fraction of the edges that touch Γ∗2(a0). This satisfies many

edges when there exists a0 ∈ A such that Γ∗2(a0) spans many edges.

111

APPENDIX A. APPENDIX

5. Divide and Conquer – O(nAnB(h∗max + Emax
N)/|E|2)-approximation. For ev-

ery a ∈ A, we can fully satisfy Γ∗(a)∪ Γ∗2(a) efficiently, and give up on satisfy-

ing other edges that touch this subset. Repeating this process, we can satisfy

Ω(|E|2/(nAnB(h∗max + Emax
N))) fraction of the edges.

Aside from the new “know your neighbors” algorithm, the main idea of each

algorithm remains the same as in the uniform preimage sizes case. All the details of

each algorithm are described below.

A.1.1 Satisfy One Neighbor Algorithm.

The algorithm is exactly the same as that of the uniform case.

Lemma A.1. For satisfiable instances of projection games, an assignment that satisfies at

least nB edges can be found in polynomial time, which gives the approximation ratio of |E|nB
.

Proof. The proof is exactly the same as that of Lemma 3.1.

A.1.2 Greedy Assignment Algorithm.

The algorithm is exactly the same as that of the uniform case.

Lemma A.2. There exists a polynomial-time |ΣA|
pmax -approximation algorithm for satisfiable

instances of projection games.

Proof. The proof of this lemma differs only slightly from the proof of Lemma 3.2.

The algorithm works as follows:

1. For each b, assign it σ∗b that maximizes ∑a∈Γ(b) |π−1
(a,b)(σb)|.

2. For each a, assign it σ∗a that maximizes the number of edges satisfied, |{b ∈

Γ(a) | π(a,b)(σa) = σ∗b }|.

112

APPENDIX A. APPENDIX

Let e∗ be the number of edges that get satisfied by this algorithm. We have

e∗ = ∑
a∈A
|{b ∈ Γ(a) | π(a,b)(σ

∗
a) = σ∗b }|.

By the second step, for each a ∈ A, the number of edges satisfied is at least an

average of the number of edges satisfied over all assignments in ΣA. This can be

written as follows.

e∗ = ∑
a∈A
|{b ∈ Γ(a) | π(a,b)(σ

∗
a) = σ∗b }|

≥ ∑
a∈A

∑σa∈ΣA
|{b ∈ Γ(a) | π(a,b)(σa) = σ∗b }|

|ΣA|

= ∑
a∈A

∑b∈Γ(a) |π−1
(a,b)(σ

∗
b)|

|ΣA|

=
1
|ΣA| ∑

a∈A
∑

b∈Γ(a)
|π−1

(a,b)(σ
∗
b)|.

From the definition of σmax
b , we can conclude that σ∗b = σmax

b for all b ∈ B. As a

result, we can conclude that

e∗ ≥ 1
|ΣA| ∑

a∈A
∑

b∈Γ(a)
|π−1

(a,b)(σ
∗
b)|

=
1
|ΣA| ∑

a∈A
∑

b∈Γ(a)
|π−1

(a,b)(σ
max
b)|

=
1
|ΣA| ∑

a∈A
∑

b∈Γ(a)
pmax
(a,b)

=
1
|ΣA|
|E||pmax|

=
pmax

|ΣA|
|E|.

113

APPENDIX A. APPENDIX

Hence, this algorithm satisfies at least pmax

|ΣA|
fraction of the edges, which concludes

our proof.

A.1.3 Know Your Neighbors Algorithm

The next algorithm shows that one can satisfy all the edges with one endpoint in the

neighbors of a vertex a0 ∈ A.

Lemma A.3. For each a0 ∈ A, there exists a polynomial time |E|
|E(Γ(a0))|

-approximation

algorithm for satisfiable instances of projection games.

Proof. The algorithm works as follows:

1. Pick any assignment σa0 ∈ Σ∗A(a0) and assign it to a0:

2. Assign σb = π(a0,b)(σa0) to b for all b ∈ Γ(a0).

3. For each a ∈ Γ2(a0), find the set of plausible assignments to a, i.e., Sa = {σa ∈

ΣA | ∀b ∈ Γ(a) ∩ Γ(a0), π(a,b)(σa) = σb}. Pick one σ∗a from this set and assign

it to a. Note that Sa 6= ∅ from the definition of Σ∗A(a0).

4. Assign any assignment to unassigned vertices.

5. Output the assignment {σ∗a }a∈A, {σ∗b }b∈B from the previous step.

From step 3, we can conclude that all the edges in E(Γ(a0)) get statisfied. This

yields |E|
|E(Γ(a0))|

approximation ratio as desired.

A.1.4 Know Your Neighbors’ Neighbors Algorithm

The next algorithm shows that if the neighbors of neighbors of a vertex a0 ∈ A

expand, then one can satisfy many of the (many!) edges that touch the neighbors of

114

APPENDIX A. APPENDIX

a0’s neighbors. While the core idea is similar to the uniform version, in this version,

we will need to consider Γ∗2(a0, σa0) instead of Γ2(a0) in order to ensure that the

number of possible choices left for each vertex in this set is at most 2pmax.

Lemma A.4. For each a0 ∈ A and σa0 ∈ Σ∗A(a0), there exists a polynomial-time O
(
|E|pmax

h∗(a0,σa0)

)
-

approximation algorithm for satisfiable instances of projection games.

Proof. To prove Lemma A.4, we first fix a0 ∈ A and σa0 ∈ Σ∗A(a0). We will describe

an algorithm that satisfies Ω
(

h∗(a0,σa0)

pmax

)
edges, which implies the lemma.

The algorithm works as follows:

1. Assign σb = π(a0,b)(σa0) to b for all b ∈ Γ(a0).

2. For each a ∈ A, find the set of plausible assignments to a, i.e., Sa = {σa ∈ ΣA |

∀b ∈ Γ(a) ∩ Γ(a0), π(a,b)(σa) = σb}. Note that Sa 6= ∅ from the definition of

Σ∗A(a0).

3. For all b ∈ B, pick an assignment σ∗b for b that maximizes the average number

of satisfied edges over all assignments in Sa to vertices a in Γ(b) ∩ Γ∗2(a0), i.e.,

maximizes ∑a∈Γ(b)∩Γ∗2(a0) |π
−1
(a,b)(σb) ∩ Sa|.

4. For each vertex a ∈ A, pick an assignment σ∗a ∈ Sa that maximizes the number

of satisfied edges, |{b ∈ Γ(a) | π(a,b)(σa) = σ∗b }| over all σa ∈ Sa.

We will prove that this algorithm indeed satisfies at least
h∗(a0,σa0)

pmax edges.

Let e∗ be the number of edges satisfied by the algorithm. We have

e∗ = ∑
a∈A
|{b ∈ Γ(a) | π(a,b)(σ

∗
a) = σ∗b }|.

Since for each a ∈ A, the assignment σ∗a is chosen to maximize the number of

edges satisfied, we can conclude that the number of edges satisfied by selecting σ∗a

is at least the average of the number of edges satisfied over all σa ∈ Sa.

115

APPENDIX A. APPENDIX

As a result, we can conclude that

e∗ ≥ ∑
a∈A

∑σa∈Sa |{b ∈ Γ(a) | π(a,b)(σa) = σ∗b }|
|Sa|

= ∑
a∈A

∑σa∈Sa ∑b∈Γ(a) 1π(a,b)(σa)=σ∗b

|Sa|

= ∑
a∈A

∑b∈Γ(a) ∑σa∈Sa 1π(a,b)(σa)=σ∗b

|Sa|

= ∑
a∈A

∑b∈Γ(a) |π−1
(a,b)(σ

∗
b) ∩ Sa|

|Sa|

= ∑
b∈B

∑
a∈Γ(b)

|π−1
(a,b)(σ

∗
b) ∩ Sa|
|Sa|

≥ ∑
b∈B

∑
a∈Γ(b)∩Γ∗2(a0,σa0)

|π−1
(a,b)(σ

∗
b) ∩ Sa|
|Sa|

From the definition of Γ∗2(a0, σa0), we can conclude that, for each a ∈ Γ∗2(a0, σa0),

there exists b′ ∈ Γ∗(a0) ∩ Γ(a) such that |π−1
(a,b′)(σb′)| ≤ 2pmax. Moreover, from the

definition of Sa, we have Sa ⊆ π−1
(a,b′)(σb′). As a result, we can arrive at the following

inequalities.

|Sa| ≤ |π−1
(a,b′)(σb′)|

≤ 2pmax.

This implies that

e∗ ≥ 1
2pmax ∑

b∈B
∑

a∈Γ(b)∩Γ∗2(a0,σa0)

|π−1
(a,b)(σ

∗
b) ∩ Sa|.

From the definition of Σ∗A(a0), we can conclude that, for each b ∈ B, there exists

116

APPENDIX A. APPENDIX

σb ∈ B such that π−1
(a,b)(σb) ∩ Sa 6= ∅ for all a ∈ Γ2(a0) ∩ Γ(b). Since Γ∗2(a0, σa0) ⊆

Γ2(a0), we can conclude that |π−1
(a,b)(σb) ∩ Sa| ≥ 1 for all a ∈ Γ∗2(a0, σa0) ∩ Γ(b).

Since we pick the assignment σ∗b that maximizes ∑a∈Γ(b)∩Γ∗2(a0) |π
−1
(a,b)(σ

∗
b)∩ Sa| for

each b ∈ B, we can conclude that

e∗ ≥ 1
2pmax ∑

b∈B
∑

a∈Γ(b)∩Γ∗2(a0,σa0)

|π−1
(a,b)(σ

∗
b) ∩ Sa|

≥ 1
2pmax ∑

b∈B
∑

a∈Γ(b)∩Γ∗2(a0,σa0)

|π−1
(a,b)(σb) ∩ Sa|

≥ 1
2pmax ∑

b∈B
∑

a∈Γ(b)∩Γ∗2(a0,σa0)

1.

The last term can be rewritten as

1
2pmax ∑

b∈B
∑

a∈Γ(b)∩Γ∗2(a0,σa0)

1 =
1

2pmax ∑
a∈Γ∗2(a0,σa0)

∑
b∈Γ(a)

1

=
1

2pmax ∑
a∈Γ∗2(a0,σa0)

da

=
h∗(a0, σa0)

2pmax .

As a result, we can conclude that this algorithm gives an assignment that satisfies

at least
h∗(a0,σa0)

2pmax edges out of all the |E| edges. Hence, this is a polynomial-time

O
(
|E|pmax

h∗(a0,σa0)

)
-approximation algorithm as desired.

A.1.5 Divide and Conquer Algorithm.

We will present an algorithm that separates the graph into disjoint subgraphs for

which we can find the optimal assignments in polynomial time. We shall show

117

APPENDIX A. APPENDIX

below that, if h∗(a, σa) is small for all a ∈ A and σa ∈ Σ∗A(a), then we are able to find

such subgraphs that contain most of the graph’s edges.

Lemma A.5. There exists a polynomial-time O
(

nAnB(h∗max+Emax
N)

|E|2
)

-approximation algorithm

for satisfiable instances of projection games.

Proof. To prove this lemma, we will present an algorithm that gives an assignment

that satisfies Ω
(

|E|3
nAnB(h∗max+Emax

N)

)
edges.

We use P to represent the collection of subgraphs we find. The family P consists

of disjoint sets of vertices. Let VP be
⋃

P∈P P.

For any set S of vertices, define GS to be the graph induced on S with respect to

G. Moreover, define ES to be the set of edges of GS. We also define EP =
⋃

P∈P EP.

Note that ES is similar to E′S defined earlier in the appendix. The only difference is

that E′S is with respect to G′ instead of G.

The algorithm works as follows.

1. Set P ← ∅.

2. While there exists a vertex a ∈ A and σa ∈ Σ∗A(a) such that

|E∗(a, σa) ∩ E(A∪B)−VP | ≥
1

16
|E|2

nAnB
:

(a) Set P ← P ∪ {(Γ∗2(a, σa) ∪ Γ∗(a, σa))−VP}.

3. For each P ∈ P , find in time poly(|ΣA|, |P|) an assignment to the vertices in P

that satisfies all the edges spanned by P. This can be done easily by assigning

σa to a and π(a,b)(σa) to b ∈ B ∩ P. Then assign any plausible assignment to all

the other vertices in A ∩ P.

118

APPENDIX A. APPENDIX

We will divide the proof into two parts. First, we will show that when we can-

not find a vertex a and an assignment σa ∈ Σ∗A(a) in step 2,
∣∣∣E(A∪B)−VP

∣∣∣ ≤ 3|E|
4 .

Second, we will show that the resulting assignment from this algorithm satisfies

Ω
(

|E|3
nAnB(h∗max+Emax

N)

)
edges.

We will start by showing that, if no vertex a and an assignment σa ∈ Σ∗A(a) in

step 2 exist, then
∣∣∣E(A∪B)−VP

∣∣∣ ≤ 3|E|
4 .

Suppose that we cannot find a vertex a and an assignment σa ∈ Σ∗A(a) in step 2.

In other words, |E∗(a, σa) ∩ E(A∪B)−VP | <
1

16
|E|2

nAnB
for all a ∈ A and σa ∈ Σ∗A(a).

Since σOPT
a ∈ Σ∗A(a) for all a ∈ A, we can conclude that

|E∗(a, σOPT
a) ∩ E(A∪B)−VP | <

1
16
|E|2

nAnB
.

From Observation A.2, we have E∗(a, σOPT) = E′(Γ′(a)). As a result, we have

1
16
|E|2

nAnB
> |E∗(a, σOPT

a) ∩ E(A∪B)−VP |

= |E′(Γ′(a)) ∩ E(A∪B)−VP |

for all a ∈ A.

Since E′(Γ′(a)) = E′Γ′(a)∪Γ′2(a), we can rewrite the last term as

|E′(Γ′(a)) ∩ E(A∪B)−VP | = |E
′
Γ′(a)∪Γ′2(a) ∩ E(A∪B)−VP |

= |E′Γ′(a)∪Γ′2(a)−VP
|.

Consider ∑a∈A |E′Γ′(a)∪Γ′2(a)−VP
|. Since |E′Γ′(a)∪Γ′2(a)−VP

| < 1
16
|E|2

nAnB
for all a ∈ A, we

119

APPENDIX A. APPENDIX

have the following inequality:

|E|2
16nB

> ∑
a∈A
|E′Γ′(a)∪Γ′2(a)−VP

|.

Let Np(v) = Γ′(v)− VP and Np
2 (v) = Γ′2(v)− VP . Similary, define Np(S) for a

subset S ⊆ A∪ B. It is easy to see that Np
2 (v) ⊇ Np(Np(v)). This implies that, for all

a ∈ A, we have |E′
Np(a)∪Np

2 (a)
| ≥ |E′Np(a)∪Np(Np(a))|. Moreover, it is easy to see that,

for all a ∈ A−VP , we have |E′Np(a)∪Np(Np(a))| = ∑b∈Np(a) |Np(b)|.

Thus, the following holds:

∑
a∈A
|E′(Γ′(a)∪Γ′2(a))−VP

| = ∑
a∈A
|E(Np(a)∪Np

2 (a))|

≥ ∑
a∈A−VP

|E(Np(a)∪Np
2 (a))|

= ∑
a∈A−VP

∑
b∈Np(a)

|Np(b)|

= ∑
b∈B−VP

∑
a∈Np(b)

|Np(b)|

= ∑
b∈B−VP

|Np(b)|2.

From Jensen’s inequality, we have

∑
a∈A
|E′(Γ′(a)∪Γ′2(a))−VP

| ≥ 1
|B−VP |

(
∑

b∈B−VP

|Np(b)|
)2

=
1

|B−VP |

∣∣∣E′(A∪B)−VP

∣∣∣2
≥ 1

nB

∣∣∣E′(A∪B)−VP

∣∣∣2 .

120

APPENDIX A. APPENDIX

Since |E|
2

16nB
≥ ∑a∈A |E(Γ′(a)∪Γ′2(a))−VP | and ∑a∈A |E(Γ′(a)∪Γ′2(a))−VP | ≥

1
nB

∣∣∣E′(A∪B)−VP

∣∣∣2,

we can conclude that

|E|
4
≥
∣∣∣E′(A∪B)−VP

∣∣∣ .

Consider E′(A∪B)−VP
and E(A∪B)−VP . We have

E′(A∪B)−VP
∪ (E− E′) ⊇ E(A∪B)−VP∣∣∣E′(A∪B)−VP

∣∣∣+ ∣∣E− E′
∣∣ ≥ ∣∣∣E(A∪B)−VP

∣∣∣
|E|
4

+
∣∣E− E′

∣∣ ≥ ∣∣∣E(A∪B)−VP

∣∣∣ .

From Observation A.1, we have |E′| ≥ |E|2 . Thus, we have

3|E|
4
≥
∣∣∣E(A∪B)−VP

∣∣∣ ,

which concludes the first part of the proof.

Next, we will show that the assignment the algorithm finds satisfies at least

Ω
(

|E|3
nAnB(h∗max+Emax

N)

)
edges. Since we showed that 3|E|

4 ≥
∣∣∣E(A∪B)−VP

∣∣∣when the algo-

rithm terminates, it is enough to prove that |EP | ≥ |E|2
16nAnB(h∗max+Emax

N)

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣).

Note that the algorithm guarantees to satisfy all the edges in EP .

We will prove this by using induction to show that at any point in the algorithm,

|EP | ≥ |E|2
16nAnB(h∗max+Emax

N)

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣).

Base Case. At the beginning, we have |EP | = 0 = |E|2
16nAnB(h∗max+Emax

N)

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣),

which satisfies the inequality.

Inductive Step. The only step in the algorithm where any term in the inequality

changes is step 2a. LetPold andPnew be the setP before and after step 2a is executed,

121

APPENDIX A. APPENDIX

respectively. Let a be the vertex selected in step 2. Suppose that Pold satisfies the

inequality.

Since |EPnew | = |EPold |+ |E(Γ∗(a,σa)∪Γ∗2(a,σa))−VPold
|, we have

|EPnew | = |EPold |+ |E(Γ∗(a,σa)∪Γ∗2(a,σa))−VPold
|

= |EPold |+ |E(Γ∗(a,σa)∪Γ∗2(a,σa)) ∩ E(A∪B)−VPold
|.

From the condition in step 2, we have |E∗(a, σa) ∩ E(A∪B)−VPold
| ≥ 1

16
|E|2

nAnB
. More-

over, E(Γ∗(a,σa)∪Γ∗2(a,σa)) ⊇ E∗(a, σa) holds. As a result, we have

|EPnew | = |EPold |+ |E(Γ∗(a,σa)∪Γ∗2(a,σa)) ∩ EA∪B−VPold
|

≥ |EPold |+ |E
∗(a, σa) ∩ E(A∪B)−VPold

|

≥ |EPold |+
1

16
|E|2

nAnB
.

Now, consider
(
|E| − |E(A∪B)−VPnew

|
)
−
(
|E| − |E(A∪B)−VPold

|
)

. We have

(
|E| − |E(A∪B)−VPnew

|
)
−
(
|E| − |E(A∪B)−VPold

|
)
= |E(A∪B)−VPold

| − |E(A∪B)−VPnew
|

Since VPnew = VPold ∪ (Γ∗2(a, σa) ∪ Γ∗(a, σa)), we can conclude that

(
(A ∪ B)−VPold

)
⊆ ((A ∪ B)−VPnew) ∪ (Γ∗2(a, σa) ∪ Γ∗(a, σa)) .

Thus, we can also derive

E(A∪B)−VPold
⊆ E((A∪B)−VPnew)∪(Γ∗2(a,σa)∪Γ∗(a,σa))

= E(A∪B)−VPnew
∪ {(a′, b′) ∈ E | a′ ∈ Γ∗2(a, σa) or b′ ∈ Γ∗(a, σa)}.

122

APPENDIX A. APPENDIX

Moreover, we can write {(a′, b′) ∈ E | a′ ∈ Γ∗2(a, σa) or b′ ∈ Γ∗(a, σa)} as {(a′, b′) ∈

E | a′ ∈ Γ∗2(a, σa)} ∪ {(a′, b′) ∈ E | b′ ∈ Γ∗(a, σa)}. Since Γ∗(a, σa) ⊆ Γ(a), we can

conclude that

{(a′, b′) ∈ E | a′ ∈ Γ∗2(a, σa) or b′ ∈ Γ∗(a, σa)} ⊆{(a′, b′) ∈ E | a′ ∈ Γ∗2(a, σa)}

∪ {(a′, b′) ∈ E | b′ ∈ Γ(a)}.

Thus, we can conclude that

|{(a′, b′) ∈ E | a′ ∈ Γ∗2(a, σa) or b′ ∈ Γ∗(a, σa)}| ≤ |{(a′, b′) ∈ E | a′ ∈ Γ∗2(a, σa)}|

+ |{(a′, b′) ∈ E | b′ ∈ Γ(a)}|

= h∗(a, σa) + |E(Γ(a))|.

Hence, we can conclude that

∣∣∣E(A∪B)−VPold

∣∣∣ ≤ ∣∣∣E(A∪B)−VPnew
∪ {(a′, b′) ∈ E | a′ ∈ Γ2(a) or b′ ∈ Γ(a)}

∣∣∣
≤
∣∣∣E(A∪B)−VPnew

∣∣∣+ ∣∣{(a′, b′) ∈ E | a′ ∈ Γ2(a) or b′ ∈ Γ(a)}
∣∣

≤
∣∣∣E(A∪B)−VPnew

∣∣∣+ h∗(a, σa) + |E(Γ(a))|

≤
∣∣∣E(A∪B)−VPnew

∣∣∣+ h∗max + Emax
N .

This implies that
(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣) increases by at most h∗max + Emax
N .

Hence, since
(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣) increases by at most h∗max + Emax
N and |EP | in-

123

APPENDIX A. APPENDIX

creases by at least 1
16
|E|2

nAnB
and from the inductive hypothesis, we can conclude that

|EPnew | ≥
|E|2

16nAnB(h∗max + Emax
N)

(
|E| −

∣∣∣E(A∪B)−VPnew

∣∣∣) .

Thus, the inductive step is true and the inequality holds at any point during the

execution of the algorithm.

When the algorithm terminates, since |EP | ≥ |E|2
16nAnB(h∗max+Emax

N)

(
|E| −

∣∣∣E(A∪B)−VP

∣∣∣)
and 3|E|

4 ≥
∣∣∣E(A∪B)−VP

∣∣∣, we can conclude that |EP | ≥ |E|3
64nAnB(h∗max+Emax

N)
. Since the

algorithm guarantees to satisfy every edge in EP , it yields an O
(

nAnB(h∗max+Emax
N)

|E|2
)

approximation ratio, which concludes our proof of Lemma A.5.

A.1.6 Proof of the Main Theorem

Proof. Using Lemma A.4 with a0 and σa0 that maximizes the value of h∗(a0, σa0), i.e.,

h∗(a0, σa0) = h∗max, we can conclude that there exists a polynomial-time O
(
|E|pmax

h∗max

)
-

approximation algorithm for satisfiable instances of projection games.

Similarly, from Leamma A.3 with a0 that maximizes the value of E(Γ(a0)), i.e.,

|E(Γ(a0))| = Emax
N , there exists a polynomial-time |E|

Emax
N

-approximation algorithm for

satisfiable instances of projection games.

Moreover, from Lemmas A.1, A.2 and A.5, there exists a polynomial-time |E|nB
-

approximation algorithm, a polynomial-time |ΣA|
pmax -approximation algorithm and a

polynomial time O
(

nAnB(h∗max+Emax
N)

|E|2
)

-approximation algorithm for satisfiable instances

of the projection game.

Consider the following two cases.

124

APPENDIX A. APPENDIX

First, if h∗max ≥ Emax
N , we have O(nAnB(h∗max + Emax

N)/|E|2) = O(nAnBh∗max/|E|2).

Using the best of the first, second, fourth and fifth algorithms, the smallest of the

four approximation factors is at most as large as their geometric mean, i.e.,

O

(
4

√
|E|
nB
· |ΣA|

pmax ·
|E|pmax

h∗max
· nAnBh∗max
|E|2

)
= O((nA|ΣA|)1/4).

Second, if Emax
N > h∗max, we have O(nAnB(h∗max +Emax

N)/|E|2) = O(nAnBEmax
N /|E|2).

We use the best answer we get from the first, second, third and fifth algorithms.

The smallest of the four approximation factors is at most as large as their geometric

mean, i.e.,

O

(
4

√
|E|
nB
· |ΣA|

pmax ·
|E|

Emax
N
·

nAnBEmax
N

|E|2

)
= O

((
nA|ΣA|

pmax

)1/4
)

.

It is obvious that pmax is at least one. Thus, we can conclude that the approximation

factor is at most O((nA|ΣA|)
1
4).

This concludes the proof of Theorem 3.1 for the nonuniform preimage sizes case.

A.2 Improved Lasserre Gap for DENSEST k-SUBGRAPH

Finding approximation algorithms for DENSEST k-SUBGRAPH is a topic of great in-

terest [SW98, FL01, FPK01, AHI02, BCC+10]. The best polynomial-time approxima-

tion algorithm known today is from [BCC+10] which achieves an approximation

ratio of N1/4+ε for every constant ε > 0. On the hardness of approximation side,

however, no hardness result with approximation ratio being polynomial is known

despite many attempts [AAM+11, RS10, Kho04, Fei02].

125

APPENDIX A. APPENDIX

In absence of matching hardness of approximation, gaps on various LP and SDP

relaxations have been shown as evidences that DENSEST k-SUBGRAPH is, in fact,

hard to approximate to within a polynomial factor. These results are particularly

interesting for DENSEST k-SUBGRAPH because the aforementioned best known al-

gorithm from [BCC+10] uses LP hierarchy. As a result, the gap instances for LP

and SDP relaxations rule out the possibility of better algorithms using similar tech-

niques.

The most relevant such result is from [BCV+12], in which a DENSEST k-SUBGRAPH

instances with polynomial gaps for the Lasserre and Sherali-Adams hierarchies are

presented. In one of their results, Bhaskara et al. proved a lower bound of N2/53−ε

on the Lasserre Gap of the DENSEST k-SUBGRAPH after NΩ(ε) rounds. As stated in

section 4.5, the technique we used to prove Lemma 4.5 can be used to improve the

this lower bound. More specifically, we will prove the following theorem in this

section.

Theorem A.1. For every 0 < ε < 1/14, there exists a DENSEST k-SUBGRAPH instance

with N vertices such that the integrality gap of NΩ(ε) rounds of the Lasserre SDP relaxation

on this instance is at least N1/14−ε.

Note that our result is still not tight; ideally, we want the integrality gap to match

the algorithm from [BCC+10], i.e., we want the gap of N1/4−ε instead of the current

N1/14−ε.

Again, the only main different between our proof and Bhaskara et al.’s is that we

are able to prove a stronger soundness result.

126

APPENDIX A. APPENDIX

A.2.1 DENSEST k-SUBGRAPH and Reduction in [BCV+12]

We first start by reviewing the definition of DENSEST k-SUBGRAPH and Bhaskara et

al.’s reduction from random MAX K-CSP to DENSEST k-SUBGRAPH in [BCV+12].

DENSEST k-SUBGRAPH problem can be defined as follows.

DENSEST k-SUBGRAPH

INPUT: A simple graph G = (V, E) where the number of vertices |V| is N

and an integer k ≤ N.

GOAL: Find a subgraph of G of at most k vertices with maximum number

of edges.

We are now ready to review the reduction from [BCV+12]. Given a random

MAX K-CSP(C) instance Φ = {C1, . . . , Cm}, the reduction creates a DENSEST k-

SUBGRAPH instance as follows.

First, we create a bipartite graph G = (A, B, E) as follows:

• We create a vertex in A for each constraint Ci and each assignment α ∈ [q]Ti

such that Ci(α) = 1 , i.e., A = {(Ci, α) | i ∈ [m], α ∈ [q]Ti and Ci(α) = 1}.

• We create a vertex in B for each variable xj and each assignment σ ∈ [q] for

xj, i.e., B = {(xj, σ) | j ∈ [n] and σ ∈ [q]}.

• For each vertex (Ci, α) ∈ A and (xj, σ) ∈ B, we create an edge between

them if and only if xj ∈ Ti and α(xj) = σ.

The instance of DENSEST k-SUBGRAPH is a graph G′ = (A′, B′, E′) together

with k = 2m where A′ = A, B′ is a set containing β copies of B, and E′ contains

127

APPENDIX A. APPENDIX

an edge (a, b′) if and only if a is connected to the corresponding vertex of b′ in

G.

Observe that N = |A|+ |B| = m|C|+ βnq = Θ(βn|C|).

A.2.2 Soundness

In this subsection, we will prove the soundness of the DENSEST k-SUBGRAPH in-

stance constructed by the reduction from [BCV+12], which is the only main differ-

ent between our result and theirs. To show this, it is enough for us to prove the

following lemma, which is an improvement over Claim 4.14 in [BCV+12]. Due to

the similarities between the following lemma and the claim from [BCV+12], we will

follow their notations here.

Lemma A.6. Let 0 < ρ < 1 be any constant. Fix a subset R ⊆ B of size 2n. If q ≥

K ≥ q/2, q ≥ 10000/ρ, |C| ≤ q10 and β ≥ 100q1+ρ|C|/K, then, with probability at least

1− exp(−mK ln q/(q1+ρ|C|)), there exists no L ⊆ A of size 2m such that the subgraph

induced by L∪ R with respect to the graph G produced by the reduction in Subsection A.2.1

contains at least 4000mK ln q/(qρ) edges.

Proof. Let Υ = d1/ρe and let M = q1/Υ.

To prove this lemma, consider each vertex Ci in A. We define deg(Ti) to be the

number of vertices (xj, σ) ∈ R such that xj ∈ Ti, i.e., deg(Ti) = |{xj ∈ Ti | (xj, σ) ∈

R}|. For each l = 0, . . . , Υ− 1, define Zl
i as the indicator variable whether deg(Ti)

is more than 100KMl ln q. We will first find an upper bound on the probability that

Zl
i = 1.

128

APPENDIX A. APPENDIX

Since Ti is randomly selected uniformly from the set of K variables, we can con-

clude that the expected value of deg(Ti) is 2K. As a result, from Hoeffding’s inequal-

ity [Hoe63], we can conclude that

Pr[Zl
i = 1] ≤

(
e(2K)

100KMl ln q

)100KMl ln q/q

≤ exp
(
−100KMl ln q/q

)
.

Next, for each α ∈ [q]Ti such that Ci(α) = 1, let agrTi(α) be the number of neigh-

bors of (Ci, α) ∈ A that are in R, i.e., agrTi(α) = |{(xj, α(xj)) | xj ∈ Ti} ∩ R|. More-

over, for each l = 0, . . . , Υ− 1, define Xl
i as an indicator variable whether there exists

α ∈ [q]Ti with Ci(α) = 1 such that argTi(α) > 1000KMl ln q/q. We will now prove

an upper bound on Pr[Xl
i = 1] by finding an upper bound on Pr[Xl

i = 1 | Zl
i = 0].

Recall that the constraint is generated by sampling b(i) = (b(i)1 , . . . , b(i)K) ∈ FK
q and

set Ci(c− b(i)) = 1 for every codeword c ∈ C. Consider each codeword c ∈ C. If

Zl
i = 0, then, for each c ∈ C, we have

Eb(i)

[
agrTi(c− b(i))

]
= deg(Ti)/q ≤ 100KMl ln q/q.

Thus, for each c ∈ C, we can conclude, from the Chernoff bound, that

Pr
[

agrTi(c− b(i)) > 1000KMl ln q/q | Zl
i = 0

]
≤
(

e(100KMl ln q/q)
(1000KMl ln q/q)

)1000KMl ln q/q

≤ exp(−1000KMl ln q/q).

Hence, we can conclude that

Pr[Xl
i = 1 | Zl

i = 0] = Pr
[(
∃c ∈ C, agrTi(c− b(i)) > 1000KMl ln q/q

)
| Zl

i = 0
]

129

APPENDIX A. APPENDIX

(Union bound) ≤ ∑
c∈C

Pr
[

agrTi(c− b(i)) > 1000KMl ln q/q | Zl
i = 0

]
≤ ∑

c∈C
exp(−1000KMl ln q/q)

(Since |C| ≤ q10) ≤ q10 · exp(−1000KMl ln q/q)

(From K ≥ q/2, q ≥ 10000/ρ) ≤ exp(−500KMl ln q/q).

As a result, we have

Pr[Xl
i = 0] ≥ Pr[Xl

i = 0 | Zl
i = 0]Pr[Zl

i = 0]

≥
(

1− exp(−500KMl ln q/q)
) (

1− exp(−100KMl ln q/q)
)

≥ 1− exp(−90KMl ln q/q).

Now, observe that, from definition of Xl
i , we can conclude that, if l is the maxi-

mum value of l such that Xl
i = 1, then (Ci, α) has at most 1000KMl+1 ln q/q neigh-

bors in R for every α ∈ C−1
i (1). In other words, the number of neighbors of (Ci, α)

in R is at most

max{1000K ln q/q, max
l=0,...,Υ−1

{Xl
i 1000KMl+1 ln q/q}}.

As a result, for any L ⊆ A of size 2m, the number of edges in the graph induced

by L ∪ R is at most

∑
(Ci,α)∈L

max{1000K ln q/q, max
l=0,...,Υ−1

{Xl
i 1000KRl+1 ln q/q}}

≤ ∑
(Ci,α)∈L

(
1000K ln q/q +

Υ−1

∑
l=0

Xl
i 1000KMl+1 ln q/q

)

130

APPENDIX A. APPENDIX

= 2000mK ln q/q +
Υ−1

∑
l=0

(1000KMl+1 ln q/q) · |{(Ci, α) ∈ L | Xl
i = 1}|

≤ 2000mK ln q/q +
Υ−1

∑
l=0

(1000KMl+1 ln q/q) · |{(Ci, α) ∈ A | Xl
i = 1}|

= 2000mK ln q/q +
Υ−1

∑
l=0

(1000KMl+1 ln q/q) · |C| · |{i ∈ [m] | Xl
i = 1}|

Since each Ci is sampled independently of each other, we can again use Chernoff

bound to arrive at the following inequality.

Pr[|{i ∈ [m] | Xl
i = 1}| > m/(Ml+1|C|)] ≤

(
e(m · exp(−90KMl ln q/q))

m/(Ml+1|C|)

) m
Ml+1|C|

= (Ml+1 · |C| · e · exp(−90KMl ln q/q))
m

Ml+1|C|

(Since K ≥ q/2, |C| ≤ q10 and q ≥ 10000/ρ) ≤ (exp(−50KMl ln q/q))
m

Ml+1|C|

= exp(−50mK ln q/(qM|C|)).

From this and the union bound, we can conclude that, with probability at least

1 − Υ exp(−50mK ln q/(qM|C|)) ≥ 1 − exp(−mK ln q/(qM|C|)), we have |{i ∈

[m] | Xl
i = 1}| ≤ m/(Ml+1|C|) for all l = 0, . . . , Υ− 1.

Observe that, if |{i ∈ [m] | Xl
i = 1}| ≤ m/Ml+1 for all l = 0, . . . , Υ− 1, then we

have

2000mK ln q/q +
Υ−1

∑
l=0

(1000KMl+1 ln q/q) · |C| · |{i ∈ [m] | Xl
i = 1}|

≤ 2000mK ln q/q +
Υ−1

∑
l=0

(1000KMl+1 ln q/q) · |C| · (m/(Ml+1|C|))

= 2000mK ln q/q +
Υ−1

∑
l=0

(1000mK ln q/q)

= (2000mK ln q/q)(Υ/2 + 1)

131

APPENDIX A. APPENDIX

≤ 4000mK ln q/(qρ).

This means that the maximum number of edges in the subgraph induced by L ∪ R

is at most 4000mK ln q/(qρ), which completes our proof for the lemma.

Following the exact same proof of Lemma 4.12 from [BCV+12], we can conclude

the following lemma, which is the desired soundness result for the DENSEST k-

SUBGRAPH instance. Note that, since the proof is exactly the same as that of Lemma

4.12 from [BCV+12], we will not show the full proof in this thesis.

Lemma A.7. Let 0 < ρ < 1 be any constant. If q ≥ K ≥ q/2, q ≥ 10000/ρ, |C| ≤ q10

and β ≥ 100q1+ρ|C|/K, then, the optimal solution of the DENSEST k-SUBGRAPH instance

produced by the reduction in Subsection A.2.1 contains at most 4000βmK ln q/(qρ) edges

with probability at least 1− o(1).

A.2.3 Proof of the Main Theorem

We devote this section to the proof of Theorem A.1, which is the main theorem. First,

we will start by stating the vector completeness result from [BCV+12].

Lemma A.8 ([BCV+12]). Let C be a dual code of any linear code of distance at least D ≥ 3.

For every n, K, β, η > 0 such that

• n is large enough,

• 10 ≤ K ≤ n1/2,

• η ≤ 1/(108(βKD)2/(D−2)),

• nν−1 ≤ 1/(108(βKD+0.75)2/(D−2)) for some ν > 0,

132

APPENDIX A. APPENDIX

with probability 1− o(1), there exists a perfect solution to the ηn/(16K)-th round Lasserre

SDP for a DENSEST k-SUBGRAPH instance produced by the reduction in Subsection A.2.1

from a random MAX K-CSP(C) over n variables and m = βn constraints. 1

Before we prove Theorem A.1, we will combine the vector completeness result

and the soundness result to get the following theorem that will serve as a basis of

the proof of the main theorem.

Theorem A.2. Let 0 < ρ < 1 be any constant. For all n, q large enough and integer 3 ≤

D ≤ 10, there exists a DENSEST k-SUBGRAPH instance of N = Ω(nq2D−2+ρ) vertices

that demonstrates a gap of value Ω(q1−o(1)) for Lasserre SDP after Ω(n/(q(4D−2+2ρ)/(D−2)+1))

rounds.

Proof. Let C be the dual code of the code from Lemma 4.2 with 3 ≤ D ≤ 10. We now

have K = q− 1 and |C| = qD−1. Pick β to be 100q1+ρ|C|/K = 100qD+ρ/K and η to

be 1/(108(βKD)2/(D−2)).

The instance we will use is just the instance created by the reduction present in

Subsection A.2.1 from a random MAX K-CSP(C) instance.

Let R = ηn/(16K). We know from Lemma A.8 that, after R rounds of the Lasserre

hierarchy, there still exists a complete solution (of value βmK) to the Lasserre SDP of

the instance. At the same time, we also know from Lemma A.7 that, with probability

1− o(1), any subgraph of the instance of 2m vertices contain at most 4000βmK ln q/(qρ)

edges. This means that, after R rounds, we have a gap ratio of βmK/(4000βmK ln q/(qρ)) =

Ω(q/ ln q) = Ω(q1−o(1)) as desired.
1Again, the lemma stated here is a bit different from the result in [BCV+12]; the only difference

is that, in [BCV+12], η is required to be between nν−1 and 1/(108(βKD+0.75)2/(D−2)). However, it
is easy to see from the proof of Theorem 4.2 from the paper that it is enough for η to be at most
1/(108(βKD)2/(D−2)).

133

APPENDIX A. APPENDIX

Moreover, R can be written as

R = ηn/(16K)

=
1

108(βKD)2/(D−2)
· n

16K

= Ω
(

1
(βKD)2/(D−2)

· n
K

)
(Since β = 100qD+ρ/K) = Ω

(
1

(qD+ρKD−1)2/(D−2)
· n

K

)
(Since K = q− 1) = Ω

(
1

(q2D−1+ρ)2/(D−2)
· n

q

)
= Ω

(
n

q(4D−2+2ρ)/(D−2)+1

)
.

Lastly, note that the number of vertices is N = Ω(βn|C|) = Ω
(
(100qD+ρ/K)nqD−1) =

Ω(nq2D−2+ρ).

Now, we are ready to prove the main theorem by choosing the right N, q, D for

Theorem A.2.

Proof of Theorem A.1. We can rewrite the number of rounds R of Lasserre SDP relax-

ation from Theorem 4.3 as

R = Ω
(

n
q(4D−2+2ρ)/(D−2)+1

)
= Ω

(
nq2D−2+ρ

q(4D−2+2ρ)/(D−2)+2D−1+ρ

)
= Ω

(
N

q(4D−2+2ρ)/(D−2)+2D−1+ρ

)
= Ω

(
N

q(4D−2)/(D−2)+2D−1+ρ(1+2/(D−2))

)

134

APPENDIX A. APPENDIX

We select D = 4 to minimize (4D− 2)/(D− 2) + 2D− 1, which implies that

R = Ω
(

N
q14+2ρ

)
.

By pick q to be N1/14−ε/2, we get the gap of Ω(N1/14−ε/2−o(1)) ≥ N1/14−ε if N is

big enough. Furthermore, by picking ρ to be ε/1000, we have

R = Ω
(

N
N(1/14−ε/2)(14+ε/1000)

)
= Ω

(
Nε/4

)

This is NΩ(ε) when N is big enough, which completes the proof of this theorem.

A.3 GRID TILING Running Time Lower Bound

In this section, we give a full proof of Lemma 5.1, which was stated without a

complete proof in [Mar12]. The proof is a simple reduction from CLIQUE to GRID

TILING.

A.3.1 CLIQUE

Before we describe the reduction, we will first review the CLIQUE problem, which

can be stated as follows.

CLIQUE

INPUT: A simple graph Ǵ = (V́, É) where the number of vertices |V́| is ń.

135

APPENDIX A. APPENDIX

GOAL: Determine whether there is a clique of size ḱ.

In [CHKX06], it was proved that CLIQUE is W[1]-hard parameterized on ḱ, which

implies the following lemma.

Lemma A.9. If there exists an algorithm for CLIQUE that runs in g(ḱ)ńo(ḱ) for any func-

tion g, then ETH fails.

We will not show how the lemma is proved here. However, in the following sub-

section, we will show how to use running time lower bound of CLIQUE to deduce a

running time lower bound of GRID TILING.

A.3.2 Proof of Lemma 5.1

In this section, we will prove Lemma 5.1 by showing a reduction from CLIQUE to

GRID TILING. The reduction is briefly outlined in [Mar07] and [Mar12].

Proof. Given a simple graph Ǵ = (V́, É) where V́ = [ń] and an integer ḱ. We will

construct a GRID TILING instance as follows.

• Let k̃ = ḱ and ñ = ń.

• Define Si,j for each i, j ∈ [k̃] as follows.

Si,j =

{(v, v) | v ∈ [ñ]} if i = j,

{(v, u) | (v, u) ∈ E or (u, v) ∈ E} otherwise.

136

APPENDIX A. APPENDIX

Next, we will show that the answer to this GRID TILING instance is yes if and

only if there exists a ḱ-clique in Ǵ.

(⇒) Suppose that the GRID TILING instance is a yes instance, i.e. there exists

si,j ∈ Si,j for all i, j ∈ [k̃] such that, for each i, (si,j)1’s are equal for all j ∈ [k̃], and, for

each j, (si,j)2’s are equal for all i ∈ [k̃].

Observe that, from our definition, for each i ∈ [k̃], si,i = (ui, ui) for some ui ∈ ñ.

Thus, for each i, j ∈ [k̃], we have (si,j)1 = (si,i)1 = ui and (si,j)2 = (sj,j)2 = uj. In

other words, si,j = (ui, uj), which means that there exists an edge between (ui, uj) in

Ǵ.

As a result, we can conclude that u1, . . . , uk̃ forms a ḱ-clique in Ǵ.

(⇐) Suppose that there exists a ḱ-clique in G. Let the vertices in the clique be

v1, . . . , vḱ ∈ [ń]. Since v1, . . . , vḱ forms a clique, we know that (vi, vj) ∈ Si,j for every

i, j ∈ [k̃]. Hence, if we select si,j = (vi, vj) for every i, j ∈ [k̃], we can conclude that

the answer to the GRID TILING instance is yes.

Thus, from Lemma A.9, we can conclude that there exists no algorithm that de-

cides GRID TILING in g(k̃)ño(k̃) for any function g.

137

	Introduction
	Projection Games and the PCP Theorem
	Previous Work on Approximating Projection Games
	LP, SDP, and their Hierarchies
	Thesis Organization

	Notations
	Polynomial-Time Approximation Algorithm
	Conventions
	The Algorithm
	Satisfy One Neighbor Algorithm.
	Greedy Assignment Algorithm.
	Know Your Neighbors' Neighbors Algorithm
	Divide and Conquer Algorithm.
	Proof of the Main Theorem

	Lasserre Gaps for Projection Games
	Conventions
	Lasserre SDP for Projection Games
	Integrality Gap for Random Max K-CSP Lasserre SDP from Tul09 and BCVGZ12
	Integrality Gaps for Projection Games Lasserre SDP
	Reduction from Max K-CSP to Projection Games
	Vector Completeness
	Soundness
	Proofs of the Two Main Theorems

	Note on Densest k-Subgraph

	Projection Games on Planar Graph
	Solving Projection Games on Planar Graphs
	Exact Algorithm for Projection Games on Planar Graphs
	Exact Algorithm Running Time Lower Bound for Projection Games on Planar Graphs

	Approximating Projection Games on Planar Graphs
	PTAS for Projection Games on Planar Graphs
	PTAS Running Time Lower Bound for Projection Games on Planar Graphs

	Projection Games on Dense Graphs
	Subexponential-Time Algorithm for Projection Games on Dense Graphs
	Polynomial-Time Algorithm for Dense Random Graphs
	Approximation Algorithm for FreeGame
	Reduction from Projection Games on Dense Random Graphs to FreeGame

	Future Work
	Appendix
	Polynomial-time Approximation Algorithms for Projection Games for Nonuniform Preimage Sizes
	Satisfy One Neighbor Algorithm.
	Greedy Assignment Algorithm.
	Know Your Neighbors Algorithm
	Know Your Neighbors' Neighbors Algorithm
	Divide and Conquer Algorithm.
	Proof of the Main Theorem

	Improved Lasserre Gap for Densest k-Subgraph
	Densest k-Subgraph and Reduction in BCVGZ12
	Soundness
	Proof of the Main Theorem

	Grid Tiling Running Time Lower Bound
	Clique
	Proof of Lemma 5.1

