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Abstract 
As more people move to cities, space is becoming more limited and expensive. Robotic furniture can 

increase functionality and optimize space, allowing spaces to feel as if they were three times the size. 

These mechatronic systems need capable electronics and connected microcontrollers to bring furniture to 

the Internet of Things (IoT). We present these electronics and firmware for three smart robotic spaces. 

These smart spaces need powerful software and computing systems to enable the transformations and 

give magic to the space. We present software written for three smart robotic spaces. The right user 

interfaces are vital for rich user experience. User studies with different smart home user interfaces show 

that although tactile interfaces are the most reliable and easiest to work with, people are hopeful for 

sufficiently robust gestural and speech interfaces in future smart homes. The urban homes and offices of 

the future are smart, customizable, and robotic. 
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1 Introduction
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1.1 Problem 

We are living in a rapidly urbanizing world. More and more people are moving from rural areas to cities. 

“By 2025, cities are expected to need to build floor space equivalent to 85% of today’s building stock.” 

(Dobbs, et al., 2012) This creates a host of problems that negatively affect urban livability, like sprawl, 

pollution, and cramping. 

Space and square footage are one of the most precious commodities of big and growing cities. 

There are spaces for living and working. Most spaces, however, are static. Once buildings and rooms are 

assigned a specific purpose, their furniture, configuration, and usage becomes fixed. This static nature 

results in underutilization. Kitchens are usually only used during meals; bedrooms are used during the 

night, living rooms during the day, etc. Because space is not being used optimally, more space and rooms 

are needed to have all the required functions people need and to maintain their quality of life. The price of 

square footage in big and growing cities therefore skyrockets, especially in the downtowns and most 

desired locations. 

 

1.2 Approach 

A current, yet unsustainable, solution to fitting more people and functions into cities is to shrink the 

square footage of rooms. This, however, leads to a poorer quality of life and brings a host of other 

problems. Having transformable, dynamic, and smart furniture elements and objects can better solve this 

problem. Furniture that can translate horizontally and vertically can optimize space and allow spaces to be 

reconfigured on demand. Rooms can have multiple functions and purposes. People can live in smaller 

spaces, yet feel as if they were living large and have a higher quality of life. Moreover, these smart 

furniture objects can be connected to the Internet and talk to each other, allowing rooms to reconfigure 

seamlessly and intelligently, people to add their desired sensors and peripherals, data to be collected to 
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improve quality of life, and programmability to allow users to customize their space to behave according 

to their needs and wants.  

1.3 Thesis Overview 

The MIT Media Lab’s Changing Places group’s CityHome project aims to bring attention to the problem 

and further the solutions by developing the technologies behind these robotic furniture elements and 

building and highlighting examples of them.  

These furniture elements need brains, powerful and capable microcontrollers that can control 

them with safety, allow users to add on desired components, and connect to, send data over, and receive 

commands from networks and the Internet. The smart rooms also require software, a unifying API that 

makes these elements programmable and accessible over the Internet. User interfaces are also needed to 

allow users to naturally interact with the furniture and smart objects and contribute to the user experience.  

 This thesis explores some of the technology developed for the CityHome project from the 

beginning of spring 2014 to the end of spring 2015. It consists mostly of the electrical, electronic, 

firmware, and software technologies of the CityHome 200 square foot apartment prototype (Spring 2014), 

CityOffice prototype (Fall 2014), and CityHome 300 square foot apartment prototype (Spring 2015). It 

also explores some of the user interfaces and experiences developed for the prototypes. Lastly, it details 

experimental user studies that tested these interfaces on performance, usability, and user satisfaction and 

elaborates on the results and conclusions.  
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Chapter 2 

2 Background 
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2.1 Motivation 

Extreme urbanization is happening now and will continue over the next few decades. This brings along a 

host of consequences for cities and urban spaces, which overall degrade the quality of life. They include 

sprawl, congestion, pollution, and overall higher costs of living. High performance, entrepreneurial, and 

livable urban districts are and will continue to be important and the main drivers of cities’ and nations’ 

prosperities. The right density, proximity to the right mix of amenities, and population diversity are keys 

to enabling these types of urban districts. We must address current problems, and foresee future ones, 

concerning living spaces, working spaces, food and energy production, distribution, and consumption, 

and transportation. 

 The housing problem is a particularly important and interesting one. As cities continue to grow, 

space becomes more limited and prices skyrocket. Young professionals, working middle class people who 

are starting their careers and have limited resources, are especially negatively impacted, as they cannot 

afford to live in the expensive urban centers, where they most desire to be. This also applies to singles, 

elderly, and the working class.  

 There are some current solutions trying to address the problem of space optimization. One 

solution is to use micro units. Micro units are small apartments, on the order of less than 300 square feet. 

They have just enough space for the essentials: a small table/desk, a bed, a mini kitchen, a small 

bathroom. While they are more affordable, they are also less desirable to live in. There is less space for 

everything, and therefore less functionality. This overall leads to a poorer quality of life. 

 Another solution is transformable furniture. Examples of classic transformable furniture are 

murphy beds and sofa beds. Examples of new transformable furniture are movable walls and 

counterbalanced beds. Mechatronic furniture also exists. However, all these solutions fall short. They are 

expensive, which misses the point of solving problems for people who could not otherwise afford to live 

in larger places. They are difficult to work with. Murphy beds and sofa beds, for example, require users to 
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make their beds very neatly, maybe attach cumbersome straps, and exert much physical force to 

reconfigure the furniture. All these solutions are missing connectivity, programmability, and the 

experience layer. The elements are dumb; they force the user to adapt to them, rather than adapting to the 

user. While some of these solutions are great for temporary use, they do not work well long term; people 

using a sofa bed or futon as a permanent bed will likely not enjoy reconfiguring it on a daily basis.  

 A solution capable of overcoming these problems is robotic furniture. Transformable smart home 

furniture and objects can act as space reconfigurators to maximize functionality and make people feel like 

they have much more space. Robotic furniture can come equipped with rich, natural, easy, and effective 

user interfaces, which translate into great user experiences. People not only feel that they have more 

space; they feel like they have better space. Examples of these types of furniture are a robotic wall with 

motors, a cantilevered motorized desk and bed, and a robotic movable closet or storage unit. 

 The CityHome team has been exploring this solution for some time and has created smart room 

prototypes highlighting the potential of these furniture elements and the impact they can have on future 

urban spaces. These mechatronic systems need suitable electronics and software to power them and 

connect them to the Internet of Things (IoT). 

2.2 Current Work 

There are plenty of smart home automation products out there: lights, thermostats, locks, and all types of 

sensors, to name a few. There is a lot of hype about these devices and their connectivity to the IoT. 

Except for custom, expensive, one-off solutions, no one is talking about or working on robotic furniture. 

However, robotic furniture is not only fitting of these technologies and connectivity to the IoT, but it 

could need it more and have more use cases with it, as furniture most intimately affect our homes. As 

such, no one is working on the technologies, electronics, and software for robotic furniture; the CityHome 

project researchers are developing them.  
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 Part of the problem in the field concerning electronics and software is diversity and lack of 

standardization. Different companies develop different technologies, and these technologies do not play 

well with technologies from other parties.  

There are no agreed upon communication peripherals and protocols for device connectivity. 

Therefore, there exists a plethora of peripherals and protocols on the market; Bluetooth, Bluetooth LE, 

Wi-Fi, ZigBee, and Z-Wave are some. Each have pros and cons. Wi-Fi, for example, is ubiquitous and 

allows for direct Internet connectivity, but it can be more power-hungry than other protocols. Z-Wave is 

less ubiquitous but implements mesh networking, allowing for a wider area of coverage throughout the 

home or building. 

Another fractured smart home automation area is the software, firmware, and APIs that will 

power and drive the IoT devices of the future. There is no consensus, and companies are developing their 

own, sometimes open, sometimes propriety, software and frameworks for these devices. Apple has 

introduced HomeKit, Google is building a toolkit around Nest and has built The Physical Web, Samsung 

is building a toolkit around the SmartThings infrastructure, and other companies like Revolv and Quirky 

(Wink) are building their own APIs. Even conglomerates of companies have made alliances intended to 

steer the future direction of IoT. Examples include IoTivity and the Allseen Alliance. However, there is 

no popular or widely adopted platform, and the field does not yet seem to be converging. 

Lastly, most user interfaces for smart home automation products today are either tactile on the 

device or visual on web apps or smart phone apps. These are rather limiting in terms of user experience. 

They both force the user to either be physically touching the device or interacting with a computer or 

phone, and they may be inefficient and inconvenient for the user. 

2.3 Original Design 

The CityHome team has come to conclude that the best communication platform policy is to be 

agnostic and try to develop technology that will play well with others, or at least allow that connectivity 
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as easily as possible. Some commercial smart home automation companies have adopted this mindset. 

SmartThings, for example, sells a hub equipped with multiple antennas supporting many communication 

protocols, like the ones listed above. They abstract that away and present the user and programmer with 

what they really want, access and control of their devices. 

Regardless, a communication platform choice was necessary for the creation of the prototypes. 

We decided that Wi-Fi should be the platform for CityHome. Wi-Fi has many benefits. It is ubiquitous; 

many modern buildings have Wi-Fi routers whose range extends throughout most or all of the building. 

Wi-Fi provides the devices direct access to the Internet, and with IPv6, addressing these devices and 

connecting them directly to the IoT will not be a problem. Wi-Fi allows us to leverage the existing 

hardware and software infrastructure that has already been built, tested, and scaled around it. Wi-Fi chips 

for microcontrollers are easy to get and use, and most programming languages provide libraries that allow 

for network and Internet communication, allowing programmers to write apps for these devices.  

For software platform, the CityHome team again came to conclude that agnosticism is the best 

policy. Building software such that it presents other programmers with an easy, structured, standardized 

API and that can leverage third parties API but abstract them into similar or identical form factors as the 

novel elements will lead to better, more scalable interactions and integrations. Therefore, we worked to 

choose multiple programming languages and platforms (ROS, Node.js) across the prototypes, integrate a 

third party API (SmartThings), leverage multiple software libraries, including Microsoft Kinect SDK, 

Microsoft Speech SDK, and Node-RED, and write an API allowing easy access to a smart home database 

and its microcontrollers. 

We believe that different user interfaces and more choices can lead to better user experiences. 

Gestural and speech recognition technologies, for example, can open up a world of magical experiences. 

Gesturing towards a device can cause it to move, transform, or change. Speaking at lights and furniture 

can do the same. Even tactile interfaces that are more metaphorically correct can lead to more natural user 
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experiences. Different user interfaces were explored across the prototypes, and user studies were 

performed to assess the usability of the user interfaces in the CityHome 2 prototype. 

 

 

Figure 1: Core of the CityHome 2 API. 
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Chapter 3 

3 User Interfaces 
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A vital ingredient in the making of robotic furniture are the user interfaces (UIs). Without good UIs, there 

is no good user experience (UX). People would not like to live in a difficult, unnatural robotic space any 

more than in a small, static one.  This section explores the UIs that can be used with these types of robotic 

elements and serves as a primer for the technical details of their integration into the CityHome and 

CityOffice prototypes covered in the following chapters. The UIs are divided into four categories: tactile, 

gestural, speech, and visual. Additionally, an important element of good UX, feedback, is discussed.  

 

3.1 Tactile 

Tactile interfaces are perhaps the most common and popular of all user interfaces in all sorts of products 

people interact with. Touch is a very well developed human sense; it is very natural and innate. Good 

tactile interfaces allow people to use and interact with devices seamlessly, efficiently, and naturally.  

 Integrated tactile interfaces are usually simple. The most common ones are buttons or switches. 

They allow users to toggle the state of the device. The toggling can be as simple as on and off or as 

complicated as navigating a menu.  

3.1.1 Switches 

Switches are popular because of their simplicity. They are cheap, easy to integrate, and universal; they are 

used in one capacity or another in many devices. They can be mechanical or electrical and are quick and 

easy to use. They also afford the user direct control over the device and require the presence of the user 

for operation (or at least the start of operation), which can be an important safety feature in many 

applications, like in motorized heavy furniture translation. 

Two common types of switches in electronic applications are single pole, single throw (SPST) 

switches and single pole, double throw (SPDT) switches. Although simple and appropriate for many 

products and use cases, switches have their limitations. They usually do not significantly enhance the user 
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experience. They also do not afford natural interactions; switches do not metaphorically (Marcus, 1998) 

integrate with the device functions and do not feel comfortable to use. Although integrated for safety 

reasons in the CityHome and CityOffice prototypes, switches were not used as the primary tactile user 

interface. 

3.1.2 Force-sensing resistors 

A force-sensing resistor (FSR) is an electrical resistor whose resistance changes depending on the force or 

pressure exerted on its area. This makes it useful for not only detecting if an object has been touched, but 

also for sensing the amount of force a user exerts on the object. This property gives FSRs an advantage 

over switches in terms of UX. It particular, FSRs integrate well with robotic furniture. Robotic furniture 

can be thought of as “furniture with superpowers” or “furniture that gives you superpowers” (Larrea-

Tamayo, 2015). Even a light touch could make a bed or closet move. More interestingly, the amount of 

force applied can be “amplified” by the system to move the furniture element, such that a stronger force 

from the user imparts more momentum to the furniture. Coupling this with an inertial component in 

which the furniture gradually accelerates and decelerates can lead to a very natural and desirable 

experience with robotic furniture. FSRs were in fact used in this manner for the CityHome prototypes. 
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Figure 2: Image of a square FSR, sold by Sparkfun. https://www.sparkfun.com/products/9376 

 

3.2 Gesture recognition 

Gestural interfaces are novel, interesting, and under continuous development and refinement. Body 

language is an important facet of communication between humans. Getting computers to understand body 

movements can lead to better and richer user experiences. There are a number of devices that can 

https://www.sparkfun.com/products/9376
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recognize poses of the body or body parts, such as the Leap Motion, which detects the hands, and the 

Microsoft Kinect, which detects the body. Although gestures tend to be easily recognized within cultures, 

and some gestures are universal, they are considerably more difficult to deal with for computers. At the 

lowest level, computers just see 3-D positions of important bodily elements, like skeletal joints. The 

programmer must then decide how this data is interpreted and analyzed to detect gestures. 

 

Figure 3: A Leap Motion and its visualization. https://www.leapmotion.com/ 

 People tend to be in their element when they are at home. Many people become comfortable and 

relaxed, and some like to disconnect from electronics such as computers and cell phones. Most modern 

smart home products have a graphical interface one can use on the phone or web browser for control. 

Unfortunately, this forces the user to carry and use the phone when an interaction is desired. Gesture 

recognition can therefore become a very important UI, giving the user the freedom to use his or her body 

at ease to interact with the smart objects. A Microsoft Kinect was utilized for this purpose in the 

CityHome prototypes. 
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3.2.1 Kinect 

 

Figure 4: A Microsoft Kinect v1. http://electronics.howstuffworks.com/microsoft-kinect2.htm  

The Kinect allows for gesture recognition via skeletal tracking of the people in the room. It provides the 

X, Y, and Z coordinates of skeletal joints of the person relative to the Kinect, like head, hands, elbows, 

and shoulders. Programming rules about the relative locations of the joints over time is one way to 

program for gestures and is the way the CityHome prototypes were implemented. The Kinect also allows 

for speech recognition, as it has a high quality multi-array microphone that can pick up speech throughout 

the room. 

3.2.2 Rule-based state machine with 3-D points and vectors 

To figure out what is the best methodology and algorithm for gesture detection and analysis, one must 

first figure out how the user would interact gesturally with the robotic furniture. In other words, the 

programmer must write code according to how the user wants to behave (within reason, of course), and 

not force the user to interact with the system solely according to how the programmer designed it. In 

thinking about this, we decided to divide the interaction into three phases: attention, selection, action. 
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 In the attention state, the user must perform a very specific gesture to wake the system and get its 

attention. This reduces false positives and prevent the system from reacting to unintentional gestures. As 

such, the wake gesture must be very particular and something that people would not ordinarily do. This 

gesture should be maintained for some amount of frames. 

 In the selection state, the user must select an object. Pointing is the most obvious way of doing 

this. To determine which object is being pointed at, we made a list with all the X, Y, and Z coordinates of 

all the controllable objects relative to the Kinect. During each frame, a vector is drawn from all points to 

the user’s chest or right elbow. Another vector is drawn from the user’s right elbow or shoulder to the 

right hand. The vectors are normalized. Then, the dot product of each object vector and the user vector is 

taken. A dot product value close to -1 implies that the vectors are antiparallel, or pointing directly at each 

other, which implies that the user is pointing at that object with his or her right arm. If an object vector 

dot product consistently falls below a threshold for some amount of frames, then the user has selected the 

object. 

 In the action state, the user must perform a gesture that corresponds with the particular object and 

desired action. User experience tends to positively increase when the gesture makes intuitive sense with 

regards to the object and action. For example, for a cantilevered bed that moves down onto the floor or up 

unto the ceiling, a swipe down or up gesture would work well. For a bed, table, or closet that moves 

horizontally away from or toward the user, an imaginary push or pull would work well. Each object type 

can have similar or different gestures for all the different actions, and some objects may have gestures that 

do not necessarily correspond to the action (as in the case of LED RGB lighting, for example).  
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Figure 5: Table moving out in the CityHome 1 prototype because of pull gesture. 

 Using this methodology, the system can be described as a rule-based state machine. All gestures 

are detected via rules; the 3-D Cartesian coordinates of skeletal joints of the body are extracted, and 

relationships are drawn between the positions of different joints or past and current positions of joints. For 

example, if the y-coordinate of the right hand has a higher value than the y-coordinate of the head, this 

can be detected as raising the right hand above the head, or an attention-getting gesture. The initial state is 

the sleeping/attention state, where the system is monitoring for the wake gesture.  The selection state is 

the second state, where the system is monitoring where the user is pointing. The action state is the final 

state, where the system is monitoring for a gesture that corresponds to an action for the object. In this 

way, gestures allow the user to interact with the furniture naturally and without the need for a phone or 

computer. 
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3.3 Speech recognition 

Speech interfaces, like gestural interfaces, are new, interesting, and under continuous refinement. In some 

cases, like low noise environments, they are more accurate and easier to work with than gestural 

interfaces. Speech is the primary method of communication between humans, and having computers 

understand speech, and the context too, can lead to rich user experiences. Speech recognition can work 

with computers with the right software and a connected microphone. Example software libraries include 

the HTML5 Web Speech API, CMU Sphinx, Microsoft Speech Platform SDK, WAMI Toolkit, 

OpenEAR: Munich Open-Source Emotion and Affect Recognition Toolkit, and OpenEars. The Microsoft 

Speech SDK and a Microsoft Kinect were used for speech recognition in the CityHome prototypes. 

 The Microsoft Speech SDK supports two speech recognition models: dictation and fixed 

grammar. The dictation model recognizes all words supplied in the language pack (the English language 

pack from Microsoft was used). As such, it is the broader and more versatile of the two models. It would 

allow the user to phrase a command however he or she chooses, only needing to include certain 

keywords. For example, the programmer could specify “bed”, “down”, “sleep” as keywords that when 

found in a phrase would make the bed go down. “Move the bed down”, “bed down”, and “I want to 

sleep” could all trigger the bed to move down. The dictation model, however, is also the slower and less 

accurate of the two. The fixed grammar model recognizes only the phrases specified by the programmer. 

Therefore, the user is limited to saying the phrases the programmer specified; saying a similar phrase or 

phrase with synonyms would not work (at least not usually). The grammar model is faster and more 

accurate, since the system is only looking for a few words rather than all possible words. For the 

CityHome prototypes, the fixed grammar model was used. 

 As with the gestural interface, a key word or phrase must be said to wake the system. This 

reduces false positives. This is especially useful in our lab setting, where we often do demos and talk 

about how the system moves and operates using same and similar phrases to the ones that trigger the 

actions. Additionally, the Microsoft Speech SDK returns a confidence score with the detection, a value 
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that ranges from 0.0 to 1.0. A value of 1.0 implies that the system is perfectly sure that the phrase was 

said (this value is never seen in practice). The programmer can specify a threshold that this value must 

exceed to perform the corresponding operation. 

Although a fixed grammar model is less natural than a dictation model, the gains in speed and 

accuracy are worth it, and a user can quickly learn the phrases for interaction or maybe even specify 

which phrases he or she would want in the grammar model.  

 

3.4 Visual 

Visual interfaces are one of the most popular interfaces for many electronics, especially Internet 

connected ones. Visual interfaces are very useful for displaying information and can be used effectively 

for input, communication, and control. Unfortunately, they constrain the user to have a computer, 

monitor, mouse, keyboard, and/or phone.  

 Because of their importance and ubiquity in computer-controlled systems, computer screens were 

used in all three prototypes. However, tactile, gestural, and speech interfaces were included when possible 

to serve as primary modes of interaction. For the CityHome 1 prototype, a projector highlighted the 

potential of projecting information on home surfaces and possibly having a camera-assisted touch 

interface. However, this was not used for user input.  

3.4.1 CityOffice Visual Interface 

The CityOffice prototype was an example of how robotic furniture elements can enhance office space. 

The main furniture element was a robotic desk called a Kubo. The desk was mobile; it had motorized 

wheels to allow it to navigate the space. The desk had automated legs that allowed it to transform between 

a cube, a sitting desk, and a standing desk. Lastly, the desk had flaps that allowed for variable desk space. 



28 
 

 

Figure 6: A CityOffice Kubo transforming into a sitting, deployed desk. 

The only switch on the Kubo was a power switch. Although tactile, gestural, and speech 

interfaces could have been included for control, we decided we wanted to emphasize the automatic and 

autonomous potential of such an object. Therefore, we created a simple and minimalist web browser 

interface for control of the Kubo. 
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Figure 7: Screenshot of Kubo website. 

The interface was ideal for touch screens and smart phone devices. Although the buttons could 

have been larger, they were big enough to allow a user to drive a Kubo through the office space and 

control the electronic wall dividers in the space. 

3.4.2 CityHome 2 Graphical Programming Interface 

The CityHome 2 prototype, like the CityHome 1 prototype, was an example of how robotic furniture 

elements can enhance living space. The two main furniture elements were a bed that can translate up and 

down between the floor and the ceiling and a closet that can translate left and right along a wall. There 

were also RGB LED lights and Philips hues in the space. Lastly, the space had sensors, such as touch, 

temperature, contact, and motion sensors.  

 Although tactile, gestural, and speech interfaces were incorporated into the room, a visual 

interface was included. A visual interface is probably the best medium through which to display and 

communicate the state of the room, home, building, etc., and many users are accustomed to visual 

interfaces and would want to control the smart objects remotely on a computer or smartphone. We wanted 

to highlight the programmability of such objects and allow even non-programmer users build apps for 
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their home. Therefore, we created a website to visualize the state of the smart objects in the room and a 

website to control and program the smart objects. 

 

Figure 8: CityHome website. 

The state display website is minimalist and simplistic. It shows the user’s devices in a table. Each 

row represents an object, with a name, type, and state. The rows are sorted and color-coded by similar 

types. Dennis Garcia created this website. 
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Figure 9: Node-RED CityHome 2 GPI. 

The Node-RED graphical programming interface is a programming environment that allows for 

the control of the smart objects and allows users to download apps written by others and to write their 

own apps. It consists of rectangular blocks wired together, with each block representing an object, a 

conditional, or an action. 

 

3.5 Feedback 

Feedback is an important component of user interfaces. Without feedback, the user may have no idea 

what the system may be doing and why it is doing it. (Microsoft Corp., 2013) Having tactile, gestural, and 

speech interfaces without feedback is akin to having a visual UI without on-screen feedback.  

3.5.1 LED Lighting 

In the CityHome 1 prototype, RGB LED lighting was the feedback channel. The bed, table, and storage 

module had internal LED strips, and the room had three overhead LED bulbs. When the user had the 

attention of the system, by either doing the wake gesture or saying the wake work, the lights would blink. 
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When the system was paying attention to where the user was pointing to see what he or she wanted to 

select, the lights would breathe white. When the user selected the bed, table or storage module, only the 

LEDs on that element would breathe. Some phrases were accompanied by specific LED color changes 

and patterns. This gave the user knowledge about the state of the system and allowed for control that is 

more effective. 

 

Figure 10: CityHome 1 prototype giving visual feedback with LED lights. 

3.5.2 Speech Synthesis 

In the CityHome 2 prototype, speech synthesis was the channel for feedback, giving the user very 

concrete information about the status of the system. Speech synthesis was better in a way, since the user 

did not have to learn what specific lighting and color patterns meant; the system would tell the user 

directly with speech. This also gave the room more personality and made the interaction feel a little 

better, more natural, and two-way. Like in the previous CityHome prototype, the system provided 

feedback about attention, selection, commands, and states. The details about the phrases and states as they 

relate to speech synthesis are described in section 5.6.4. 
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We conducted user studies on the usability of these interfaces in the CityHome 2 environment. 

The goal was to determine which of these interfaces were the most learnable, easy, efficient, and liked as 

implemented in a smart home environment. The experiment, results, and conclusion are drawn out in 

Chapter 6. 
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Chapter 4 

4 Electronics and Microcontrollers 
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4.1 Purpose and Importance 

Robotic furniture cannot exist without an integrated electronic brain that is in charge of managing all the 

inputs and outputs of the furniture. An electronic brain is needed to read in all sensor inputs, such as 

switches and FSRs, which may be used for control or data collection, and to control all outputs, such as 

motors, actuators, and lights, which effectively enable and execute the transformations. A capable 

microcontroller to add to the user experience and make the magic happen.  

 

4.2 Execute, Manage, Perform 

It is important to identify the different levels of control and electronics that exist in a robotic furniture 

system and smart home environment, as well as the different types of electronic brains and capabilities 

associated with each level. One system of classification is execute, manage, and perform, in increasing 

order of complexity. (Herr & Duval) 

4.2.1 Execute 

Execute refers to the electronics and microcontrollers associated with the lowest level of control of 

elements powered by electricity, like motors and actuators. Microcontrollers in this category usually have 

clock speeds in the kHz range and memory in the kB range. 

 Motors, for example, require special electronics for optimal functioning. Electric motors begin to 

spin when a voltage is applied across its terminal leads. Higher voltages (and currents) result in a 

faster/higher cruising RPM (revolutions per minute). Reversing the voltage (flipping the leads) makes the 

motor turn in the opposite direction. A simple battery or power supply, which supplies a constant voltage 

and has a maximum current draw, is therefore insufficient to control an electric motor, since it cannot 

control speed or direction. Special circuitry with transistors, MOSFETs, H-bridges, and/or a 

microcontroller is needed.  
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 To get a truly robotic element, this type of control (voltage level and polarity) is necessary. A 

common commercial electronic circuit for achieving this is a motor driver. It usually contains a dedicated, 

cheap, low-power microcontroller that can deliver pulse-width-modulated (PWM) voltage to the output. 

The Pololu Simple Motor Controller and Roboclaw are examples. 

 

Figure 11: A simple motor controller from Pololu. https://www.pololu.com/product/1378 

Motor drivers usually contain a dedicated microcontroller that can accept input from other 

microcontrollers and sensors to drive the outputs as desired, allowing the master microcontroller to 

delegate PWM and safety features and focus on other things. These slave microcontrollers therefore fall 

into the execute category. 
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4.2.2 Manage 

Manage refers to the electronics and microcontrollers involved with the middle level of control. These 

electronics are in charge of managing an entire mechatronic system, like a robotic table. They usually 

have to interact with components of the system, like slave microcontrollers and circuitry, to orchestrate 

the final outputs of the system. They are also in charge of reading and responding to user input, like 

switches and FSRs and must coordinate with the rest of the system to get the desired actions to happen 

based on that input. 

 Microcontrollers in this category are at least as powerful as execute microcontrollers. They 

usually have clock speeds in the MHz range and can have memory in the very low MB range. A system 

can have a single managing microcontroller, or there can be a team of them. In many cases, commercial 

products that have embedded electronics usually contain a managing microcontroller, and developers 

make custom managing firmware for these products while the executing microcontroller firmware across 

many products can be the same. 

 Often times, these microcontrollers have connection capabilities and can talk to other managing 

microcontrollers, or to higher level computing units like microprocessors, processors, computers, and 

servers. This communication usually involves sending and receiving commands. Some examples of 

communication capabilities are serial, SPI, I2C, UDP, and TCP. These controllers may also be capable of 

performing some complex actions, like executing some form of digital signal processing (DSP), 

performing data analysis, and computing complex mathematical operations. 

4.2.3 Perform 

Perform refers to the electronics involved at the highest level of control. Microcontrollers are rarely in 

this type of classification. More often, the lowest computing units in this classification are 

microprocessors and single-board computers (SBC). Smartphones are examples of microprocessors 

(processors are referred to as entire computing systems, rather than CPUs, in this paper). Even higher 
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level computing units, like processors (personal computers, for example) and servers (cloud) can take on 

the perform role in mechatronic systems. 

 Processors in this category are usually more powerful than managing microcontrollers. They 

usually have clock speeds in the GHz range and have memory at least in the MB range. They are tasked 

with anything from directing a small collection of products, say in a home or factory, to managing an 

entire fleet of managing microcontrollers over the Internet. Processors usually run high-level applications 

since the low-level complexity is abstracted away in the execute and manage categories. Processors are 

great for things like DSP and data management and analysis. 

 Processors allow programs to use a vast variety of freely available code, like the Robotic 

Operating System (ROS). They allow the creation of large, complex programs, testing and debugging, 

updating. They allow multiple applications to run simultaneously. Processors allow for rich application 

development and user interaction, like the use of speech and gesture recognition. 

 Examples of interesting SBCs are the Intel Edison, Intel Galileo, UDOO, BeagleBone, and 

Raspberry Pi. These were all considered for use in the CityHome and CityOffice prototypes. 

 

4.3 Capabilities 

The movements and transformations required by furniture mechatronic systems demand capable 

microcontrollers. In particular, to get the minimum satisfying/viable experience, at least one dedicated 

execute microcontroller and one manage microcontroller should be used. The execute microcontroller can 

handle the power electronics and critical safety features while the manage microcontroller can expose 

connectivity and manage the user interfacing and experience.  



39 
 

4.3.1 Inputs 

Microcontrollers have input ports to which inputs and sensors can be hooked up to. Two types of inputs 

are digital inputs and analog inputs.  

 Digital inputs are binary with two states, low and high. Low is usually ground, or 0 volts. High is 

the voltage of the microcontroller, usually 3.3 or 5 volts. Digital input ports are driven to the state that the 

sensor or input drives them to. The microcontroller then reads this as a Boolean value. Digital inputs are 

simple to work with and can be either polled or used as interrupts. Interrupts are special in that whenever 

the specified port is driven to the specified state, the microcontroller will halt its operations and run the 

firmware code the programmer specified to be executed, resuming operations after the interrupt service 

routine (ISR) is executed.  

 Analog inputs are continuous and range from ground (low) to power (high). Sensors that measure 

continuous information, like potentiometers, thermistors, and FSRs, drive analog inputs. Because 

microcontrollers operate in the digital binary realm, they cannot directly measure an intermediate voltage 

value. They must use an analog to digital converter (ADC) which converts analog voltage values to 

digital binary numbers, which the microcontroller (and programmer) can then work with. 

4.3.2 Outputs 

Microcontrollers have output ports to which outputs and circuitry can be hooked up to. Two types of 

outputs are digital outputs and analog outputs. 

 Similar to digital inputs, digital outputs are binary with two states, low and high. The 

microcontroller drives the port to either state, depending on the firmware. They are also simple to work 

with and can drive many types of circuitry.  

 Similar to analog inputs, analog outputs are continuous and range from ground to power. Because 

of microcontrollers’ digital limitation, they cannot drive their ports to an intermediate voltage level. They 

can, however, use PWM to create an artificial voltage level. By switching between ground and power 
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quickly, many components and circuitry can be driven using analog output. Alternatively, one could use 

digital to analog converters (DACs). 

4.3.3 Connectivity 

Magic and user experience would be extremely limited without connectivity. Connectivity allows the 

microcontrollers to talk to components, microcontrollers, and processors. Many different forms of 

connectivity exist. 

 Microcontrollers can employ many forms of wired connectivity. In the end, this boils down to 

wires connected to the ports and the ports being driven in very specific, well-defined ways. Some 

examples of wired communication protocols are serial, SPI, and I2C. 

 Microcontrollers equipped with wireless antennas can employ wireless connectivity. Although 

locally it still boils down to port-level control, wireless connectivity really expands the flexibility and 

versatility of the system (design and placement of the furniture is not constrained by wires) and allows for 

truly bringing the furniture mechatronic systems into the Internet of Things (IoT). Some examples of 

wireless communication protocols are Wi-Fi, Bluetooth (LE), ZigBee, and Z-Wave. 

 Connectivity is particularly important for truly expanding the power of the mechatronic systems. 

Processors now have the ability to send commands to the microcontrollers and control the space. Many 

rich apps can be written and deployed for these mechatronic systems and the home, including complicated 

ones using gesture and speech recognition for user interfacing. The processor can also receive data from 

the microcontrollers about sensors and events. This data can be logged and analyzed to draw patterns, 

infer conclusions, make decisions, and enhance the user experience.  
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4.4 Requirements 

With mechatronic systems, especially commercial ones that are going to be around people, there are 

certain requirements that are essential for the microcontroller to have. In particular, the microcontroller 

must implement safety features and be communicable and accessible to outside devices and applications. 

4.4.1 Safety 

Mechatronic systems must be safe. They should take all possible measures to ensure no harm comes to 

people and animals. They should also try to minimize any possible property damage. Safety features take 

the form of mechanics, electronics, firmware, and software. In general, the lower the level in which the 

safety features are implemented, the better and safer the system is. Ideally, the system should be able to 

recover from failure by itself or with minimal user interaction, but having the system shutdown and wait 

for expert repairs is another safety feature.  

 Microcontrollers should continuously monitor all connected components for signs of errors, 

distress, and failures. Upon detection, the microcontroller should attempt to correct them and/or alert the 

user. If the microcontroller or user is unable to fix the problem, the microcontroller should make the 

system fail in the safest way possible and keep the system in that state until expert help arrives.  

 The microcontroller should prioritize local control over remote control. If there is a conflict 

between control sensors and remote commands from other manage microcontrollers or perform 

processors, the remote commands should be ignored, and the microcontroller should operate according to 

the control sensors. Likewise, the microcontroller should ignore any command that could jeopardize 

safety. Lastly, the microcontroller (and processor combination) should implement firmware and 

communication safety features necessary to thwart malicious hackers. This is especially important, as 

these are personal elements within the home that only authorized users should have control over. 
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4.5 CityHome 1 

The CityHome 1 prototype consisted of a 200 sq. ft. apartment room with RGB LED lights, electronic 

shades/blinds, a pico projector, and a big storage module housing a bed, table, and LED strips. A more 

thorough description of the elements of the prototype can be found in section 5.4.3. 

 

Figure 12: CityHome 1 prototype. 

  

All these objects needed the right circuitry and logic to power and control them. The circuitry 

itself was rather simplistic and consisted mostly of a few resistors, capacitors, and transistors. The 

electronic brains were Arduino Megas. 
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Figure 13: Arduino Mega. http://www.arduino.cc/en/Main/arduinoBoardMega 

 The Arduino Megas contained custom firmware developed by the author, Daniel Goodman, and 

Matthew Daiter. The microcontrollers’ main job was to interpret commands from the central computer 

and control the objects accordingly. The microcontrollers used wired USB connections to communicate 

with the central computer. 

 The programming paradigm for the message interpretation and control involved nesting and state 

machines. The first byte sent to a microcontroller would usually reference the resource/object the 

computer wished to manipulate. The second and sometimes third byte and fourth byte would usually 

reference the desired action or actions for the object to take. In this way, the microcontroller behaved as a 

state machine whose actions and transitions depended on the bytes as they were received.  
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4.6 CityOffice 

The CityOffice prototype consisted of a small office space with blinds (representing walls) that could 

partition the space and three mobile robotic desks called Kubos that could move within the space and 

transform between cubes, sitting desks, and standing desks. 

 

Figure 14: CityOffice prototype space. 

The three main components of the electronic systems were the Pololu simple motor controllers, 

two Arduino Megas, and two Spark Core microcontrollers. 

4.6.1 Motor Drivers  

As described in section 4.2.1, a motor driver is an electronic system that can convert the constant voltage 

supplied by a battery or power supply into a variable voltage that can control the speed and direction of a 

motor.  

 Pololu simple motor controllers were connected to the motors that move the wheels of the Kubos, 

the motors that change the height of the desk surfaces, the motors that deploy the desk flaps to change the 

area of the desk surfaces, and the Kubo screen motors. They were controlled by a computer and an 

Arduino Mega on one Kubo and a Spark Core (described in section 4.6.3) on the other Kubo. 
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 The Pololu simple motor controllers have multiple methods of communication. They can 

communicate with computers via a USB connection, allowing computers to monitor the entire system 

state, set up the driver for control by a microcontroller, or control the driver directly. They can 

communicate with microcontrollers over serial or Servo/RC. Servo/RC is a special form of PWM. The 

microcontroller protocol used in the CityOffice prototype was Servo/RC due to its simplicity. 

4.6.2 Height Control 

The Kubos’ height could be adjusted using electric motorized desk legs. The legs were salvaged from 

commercially available desks, with the wires rerouted from a proprietary controller to our 

microcontrollers.  

The interesting and challenging part about controlling the legs is that they need to move up and 

down in sync. If the legs do not move at the same speed, they could become uneven and break the desk or 

at least present a tilted surface that is uncomfortable to work on or unusable. Applying the same speed 

command to the drivers is not enough, since same or very similar voltages on the motors might result in 

slightly different speeds due to differences in the motors and drivers, among other things. The 

microcontroller therefore needs knowledge about how many revolutions each motor has made to adjust 

speeds if one is faster than the other is. 

A proven way to keep the legs balanced is using PID control. PID stands for proportional, 

integral, derivative. It is a way to control error in many applications; error in this case is the difference in 

height between the legs. 

PID requires reliable information about the height of each leg or the number of revolutions each 

motor has made. One way to measure this is using encoders. Encoders are motor sensors that measure 

how many revolutions (or parts of revolutions) the motor has spun. The commercially available leg 

motors used in the CityOffice prototype do have built-in encoders. Unfortunately, they proved very 
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unreliable, to the point that we could not use PID control. The reason for their unreliability was not 

determined. It was also unclear how the proprietary controller used the encoders. 

In lieu of PID control, open-loop timing based control was used. On startup, the legs would 

slowly lower until they reached the very bottom (there were limit switches at the bottom). This way, the 

microcontroller knew that the legs were at the bottom and level. There were three possible states/positions 

for the legs: bottom, middle/sitting, and high/standing. When transitioning to sitting and standing modes, 

the microcontroller would command the motors in the appropriate direction for a set amount of time 

determined empirically to approximately reach the set heights. The error turned out to be tolerable, 

although it would compound if the states would switch between sitting and standing often without going 

to the bottom. In fact, the error was greater in that the height for sitting and standing would vary slightly 

upon every transition, especially as the battery discharged, as opposed to the error between the heights of 

the two legs. A netbook (described in section 5.5.1) and an Arduino Mega controlled the first Kubo, while 

a Spark Core operated the second Kubo. 

4.6.3 Spark Core Microcontrollers 

The Spark Core is a nifty open source microcontroller developed by Particle. It is a 

prototyping/development microcontroller similar to Arduinos. It has a smaller form factor and comes 

equipped with a Wi-Fi module, a Texas Instruments CC3000. This allows for quick and easy connectivity 

to a home network and the Internet, making the smart objects connected to the Internet of Things (IoT). 

Each Spark Core can connect to the Particle cloud, allowing for over-the-air firmware updates and 

reflashing as well as variable access and function calling. The Particle cloud has a RESTFUL API that 

allows software programmers to make HTTP calls to access their Spark Cores and smart objects. 
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Figure 15: Spark Core microcontroller, Wi-Fi included. https://www.particle.io/prototype 

4.6.4 Limitations 

The main problems that arose in this prototype are wireless connectivity issues and latency. Commands 

have to hop through many hoops; the user device sends commands to a CityHome computer, which sends 

commands to the Spark cloud, which sends commands to the Spark Cores. This makes it easy for the 

packets to be slowed down and even lost in transit, something undesirable in robotic applications such as 

this. Indeed, sometimes commands would take seconds to execute. Amplifying the problem, users would 

repeat commands when nothing happened, and these commands would be buffered and then execute in 

succession, which would not produce the intended behavior.  
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 Another problem with regards to connectivity involves the mobile nature of the Kubos. When 

navigating the building as opposed to a single room, the computer and microcontrollers would jump 

between wireless routers, temporarily losing connectivity and being reassigned IP address. This required 

the system to be reset and reconfigured to the new addresses, something that cannot be tolerated on a 

regular basis. 

 Mitigating these problems was explored in the following CityHome 2 prototype. 

 

 4.7 CityHome 2 

The CityHome 2 prototype consists of a 300 sq. ft. apartment with multiple smart objects. It has a 

cantilevered bed connected to two vertical lead screws that can move down onto the floor for sleeping and 

up into the ceiling when not needed. It has a closet with wheels connected to a horizontal lead screw 

along the floor and wall that can translate left and right to change the space of the room. It has three 

Philips Hue LED lights and LED light strips embedded in the bed. It also has some smart objects from 

SmartThings.  
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Figure 16: CityHome 2 prototype. 

The main electronic brains of the room were Spark Core microcontrollers. The firmware for the 

Spark Cores was more complicated than that of the previous prototypes and was written by the author and 

Eric Ponce. 

4.7.1 Control Loop 

The Spark Cores’ main job was to control the bed and closet motors. There was a single motor on the 

closet that was controlled again by a Pololu simple motor controller driven by Servo/RC control by a 

Spark Core. There were two motors on the bed, and synchronous movement was crucial. Because of this, 

a Roboclaw motor driver was chosen. It can control two motors independently and take input from their 

encoders to keep them level. The Roboclaw took serial commands from another Spark Core. 

The Spark Cores are also in both cases connected to FSRs. When a user pushes on the handle 

with the embedded FSRs, signifying the desire to move the furniture in that direction, the Spark Core 

registers that change in pressure/force and commands the motor driver to take the appropriate actions. 

Input from the FSRs take precedence over any remote command the Spark Core may receive. 
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4.7.2 Communication 

On system startup, the relevant perform microprocessor/processor has no way of knowing what 

microcontrollers are out there, what resources they have, and how to access them (unless this is hard-

coded by the programmer, which is not scalable). The processor also needs to know what transfer 

protocol to use to talk to the microcontrollers. 

 The two main Internet transfer protocols are the Transport Control Protocol (TCP) and the User 

Datagram Protocol (UDP). TCP is a streaming and reliable protocol. The two parties open a socket 

connection with each other, and communication is reliable and in-order with acknowledgement packets 

sent liberally. UDP is a connectionless and unreliable protocol. One party simply sends a message to the 

specified address and hopes the other party will receive it. As such, it is faster, simpler, and requires less 

overhead. Because of the simplicity of UDP, we are using microcontrollers (in fact, a protocol called 

Constrained Application Protocol has been developed as a reliable way to use UDP in low power 

applications), we are using a local network, and the event-based nature of the system, UDP was chosen as 

the communication protocol initially. Unfortunately, the Spark Core has known issues with UDP, and 

although we believed they would not affect system performance at first, we found that this was not the 

case over the course of the semester and have switched to TCP. We have found more success with TCP. 

 Next, the processor needs a way to know the IP addresses of the microcontrollers. Although some 

methods and protocols for this exist, one of the simplest methods is multicast. Multicast is a way to send 

UDP packets to multiple parties. A party can request to join a multicast group, associated with a local IP 

address. When a packet is sent to this IP address, all parties that have requested to join the group receive 

the packet. In this way, the processor can join a group, and the microcontrollers can send multicast 

packets to this group. This should be done when the microcontroller boots up, and can be done at regular 

intervals if desired. 

 The structure of the data to be exchanged needs to be determined. The structure chosen was 

JavaScript Object Notation (JSON). JSON is a popular web and computer data structure for representing 
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objects and hierarchies, which makes it well suited to represent the resources available on the 

microcontroller. JSON is easy to work with in many programming languages; many capable libraries for 

this have been written. The Spark Cores can also handle JSON, but JSON is considerably heavyweight 

for microcontrollers, and, especially since flash memory is limited on the Spark Core, it quickly became 

hard to manage. Because of this, although JSON remained the primary representation for API purposes on 

the software side, the data and access structuring of the microcontroller is to that similar of the nested 

state machine representation of the previous CityHome 1 prototype. The first byte of the packet references 

the resource the processor wishes to access. Currently, the programmer/processor must know the 

mapping, but one could develop a way to avoid this. The second byte references the desired action in 

most cases. The third byte is reserved in some cases and references the desired action in the other cases. 

Again, the programmer/processor must know this. 

 Of importance is a way for the microcontroller to transmit its state and to report events to any 

interested parties. There are multiple ways to do this, but this was not implemented at the time of this 

writing. 

4.7.3 Resource Representation 

How the microcontroller represents and exposes its resources is important. Resources refers to the inputs 

and outputs of the microcontrollers.  

 We divided the resources into two categories. The first category is high-level and deals more with 

particular objects. Within this category, two subcategories exist. The first is that of sensors. Sensors are 

inputs, like FSRs. The microcontroller may have an involved way of obtaining the sensor data. While the 

data at the low level may be voltage levels or packets, the data at the high level is the actual information 

the sensor was intended to get, like temperature or force. This high-level data is associated with the 

resource, acted upon, and transmitted. The second subcategory is that of actuators/appliances. They are 

outputs, like motor drivers. The microcontroller again may have an involved way of driving the output, 
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which may involve packets or port writes at the low level. At the high level, though, the command, 

intended action, or current state of the output is the one associated with the resource. 

 The second category is low-level and deals more with particular ports on the microcontroller. 

Within this category, the two subcategories are analog ports and digital ports. This category was intended 

to allow the processor to drive ports on the microcontroller directly. This is acceptable when the input or 

output connected to the microcontroller at those ports does not require quick communication or fine-

grained control, or when a new sensor or actuator is added and the programmer cannot or does not want to 

change the firmware and instead program the functionality on the software side. Simple LEDs, or sensors 

whose data is not used by the microcontroller, work well in this category. Arduino’s Firmata and 

Particle’s Tinker are examples of this type of resource representation and control.  

4.7.4 Limitations 

Although efforts were made to mitigate the limitations experienced in the previous CityOffice prototype 

with Spark Cores (we programmed direct TCP/UDP access to the Spark Cores as opposed to going 

through the Spark Cloud), we found that Spark Cores are still under development and do not have 

sufficiently robust connectivity. Issues included UDP bugs and streaming TCP limitations. Nonetheless, 

we were able to achieve sufficiently good communication capabilities. 

 Additionally, the current Roboclaw controller which drives the bed cannot do the PID control we 

want. The bed actuators can only realign themselves after they stop, not while the bed is moving. Future 

work will involve implementing PID control directly on the Spark Core. 

 



53 
 

Chapter 5 

5 Software 
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5.1 Purpose and Importance 

Although robotic furniture can exist without software, software opens up the possibilities for all sorts of 

applications, from rich user interfaces to data mining and activity recognition to health and affective 

computing. Software and a capable processor(s)/computer(s) are needed to really take the robotic 

furniture to the next level and enhance the user experience and provide the magic.  

 

5.2 Microcontroller vs. Microprocessor vs. Processor 

It is important to make the distinction between microcontrollers, microprocessors, and processors, 

especially in the realm of smart home computing. Microcontrollers are discussed at length in sections 4.1-

4.4. In summary, they are great for interfacing with electronics and controlling the physical environment, 

but they are not so great when it comes to speed and memory. They lack the volatile memory, non-

volatile memory, and processing speed that processors have by orders of magnitude more. They do not 

have automatic memory management and cannot run an operating system. They are better for particular 

tasks, and not so good for managing entire systems, working with a lot of data, and running applications. 

5.2.1 Microprocessor 

We here make a distinction between microprocessors and processors, one which does not depend on 

physical size nor refers to the computing unit by itself.  

 We classify a microprocessor as a computing unit with usually less than 1 GHz processing speed 

and less than 1 GB of RAM. Microprocessor computers usually have small form factors; examples 

include smartphones, Raspberry Pi, UDOO, and BeagleBone. Microprocessors have memory 

management and usually run free or open source operating systems (Linux). Although microprocessors 

usually have limited peripheral connectivity, they also usually have ports, just like microcontrollers. 

Microprocessors could therefore replace microcontrollers in some applications. They, however, are 

usually more expensive and bigger than microcontrollers are. Because they run operating systems and 
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have to deal with a lot more, they may also be less robust than microcontrollers for control operations. 

Nevertheless, microprocessors are receiving attention, especially for IoT applications. Although 

microprocessors were considered for potential use in all three prototypes, it was always decided to use a 

microcontroller and processor combination instead. 

5.2.2 Processor 

We classify a processor as anything more powerful than a microprocessor: greater than 1Gz processing 

speed and greater than 1 GB of RAM. Processors usually have big form factors, like laptops and tablets, 

desktop computers, and servers. Although they usually have more peripheral connectivity than 

microprocessors, they usually do not have ports with which to interface electronics. Processors cannot 

replace microcontrollers for physical control operations and are usually much bigger and more expensive 

than microprocessors. Because processors can interface with microcontrollers well, using a 

microcontroller and processor combination brings the best of both worlds. All three prototypes used this 

combination. 

 

5.3 Capabilities 

The applications for and data from the smart home and furniture mechatronic systems demand capable 

processors. In particular, at least one processor, whether local or remote, should be used. The processors 

will need adequate communication capabilities and data management.  

5.3.1 Communication 

Although there are many communication peripherals and protocols, the ones used in the three prototypes, 

and important ones in general, are wired and Wi-Fi peripherals using serial and Internet protocols. 

 The processor should be able to communicate with the microcontroller over a wired serial 

connection. Most processors do indeed have this capability. The most popular peripherals are Universal 

Serial Bus (USB) and RS-232 connections. At the low level, the microcontroller and processor use an 
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agreed upon baud rate, or speed at which bits are exchanged, and drive line voltages high and low in 

succession to transmit data. Serial communication is simple, fast, and reliable. The limiting factor is 

usually the microcontroller and how fast it can read and write to the line and run the rest of the firmware. 

Unfortunately, this forces a direct wire between the two, which is sometimes inconvenient or impossible, 

especially in remote applications or applications with moving parts. Wired serial connections were used 

in the CityHome 1 prototype and CityOffice prototype. 

 The processor should be able to communicate with the microcontroller wirelessly over TCP or 

UDP. TCP and UDP are discussed at length in section 4.7.2. This was the method of communication in 

the CityHome 2 prototype. TCP/UDP can be used internally between programs on the same machine, 

locally between machines on the same local network, and remotely over the Internet. 

 Finally, the processor should be capable of communicating to servers, computers, and/or 

microcontrollers over the Hypertext Transport Protocol (HTTP). This is one of the most popular Internet 

communication protocols. While it has a good amount of overhead, it is nonetheless simple, provides a 

way to structure data for transport, and defines rules for interaction. Libraries for HTTP exist for many 

programming languages. The CityOffice prototype controls were exposed over HTTP, and commands 

were sent to the Spark Cores by sending HTTP commands to Spark loud servers, which then sent CoAP 

commands to the Spark Cores. 

5.3.2 Data Management 

Data management is important in these applications. One must decide how data, objects, resources, and 

events are represented, structured, organized, stored, and read. Well-defined data structuring for the 

development of APIs is important, as different machines and applications need to be able to parse the 

data. Two popular ways of structuring data is the Extensible Markup Language (XML) and JavaScript 

Object Notation (JSON). JSON was chosen in the CityHome 2 prototype and is discussed at length in 

section 4.7.2. 
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 Resource representation is important; the processor must understand how resources the 

microcontroller represents resources in order to parse data and access and command those resources. 

Resource representation was not well developed in the CityHome 1 and CityOffice prototypes, as 

microcontroller and cloud data management was not implemented, event-driven programming was not 

developed, and there was no need for it. Resource representation was explored in the CityHome 2 

prototype and is discussed in section 4.7.3.  

 

5.4 CityHome 1 

5.4.1 Processor Specs 

The perform processor, or central computer, chosen for this prototype was a custom-built computer built 

by Matthew Daiter. It was very powerful; it had 12 GB of RAM, 113 GB of SSD memory, and 8 

processing cores with 3.4 GHz processing speed. It ran Windows 7 and was more than capable of 

managing the gestural and speech inputs of the room with the Microsoft Kinect and commanding the 

microcontrollers. 

5.4.2 Software Choice 

Because the prototype had a Microsoft Kinect, the easiest and most pain-free software choice was using 

C# for the programming language choice and Microsoft Visual Studio as the Integrated Development 

Environment (IDE). This allowed us to download, install, and use the Microsoft Kinect SDK, which 

allowed for the use of the connected Kinect. A serial communication library was used for the control of 

all the connected microcontrollers. The Microsoft Speech SDK was used for speech recognition. 

5.4.3 Elements 

The CityHome 1 prototype had a considerable amount of smart elements. It had a bed, table, storage 

module, LED lighting, blinds, and a pico projector.  
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The storage module was a big modular structure that housed the bed, table, and LED strips. It also 

housed much of the electronics and the central computer that controlled the home. It had compartments 

that would have allowed for additions, whether they be for storage (clothes, for example), a microwave, a 

sink, and a stovetop. The module had wheels and electric motors, allowing it to translate horizontally 

along a track in the room. The module could move to one extreme, maximizing bathroom space and to 

another extreme, maximizing bedroom, dining room, living room, or kitchen area.  

The bed and table also had motorized wheels and embedded LED strips. They could translate in 

and out of the storage module, converting the space into a bedroom or dining room or working area upon 

request. The bed, table, and storage module had FSRs on them, each detecting a force in a direction, 

which would allow the user to effortlessly push or pull each element in each direction. These elements 

were also controllable with speech and gestures. 

The space had LED RGB lighting, filling the space with colored light and opening up 

opportunities for visual feedback and setting the mood and affective computing. The lighting consisted of 

three strips, for each of the bed, table, and module, and three overhead bulbs. The lights were connected 

to a circuit with a power supply, resistors, transistors, and microcontroller to control the intensity of each 

color channel. The lights could be set via speech and gesture control and were used by the system to give 

feedback about its state, described in section 3.5.1. 

The room had motorized blinds that could be controlled by gestures and speech to change the 

natural lighting of the room and alter privacy. 

Finally, the room had a pico projector hanging from the ceiling. It had two pivoting servos, 

allowing it to rotate and tilt. Together with an autofocusing setup, it could project on different surfaces in 

the room, whether it be walls, floor, storage module, or table. It projected on four predefined surfaces, and 

key-stoning software corrected for the different projection angle distortions. 



59 
 

5.4.4 Algorithms 

The software algorithms written for this prototype consist mostly of code to communicate with the 

microcontrollers, control the elements, and read gestural and speech input. 

 Matthew Daiter implemented speech recognition, which the user could use to control all the 

elements, with a fixed grammar model. We implemented speech recognition for the CityHome 2 

prototype in a similar fashion, and that is discussed thoroughly in section 5.6.4. 

 The gesture recognition system is discussed in section 3.2. The specifics of this prototype’s 

implementation is discussed below.  

 In thinking about a natural, intentional gesture that is not often made by people in their homes, we 

decided that the wake gesture should be the user raising his or her hand above the head while keeping the 

left hand below the hips. This gesture is reminiscent of requesting attention in a classroom setting. We 

decided the right hand should be used mostly for actions and the left hand should be used for finishing or 

canceling actions. Although some people suggested trying to include symmetrical ambidexterity, we 

decided this was likely both simpler and more accurate and efficient for users. 

Feedback about the system state is crucial for effective usage and user experience. (Microsoft 

Corp., 2013) We decided to supply feedback in the form of LED color change and lighting patterns as 

described in section 3.5.1. If the user selected the pico projector, it would quickly tilt a little up and down. 

If the user selected the blinds, they would quickly move a little up and down. 

To detect where a user is pointing, we decided to use 3D vectors as described in section 3.2.2.  

Now in the action phase, the user must perform gestures particular to the object he or she is 

controlling. For the bed, table, and module, this implies moving the right hand towards or away from 

them to move them away or towards the user. Three imaginary zones are drawn in front of the user in the 

software, and they are divided vertically along the z-axis into an away zone, and stop zone, and towards 

zone. Moving the right hand between the zones sends the appropriate command to the microcontrollers. 
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To end the gesture, the user must raise the left hand to the right hand’s height (in the y-axis). This will 

stop the movement and put the system back into selection mode. 

Controlling the lights implies moving the right hand through an imaginary rectangular area in 

front of the user. The X coordinate of the hand in this rectangle determines the color, while the Y 

coordinate determines the intensity. This way, the entire color capabilities of the RGB LED lights are 

exposed. The commands are sent continuously to the microcontrollers, and the lights change continuously 

as the user moves the right hand through the rectangle. Raising the left hand to the right hand’s height will 

set the lights to the color and intensity the right hand was at in that frame. This will reset the system back 

into selection mode. 

5.4.5 Limitations 

Most of the issues encountered involved the speech and gesture recognition systems. The limitations of 

these systems are discussed in sections 6.3.3 and 6.3.4. 

 

5.5 CityOffice 

5.5.1 Processor Specs 

The perform processor chosen for this prototype was an Acer C720 Chromebook. It had 2 GB of RAM, 

16 GB of SSD memory, and dual processing cores with 1.4 GHz processing speed. It was formatted and 

installed with Ubuntu. It was chosen for its small form factor and great battery life, making it well suited 

to process commands over the Internet and travel on and control the Kubo. 

5.5.2 Software Choice 

Because there were no constraints on the system like in the previous CityHome 1 prototype, there was 

more freedom to choose the programming language. Because of the robotic nature of the prototypes, we 

decided to explore using the Robot Operating System (ROS). ROS is a great middleware with easy 
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integration of robotics software written by universities, companies, and individuals and a great platform 

for message passing and communication between programs running on same and different machines. 

 ROS is compatible with C++ and Python and has a library that supports JavaScript. Because 

Python is simple and readable and because no fine-grained or time-sensitive control was necessary, it was 

chosen as the primary programming language. The main goal of the software was to manage the control 

of the Kubos’ wheels, legs, flaps, and screen and the room dividers. 

 To control the Kubos and room dividers, we developed a website, written in HTML and 

JavaScript with the meteor platform. All this is discussed in section 5.5.4. 

5.5.3 Elements 

The CityOffice prototype’s main object was the Kubo, the mobile robotic desk. The Kubo’s main 

elements are the wheels, legs, screen, and flaps. In addition, the room had screens representing room 

dividers that could partition the space on demand.  

 The motorized wheels allow the Kubo to navigate the space. There are two wheels on two axes on 

the Kubos, for a total of four wheels. Pololu simple motor controllers differentially drive them. On one 

Kubo, the motor drivers are directly connected to the computer over a USB connection. On the other, they 

are connected to Spark Cores over Servo/RC lines. The wheels can move in the same or different 

directions at same or different speeds, giving the Kubo a range of motion limited by the mechanical 

configuration of the Kubo base and by the error between the drivers, motors, and wheels. Further details 

about wheel control can be found in section 4.6.1. 

 The legs allow the Kubo to change height. The Kubo can alternate between a small cube, a sitting 

desk, and a standing desk. Details about height control can be found in section 4.6.2. 

 The screens on the Kubos are intended to serve multiple purposes. While only panes in the 

prototypes, the screens could function to increase privacy and allow for a “cubicle” on demand. They 

could also house a computer screen. The flaps on the Kubos can be deployed to increase effective desk 
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area. The screens are connected to small, commercial translation modules, and the flaps are connected to 

small, commercial pistons/actuators that take in simple high-voltage binary commands to control 

direction of movement.  

 The room dividers are screens rolled over the axis of motors. The motors are connected to 

commercial drivers. The drivers are connected to an Arduino Mega that can toggle each screen to move 

up, down, and stop with simple binary digital writes. The Arduino Mega receives USB serial commands 

from an Acer C720 computer. 

5.5.4 Algorithms 

The software algorithms written for this prototype consist of taking control input from the user remotely 

and affecting the appropriate elements. 

 The UI consists of a website, shown in section 3.4.1. The website was made using Meteor and 

was hosted on the free Meteor servers. It was written in HTML, CSS, and JavaScript and used Twitter 

Bootstrap, jQuery, and the JavaScript ROS package. Upon loading the website in a client web browser, 

the client establishes a WebSocket connection with the host ROS computer. The control buttons on the 

website all had button click event listeners on them. Clicking on them would publish a ROS message that 

would be sent to the host ROS computer and processed accordingly. For the first iteration Kubo, the 

website had five buttons a page: forward, back, left, right, and stop. The host ROS computer, which was 

housed inside the Kubo, would receive these messages and send the appropriate commands to the 

connected motor drivers. Because of the design of this Kubo base, the Kubo could not rotate on its axis 

(much like a car), and using the left and right buttons would result in a forward left and forward right turn 

respectively. Clicking on the same movement button multiple times, up to three times, would increase the 

speed. On another page, three buttons corresponded to the height of the desk: undeployed, sitting, and 

standing. Two buttons corresponded to the screen: deployed or undeployed.  
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Figure 17: First page of Kubo website. 

 The second iteration Kubo was different and better. It had a better base, allowing the Kubo to turn 

on its axis (albeit imperfectly). The left and right controls were changed to allow this. This Kubo had a 

Spark Core, allowing wireless control; the host ROS computer was located elsewhere. Its flaps were 

connected to actuators, allowing for automatic deployment; two more buttons were added to the website 

for this.  

 There was also a third Kubo base, without the legs and desk, made to display the possibilities of 

making a robotic base that could support different structures, like a printer, a coffee table, or a mini 

refrigerator. This Kubo had two wheels instead of four, and the wheels were the only controllable 

elements. Due to its design, however, it was very difficult to control since its motions were imperfect. 

 Although a Kubo would make for a great autonomous robot, we could not make it so in the short 

time span of the semester. To highlight its potential for autonomy and intelligence, we added an audio 

speaker to the first iteration Kubo. We used a ROS text-to-speech package, CMU festival, for speech 

synthesis. He included a text input box in the website. The user could type any phrase, which would be 

published as a ROS message to the Kubo’s computer. The computer would then say that phrase. People 
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could then believe they were having a conversation with the Kubo, despite there being a human at the 

other end. 

 

5.6 CityHome 2 

5.6.1 Processor Specs 

The processor for this prototype was the same as the CityHome 1 prototype, except running Ubuntu 

instead. It was needed to manage the complexity of the smart room and for data management, 

communication and control, website hosting, app deployment, and outside service integration. A separate 

laptop computer with 4 GB of RAM, 465 GB of HDD memory, and 4 processing cores with 2.8 GHz 

processing speed running Windows 7 was used to interface with the Kinect. 

 

Figure 18: Complexity of CityHome 2 prototype software. 

5.6.2 Software Choice 

Because of the bigger size and complexity of the prototype, past experiences, and more thorough research 

and focus on scalability, the software choices were broader and more involved. We decided to use 
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software choices from both previous prototypes. C# and MS Visual Studio were used for gesture and 

speech recognition and speech synthesis, and Python, JavaScript, ROS, and Groovy were used for 

everything else. 

 ROS was the glue between all the different programs and modules. Message passing was the 

primary method of communication between programs. Message passing fit in well with the event-based 

nature of the robotic interactions.  

 

Figure 19: CityHome ROS node framework. 

There was a module in charge of inter-machine communication and control over TCP and HTTP. 

There was also a Node-RED module. Node-RED is a node.js module written and maintained by IBM. It 

is a conduit to programming for the IoT graphically. All objects, resources, events, actions, conditionals, 

functions, and libraries are represented by rectangular blocks. The rectangular blocks can have inputs and 

outputs and be arranged and wired graphical. In this way, the programmer can create a visual workflow 

and make apps, and even non-programmers can learn to use it to make their own apps. We wrote code 
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encapsulations (in HTML and JavaScript) to interface with ROS and represent and control the different 

smart, connected elements in the room. Figure 9 in section 3.4.2 shows a Node-RED app. 

There was a MongoDB database for storing information about the state of the room and elements 

and keeping track of events. There was a website that read from the database and displayed the state of 

everything, and it would update every time a change was made to the database. Dennis Garcia developed 

the MongoDB data management and website.  

The last software element of the prototype was the SmartThings API integration. SmartThings is 

a smart home automation company. They sell many products, such as lights, contact sensors, presence 

sensors, temperature sensors, motion sensors, and locks. All their devices are connected to a SmartThings 

hub, a wireless router with many different antennas supporting many IoT wireless protocols, like ZigBee 

and Z-Wave. Their router can also interface with third party devices and connects to the Internet and the 

SmartThings cloud. Data and events are collected in the cloud, and the objects are controlled via 

commands sent from the cloud. Apps can run on the cloud. SmartThings provides a smartphone app to 

monitor and control your devices and download and install cloud apps. They also provide a RESTFUL 

web API to allow programmers to write apps and monitor and control devices with HTTP calls. The apps 

running in the cloud are written in Groovy. We made a cloud app to allow interfacing with the ROS 

platform. This way, Philips Hue lights and SmartThings sensors could be accessed and control similarly 

to how the microcontrollers were being controlled with the same platform and API. 

5.6.3 Elements 

There is a big closet in the room. The closet has wheels and is connected to a motor-equipped lead screw 

along the floor and wall. This allows the closet to translate horizontally on the floor along the wall and is 

intended to make your space dynamic and reconfigurable effortlessly. 

There is also a queen bed in the room. The bed is connected to vertical motor-equipped lead 

screws running from the floor to the ceiling. This allows the bed to be cantilevered and translate 
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vertically. It is intended to provide you a bedroom when you need it and a living room or multipurpose 

room when you do not. 

There are RGB LED lights in the room. In our prototype, they are laced along the sides and 

interior of the bed. They are meant to add lighting and personality to the room and set and affect the 

mood. 

 There are also three Philips Hue lights in the room, but they are routed through the SmartThings 

cloud. There is also a SmartThings motion sensor and door contact sensor with integrated temperature 

sensor to monitor motion in the room, when the door is opened and closed, and what the temperature is. 

5.6.4 Algorithms 

Although significant code was written besides the user interface software, the focus of the discussion will 

be solely on the user interface software. 

The gesture recognition system is very similar to the one used in the CityHome 1 prototype, with 

some changes. The interaction remains divided into the three components: attention, selection, and action. 

To add personality, naturalness, and a tone of conversation to the room, we decided to supply 

feedback in the form of speech synthesis instead of LED lighting. We used the Microsoft Speech SDK for 

speech synthesis. It provides a lively female voice. 

Once the user has raised the right hand for a number of frames, the system will respond with “you 

have my attention”. This alerts the user that the wake gesture was accepted and the system is now 

monitoring to detect where the user is pointing. 

Pointing works in the same way as before, the reader may refer to sections 3.2 and 5.4.4. If a 

selection is made, the system provides feedback in the form of “you have selected the {bed, closet, 

lights}”. 
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Now in the action phase, the user must perform gestures particular to the object he or she is 

controlling. For the bed, this implies swiping up or down from the original right hand position to move it 

up or down. This works well as the bed has binary up and down states and cannot be controlled to stay in 

between the two ends of the lead screws.  

Controlling the closet implies moving the right hand left or right to move the closet left or right. 

Unlike the bed, the closet position can take any point between the two ends of the lead screw. Therefore, 

the swipe and forget gesture is rather limiting. Instead, three imaginary zones are drawn in front of the 

user, and they are divided vertically along the x-axis into a left zone, a stop zone, and a right zone. 

Moving the right hand between the zones sends the appropriate command to the closet microcontroller. 

To end the gesture, the user must raise the left hand above the head. The zone in which the right hand is in 

when the left hand is raised is the last command that is sent to the closet. This was intended to be a feature 

to allow the user to send the closet all the way in one direction without having to be standing and raising 

the arms the entire time. 

Controlling the lights also works the same way as before. Raising the left hand above the head 

will set the lights to the color the right hand was at in that frame. 

After exiting the action state, the system stops and returns to the sleep/attention state. 

The speech recognition system uses the Microsoft Speech SDK and the US English language 

packages. The speech recognition engine supports two modes. The first mode is dictation. The system 

listens for all words in the language pack dictionary and returns phrases as it detects them. This mode 

trades flexibility for accuracy; since it looks for all words, it is not as accurate as the fixed grammar 

mode. The second mode is fixed grammar. The programmer specifies all the possible phrases the user 

may say. The system then fixates to only look for those phrases, increasing accuracy but forcing the user 

to use only the specified phrases. Because we are dealing with a sometimes-noisy home environment, (the 
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motors make significant noise moving the furniture) and testing with multiple speakers, the fixed 

grammar mode was chosen. 

In keeping with the three-component system model, we decided the system should have a wake 

word. We chose the word to be “home”. When the user says “home”, the system responds with “hello” 

upon waking, and is now listening for a command. 

To move the bed, the user can then say “move the bed {up, down}”. The system then responds 

with “I will move the bed {up, down} for you”. Unfortunately, the bed’s electronics were not ready in 

time, and the code at the time of this writing does not send any command to the bed microcontroller. 

To move the closet, the user can say “move the closet {left, right}”. The system responds with 

“moving the closet {left, right}” and sends the appropriate command to the closet. The user can then let 

the closet reach one of the ends of the lead screws. Otherwise, the user can say “stop” at any time. The 

system responds with “stopping the closet” and stops the closet. As currently designed, the move 

command does not exit the action state of the system; the user must say “stop” for this. 

To change the color of the lights, the user can say “change the lights to [color]”. The system does 

not respond with speech; it instead just changes the lights, as this is feedback enough. Unfortunately, the 

programmer must specify all the allowable colors. The colors are set at full intensity; intensity control 

was not implemented at the time of this writing. Saying the command does exit the action state of the 

system. 

We also explored the integration of crossing the two modalities. This was a means to increase the 

options available for control by the user. The user could use the either the wake word or wake gesture to 

get the attention of the system. Once attention was attained, the user could either say an entire selection 

and control phrase (like “move the closet left”). Alternatively, the user could point at an object. Once 

selection was obtained, the user could either perform the control gesture, or say an abbreviated command 

phrase. For example, if the user had pointed at the bed, he or she can simply say “{up, down}”. Similarly, 
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the user can point at the closet and say “{left, right}”. Lastly, the user can point at the lights and say 

“[color]”. 

5.6.5 Limitations 

Most of the issues encountered involved the speech and gesture recognition systems. The limitations of 

these systems are discussed in sections 6.3.3 and 6.3.4. 
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Chapter 6 

6 User Studies 
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Increasing the functionality of the room will do little if the user experience stagnates or becomes worse. It 

is not enough to have robotic objects in the room; they must also add to the user experience layer and be 

easy and natural to interact with. The right user interfaces are critical for this. Chapter 3 discussed the user 

interfaces of the three prototypes. In order to test the usability of the tactile, gestural, speech, and 

visual/screen interfaces, we performed user studies to learn about the learnability, ease, satisfaction, 

speed/efficiency, and error rate of the different UIs in the CityHome 2 prototype. 

 

6.1 Components Tested and Surveyed  

To analyze the performance of the system, we tested the speed at which users performed the same tasks 

using the different UIs, the error rate in accomplishing these tasks, and the recovery rate in each task 

when errors were made. To analyze usability and get a notion of UX, we surveyed the users after the tasks 

for learnability, ease, and satisfaction for each UI. This may shed light on which UIs may be better for 

certain object control and tasks. 

6.1.1 Learnability 

Learnability refers to how easy it is for the user to learn how to use an interface. Factors that affect 

learnability include the simplicity of the user interface, how well it aligns with the mental model a user 

may form of its operation, training and resources, and how many cognitive resources are required to learn 

and use it.  

6.1.2 Ease 

Ease refers to how easy it is for the user to use the interface. It has similar factors to those that affect 

learnability but also include ergonomics and robustness and error tolerance and recovery. 
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6.1.3 Satisfaction 

Perhaps the most important general measure of usability, satisfaction refers to how content the user is 

with the UI and UX. Even if the UI is easy to learn and use (which generally correlates with satisfaction), 

if the users are not satisfied with the UI, then UX will suffer. 

 Learnability, ease, and satisfaction were all surveyed for the different UIs on the different objects 

tested on 7-point Likert scale ratings. 

 

6.2 Experiment 

 The testable objects consisted of the closet and lights. The gesture and speech modalities exist for 

both objects. The closet also has a tactile modality, a FSR that can measure the amount of force applied in 

two directions on the closet’s handle. The lights also have a visual modality, a Node-RED web app that 

allows the user to change the color from a computer or phone screen. We also implemented a cross 

modality, referring to the use of both gestures and speech to accomplish a single task.  

 Between the two objects and five modalities, we came up with eight tasks for each user to 

perform twice. They involve moving the closet with the touch sensor (1), gestures (2), speech (3), cross 

(4), and changing the lights with gestures (5), speech (6), cross (7), and the visual screen interface (8). For 

the study, 20 users participated. 

 

6.3 Results and Conclusions 

6.3.1 Performance 

For the closet, we timed how long it took the user to move the closet a set same amount of distance with 

each UI. The aggregate results are below. Error bars represent standard error. 
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Using the touch sensor proved fastest. Speech followed in second place. Gestural and cross 

interfaces were the slowest. The touch sensor was probably fastest because it is the simplest one. The 

closet starts moving as soon as you press on it, and it does not result in errors. Speech proved fast because 

saying the wake and control phrases is faster than performing the wake and pointing gesture.  

For the lights, we timed how long it took the user to change the lights to a specified color with 

each UI. A screenshot of the visual interface and the aggregate results, with standard error bars, are 

below. To change the color with the visual display, one must double click the color block, choose a color 

from the dropdown menu, and hit two more buttons on the display. 
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Figure 20: Visual screen interface using a Node-RED web app. It was used to change the color of the lights in the user studies. 

 

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 s
p

ee
d

 (
se

co
n

d
s)

Tasks

Light UI Performance

Gestural

Speech

Cross

Visual



76 
 

 Using speech proved fastest. Interestingly, the cross modality was faster than gesture and the 

visual interface. Speech was again fastest because of the simplicity of the wake word and control phrases, 

and the gestures and visual interface were the slowest. 

 For the closet, errors occurred with gestures 35.3% of the time, and users recovered from them 

41.6% of the time. This is partially due to users making stop gestures as it occurred to them (forward 

movement of the right hand in the Z direction, for example) instead of the ones they had been trained on 

(right hand movement in the X direction) and also due to a poorly implemented feature. The closet 

algorithm was designed such that the user could relinquish control while in movement mode, moving the 

closet all the way to one end without the user holding the gesture the entire time. Users would sometimes 

relinquish control while still in a movement mode accidentally (thinking they were in stop mode), 

resulting in errors. 

 Errors occurred with speech 35.3% of the time. This was mostly due to the increased noise 

generated by the motors moving the closet, which drowned out the users’ “stop” commands. 

 Errors occurred with the cross modality 46.4% of the time, and users recovered from them 46.2% 

of the time. This is due to the added complexity and interference between the modes, which compounded 

the error instead of improving it. 

 No errors were made with the tactile interface. Therefore, the tactile interface won out in terms of 

speed and accuracy. Speech followed in second in speed, while gestures and speech tied for second in 

accuracy (although errors were recoverable with gestures). 

 For the lights, errors were made 21.1% of the time with gestures, and users recovered 50% of the 

time. This was mostly due to the system erroneously selecting the bed, which was very close to the lights 

point, and to the system erroneously detecting a cancel gesture, which occurred because users would 

sometimes rotate their body and get the left arm out of view, which adds a lot of noise to the joints in the 

left arm. 
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 Errors were made 13.2% of the time with speech, and users recovered 80% of the time. 

 Errors were made 27% of the time with the cross modality, and users recovered 80% of the time. 

Again, this is due to the added complexity and interference between the modes, which compounded the 

error instead of improving it. 

 No errors were made with the visual screen interface. The visual screen interface was the best 

when it came to accuracy, followed by speech, which is likely because the phrases are short, sweet, and 

simple. 

6.3.2 Usability 

The aggregate results of the usability surveys are below. For the closet, the winner in all three categories 

was the touch sensor. This again is likely due to its simplicity and robustness. For learnability and ease, 

speech and gestures ranked about the same. For satisfaction, gestures ranked better than speech. This is 

likely due to the poor speech performance caused by the motor noise.   
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 The aggregate results for the lights are below. The winner in all three categories was speech. This 

is likely due to its efficiency and robustness (no motors are spinning). For learnability, gestures 

won over the visual interface. For ease and satisfaction, the visual interface won over gestures.  
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6.3.3 Implementation Notes 

For gestures, we dealt with joint positions and their relationships, not with velocities, accelerations, 

orientations, etc. Including this may have made the system better given adequate programming, but 

introducing this complexity was undesirable at the time.  

Dealing with multiple object points was a little challenging. Distances were measured in meters 

from the objects to the Kinect in X, Y, and Z directions. The threshold was tuned to allow for easy 

selection (especially important since no feedback was given about when the system detected a valid 

pointing, only after a few frames of continuous pointing had elapsed and the state had changed) but to 

avoid overlapping areas of the points. The behavior should overlap occur was just to settle on the first 

1 1

3

2

4

3

6

0 0 0 0

1

10

9

0 0

1

4

12

1 1

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

# 
o

f 
u

se
rs

Satisfaction (1 = very dissatisfied, 7 = very satisfied)

Lights UI Satisfaction

GSL

SSL

VSL



84 
 

object in the list with which the system computed a trigger dot product. This sometimes led to false 

positives and the system selecting an object the user did not intend to choose. 

It was also difficult to keep track of all objects, states, and possible actions by the user. In 

particular, we learned to correct for some things only after testing out the system with other users who did 

not know about how the system was programmed and seeing how they acted and how the system reacted. 

Even then, it was particularly challenging coming up with good ways for recovery and cancellations. 

The Kinect data was sometimes very noisy and inaccurate. In particular, if the user did not keep 

his or her body facing the Kinect, something a little unnatural when dealing with objects in different 

locations, the skeletal joints would become erroneous. The same thing happens if the user wears loose 

attire, like scarves, jackets, purses, etc. The Kinect would sometimes mistake objects for people as well, 

and these skeletons were almost always very noisy.  

For speech, a fixed grammar was used. This increased the accuracy of detections and overall 

made the system better. However, this also forced us to specify the phrases to be said and forces the user 

to know and say those phrases. Luckily, even when users strayed from the phrase by a word or two, the 

detection was usually still made. 

Integrating speech recognition into the system showed the difficulty that acoustic noise creates in 

speech recognition. Although the Kinect has a high quality phased microphone array, much better than 

computer-integrated microphones, performance would still suffer when other people were talking in the 

background or when the motors were making noise in moving the closet. This was especially critical, as 

control is most needed when the furniture is moving, but this is precisely when speech detection suffered 

most.  

Crossing the modalities was probably the most complicated programming-wise and could become 

complicated if the user did not know well how it works. This is because you have two modalities 

competing to control the system states, and better programming could have gone into this. Allowing for 
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the crossing of the modalities would sometimes result in unwanted interference between the two modes. 

The user’s speech and gestures would sometimes not match, confusing the system and resulting in 

undesired behavior. For example, the user could say “up” while relaxing and dropping the hand (a move 

down gesture). Overall, this led to more errors. 

Some things worked quite well and easily too. The attention and cancellation gesture (raising the 

right hand above the head and raising the left hand above the head, respectively) were detected well. The 

swipe up and down gestures were detected well. This is because they are simple and have clearly defined 

rule configurations. Pointing also almost always resulted in a detection and usually in correct detections. 

Users also liked how the color gestural system worked. 

When noise was limited and the phrases were mostly correct, speech detections were almost 

always spot on. Although the project is still at a prototype level, and speech and gesture recognition still 

need to improve, people are excited to be in sufficiently robust multimodal UI smart home environments. 

 

6.3.4 Improvements 

A few things can improve the system. Utilizing more data besides joint positions, like velocities, 

accelerations, and orientations, may prove beneficial. The system should compute dot products of all 

objects and choose the object closest to -1 instead of the first one below the threshold. If the user points at 

an overlapping area, the system should use speech synthesis to ask the user which of the objects he or she 

is trying to select. 

 Learning more about the gestures one can expect users to make while using the system and trying 

to account for those would also be helpful. To increase gestural accuracy, taking advantage of the fact that 

the Microsoft Kinect SDK differentiates between confident and not confident joints and only analyzing a 

frame where all the relevant joints are confident would likely be effective. Looking into digital signal 

processing techniques to filter out motor noise would probably improve the system. Lastly, the cross 
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modality should be implemented differently. Instead of the competitive method used now, trying to find a 

more cooperative method in which they help reinforce each other and make correct detections would be 

worthwhile. 

 

6.4 Other Qualitative Results and Conclusions  

Other interesting questions were asked in the end-of-study survey. The aggregate results are discussed 

below. 

 

 

Users were asked to rank the modalities in order of preference from 1 to 5, 1 being the most 

preferred. The results are in the bar graph above. It is too close to call with touch, gestures, speech, and 

3.1
2.75

2.55 2.6

4.15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Touch Rank Gesture Rank Speech Rank Cross Rank Phone/Screen Rank

A
ve

ra
ge

 R
an

ki
n

g 
(L

o
w

er
 is

 b
et

te
r)

UI Rankings



87 
 

cross, although it seems that touch may lose out by a little to the others. What is obvious is that the visual 

screen modality is the least preferred. This gives some validity to the notion that people prefer more 

natural methods of interacting with their smart objects and prefer not to have to use a computer or phone 

to do so. 

 60% of participants classified the touch, gesture, and speech modalities as necessary in robotic 

furniture. 55% classified the cross modality as necessary. Only 35% classified the visual screen modality 

as necessary. 

 0% of participants said they would not want a touch interface with their robotic furniture. 5% said 

they could do without the gestural and speech interfaces. 20% did not want the cross interface. 15% did 

not think the visual screen interface was necessary. 
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 The bed, closet, and lights were ranked more favorably then the table, although this could be a 

consequence of the fact that there was no table in the CityHome 2 prototype, and users were asked to 

answer as if there was. 

 Users were presented with 7-point Likert ratings for user experience in the apartment and for the 

general feeling about the demo apartment (1 being negative, 7 being positive). For user experience, the 

average was 6.25 with a standard error of 0.18. For general feeling, the average was 6 with a standard 

error of 0.21.  

 Users were presented with 7-point Likert scale ratings on whether they believed robotic furniture 

and spaces were the future of urban housing and if they wished they owned robotic furniture (1 being 

definitely not, 7 being defintely yes). For the future question, the average was 5.9 with a standard error of 

0.23. For the wish question, the average was 6.2 with a standard error of 0.21. 
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 Users were also asked: “Given a bed costs $350, how much more money would you pay to make 

it robotic, allowing for vertical translation between the floor and ceiling?” The results are in the chart 

above, and it seems that the average extra price is a little above $1000. 

 

 

 Users were asked: “Given a closet costs $150, how much more money would you pay to make it 

robotic, allowing for horizontal translation?” The results are in the chart above, and it seems that the 

average extra price is around $400. 
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 Users were asked how much in monthly rent they would spend on a 300 sq. ft. traditional studio 

vs. a robotic studio of the same size in Kendall Square, Cambridge, MA. The results are above. These 

results can be used as a starting point to validate the problem of urban housing and that people believe 

robotic furniture is a solution worth paying extra for. 

 Lastly, out of the 20 participants, 17 said they would prefer to live in a robotic apartment to a 

traditional one. 
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Chapter 7 

7 Conclusion 
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7.1 Application Spaces 

The research generated by the CityHome team over the years show that robotic furniture does have 

considerable potential to be a solution for the urban space problem. Mechatronic systems and robotic 

furniture with capable mechanics, electronics, and software will be crucial to deploying this technology, 

and further development is still needed on these fronts. User interfaces are also a critical part of the 

technology, and people want robust interfaces different from the traditional tactile and visual ones. People 

are willing to pay for this technology, further validating the problem. 

 There are many potential application spaces for this technology, including current apartments, 

studios, and micro apartments, new apartments under construction, hotels, restaurants, bars, retail spaces, 

hospitals, and transportation spaces. (Larrea-Tamayo, 2015) 

 

7.2 Impacts and Milestones 

The CityHome project has clear potential to make big impact and has received considerable attention and 

press over the years.  

CityHome has received attention and positive reviews during MIT Media Lab’s Members’ 

Weeks, during which many different company representatives travel to the Media Lab and inspect the 

projects their funding has sponsored. In fact, because of the CityHome project, IKEA, a low cost furniture 

retailer, became a Media Lab member in January 2015 and funded CityHome. 

A business plan about commercializing the CityHome technology was developed and entered into 

the MIT $100K competition and made it to the semi-finals. Hasier Larrea, the project manager, will give a 

TEDx Cambridge talk in the summer of 2015 about the urban future and CityHome’s developments. 
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Figure 20: CityHome has more than a million views on YouTube. Image courtesy of Hasier Larrea. 

 

 

 

Figure 21: Examples of press attention for CityHome. Image courtesy of Hasier Larrea.
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