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Abstract

In this thesis we describe a number of data visualization and optimization techniques
for urban planning. Many of these techniques originate from contributions to the
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Chapter 1

Introduction

Over 54% of the worlds population live in urban areas, a number which will continue

to grow for the foreseeable future [11]. Cities are in constant flux as urban planners

attempt to accommodate an ever increasing and evolving population. Unfortunately

many citizens can feel divorced from the decision making process that helps plan the

very cities they live in. This thesis describes visualizations that help make complex

urban planning problems more understandable. The hope is that more informed

citizens are more likely and better equipped to effect the change in their communities

that they wish to see. Furthermore this thesis describes optimization techniques in

order to offer more concrete suggestions for city planning.

1.1 Data Visualization

In a world driven by an increasingly information based economy more data is being

generated now than ever before [5]. Smart phones and online social networks track

our movements and communications, smart watches and other wearables monitor our

health and fitness, and street cameras analyze our traffic and commuting patterns.

This cornucopia of data is more accessible today than it has ever been. A recent

push for open data from both the private and public sector means that information

that has been unavailable for generations is now just a few key strokes away. The

volume and widespread availability of this data brings the potential for a greater
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understanding of how we interact with and shape the people and things in our daily

lives. With that potential come new challenges. The sheer amount of data we are

bombarded with can be overwhelming and difficult to understand or put into context.

Data visualization is a field that attempts to make sizable amounts of complex data

accessible and understandable. This thesis presents a number of data visualization

techniques to help citizens further comprehend the cities in which they live.

1.2 Optimization techniques for Urban Planning

Just as data visualization techniques can be used to show, optimization can be used

to plan. Visualizations can be a powerful method of presenting data but actionable

conclusions can be difficult to draw from them. By approaching visualizations as

optimization problems we are able to offer concrete suggestions of how cities should

better accommodate a changing population. In these optimizations we leverage com-

puter science techniques so that we can make stronger statements about how to plan

the cities in which we live.

1.3 Thesis Outline

The primary concern of the first four chapters of this thesis is data visualization.

Chapter 2 maps the concentration and distribution of children in urban spaces. Chap-

ters 3 and 4 present data from bike sharing networks. Chapter 5 describes a visualiza-

tion that gives a sense of how much life happens in a city at various heights. The focus

of the remaining chapters shifts to optimization. Chapter 6 proposes a framework for

finding the ideal layout of protected bike lanes in a city. Chapter 7 analyzes social

network activity in a city and how an understanding of that network can be used to

spread ideas. Chapter 8 presents an algorithm for optimizing the locations of new

schools in a city. Finally, in chapter 9 we present an automated valuation model for

real property that leverages what we learned from our work in the previous chapters.
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Chapter 2

Children

2.1 Motivation

The distribution of school-aged children in cities and neighborhoods is something

that changes over time. This series of maps helps show how the distribution of that

population has evolved over the past four decades. The hope is that this visualization

will help expose patterns that can be used to make smarter decisions about where to

place schools, parks, and other resources for children. This series of maps (fig B-1)

shows a common trend towards a decreasing number of school-aged children in cities

even as the overall population increased, suggesting a trend of families moving out of

cities to nearby suburbs.

2.2 Data

Most of the data for this series of maps comes from the National Historical Geographic

Information System (NHGIS) [7]. NHGIS provides aggregate census data and geo-

graphic boundary files from 1970 to 2010. This series of maps used the "Sex by Age"

tables for each decade from 1970 to 2010, which detail the distribution of population

by age and gender for each census block in the United States. The corresponding GIS

boundary layer was also used. This layer contains geographical information about

each census block. Neighborhood boundary layers were taken from Zillow [22], allow-
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ing us to present areas of the city in a more natural way.

2.3 Design and Visualization

The following section discusses front-end design choices and the implementation of

that design.

2.3.1 Design

As discussed in section 2.1, the motivation behind this series of maps was to expose

patterns over time in the population and distribution of school-aged children in cities.

The design allows for users to explore these patterns on three levels: city, year, and

neighborhood.

Each dot on the map represents a fixed number of school-aged children. The

density of these dots in a particular area indicates the concentration of school-aged

children. These dots are also colored to show the relative concentration of school-aged

children in that area with respect to the total population. Thus the dots are able to

collectively capture these two aspects of school-aged populations.

To show these patterns over time the user has the option to choose to display maps

for individual years or play an animation that takes them from 1970 to the present.

The total number of children for each decade is also displayed in a line graph.

Users can also view the distribution of children on a smaller scale. Each city is

divided into neighborhoods. Users can hover over a neighborhood to view the total

population and number of children in that neighborhood. A histogram also displays

each neighborhood by concentration of children so users can better understand where

the highest and lowest relative densities of children are in the city.

2.3.2 Visualization

Like many of these maps this visualization was written in Javascript and HTML5. The

visualization is rendered using the HTML5 Scalable Vector Graphics (SVG) element.
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The D31 library is used to manipulate the SVG and add the neighborhoods and

children points. Unlike the HTML5 Canvas element, every element rendered by the

SVG is available to the document object model (DOM). This means that JavaScript

event handlers can be attached to specific elements such as the ’mouseover’ handler

for neighborhoods, which allows the user to view neighborhood specific statistics by

hovering over the desired area.

2.4 Challenges and Improvements

This section discusses the challenges faced for this series of maps and suggests possible

improvements or future work.

2.4.1 Inconsistencies

As the nature of cities evolve, so too do the methods for collecting census data.

Naming conventions change and the boundaries census blocks and tracts are reshaped

and redefined. This proved to be one of the biggest challenges for creating this series

of maps. Inconsistent census block boundaries meant that directly comparing the

population of one block in one decade to the same block in another decade was not

meaningful.

Rather than compare different census blocks we decided to use neighborhoods as

our geographic unit. For every census block in every decade we used the python

package Shapely to compute the size of the block and the size of the intersection

between the census block and each neighborhood in that city. The population of

each census block was then divided amongst the neighborhoods proportional to the

relative size of the intersection.

1http://d3js.org/
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2.4.2 Causes

Many of the maps in this series showed a pattern of a decreasing number of children

living in cities but offers no explanation for why this is happening. Families may be

deciding that they would prefer to live in the suburbs, increasing real estate prices and

cost of living may be forcing families out of the cities, or this pattern could merely

be the result of an aging US population [37]. A natural extension of this project

would be to determine if school-aged children really are disappearing from cities at

an unusual rate and if so, investigate the driving forces behind this trend. Possible

areas of interest include determining in which areas the concentration if school-aged

children is increasing, crime rates in cities, and real estate and cost of living changes.

2.4.3 Prediction

Another extension of this project would be to develop a model for predicting where

future generations of school-aged children are likely to live. This would necessitate

looking at larger metro areas as the city boundaries themselves do not provide enough

context.
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Chapter 3

Bike Sharing Traffic

3.1 Motivation

Transportation, specifically bicycling, has been a theme of You Are Here since the

project’s inception. Biking has health and environmental benefits and a vibrant

cycling culture can help transform a city. One of the earliest maps was a visualization

of bicycle accidents in order to better understand which areas of a city needed bicycle

infrastructure upgrades [12]. Since that time, bike sharing programs such as Hubway

in the Boston area and Bay Area Bicycle in San Francisco have grown astronomically

both in subscribers and use [43]. Bike sharing programs make cycling more accessible

by removing the large upfront cost of purchasing a bike as well as the maintenance

costs of keeping the bike running and mitigating the inconveniences of bicycle storage.

The increasing bicycle traffic in cities poses new infrastructure problems and makes

existing problems more urgent. The goal of this series of maps (fig B-2) was to expose

the urban commuting patterns of bike share users so that cities may better plan for

safe and effective cycling infrastructure.

3.2 Data

The data for this series of maps comes from various bike sharing systems owned

and operated by Alta Bike Share across the United States and the United Kingdom
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[4,14–17,24,25]. Many of these programs have opened up their data to the public in

recent years. Those that have provide CSV files detailing the location and names of

each of their docking stations, as well as the start time, end time, start station, and

end station of each trip taken by an Alta Bike Share program user. GIS layers for

water bodies were taken from MIT GeoWeb [1].

3.2.1 Google Directions API

With up to 100 bike sharing stations in a given city the number of possible station

pairings was often more than was reasonable to display. To make the data digestible to

viewers we instead opted to only show traffic between the 250 most common station

pairings. Once these pairings were identified we used the Google Directions API1

to compute the most likely route taken between each station pairing. The Google

Directions API takes a start point, end point, and mode of transportation and returns

a sequence of latitude longitude pairs that describe the optimal route between these

two points. This allowed for an estimate of the actual paths traveled for each trip by

a bike share program user.

3.2.2 Simulated Riders

This series of maps displays a simulation of individual riders during typical day in the

bike sharing network. To create this simulation we found the trip length distribution

for each of the top 250 pairings using all of the rides in our dataset. We removed

rides that were more than three standard deviations away from the mean time for that

route, as these riders likely took different paths than those returned by the Google

Directions API. We then aggregated every ride during 20 random days in our dataset

and randomly selected each of these rides to be in our simulation with probability

𝑝 = 1
20

.

1https://developers.google.com/maps/documentation/directions/

22



3.3 Design and Implementation

The following sections discuss front-end design choices and the implementation of

that design.

3.3.1 Design

As discussed in section 3.1, the primary motivation behind this series of maps was to

uncover commuting patterns in order to plan infrastructure. Intrinsically, bike share

traffic ebbs and flows throughout the day as riders commute to and from work. We

decided that the best way to capture the temporal nature of bike share traffic was to

animate a typical day of bike sharing in the city. Individual riders are represented by

green dots based on their imputed location and speed. The line width and opacity

of each route represent the volume of bike share traffic traveling at a given time

between that station pair. A histogram also displays station pairings by decreasing

traffic volume. Hovering over the histogram bars allows the user to highlight the route

between that pair as computed by the Google Directions API. This allows users to

see where on the map the most heavily trafficked routes lie.

3.3.2 Implementation

Like many of these maps most of the visualization was written in Javascript/HTML5.

The visualization is rendered using the HTML5 Scalable Vector Graphics (SVG)

element. The D3 library is used to manipulate the SVG and draw the bike stations,

routes, and simulated riders. Information regarding the total traffic on each route

and the position of each simulated cyclist is stored in a JSON encoded dictionary

keyed by time. As the animation plays this information is retrieved and the map is

updated accordingly.
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3.4 Challenges and Improvements

This section discusses the challenges faced for this series of maps and suggests possible

areas of improvement or future work.

3.4.1 Route Subsections

Though this series of maps shows the volume of traffic on a given route, what is

more interesting is the volume of traffic on a given road. Because many of the routes

between the most popular station pairs overlap, segments of road common to many

of these routes may be more heavily trafficked than the visualization lets on. A

possible extension to this project would to be reexamine bike sharing traffic from

this perspective. Each route would be decomposed into segments. The total traffic

for a given segment would then be the sum of the traffic on the routes containing

that segment. Naturally, road segments that belong to multiple routes would see an

increase in traffic. Pseudocode to generate these segments and provide a mapping

from each segment to it’s overlapping routes is provided in figure B-3.
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Chapter 4

Bike Sharing Stations

4.1 Motivation

Though bike sharing programs have grown exponentially in subscribers and use, many

of these programs still operate at a deficit [38]. In the current model up front costs

are high; the specialized bikes are more expensive than many consumer models and

the docking stations can cost several thousands of dollars [10]. This initial investment

would be recouped were it not for the costs of running the program. Though many

of these costs such as maintenance and repairs are unavoidable, careful planning can

help reduce the largest expense, rebalancing.

When stations are unbalanced, due, for example, to commuting patterns, sight-

seeing riders, or public transit usage, the system must restock depleted stations by

hauling bikes from ’sinks’ to ’sources’ using cargo bikes and vans. This rebalancing

problem is intrinsic to the service but can be mitigated by carefully planning the size

and locations of bike stations. The motivation behind this series of maps (fig B-4) is

to illustrate this rebalancing problem with the hope that it can be used as a tool to

make bike share networks more efficient.
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4.2 Data

This is the second series of maps comes to make use of the open data published

by various bike share programs owned and operated by Alta Bike Share across the

United States and the United Kingdom [4, 14–17, 24, 25]. This series of maps again

used the CSV files detailing the location and names of each of their docking stations,

as well as the start time, end time, start station, and end station of each trip taken

by an Alta Bike Share program user. GIS layers for water bodies were taken from

MIT GeoWeb [1].

4.3 Design

Much like the bike share traffic maps discussed in chapter 3, station efficiency is

inextricably tied to the time of day. Once again we decided that the best way to

present the station rebalancing problem was with an animation showing the load

on each station. Each bike sharing station is represented by a circle. Data for the

animation is stored in a JSON encoded dictionary keyed by time of day. At each

step of the animation the total traffic volume, efficiency metric, and traffic direction

vector is displayed for each station. As the animation progresses, the circles expand

and contract to show the number of bikes arriving and departing within a 60 minute

time-window. Blue circles represent more departures than arrivals while red circles

indicate more arrivals than departures. For each station a dial points in the net

direction of bicycle flow. The expected number of bikes on the road and the total

efficiency of the network (a metric discussed in section 4.4.3) appear in the upper right

hand corner. A histogram also displays each station by decreasing order of efficiency.

We also show estimates of the proportion of bike trips that need to occur manually

in order to rebalance the network given the fullness of each bike station at the start

of the day.

26



4.4 Implementation

The following section discusses the implementation of some of the metrics discussed

in section 4.3.

4.4.1 Traffic Volume

Expected traffic volume for each station was calculated for each minute of the day.

Each station maintained a dictionary storing departures and arrivals keyed by time.

For each trip in the database the departure count for the start time of the starting

station and the arrival count for the end time of the ending station were each increased

by one. Total traffic for each minute is the sum of the arrival and departure counts.

To remove high frequency elements from the data we used a moving average to find

the mean traffic for each station within a 60 minute window of the current time.

4.4.2 Traffic Direction

Traffic direction was also calculated using a dictionary of every departure and arrival

keyed by time and station. The normalized vector for each station pair was calculated

by subtracting the start station location from the end station location and dividing

by the magnitude. To calculate the traffic direction vector for a station 𝑠 at time 𝑡

we took the sum of the station pair vectors representing each trip departing from or

arriving at 𝑠 within a 60 minute window of 𝑡 and normalized it to have a magnitude

of one.

4.4.3 Efficiency Metric

The efficiency metric measures how "balanced" each station is. For station 𝑠 at time

𝑡 the efficiency metric 𝑒𝑠𝑡 can be expressed as 𝑒 = |𝑑−𝑎|
𝑑+𝑎

where 𝑎 and 𝑑 are the number

of arrivals and departures at that station within a 60 minute window of 𝑡.
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4.4.4 Initial Bike Distribution

To estimate the number of bikes that needed to be rebalanced manually we ran a

simulation of every day for which we had data. Each bike station 𝑠 has a known

capacity 𝑠𝑐 of bikes that it can dock. We assumed each of these stations to be 𝑖 full

to start the day, where 0 ≤ 𝑖 ≤ 1. For each trip in a given day we kept track of the

number of bikes 𝑠𝑏 at each station 𝑠. As bikes arrived at and departed from 𝑠 we

incremented and decremented 𝑠𝑏. Every time a bike arrived at a station and 𝑠𝑏 > 𝑠𝑐

we incremented the number of bikes that needed to be manually hauled that day, 𝑚.

Likewise, 𝑚 was incremented whenever a bike departed a station and 𝑏𝑠 ≤ 0. Finally,

at the end of the day, we added |𝑠𝑏− 𝑖*𝑠𝑐| to 𝑚 for each station 𝑠 in order to account

for the bikes that needed to be hauled in order to reset the network. After simulating

each day of our data, we divide 𝑚 by the total number of trips 𝑡 in order to estimate

the number of bikes that must be manually hauled for each use of the network. Each

map displays this metric 𝑚
𝑡

for 𝑖 = .5, .75.

4.5 Challenges and Improvements

This series of maps does a great job of visualizing the bike station rebalancing problem

but offers little in the way of concrete suggestions for fixing it. The following sections

describe approaches that can be used to decrease the number of bikes that must be

manually rebalanced in the network.

4.5.1 Initial Bike Distribution

The initial distribution of bikes across stations can have a measurable influence on

the efficiency of the network. Our simulations show that tweaks to the parameter 𝑖

can markably improve the number of bikes that need to be hauled. However not all

stations are the same and the number of bikes at each station as the day begins should

reflect this. Intuitively, stations that will act as sources of bikes at the beginning of

the day should start the day more full than stations that will act as sinks. One
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possible extension for this project is to develop an algorithm to optimize the initial

distribution of bikes within a network given station capacities, locations, commuting

patterns, and the total number of bikes in the system.

4.5.2 Dock Capacity

Readers will correctly infer that increasing the capacity of each bike station will

increase the efficiency of the network. After a certain point the problem of stations

becoming too full disappears and vans only need to run to resupply empty stations.

Just as the optimal initial distribution of bikes can be computed as a function of

station traffic patterns, so too can the optimal capacities for each of these stations.

Intuitively, stations that are more heavily trafficked and less balanced would benefit

from more spaces for bikes. A second possible extension of this project is to develop

an algorithm to optimize station dock capacities given station locations, commuting

patterns, and the total number of bikes in the system.
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Chapter 5

Urban Pyramids

5.1 Motivation

The character of a city is often reflected or even defined by the buildings that populate

it. The goal of this series of maps (fig B-5) was to present the architectural landscape

of each city in a unique and interesting way, as well as illustrate the differences

between different neighborhoods as reflected by the buildings that inhabit them.

5.2 Data

This series of maps uses GIS layers of the buildings in a given city. These files are

often available from their respective city’s open data website but sometimes needed

to be pulled from other sources [3, 9, 18]. From these layers we use the building

footprint, location, and height. Building height was generally measured in stories or

in feet. This series of maps also made use of GIS layers containing city neighborhood

boundaries, which are available from Zillow [22].

5.3 Design

This map visualizes the estimated sum of the building-volume in a city stacked as

floors. Each layer in the pyramid shows the total square footage in a city at a given
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height. Taken as a whole, the pyramid gives a sense of how much life happens in a

city on different stories. Users can use the map of the city to the right of the pyramid

to view information for a given neighborhood. Mousing over a floor of the pyramid

displays how much of the total building area in the city is on that story.

5.4 Implementation

For each neighborhood in the city we kept a dictionary storing building area keyed by

floor. For every building in the city we calculated the area of the building footprint.

If height of the building in stories was given in the GIS layer, we used that. Otherwise

if the height was given in meters we calculated the number of stories by assuming

an average floor height of four meters. We then computed which neighborhood in

the city the building belonged to, and added the area of the building footprint to the

dictionary for each story that the building spanned. In the end we calculated area by

floor for the entire city by summing over each of the neighborhoods.
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Chapter 6

Bike Lanes

6.1 Motivation

Bicycle ridership in cities is growing as gradually roads are being redesigned to accom-

modate riders, bike-share hubs, and racks. While bike lanes that are made of paint

are straightforward and inexpensive, protected bike lanes can take more time to de-

ploy. Due to the investment needed to create protected bike lanes, careful planning is

needed to make sure that these lanes are installed in the areas that need them most.

The motivation behind this series of maps (fig B-6) was to develop an algorithmic

approach for the design and prioritization of a riding network and as a starting point

for a discussion on deployment strategies for protected bike lanes.

6.2 Data

This series of maps makes use of two sets of data; street centerlines and popula-

tion distributions. Street centerline files were available from their respective city’s

open data website [20,21,31]. Population distributions were taken from the National

Historical Geographic Information System [7].
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6.3 Design

Several designs were explored for this series of maps. In the first design, we allow users

to choose points of interest in the city. The map then shows the bike lane network

that optimizes the average commute time to each of these points of interest, using

Dijkstra’s algorithm [33] to compute the shortest paths from each point of interest

to every intersection in the city. Street segments that were selected as bike lanes

are colored green, and the opacity of these segments is proportional to the estimated

traffic on each segment. A slider allows the user to select how much of the city’s total

roads should be turned into protected bike lanes, both as a percentage of the total

road length in the city and as an absolute length. For each point of interest we show

the estimated average commute time by bike, which decreases more and more bike

lanes are added to the network.

The second design does not allow users to choose points of interest. Instead, the

map displays locations for protected bike lanes chosen using a global optimization,

minimizing the commute time from each person in the city to every other person.

This optimization used the Floyd-Warshall algorithm [34] to compute the shortest

path between each pair of intersections in the city. Once again a slider allows the

user to select what proportion of the city’s streets should be protected bike lanes and

the opacity of each bike lane is proportional to the estimated use. Average commute

times are not shown as each of the analogous metrics we considered were deemed too

abstract for our users.

The third and final design was similar to the first design except the points of

interest were preselected and fixed. This allowed us to do most of the computation

beforehand rather than in the browser, which gave us more flexibility and allowed us

to make our optimization algorithm more complex. The algorithmic approach behind

these designs, specifically the second and third, are discussed in the following sections.
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6.4 Implementation

The following section discusses the implementation of our bike-lane optimization al-

gorithms.

6.4.1 Graph

The first step for each of these optimizations was to turn the street centerlines file into

an undirected weighted graph in order to run our shortest path algorithms. Street

segments and their lengths represent edges and edge weights in the graph . The

end points of each street segment represent the vertices corresponding to that edge.

Vertices were named using the MD5 hash of their latitude and longitude coordinates.

We used a dictionary 𝑑 to map each vertex 𝑣 to a list of neighboring vertices 𝑢 ∈ 𝑁𝑣.

Each value in this list also contained data about the edge 𝑒𝑢𝑣 connecting 𝑢 and

𝑣 including the name of the edge as computed by the MD5 hash of 𝑢 and 𝑣, the

human readable name of the corresponding street, and the length in meters of the

corresponding segment. After the graph was built each vertex 𝑣 was given a human

readable name by combining the names of two adjacent edges.

6.4.2 Population Distribution

The next step in each of these optimizations was to augment each vertex of the graph

with a population. Geographic population distribution data was taken from the

National Historical Geographic Information System website. The NHGIS provides a

CSV file containing the population of each census block in a given state and a GIS

layer with the boundaries of each census block in that state. In order to filter out

census blocks that were not in our city of interest we used a neighborhood GIS layer

taken from Zillow. A census block was considered within the boundaries of our city

if and only if it intersected with one of the neighborhoods from this layer. We then

computed the distance from each census block in the city to every vertex in our graph.

The population of a census block was finally divided amongst the vertices inversely

proportional to the distance from the centroid of the census block to that vertex.
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6.4.3 City Wide Optimization

The second of our three designs optimized bike lanes at a city level. We determined

which street segments should be a priority for bike lanes by estimating the total traffic

along that segment. To do this we used the Floyd-Warshall algorithm to compute

the shortest paths between each vertex 𝑢 in our graph and every other vertex 𝑣. If

an edge 𝑒 appeared in the shortest path 𝑝𝑢𝑣 from 𝑢 to 𝑣, the estimated traffic for that

edge was increased by the sum of the augmented populations of 𝑢 and 𝑣. The edges

were then sorted by estimated traffic to determine which street segments should be

prioritized as bike lanes. Readers may note that the prioritization of street segments

should take into account which bike lanes already exist, as nearby street segments

should then be of a lesser priority. The methods we discussed for this proved to be

computationally intractable for the city wide optimization, and will be discussed in

section 6.4.5 as they apply to optimization for points of interest.

6.4.4 Optimizing for Points of Interest

Our initial and final design optimized the layout of protected bike lanes to minimize

the distance to points of interest. Once again we prioritized street segments by

estimated traffic. For each point of interest 𝑝 we found the closest vertex 𝑣𝑝 in our

graph 𝐺. We then computed the shortest path from 𝑣𝑝 to every other vertex 𝑢 in 𝐺

using Dijkstra’s algorithm. When an edge 𝑒 appeared in the shortest path 𝑝𝑣𝑝𝑢 we

incremented the estimated traffic on that edge by the population of vertex 𝑢. Edges

were then prioritized as bike lanes proportional to the estimated traffic associated

with that edge.

6.4.5 Incremental Optimization for Points of Interest

As mentioned in section 6.4.3, the addition of bike lanes to the network should change

the prioritization of which street segments should be next added to the network.

Intuitively, segments in close proximity to newly created bike lanes should see their

priority decreased. To reflect this in our optimization, we incrementally add bike
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lanes to the network, decreasing the weight of their associated edges by 25%. This

number was chosen arbitrarily and reflects our estimate of the increased speed at

which bikers are able to travel in protected bike lanes. We then rerun Djikstra’s

algorithm to compute the shortest paths between each point of interest and every

vertex in the graph, providing a new traffic estimate for each edge.

Converting just one edge to a bike lane per iteration would be ideal, but cities of

interest often have tens of thousands of edges in their graph, making this approach

infeasible. Instead for each iteration we convert 𝑛 edges to bike lanes, where the

total length of the 𝑛 segments is equal to one percent of the total length of all street

segments in the city. This keeps the number of calls to Dijkstra’s algorithm constant

with respect to the number of vertices and edges in our graph, and allows us to

precompute data for our visualization as part of the optimization, as discussed in

section 6.4.6.

6.4.6 Visualization

This series of maps visualizes which street segments should be retrofitted with pro-

tected bike lanes. The user has a slider to select the percent of the city’s total road to

turn into protected bike lanes and the map is updated accordingly. As discussed in

section 6.4.5, our incremental optimization algorithm turns exactly one percent of the

city into bike lanes after each iteration. For each edge the corresponding feature in the

street centerlines GIS layer is augmented with the iteration at which that segment

was selected to be a bike lane. Similarly each corresponding feature is augmented

with the estimated traffic for that and all future iterations. When a street segment

is rendered in the DOM the iteration at which that segment was turned into a bike

lane is added as an attribute of that element. When the user changes the value of the

slider from 𝑖 to 𝑗 ,0 ≤ 𝑖 < 𝑗 ≤ 100, we use d3 to select all segments that were turned

into bike lanes during an iteration 𝑘 for which 𝑖 < 𝑘 ≤ 𝑗. Each of these segments

are then marked as bike lanes by turning them green. To show which segments are

being used the most, the opacity of each of these segments is set proportional to the

estimated traffic on that segment during iteration 𝑗. A play button allows the user to
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view an animation of the city’s bike lane network going from nothing to every street

in the city.

6.5 Challenges and Improvements

This series of maps provides a strong approach to the bike lane optimization problem

but there is a lot of work to be done before the suggestions given by our algorithms

can be seriously considered. The following sections describe methods for improving

these algorithms.

6.5.1 Incremental City Wide Optimization

A major weakness of the algorithm described in section 6.4.5 is the reliance on good

points of interest. A city wide optimization using Floyd-Marshall may make more

sense if the goal is to increase the overall "connectedness" of the city with respect to

cycling. Unfortunately Floyd-Warshall takes a long time to run on the graphs for large

cities and an incremental approach to this problem like the one described in section

6.4.5 isn’t tractable given the current implementation. Parallelizing Floyd-Warshall

may make the incremental approach computable within a reasonable amount of time.

The algorithm can be further sped up by increasing the number of segments turned

into bike lanes at each iteration. Changing a segment into a bike lane is much more

likely to effect the traffic estimates for segments in close proximity. Guaranteeing

that each segment in the set of segments being added during the current iteration

be no closer than 𝑧 meters from each other may allow for fewer iterations. Further

improvements could be made by increasing 𝑧 as a function of the number of iterations.

This prioritizes computation for earlier iterations at the expense of later iterations,

which makes sense given that decisions made early on may have a butterfly effect.
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6.5.2 Smarter Path Weights

Currently our optimization computes shortest paths with edge weights taken directly

from the length of the corresponding street segment. This ignores the reality that

properties like street type, the number of lanes, and typical traffic speeds all play

a meaningful role in determining how quickly a street segment can be traversed by

bicycle. A logical extension of this project is to incorporate all of this information

into the edge weights in the graph.

Similarly there is no penalty for traffic lights, stop signs, or left hand turns, in any

of our shortest paths algorithms. Unfortunately these ideas can not be implemented

solely by modifying edge weights as all of them require context. For example, an

edge can only be determined to be a left hand turn when the previous edge is known.

This problem can be solved by using a modified shortest path algorithm which levies

a penalty whenever a path would cause the rider to turn left or pass through a stop

sign or light.

6.5.3 Existing Infrastructure

This series of maps does not take into account existing bike lanes. In order to turn our

optimization into a useful tool the algorithm must be aware of what infrastructure is

currently in place. This can be reflected in our optimization by decreasing the edge

weights of street segments with existing bike lanes.

6.5.4 Accidents

Safety is one of the primary motivators behind building protected bike lanes. By

placing physical barriers between bicycle and automobile traffic the frequency and

severity of cycling accidents can be greatly reduced. Bicycle accident data is publicly

available for most cities and has been featured in a different series of maps for the

You Are Here project [12]. This data could be incorporated into our algorithms to

prioritize street segments where many bicycle accidents have taken place.
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6.5.5 Costs

Our optimization algorithms consider only the benefits of building protected bike lanes

and ignore the costs. Protected bike lanes cost time and money to build and reduce

available street, parking or sidewalk space. These factors must also be considered

when deciding which street segments should given protected bike lanes. The financial

cost and increased automobile traffic incurred by adding protected bike lanes to each

segment should be weighed against the estimated decrease in accidents and commute

times for cyclists.
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Chapter 7

Information Diffusion in Social

Networks

7.1 Motivation

The Social Computing Group works to foster social processes through technological

innovation. This procedure typically consists of three distinct steps; create a social

process, create a model for that process, and create technology that can help others

replicate and shape that process. The goal is for this process to then spread in an

organic, decentralized fashion. By providing examples and resources for others that

are interested in this process it can scale in a way that could never happen if lab

members needed to be directly involved.

The natural spreading of the social process is intrinsic to this model. The group

counts on others to observe the work we have done, to replicate it for themselves,

and to spread this idea on to others who may be interested. Much about how this

spreading occurs is unknown. The purpose of this series of maps (fig B-7) is to model

the diffusion of information and ideas in a social network to better understand how

the processes fostered by the Social Computing Group can spread. The hope is that

understanding this mechanism will allow the group to better effect the spread of the

social processes it creates.
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7.2 Data

This series of maps makes use of data obtained through Twitter’s REST API 1. This

series of maps also makes use of GIS layers containing city neighborhood boundaries,

which are available from Zillow [22].

7.2.1 Twitter API

This section discusses the functions used in the Twitter API and the limitations of

this service. Calls to Twitter’s REST API were used to gather the majority of the

data for this series of maps. The REST API provides access to Twitter data and

allows users to read and write to Twitter with much of the same functionality as

they would have in a browser. Data gathering for this series of maps was a two step

process; first, discover who was using Twitter in the city of interest and second, look

up which other users they are following.

7.2.2 "search/tweets"

Users were found calling the "GET search/tweets" 2 function. The Twitter Search

API, a part of version 1.1 of the REST API, allows users to query against the indices

of recent or popular Tweets. This particular function takes a query and a number

of optional parameters and returns matching Tweets in the index. Only two of these

optional parameters were necessary for our purposes. The first, "geocode", takes

coordinates in latitude and longitude and a radius in kilometers, restricting the search

to Tweets from within that radius. "GET search/tweets" was the only search function

that could be restricted by location, which is why seemingly more relevant functions

such as "GET users/search" were not considered. The "count" parameter dictates

how many results to return and was set to the maximum of 100 every time. Matching

tweets were returned in a JSON encoded array. Though we recorded and saved all of

the information about each matching Tweet we ultimately only required the user ID.

1https://dev.twitter.com/rest/public
2https://dev.twitter.com/rest/reference/get/search/tweets
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This particular function was rate limited to 180 requests per 15 minute window.

7.2.3 "friends/ids"

The list of users a specified user is following, otherwise known as their "friends", was

obtained using the "GET friends/ids" 3 function. Inputs to this function included

"user_id" or "screen_name" to specify the user, "cursor" for pagination, and "count"

to limit the maximum number of friends returned per page. This particular function

was rate limited to 15 requests per 15 minute window.

7.3 Design and Visualization

This series of maps attempts to visualize the interaction between Twitter users in a

given city. Users are displayed as nodes in D3’s force-directed graph layout 4. Directed

edges in this graph show the "following" relation. If a user 𝑎 follows a user 𝑏 then

there is a directed edge pointing from 𝑎 to 𝑏. Hovering over the node for a given user

displays the user’s screen name and highlights the incoming edges adjacent to that

user. A map on the right shows the neighborhoods in the city. The opacity of each

neighborhood is proportional to the number of active Twitter users found in that

neighborhood. Clicking on a neighborhood displays a graph of it’s Twitter users. A

slider on the right is used to control iterations of the PageRank algorithm [42], which

is used as a proxy for measuring a user’s influence on the social network. The values

returned by the PageRank algorithm are reflected in the graph by varying the opacity

of each node.

7.4 Implementation

The following sections discusses the methodology for finding users and measuring

social influence using PageRank.

3https://dev.twitter.com/rest/reference/get/friends/ids
4https://github.com/mbostock/d3/wiki/Force-Layout
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7.4.1 Finding Users

Twitter users in a particular city were found using the "search/tweets" function in

the Twitter REST API. First, we divided the city up into neighborhoods using the

boundaries defined by the Zillow neighborhood GIS layer. For each neighborhood we

computed a square grid of latitude and longitude pairs spaced one hundred meters

apart. Then for each of these points we queried the API for indexed Tweets within

a radius of one hundred meters using one of the top 50 most tweeted words [35].

The limit of at most 100 results meant that we would sometimes miss matching

Tweets for particularly popular locations or queries. To uncover tweets that may

have been missed by the original query we recursively divided the geographic area

being searched into seven hexagonally packed circles with a diameter one third that of

the original query, re-querying the original search term on each of these seven areas.

The recursion continued until all queries returned fewer than the maximum of 100

results. Once each of the 50 most tweeted words were searched for every point in a

given neighborhood we iterated through each tweet to find the set of active user IDs

in the region. For each user ID we used the "friends/ids" function to query the list

of screen names followed by that user.

7.4.2 PageRank

We then used the PageRank algorithm to model the influence of Twitter users within

the network of their neighborhood. PageRank uses a directed graph to simulate a

Markov process. A "surfer" navigates the graph by choosing to traverse an edge at

random. PageRank takes this graph as an input and returns the long term probability

distribution that the random surfer winds up at each particular node. By using

PageRank on the directed graph of Twitter users in a neighborhood we get the long

term probabilities that this "surfer" ends up on each particular user, which we use as

a proxy for measuring that user’s influence on the network as a whole.
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7.5 Challenges and Improvements

The following sections discuss possible improvements that could be made to this series

of maps.

7.5.1 Streaming API

Our ability to accurately represent the Twitter graph of a particular neighborhood

is limited by the data made available in the Twitter REST API. Twitter only makes

particularly recent or popular Tweets available in the index, meaning the users dis-

covered using "search/tweets" are but a small subset of the active users in Cambridge.

This subset also contains a bias towards users who exert a strong influence on the

network given that more popular Tweets are more likely to be indexed. Collecting

data over a longer period of time using the Twitter Streaming API 5, which provides

real time access to a location specific Twitter feed, could be used to create a more

complete model of user activity in a neighborhood.

7.5.2 Personalized PageRank

Personalized PageRank [36] extends the PageRank algorithm by biasing the location

of the random "surfer" to a predefined subset of users. By tweaking the algorithm

that chooses this subset we can find the Twitter users who are influential in certain

fields. This is of particular interest when looking for ways to spread the awareness

of projects in the Social Computing Group, which tend to be concentrated in just

a few topics. While it was our original intention to use Personalized PageRank, the

limited number of users we were able to find using "search/tweets" would have kept

the results from being meaningful.

5https://dev.twitter.com/streaming/overview

45



46



Chapter 8

School Locations

8.1 Motivation

The process of building a new school is complex and lengthy, and once built it is

constantly challenged by the natural process of aging neighborhoods and shifts in

demographic dynamics. We view this map as a tool for an urban reality where

school-making is an agile process. In this reality, schools would be smaller, and they

would assembled when needed, and change use just as easily when neighborhoods

change. The motivation behind this series of maps (fig B-8) is to algorithmically

suggest locations for new High, Middle, and Elementary schools. These maps are an

extension of work done by Wesam Manassra and Pranav Ramkrishnan [39,41].

8.2 Data

This series of maps makes use of two sets of data, population distribution by age and

the locations of existing schools. Population distribution by age was taken from the

National Historical Geographic Information System [7]. GIS layers for water bodies

were taken from MIT GeoWeb [1]. The location and types of schools were often

available from their respective city’s open data website [2, 6, 8, 13, 19,23,26–28].
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8.3 Design

This series of maps visualizes potential locations for new public schools. The user can

choose between three different school types; High, Middle, and Elementary. Existing

schools are shown on the map as black dots. The user can use the arrows to add

or remove new schools, which appear on the map as colored dots. The new school

locations move around before settling, showing iterations of the k-means algorithm.

Census block groups are shown on the map as gray polygons. The opacity of each

census block is directly proportional to the number of children in the age bracket

of interest living in that area per the 2010 census. Hovering over existing schools

displays the name of that school and hovering over potential new schools displays the

address of the suggested location.

8.4 Implementation

The following section discusses the implementation of the k-means algorithm for sug-

gesting school locations.

8.4.1 k-means

Potential new school locations are found using a modified implementation of the k-

means clustering algorithm. In our implementation of k-means the centroid of each

census block serve as our observations. Here, the 𝑚 existing schools act as fixed

means, while the remaining 𝑛 = 𝑘 − 𝑚 means are free to move as normal. In each

iteration of the algorithm, each census block is assigned to one of the 𝑘 means. The

𝑛 variable means are then recomputed as an average of the centroids of the census

blocks found to be closest to it, with each centroid weighted by the population of

school-aged children in that block. This modified k-means algorithm will suggest

points that are local minima for the total distance students must travel to the closest

school in the city.
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8.5 Challenges and Improvements

The following sections describe methods for improving our school locations suggestion

algorithm.

8.5.1 Available Spaces

The modified k-means algorithm currently used for suggesting school locations does

not consider where building schools is actually practical. Zoning laws and existing

buildings are just some of the factors that can make the lots suggested by our algo-

rithm infeasible. We believe that this problem is best approached by supplying the

algorithm with a list of locations to be considered. A simple way to incorporate this

list is to reassign the 𝑛 variable means the closest location in this list at each iteration

of the algorithm. This would insure that only realistic locations are suggested.

8.5.2 School Capacity

School capacity is another factor currently ignored by our algorithm. Schools are

built to accommodate a particular number or range of students and our algorithm

ignores the effect that new schools would have on enrollment in existing ones. One

approach for solving this problem would be to set capacities for each of the 𝑘 means.

For each iteration of the k-means algorithm we then assign the population of each

census block to the nearest school until the capacity of the nearest school is full. The

remaining population would then be assigned to the nearest mean below capacity.
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Chapter 9

An Automated Valuation Model for

Real Estate

9.1 Motivation

Estimating the value of real property is an important process in a number of fields.

Real estate financing, investing, insuring, and taxation all rely on accurate valuations.

The uniqueness of each piece of real property makes valuation a complicated task.

In many cases the preferred method of real estate valuation is a licensed appraiser.

Hiring an appraiser is a slow and expensive process, and is impractical for those who

need to value a large number of properties. In these cases automated models are

often the preferred method of real estate valuation. Automated models are faster and

cheaper, often at the expense of accuracy. The motivation behind this project was to

explore automated valuation for real estate using machine learning techniques with

the hopes of beating or competing with existing technologies.

9.2 Data

The majority of the data for this project comes from Zillow [30]. More specifically

this data is scraped from recently sold homes in various neighborhoods along the
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Jersey Shore 1. Other sources include the National Historical Geographic Information

System [7] for census data, the Google Directions API 2, the Google Places API 3,

and MIT GeoWeb [1].

9.2.1 Web Scraping

Zillow listings for recently sold properties in the Jersey Shore towns of Bel Mar, Avon

by the Sea, Bradley Beach, and Ashbury Park were used as sources of data for this

project. Features from these listings were extracted automatically using the Selenium

WebDriver 4 in conjunction with the Selenium Python API 5. This API allowed us

to interact with a browser in the same way that a user would, including navigating

to different URLs, searching through the DOM using XPath syntax, and controlling

mouse actions.

The first step in gathering data for this project was to make a list of each listing

we wished to extract features from. We used Selenium to open the list of recently sold

homes in each of the four cities and navigate through each page of results, recording

the URLs of each listing. We then opened each individual listing with Selenium and

scraped the page for interesting features. Since much of the content on Zillow listings

is created dynamically we had to ensure that the information we were interested in

was present in the DOM. This was usually accomplished by automatically scrolling

to the "div" element containing the information in question or clicking a button to

expand the table we wished to scrape.

The most time consuming feature to scrape was the "Zestimate" [29], the results

of Zillow’s automated valuation for that listing. This information is viewable as an

image which shows a graph of the Zestimate with respect to time. Mousing over the

graph reveals a box with the actual value of the Zestimate as well as the date for

which it was generated. In order to capture all of the Zestimate information we used

1Chosen due to our familiarity with the area
2https://developers.google.com/maps/documentation/directions/
3https://developers.google.com/places/
4http://www.seleniumhq.org/projects/webdriver/
5http://selenium-python.readthedocs.org/en/latest/api.html
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Selenium to slowly mouse over the width of the graph, saving the text from the box

at each movement of the mouse. Other interesting features scraped from each listing

were the street address, number of beds and baths, size of the property, sales history,

the location of nearby schools, and a measure of how walkable the surrounding area

is.

9.2.2 Additional Features

To improve our automated valuation model we also used features from sources other

than Zillow. Many of these features came from census data. To determine which

census tract a given listing was in we used the Nominatim geocoder 6 to turn the street

address taken from the Zillow listing into a pair of latitude and longitude coordinates.

We then used the GIS layer of census tracts from the NHGIS to determine which

census tract had a non-empty intersection with that point. We then added features

computed from census data to each listing. Most of these features were related to

age distribution and income. Some of these features included the percent changes in

median income over the past three decades and the percent change in population in

the 0-18, 18-35, 35-65, and 65+ age groups. We also added other features based on

the location of the property. One such feature, proximity to the beach, proved to be

especially useful signal.

9.2.3 Missing Feature Imputation

We then generated input to our valuation model from each listing we scraped. Each

sale of a property was used as an input to our model. The sale price was our de-

pendent variable while the features described in sections 9.2.1 and 9.2.2 acted as the

independent variables. For time dependent features such as tax valuation and Zesti-

mate we used the value at the date of the sale. Unfortunately many of the features

we scraped from Zillow were not present for every listing. To fill in missing features

we used a technique known as KNNimpute [40]. KNNimpute uses data from the

6https://pypi.python.org/pypi/geopy
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k-nearest neighbors of a given sample to fill in missing features. Because nearest

neighbors are computed using Euclidean distance we first normalized each feature

to ensure that certain features were not valued more highly due to their magnitude.

Missing features for a sample were then filled in as an average of the nearest samples

containing that feature weighted by Euclidean distance.

9.3 Valuation

The following sections discuss the methods used to model real property prices.

9.3.1 Feature Selection

A method known as Recursive Feature Elimination (RFE) was used to select the

features we used in our valuation model. RFE is an iterative algorithm in which the

feature determined to have the least influence on the output is eliminated at each

step until the desired number of features is obtained [32]. The five most predictive

features for our valuation model as computed using RFE were distance to the beach,

number of beds, lot size, number of baths, and walkability. Encouragingly Zestimate

is absent from this list of features. This suggests to us that the Zestimate is a poor

predictor of final sale price.

9.3.2 Linear Regression

A linear regression was used to predict sale price from our feature set. The weights

for the five features named in section 9.3.1 are shown in table A.1.

9.4 Challenges and Improvements

The following sections describes potential future work for this project.
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9.4.1 Data

The accuracy of our model is limited by the data available. Many of the listings

discovered on Zillow are still being scraped and more are added to the list of recently

sold homes every day. Simply continuing to scrape Zillow for recently sold properties

could meaningfully improve our model.

9.4.2 Finding Undervalued Property

One important feature of our valuation model for the purposes of real estate invest-

ment is the ability to find undervalued property. A potential extension of this project

is to assess our model’s capacity to do so. This could be accomplished by scraping

Zillow listings currently listed for sale and feeding them into our model to estimate

sale price. Listings that are estimated to be a certain threshold higher than their

listed price would then be tracked so that the final sale price could be recorded and

compared against our estimate. If our model is able to consistently find undervalued

homes further work on this project could focus on adapting our model to be used as

a tool for real estate investment.
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Appendix A

Tables

Table A.1: Real Estate Feature Weights

Distance to beach -1.35756333e+02
Beds 5.51903031e+04
Lot size -1.38301415e+00
Baths 2.54557685e+03
Walk score -4.98734050e+03
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Appendix B

Figures
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Figure B-1: Children in Manhattan
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Figure B-2: Bike Share Traffic in Cambridge
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Figure B-3: Pseudocode for street segmentation
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Figure B-4: Bike Share Efficiency in Cambridge
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Figure B-5: Urban Pyramid for Boston
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Figure B-6: Bike Lane Optimization for Cambridge
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Figure B-7: Social Network Influence Cambridge
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Figure B-8: Public School Locations in San Francisco
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