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ABSTRACT

The Wisdom–Holman mapping method and its variations have become a mainstay of research in solar system
dynamics. But the method is not without its limitations. Rauch & Holman noted that at large eccentricities
sufficiently small steps must be taken to resolve the pericenter. In this paper, I explore in more detail what it means
to resolve the pericenter.
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1. INTRODUCTION

The Wisdom–Holman mapping method (Wisdom & Hol-
man 1991) and its variations have become a mainstay of
research in solar system dynamics. We used Jacobi coordinates
to effect the elimination of the center of mass and the splitting
of the Hamiltonian for the n-body problem into Kepler
Hamiltonians plus perturbations. Touma & Wisdom
(1993a, 1993b) used the canonical heliocentric variables to
split the Hamiltonian into Kepler plus perturbations. Duncan
et al. (1998) and Chambers (1999) used the Wisdom–Holman
method in “democratic heliocentric” variables, the canonical
heliocentric variables with a slightly different splitting. Close
encounters among planets are treated specially in these works.
Chambers (1999) switched to the conventional Bulirsch–Stoer
method during an encounter; Duncan et al. (1998) recursively
subdivide the stepsize. Any Wisdom–Holman method written
in democratic heliocentric variables performs poorly at large
eccentricity unless special care is used to integrate “close
encounters with the Sun” (Levison & Duncan 2000). Thus the
“Mercury” code (Chambers 1999) should not be used if any of
the eccentricities of the planets becomes large. The original
“Symba” code (Duncan et al. 1998) also had this problem and
should not be used at large eccentricity, but it has been
modified to fix the problem by switching to the Bulirsch–Stoer
algorithm if a planet is close to the Sun (Levison &
Duncan 2000). The original Wisdom–Holman method in
Jacobi coordinates (Wisdom & Holman 1991) does not have
this problem at large eccentricity. But it does exhibit “stepsize
resonances” (Wisdom & Holman 1992) that limit the stepsize
to roughly 1/20 of the orbital period of the innermost planet,
seen clearly when using the symplectic corrector (Wisdom
et al. 1996). Rauch & Holman (1999) found that at large
eccentricity stepsize resonances further limit the stepsize used
in the Wisdom–Holman method so that the pericenter is
resolved. This paper explores further what is required to resolve
the pericenter in two standard test problems: the Stark problem
used by Rauch & Holman (1999) and the two-planet problem
used by Levison & Duncan (2000).

2. STARK PROBLEM

The Hamiltonian for the three-dimensional Stark problem, as
defined by Rauch & Holman (1999), is
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where S is the Stark vector. I make a mapping for this problem
with the splitting
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the Kepler problem with “Kepler constant” GM, and

H t x p S x, , . 3B ( ) · ( )= -

The three-dimensional Stark problem exhibits oscillations in
eccentricity with a peak eccentricity. Thus it is a nice context to
explore stepsize resonances that become important at large
eccentricity. I use Sx = 2.75 × 10−5, Sy = 0, and
Sz = 2.75 × 10−5, with G = (0.0172)2 (units solar mass,
day, AU), and M= 1. The initial semimajor axis is 0.4 AU, and
the initial eccentricity is 0.8. I adjust the peak eccentricity by
varying the initial inclination. The integrations span 100,000
days, or roughly 1000 orbits.
In addition to studying stepsize resonances, the Stark

problem is also a stringent test for the “Kepler solver.” The
Kepler solver advances the equivalent Kepler problem using
Gaussʼs f and g functions, as recommended by Wisdom &
Holman (1991). Here I use a Kepler solver written in universal
variables (Wisdom & Hernandez 2015). By being careful with
the formulation we are able to avoid the calculation of the
Stumpff series (and argument four-folding).
Figures 1–3 show results for the Stark problem using our

universal variable Kepler solver. The symplectic corrector
(Wisdom et al. 1996) is able to correct the results whenever the
error is dominated by truncation error. Apparently, for the Stark
problem, a good rule of thumb is that we need at least
approximately 17 steps per T ,ḟ where

T
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is the effective period at pericenter, and where fmax
˙ is the

maximum rate of change of the true anomaly (at pericenter).
This is what it means to “resolve the pericenter.”

3. TWO-PLANET PROBLEM

Duncan et al. (1998) and Levison & Duncan (2000) explore
a two-planet problem to compare the accuracy of their
methods. They also compare their results to results obtained
with their implementation of the Wisdom–Holman method,
which they call the MVS method. They explore a modified
Jupiter–Saturn problem, with the inclination of Saturn set at
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2p , and vary the initial eccentricity of Saturn. They take a
stepsize of 0.15 year. They report that the DH method (Duncan
et al. 1998) and the Wisdom–Holman method are both
“unusable” in this problem for perihelion distances less than

Figure 1. Initial inclination of 50° leads to a maximum eccentricity of
approximately 0.94. Three traces are shown. The uppermost curve (solid line)
shows the results without the symplectic corrector. There are three regimes:
(1) the noisy part of the curve on the upper right is a regime dominated by
stepsize resonances, (2) the middle part of the curve is dominated by
truncation error, and (3) the noisy part on the lower left is dominated
by roundoff error. The diagonal dotted line has a slope of 2. The lower
curve (dashed line) shows the results with the symplectic corrector. The
symplectic corrector removes the interval dominated by truncation error. The
border between the stepsize resonance region and the roundoff error region in
the corrected curve has approximately 17 steps per T ,ḟ as indicated by the
vertical stroke.

Figure 2. Initial inclination of 75° leads to a maximum eccentricity of
approximately 0.99. The curves are as described in Figure 1. The border
between the stepsize dominated regime and the roundoff error regime in the
corrected curve is again approximately 17 steps per T ,ḟ as indicated by the
vertical stroke.

Figure 3. Initial inclination of 100° leads to a maximum eccentricity of
approximately 0.996. The curves are as described in Figure 1. The border
between the stepsize dominated regime and the roundoff error regime in the
corrected curve is again approximately 17 steps per T ,ḟ as indicated by the
vertical stroke.

Figure 4. Logarithm of the relative energy error is plotted versus the logarithm
of the timestep (in years) for the two-planet problem. The region in the upper
right is dominated by stepsize resonances. The rest is dominated by truncation
error. The upper curve (solid line) does not use the corrector; the lower curve
(dashed line) uses the corrector. The vertical stroke indicates the stepsize for 15
steps per effective pericenter period.
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∼1 AU. The failure of the DH method is easy to understand, at
high eccentricities the mapping in democratic heliocentric
coordinates does not integrate Keplerian orbits well, even
without interactions (Levison & Duncan 2000). Regarding the
Wisdom–Holman method, Duncan et al. (1998, p. 2072–2073)
state “the [Wisdom–Holman method] can only handle small
pericentric distances for massless particles and for the inner-
most planet.” They go on: “For a massive body that is not the
innermost planet, ... the [Wisdom–Holman method] will fail.”
Their reasoning is mysterious and their conclusion is incorrect.
Though they mention the paper of Rauch and Holman, they do
not attach significance to it. In fact, the Wisdom–Holman
method fails in their test case because they chose a stepsize that
did not resolve the pericenter. I demonstrate this by redoing
their experiment with an appropriate range of stepsizes.

I take G = (0.0172)2, for which the units are days, AU, and
solar mass. I take the solar mass to be unity. The mass of
“Jupiter” is 1/1047.355 and the mass of “Saturn” is 1/3498.5.
The semimajor axis of Jupiter is 5.2AU; that of Saturn is
9.58 AU. The eccentricity of Jupiter is 0.05. The eccentricity of
Saturn is varied. The inclination of Jupiter is zero; that of
Saturn is π/2. The argument of pericenter of Jupiter and Saturn
are zero, as are the longitudes of ascending node. The
integrations span 3000 years.

Figure 4 shows the relative error in the two-planet problem
as a function of stepsize. The initial eccentricity of Saturn is
0.95. We see two regions: a region in the upper right that is
dominated by stepsize resonances, and the rest is dominated by

truncation error. The vertical stroke indicates a stepsize that is
1/15 of T ,ḟ the effective pericenter period. We see that as long
as the stepsize is chosen to resolve the percenter, the Wisdom–

Holman method has no trouble evolving this two-planet
problem, contrary to the conclusions of Levison & Dun-
can (2000).

4. CONCLUSION

Numerical exploration of the Stark problem and the two-
planet problem indicates the pericenter is adequately resolved if
the stepsize is chosen to be 1/20 of the effective period at
pericenter. Depending on the problem, the error may or may
not be dominated by truncation error at this stepsize.

I thank M. Holman and H. Rein for interesting and helpful
discussions.
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